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v



This page intentionally left blank 



Contents

Preface xxv

Acknowledgment xxvii

1 Continuous-Time and Discrete-Time Signals and Systems 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Continuous-Time Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Unit Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Graphical Representation of Functions . . . . . . . . . . . . . . . . . . . . 5
1.6 Even and Odd Parts of a Function . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Dirac-Delta Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Basic Properties of the Dirac-Delta Impulse . . . . . . . . . . . . . . . . . 8
1.9 Other Important Properties of the Impulse . . . . . . . . . . . . . . . . . 11
1.10 Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.11 Causality, Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.12 Examples of Electrical Continuous-Time Systems . . . . . . . . . . . . . . 12
1.13 Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.14 Transfer Function and Frequency Response . . . . . . . . . . . . . . . . . 14
1.15 Convolution and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.16 A Right-Sided and a Left-Sided Function . . . . . . . . . . . . . . . . . . . 20
1.17 Convolution with an Impulse and Its Derivatives . . . . . . . . . . . . . . 21
1.18 Additional Convolution Properties . . . . . . . . . . . . . . . . . . . . . . 21
1.19 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.20 Properties of the Correlation Function . . . . . . . . . . . . . . . . . . . . 22
1.21 Graphical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.22 Correlation of Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . 25
1.23 Average, Energy and Power of Continuous-Time Signals . . . . . . . . . . 25
1.24 Discrete-Time Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.25 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.26 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.27 Even/Odd Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.28 Average Value, Energy and Power Sequences . . . . . . . . . . . . . . . . 29
1.29 Causality, Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.30 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.31 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Fourier Series Expansion 47
2.1 Trigonometric Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Exponential Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Exponential versus Trigonometric Series . . . . . . . . . . . . . . . . . . . 50
2.4 Periodicity of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



viii Signals, Systems, Transforms and Digital Signal Processing with MATLABr

2.5 Dirichlet Conditions and Function Discontinuity . . . . . . . . . . . . . . 53
2.6 Proof of the Exponential Series Expansion . . . . . . . . . . . . . . . . . . 55
2.7 Analysis Interval versus Function Period . . . . . . . . . . . . . . . . . . . 55
2.8 Fourier Series as a Discrete-Frequency Spectrum . . . . . . . . . . . . . . 56
2.9 Meaning of Negative Frequencies . . . . . . . . . . . . . . . . . . . . . . . 58
2.10 Properties of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.10.2 Time Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10.3 Frequency Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10.4 Function Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.10.5 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.10.6 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.10.7 Half-Periodic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 65
2.10.8 Double Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.10.9 Time Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.10.10 Differentiation Property . . . . . . . . . . . . . . . . . . . . . . . . 72

2.11 Differentiation of Discontinuous Functions . . . . . . . . . . . . . . . . . . 74
2.11.1 Multiplication in the Time Domain . . . . . . . . . . . . . . . . . . 74
2.11.2 Convolution in the Time Domain . . . . . . . . . . . . . . . . . . . 75
2.11.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.12 Fourier Series of an Impulse Train . . . . . . . . . . . . . . . . . . . . . . 77
2.13 Expansion into Cosine or Sine Fourier Series . . . . . . . . . . . . . . . . . 78
2.14 Deducing a Function Form from Its Expansion . . . . . . . . . . . . . . . 81
2.15 Truncated Sinusoid Spectral Leakage . . . . . . . . . . . . . . . . . . . . . 83
2.16 The Period of a Composite Sinusoidal Signal . . . . . . . . . . . . . . . . 86
2.17 Passage through a Linear System . . . . . . . . . . . . . . . . . . . . . . . 88
2.18 Parseval’s Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.19 Use of Power Series Expansion . . . . . . . . . . . . . . . . . . . . . . . . 90
2.20 Inverse Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.21 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.22 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Laplace Transform 105
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2 Bilateral Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3 Conditions of Existence of Laplace Transform . . . . . . . . . . . . . . . . 107
3.4 Basic Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5 Notes on the ROC of Laplace Transform . . . . . . . . . . . . . . . . . . . 112
3.6 Properties of Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . 115

3.6.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.6.2 Differentiation in Time . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.6.3 Multiplication by Powers of Time . . . . . . . . . . . . . . . . . . . 116
3.6.4 Convolution in Time . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6.5 Integration in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6.6 Multiplication by an Exponential (Modulation) . . . . . . . . . . . 118
3.6.7 Time Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.6.8 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.6.9 Initial Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.6.10 Final Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.6.11 Laplace Transform of Anticausal Functions . . . . . . . . . . . . . 120
3.6.12 Shift in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Table of Contents ix

3.7 Applications of the Differentiation Property . . . . . . . . . . . . . . . . . 122
3.8 Transform of Right-Sided Periodic Functions . . . . . . . . . . . . . . . . 123
3.9 Convolution in Laplace Domain . . . . . . . . . . . . . . . . . . . . . . . . 124
3.10 Cauchy’s Residue Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.11 Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.12 Case of Conjugate Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.13 The Expansion Theorem of Heaviside . . . . . . . . . . . . . . . . . . . . . 131
3.14 Application to Transfer Function and Impulse Response . . . . . . . . . . 132
3.15 Inverse Transform by Differentiation and Integration . . . . . . . . . . . . 133
3.16 Unilateral Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.16.1 Differentiation in Time . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.16.2 Initial and Final Value Theorem . . . . . . . . . . . . . . . . . . . 137
3.16.3 Integration in Time Property . . . . . . . . . . . . . . . . . . . . . 137
3.16.4 Division by Time Property . . . . . . . . . . . . . . . . . . . . . . 137

3.17 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.18 Table of Additional Laplace Transforms . . . . . . . . . . . . . . . . . . . 141
3.19 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.20 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Fourier Transform 153
4.1 Definition of the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Fourier Transform as a Function of f . . . . . . . . . . . . . . . . . . . . 155
4.3 From Fourier Series to Fourier Transform . . . . . . . . . . . . . . . . . . 156
4.4 Conditions of Existence of the Fourier Transform . . . . . . . . . . . . . . 157
4.5 Table of Properties of the Fourier Transform . . . . . . . . . . . . . . . . . 158

4.5.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.5.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.3 Time Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.4 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.5 Time Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.6 Frequency Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.7 Modulation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5.8 Initial Time Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.9 Initial Frequency Value . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.10 Differentiation in Time . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.11 Differentiation in Frequency . . . . . . . . . . . . . . . . . . . . . . 164
4.5.12 Integration in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.13 Conjugate Function . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5.14 Real Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5.15 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.6 System Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.7 Even–Odd Decomposition of a Real Function . . . . . . . . . . . . . . . . 167
4.8 Causal Real Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.9 Transform of the Dirac-Delta Impulse . . . . . . . . . . . . . . . . . . . . 169
4.10 Transform of a Complex Exponential and Sinusoid . . . . . . . . . . . . . 169
4.11 Sign Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.12 Unit Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.13 Causal Sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.14 Table of Fourier Transforms of Basic Functions . . . . . . . . . . . . . . . 172
4.15 Relation between Fourier and Laplace Transforms . . . . . . . . . . . . . . 174
4.16 Relation to Laplace Transform with Poles on Imaginary Axis . . . . . . . 175



x Signals, Systems, Transforms and Digital Signal Processing with MATLABr

4.17 Convolution in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.18 Linear System Input–Output Relation . . . . . . . . . . . . . . . . . . . . 177
4.19 Convolution in Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.20 Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.21 Energy Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.22 Average Value versus Fourier Transform . . . . . . . . . . . . . . . . . . . 180
4.23 Fourier Transform of a Periodic Function . . . . . . . . . . . . . . . . . . 181
4.24 Impulse Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.25 Fourier Transform of Powers of Time . . . . . . . . . . . . . . . . . . . . . 182
4.26 System Response to a Sinusoidal Input . . . . . . . . . . . . . . . . . . . . 183
4.27 Stability of a Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.28 Fourier Series versus Transform of Periodic Functions . . . . . . . . . . . . 184
4.29 Transform of a Train of Rectangles . . . . . . . . . . . . . . . . . . . . . . 184
4.30 Fourier Transform of a Truncated Sinusoid . . . . . . . . . . . . . . . . . . 185
4.31 Gaussian Function Laplace and Fourier Transform . . . . . . . . . . . . . 186
4.32 Inverse Transform by Series Expansion . . . . . . . . . . . . . . . . . . . . 187
4.33 Fourier Transform in ω and f . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.34 Fourier Transform of the Correlation Function . . . . . . . . . . . . . . . . 189
4.35 Ideal Filters Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . 190
4.36 Time and Frequency Domain Sampling . . . . . . . . . . . . . . . . . . . . 191
4.37 Ideal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.38 Reconstruction of a Signal from its Samples . . . . . . . . . . . . . . . . . 193
4.39 Other Sampling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.39.1 Natural Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.39.2 Instantaneous Sampling . . . . . . . . . . . . . . . . . . . . . . . . 197

4.40 Ideal Sampling of a Bandpass Signal . . . . . . . . . . . . . . . . . . . . . 200
4.41 Sampling an Arbitrary Signal . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.42 Sampling the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 203
4.43 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.44 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 222

5 System Modeling, Time and Frequency Response 233
5.1 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.2 Block Diagram Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.3 Galvanometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.4 DC Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
5.5 A Speed-Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.6 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.7 Transient and Steady-State Response . . . . . . . . . . . . . . . . . . . . . 247
5.8 Step Response of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . 248
5.9 First Order System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.10 Second Order System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.11 Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.12 Second Order System Frequency Response . . . . . . . . . . . . . . . . . . 253
5.13 Case of a Double Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.14 The Over-Damped Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.15 Evaluation of the Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.16 Causal System Response to an Arbitrary Input . . . . . . . . . . . . . . . 256
5.17 System Response to a Causal Periodic Input . . . . . . . . . . . . . . . . . 257
5.18 Response to a Causal Sinusoidal Input . . . . . . . . . . . . . . . . . . . . 259
5.19 Frequency Response Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



Table of Contents xi

5.20 Decibels, Octaves, Decades . . . . . . . . . . . . . . . . . . . . . . . . . . 260
5.21 Asymptotic Frequency Response . . . . . . . . . . . . . . . . . . . . . . . 261

5.21.1 A Simple Zero at the Origin . . . . . . . . . . . . . . . . . . . . . . 261
5.21.2 A Simple Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
5.21.3 A Simple Zero in the Left Plane . . . . . . . . . . . . . . . . . . . 262
5.21.4 First Order System . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.21.5 Second Order System . . . . . . . . . . . . . . . . . . . . . . . . . 264

5.22 Bode Plot of a Composite Linear System . . . . . . . . . . . . . . . . . . . 267
5.23 Graphical Representation of a System Function . . . . . . . . . . . . . . . 268
5.24 Vectorial Evaluation of Residues . . . . . . . . . . . . . . . . . . . . . . . 269
5.25 Vectorial Evaluation of the Frequency Response . . . . . . . . . . . . . . . 273
5.26 A First Order All-Pass System . . . . . . . . . . . . . . . . . . . . . . . . 275
5.27 Filtering Properties of Basic Circuits . . . . . . . . . . . . . . . . . . . . . 275
5.28 Lowpass First Order Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.29 Minimum Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
5.30 General Order All-Pass Systems . . . . . . . . . . . . . . . . . . . . . . . . 281
5.31 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.32 Application of Laplace Transform to Differential Equations . . . . . . . . 284

5.32.1 Linear Differential Equations with Constant Coefficients . . . . . . 285
5.32.2 Linear First Order Differential Equation . . . . . . . . . . . . . . . 285
5.32.3 General Order Differential Equations with Constant Coefficients . 286
5.32.4 Homogeneous Linear Differential Equations . . . . . . . . . . . . . 287
5.32.5 The General Solution of a Linear Differential Equation . . . . . . . 288
5.32.6 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . 291

5.33 Transformation of Partial Differential Equations . . . . . . . . . . . . . . . 293
5.34 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
5.35 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 314

6 Discrete-Time Signals and Systems 323
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.2 Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . . . 324
6.3 Linear Constant-Coefficient Difference Equations . . . . . . . . . . . . . . 324
6.4 The z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
6.5 Convergence of the z-Transform . . . . . . . . . . . . . . . . . . . . . . . . 327
6.6 Inverse z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
6.7 Inverse z-Transform by Partial Fraction Expansion . . . . . . . . . . . . . 336
6.8 Inversion by Long Division . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.9 Inversion by a Power Series Expansion . . . . . . . . . . . . . . . . . . . . 338
6.10 Inversion by Geometric Series Summation . . . . . . . . . . . . . . . . . . 339
6.11 Table of Basic z-Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.12 Properties of the z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . 340

6.12.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.12.2 Time Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.12.3 Conjugate Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.12.4 Initial Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.12.5 Convolution in Time . . . . . . . . . . . . . . . . . . . . . . . . . . 344
6.12.6 Convolution in Frequency . . . . . . . . . . . . . . . . . . . . . . . 344
6.12.7 Parseval’s Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.12.8 Final Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 347
6.12.9 Multiplication by an Exponential . . . . . . . . . . . . . . . . . . . 348
6.12.10 Frequency Translation . . . . . . . . . . . . . . . . . . . . . . . . . 348



xii Signals, Systems, Transforms and Digital Signal Processing with MATLABr

6.12.11 Reflection Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.12.12 Multiplication by n . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

6.13 Geometric Evaluation of Frequency Response . . . . . . . . . . . . . . . . 349
6.14 Comb Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6.15 Causality and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
6.16 Delayed Response and Group Delay . . . . . . . . . . . . . . . . . . . . . 354
6.17 Discrete-Time Convolution and Correlation . . . . . . . . . . . . . . . . . 355
6.18 Discrete-Time Correlation in One Dimension . . . . . . . . . . . . . . . . 357
6.19 Convolution and Correlation as Multiplications . . . . . . . . . . . . . . . 360
6.20 Response of a Linear System to a Sinusoid . . . . . . . . . . . . . . . . . . 361
6.21 Notes on the Cross-Correlation of Sequences . . . . . . . . . . . . . . . . . 361
6.22 LTI System Input/Output Correlation Sequences . . . . . . . . . . . . . . 362
6.23 Energy and Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . 363
6.24 Two-Dimensional Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
6.25 Linear Systems, Convolution and Correlation . . . . . . . . . . . . . . . . 366
6.26 Correlation of Two-Dimensional Signals . . . . . . . . . . . . . . . . . . . 370
6.27 IIR and FIR Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 374
6.28 Discrete-Time All-Pass Systems . . . . . . . . . . . . . . . . . . . . . . . . 375
6.29 Minimum-Phase and Inverse System . . . . . . . . . . . . . . . . . . . . . 378
6.30 Unilateral z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

6.30.1 Time Shift Property of Unilateral z-Transform . . . . . . . . . . . 383
6.31 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6.32 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 390

7 Discrete-Time Fourier Transform 395
7.1 Laplace, Fourier and z-Transform Relations . . . . . . . . . . . . . . . . . 395
7.2 Discrete-Time Processing of Continuous-Time Signals . . . . . . . . . . . 400
7.3 A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
7.4 Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
7.5 D/A Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7.6 Continuous versus Discrete Signal Processing . . . . . . . . . . . . . . . . 406
7.7 Interlacing with Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
7.8 Sampling Rate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

7.8.1 Sampling Rate Reduction . . . . . . . . . . . . . . . . . . . . . . . 410
7.8.2 Sampling Rate Increase: Interpolation . . . . . . . . . . . . . . . . 414
7.8.3 Rational Factor Sample Rate Alteration . . . . . . . . . . . . . . . 417

7.9 Fourier Transform of a Periodic Sequence . . . . . . . . . . . . . . . . . . 419
7.10 Table of Discrete-Time Fourier Transforms . . . . . . . . . . . . . . . . . . 420
7.11 Reconstruction of the Continuous-Time Signal . . . . . . . . . . . . . . . . 424
7.12 Stability of a Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . 425
7.13 Table of Discrete-Time Fourier Transform Properties . . . . . . . . . . . . 425
7.14 Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
7.15 Fourier Series and Transform Duality . . . . . . . . . . . . . . . . . . . . . 426
7.16 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 429
7.17 Discrete Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
7.18 DFT of a Sinusoidal Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 434
7.19 Deducing the z-Transform from the DFT . . . . . . . . . . . . . . . . . . . 436
7.20 DFT versus DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
7.21 Properties of DFS and DFT . . . . . . . . . . . . . . . . . . . . . . . . . . 439

7.21.1 Periodic Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 441
7.22 Circular Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



Table of Contents xiii

7.23 Circular Convolution Using the DFT . . . . . . . . . . . . . . . . . . . . . 445
7.24 Sampling the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
7.25 Table of Properties of DFS . . . . . . . . . . . . . . . . . . . . . . . . . . 447
7.26 Shift in Time and Circular Shift . . . . . . . . . . . . . . . . . . . . . . . . 448
7.27 Table of DFT Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
7.28 Zero Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
7.29 Discrete z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
7.30 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
7.31 An Algorithm for a Wired-In Radix-2 Processor . . . . . . . . . . . . . . . 462

7.31.1 Post-Permutation Algorithm . . . . . . . . . . . . . . . . . . . . . 464
7.31.2 Ordered Input/Ordered Output (OIOO) Algorithm . . . . . . . . . 465

7.32 Factorization of the FFT to a Higher Radix . . . . . . . . . . . . . . . . . 466
7.32.1 Ordered Input/Ordered Output General Radix FFT Algorithm . . 469

7.33 Feedback Elimination for High-Speed Signal Processing . . . . . . . . . . 470
7.34 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
7.35 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 478

8 State Space Modeling 483
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
8.2 Note on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
8.3 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
8.4 System Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.5 System Response with Initial Conditions . . . . . . . . . . . . . . . . . . . 489
8.6 Jordan Canonical Form of State Space Model . . . . . . . . . . . . . . . . 490
8.7 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.8 Matrix Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.9 Similarity Transformation of a State Space Model . . . . . . . . . . . . . . 499
8.10 Solution of the State Equations . . . . . . . . . . . . . . . . . . . . . . . . 501
8.11 General Jordan Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . 507
8.12 Circuit Analysis by Laplace Transform and State Variables . . . . . . . . 509
8.13 Trajectories of a Second Order System . . . . . . . . . . . . . . . . . . . . 513
8.14 Second Order System Modeling . . . . . . . . . . . . . . . . . . . . . . . . 515
8.15 Transformation of Trajectories between Planes . . . . . . . . . . . . . . . 519
8.16 Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
8.17 Solution of the State Equations . . . . . . . . . . . . . . . . . . . . . . . . 528
8.18 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.19 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.20 Second Canonical Form State Space Model . . . . . . . . . . . . . . . . . 531
8.21 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
8.22 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 538

9 Filters of Continuous-Time Domain 543
9.1 Lowpass Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
9.2 Butterworth Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 544
9.3 Denormalization of Butterworth Filter Prototype . . . . . . . . . . . . . . 547
9.4 Denormalized Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 550
9.5 The Case ε 6= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
9.6 Butterworth Filter Order Formula . . . . . . . . . . . . . . . . . . . . . . 553
9.7 Nomographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
9.8 Chebyshev Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
9.9 Pass-Band Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560



xiv Signals, Systems, Transforms and Digital Signal Processing with MATLABr

9.10 Transfer Function of the Chebyshev Filter . . . . . . . . . . . . . . . . . . 560
9.11 Maxima and Minima of Chebyshev Filter Response . . . . . . . . . . . . . 563
9.12 The Value of ε as a Function of Pass-Band Ripple . . . . . . . . . . . . . 564
9.13 Evaluation of Chebyshev Filter Gain . . . . . . . . . . . . . . . . . . . . . 564
9.14 Chebyshev Filter Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
9.15 Chebyshev Filter Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
9.16 Denormalization of Chebyshev Filter Prototype . . . . . . . . . . . . . . . 568
9.17 Chebyshev’s Approximation: Second Form . . . . . . . . . . . . . . . . . . 571
9.18 Response Decay of Butterworth and Chebyshev Filters . . . . . . . . . . . 572
9.19 Chebyshev Filter Nomograph . . . . . . . . . . . . . . . . . . . . . . . . . 575
9.20 Elliptic Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

9.20.1 Elliptic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
9.21 Properties, Poles and Zeros of the sn Function . . . . . . . . . . . . . . . 577

9.21.1 Elliptic Filter Approximation . . . . . . . . . . . . . . . . . . . . . 580
9.22 Pole Zero Alignment and Mapping of Elliptic Filter . . . . . . . . . . . . . 584
9.23 Poles of H (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
9.24 Zeros and Poles of G(ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
9.25 Zeros, Maxima and Minima of the Magnitude Spectrum . . . . . . . . . . 591
9.26 Points of Maxima/Minima . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
9.27 Elliptic Filter Nomograph . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
9.28 N = 9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
9.29 Tables of Elliptic Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
9.30 Bessel’s Constant Delay Filters . . . . . . . . . . . . . . . . . . . . . . . . 611
9.31 A Note on Continued Fraction Expansion . . . . . . . . . . . . . . . . . . 612
9.32 Evaluating the Filter Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 617
9.33 Bessel Filter Quality Factor and Natural Frequency . . . . . . . . . . . . . 618
9.34 Maximal Flatness of Bessel and Butterworth Response . . . . . . . . . . . 619
9.35 Bessel Filter’s Delay and Magnitude Response . . . . . . . . . . . . . . . . 622
9.36 Denormalization and Deviation from Ideal Response . . . . . . . . . . . . 622
9.37 Bessel Filter’s Magnitude and Delay . . . . . . . . . . . . . . . . . . . . . 626
9.38 Bessel Filter’s Butterworth Asymptotic Form . . . . . . . . . . . . . . . . 626
9.39 Delay of Bessel–Butterworth Asymptotic Form Filter . . . . . . . . . . . . 628
9.40 Delay Plots of Butterworth Asymptotic Form Bessel Filter . . . . . . . . . 629
9.41 Bessel Filters Frequency Normalized Form . . . . . . . . . . . . . . . . . . 633
9.42 Poles and Zeros of Asymptotic and Frequency Normalized Bessel Filter

Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
9.43 Response and Delay of Normalized Form Bessel Filter . . . . . . . . . . . 634
9.44 Bessel Frequency Normalized Form Attenuation Setting . . . . . . . . . . 635
9.45 Bessel Filter Nomograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
9.46 Frequency Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 639
9.47 Lowpass to Bandpass Transformation . . . . . . . . . . . . . . . . . . . . . 641
9.48 Lowpass to Band-Stop Transformation . . . . . . . . . . . . . . . . . . . . 651
9.49 Lowpass to Highpass Transformation . . . . . . . . . . . . . . . . . . . . . 653
9.50 Note on Lowpass to Normalized Band-Stop Transformation . . . . . . . . 657
9.51 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
9.52 Rectangular Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
9.53 Triangle (Bartlett) Window . . . . . . . . . . . . . . . . . . . . . . . . . . 663
9.54 Hanning Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
9.55 Hamming Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
9.56 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
9.57 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 671



Table of Contents xv

10 Passive and Active Filters 677
10.1 Design of Passive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
10.2 Design of Passive Ladder Lowpass Filters . . . . . . . . . . . . . . . . . . 677
10.3 Analysis of a General Order Passive Ladder Network . . . . . . . . . . . . 680
10.4 Input Impedance of a Single-Resistance Terminated Network . . . . . . . 683
10.5 Evaluation of the Ladder Network Components . . . . . . . . . . . . . . . 684
10.6 Matrix Evaluation of Input Impedance . . . . . . . . . . . . . . . . . . . . 689
10.7 Bessel Filter Passive Ladder Networks . . . . . . . . . . . . . . . . . . . . 693
10.8 Tables of Single-Resistance Ladder Network Components . . . . . . . . . . 694
10.9 Design of Doubly Terminated Passive LC Ladder Networks . . . . . . . . 695

10.9.1 Input Impedance Evaluation . . . . . . . . . . . . . . . . . . . . . . 695
10.10 Tables of Double-Resistance Terminated Ladder Network Components . . 701
10.11 Closed Forms for Circuit Element Values . . . . . . . . . . . . . . . . . . . 703
10.12 Elliptic Filter Realization as a Passive Ladder Network . . . . . . . . . . . 706

10.12.1 Evaluating the Elliptic LC Ladder Circuit Elements . . . . . . . . 707
10.13 Table of Elliptic Filter Passive Network Components . . . . . . . . . . . . 709
10.14 Element Replacement for Frequency Transformation . . . . . . . . . . . . 709

10.14.1 Lowpass to Bandpass Transformation . . . . . . . . . . . . . . . . 710
10.14.2 Lowpass to Highpass Transformation . . . . . . . . . . . . . . . . . 711
10.14.3 Lowpass to Band-Stop Transformation . . . . . . . . . . . . . . . . 711

10.15 Realization of a General Order Active Filter . . . . . . . . . . . . . . . . . 713
10.16 Inverting Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
10.17 Biquadratic Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . 714
10.18 General Biquad Realization . . . . . . . . . . . . . . . . . . . . . . . . . . 716
10.19 First Order Filter Realization . . . . . . . . . . . . . . . . . . . . . . . . . 721
10.20 A Biquadratic Transfer Function Realization . . . . . . . . . . . . . . . . 723
10.21 Sallen–Key Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
10.22 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
10.23 Answers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . 729

11 Digital Filters 733
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
11.2 Signal Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
11.3 IIR Filter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
11.4 First Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
11.5 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
11.6 Second Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
11.7 Transposition of the Second Canonical Form . . . . . . . . . . . . . . . . . 737
11.8 Structures Based on Poles and Zeros . . . . . . . . . . . . . . . . . . . . . 738
11.9 Cascaded Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
11.10 Parallel Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
11.11 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
11.12 Finite Impulse Response (FIR) Filters . . . . . . . . . . . . . . . . . . . . 740
11.13 Linear Phase FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
11.14 Conversion of Continuous-Time to Discrete-Time Filter . . . . . . . . . . 743
11.15 Impulse Invariance Approach . . . . . . . . . . . . . . . . . . . . . . . . . 743
11.16 Shortcut Impulse Invariance Design . . . . . . . . . . . . . . . . . . . . . . 746
11.17 Backward-Rectangular Approximation . . . . . . . . . . . . . . . . . . . . 747
11.18 Forward Rectangular and Trapezoidal Approximations . . . . . . . . . . . 749
11.19 Bilinear Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
11.20 Lattice Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760



xvi Signals, Systems, Transforms and Digital Signal Processing with MATLABr

11.21 Finite Impulse Response All-Zero Lattice Structures . . . . . . . . . . . . 760
11.22 One-Zero FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
11.23 Two-Zeros FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
11.24 General Order All-Zero FIR Filter . . . . . . . . . . . . . . . . . . . . . . 764
11.25 All-Pole Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
11.26 First Order One-Pole Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 770
11.27 Second Order All-Pole Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 771
11.28 General Order All-Pole Filter . . . . . . . . . . . . . . . . . . . . . . . . . 772
11.29 Pole-Zero IIR Lattice Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 775
11.30 All-Pass Filter Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
11.31 Schur–Cohn Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . 782
11.32 Frequency Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 783
11.33 Least Squares Digital Filter Design . . . . . . . . . . . . . . . . . . . . . . 786
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Preface

Simplification without comprise of rigor is the principal objective in this presentation of the
subject of signal analysis, systems, transforms and digital signal processing. Graphics, the
language of scientists and engineers, physical interpretation of subtle mathematical concepts
and a gradual transition from basic to more advanced topics, are meant to be among the
important contributions of this book.

Laplace transform, Fourier transform, Discrete-time signals and systems, z-transform and
distributions, such as the Dirac-delta impulse, have become important topics of basic science
and engineering mathematics courses. In recent years, an increasing number of students,
from all specialties of science and engineering, have been attending courses on signals,
systems and DSP. This book is addressed to undergraduate and graduate students, as well
as scientists and engineers in practically all fields of science and engineering.

The book starts with an introduction to continuous-time and discrete-time signals and
systems. It then presents Fourier series expansion and the decomposition of signals as a dis-
crete spectrum. The decomposition process is illustrated by evaluating the signal’s harmonic
components and then effecting a step-by-step addition of the harmonics. The resulting sum
is seen to converge incrementally toward the analyzed function. Such an early introduction
to the concept of frequency decomposition is meant to provide a tangible notion of the
basis of Fourier analysis. In later chapters, the student realizes the value of the knowledge
acquired in studying Fourier series, a subject that is in a way more subtle than Fourier
transform.

The Laplace transform is normally covered in basic mathematics university courses. In
this book the bilateral Laplace transform is presented, followed by the unilateral transform
and its properties.

The Fourier transform is subsequently presented, shown to be in fact a special case of
the Laplace transform. Impulsive spectra are given particular attention. It is then applied
to sampling techniques; ideal, natural and instantaneous, among others. In Chapter 5 we
study the dynamics of physical systems, mathematical modeling, and time and frequency
response.

Discrete time signals and systems, z-transform, continuous and discrete time filters, ellip-
tic, Bessel and lattice filters, active and passive filters, and continuous time and discrete-time
state space models are subsequently presented.

Fourier transform of sequences, the discrete Fourier transform and the Fast Fourier trans-
form merit special attention. A unique Matrix–Equation–Matrix sequence of operations is
presented as a means of simplifying considerably the Fast Fourier Transform algorithm.

Fourier-, Laplace- and z-related transforms such as Walsh–Hadamard, generalized Walsh,
Hilbert, discrete cosine, Hartley, Hankel and Mellin transforms are subsequently covered.

The architecture and design of digital signal processors is given a special attention. The
logic of compute arithmetic, modular design of logic circuits, the design of combinatorial
logic circuits, synchronous and asynchronous sequential machines are among the topics dis-
cussed in Chapter 15. Parallel processing, wired-in design leading to addressing elimination
and to optimal architecture up to massive parallelism are important topics of digital signal
processor design. An overall view of present day logic circuit design tools, Programmable
logic arrays, DSP technology with application to real-time processing follows.

xxv



xxvi Preface

Random signals and random signal processing in both the continuous and discrete time
domains are studied in Chapter 16. The following chapter presents the important subject
of distribution theory, with attention given to simplify the subject and present its practical
results.

The book then presents a significant new development. It reveals a mathematical anomaly
and sets out to undo it. Laplace and z-transforms and a large class of Fourier-, Laplace-
and z-related transforms, are rewritten and their transform tables doubled in length. Such
extension of transform domains is the result of a recently proposed generalization of the
Dirac-delta impulse and distribution theory.

It is worthwhile noticing that students are able to use the Dirac-delta impulse and related
singularities in solving problems in different scientific areas. They do so in general without
necessarily learning the intricacies of the theory of distributions. They are taught the basic
properties of the Dirac-delta impulse and its relatives, and that usually suffices for them
to appreciate and use them. The proposed generalization of the theory of distributions
may appear to be destined toward the specialist in the field. However, once taught the
basic properties of the new generalized distributions, and of the generalized impulse in
particular, it will be as easy for the student to learn the new expanded Laplace, z and
related transforms, without the need to fall back on the theory of distributions for rigorous
mathematical justification.

For the benefit of the reader, for a gradual presentation and more profound understanding
of the subject, most of the chapters in the book present and apply Laplace and z-transforms
in the usual form found in the literature. In writing the book I felt that the reader would ben-
efit considerably from studying transforms as they are presently taught and as described
in mathematics, physics and engineering books. By thus acquiring solid knowledge and
background, the student would be well prepared to learn and better appreciate, in the last
chapter, the value of the new extended transforms.

Throughout MATLAB refers to MATLABr which, similarly to Mapler and Simulinkr

is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760;
Phone: 508-647-7000. Web: www.mathworks.com

Mathematica, throughout this book, refers to Mathematicar, a registered trademark
of Wolfram Research Inc., web http://www.wolfram.com email:info@wolfram.com, Stephen
Wolfram. Phone: 217-398-0700, 100 Trade Center Drive, Champaign, IL 61820.

Xilinx Inc. and Altera Inc. have copyright on all their products cited in Chapter 15.
TMS320C6713B Floating-Point DSPr is a registered trademark of Texas Instruments

Inc. Code composer studior is a registered trademark of Texas Instruments Inc. All related
trademarks are the property of Texas Instruments, www.ti.com.

Michael J. Corinthios

www.mathworks.com
http://www.wolfram.com
www.ti.com
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xxvii



This page intentionally left blank 



1

Continuous-Time and Discrete-Time Signals and

Systems

A General Note on Symbols and Notation

Throughout, whenever possible, we shall use lower case letters to designate time functions
and upper case letters to designate their transforms.

We shall use the Meter-Kilogram-Second (MKS) System of units, so that length is mea-
sured in meters (m), mass in kilograms (k) and time in seconds (s). Electric potential is in
volts (V), current in amperes (A), frequency in cycles/sec (Hz), angular or radian frequency
in rad/sec (r/s), energy in joules (J), power in watts (W), etc.

A list of symbols used in this book is given in Chapter A. The following symbols will be
used often and merit remembering
Centered rectangle of total width 2T : ΠT (t) = u (t+ T )− u (t− T ),

Centered triangle of height 1 and total base width 2T : ΛT (t),

Rectangle of width T starting at t = 0: RT (t) = u (t)− u (t− T ) .

1 1

d( )t d'( )t

1

LT( )t

0 tt T

1

R tT( )

00

T 2T

rT ( )t

0-T-2T t

1

-3T-4T 4T3T

FIGURE 1.1 Centered rectangle, triangle, causal rectangle, impulse and its derivative.

These functions are represented graphically in Fig. 1.1. In this figure we see, moreover, the
usual graphical representation of the Dirac-delta impulse δ(t) and a possible representation
of its derivative δ

′
(t) as well as the impulse train of period T ,

ρT (t) =
∞∑

n=−∞
δ (t− nT ) .

1
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The function Sh(x) is the hyperbolic generalization of the the usual (trigonometric) Sam-
pling function Sa(x) = sinx/x. The function SdN (Ω) is the discrete counterpart of the
sampling function. It is given by SdN (Ω) = sin[NΩ]/sin(Ω) and is closely related to the
Dirichlet function dirich(x,N) = sin(Nx/2)/Nsin(x/2). In fact,

dirich(x,N) =
1

N
SdN (x/2) (1.1)

SdN (Ω) = N dirich(2Ω, N) (1.2)

These functions are depicted schematically in Chapter A.

1.1 Introduction

Engineers and scientists spend considerable time and effort exploring the behavior of dy-
namic physical systems. Whether they are unraveling laws governing mechanical motion,
wave propagation, seismic tremors, structural vibrations, biomedical imaging, socio-economic
tendencies or spatial communication, they search for mathematical models representing the
physical systems and study their responses to pertinent input signals.

In this chapter, a brief summary of basic notions of continuous-time and discrete-time
signals and systems is presented. A more detailed treatment of these subjects is contained
in the following chapters. The student is assumed to have basic knowledge of Laplace and
Fourier transform as taught in a university first-year mathematics course. The subject of
signals and systems is covered by many excellent books in the literature [47] [57] [62].

1.2 Continuous-Time Signals

A continuous-time signal f(t) is a function of time, defined for all values of the independent
time variable t. More generally it may be a function f (x) where x may be a variable such
as distance and not necessarily t for time. The function f (t) is generally continuous but
may have a discontinuity; a sudden jump, at a point t = t0 for example.

Example 1.1 The function f (t) = t shown in Fig. 1.2, is defined for all values of t, i.e.
for −∞ < t <∞, and has no discontinuities.

Example 1.2 The function f (t) = e−|t| shown in Fig. 1.3 is defined for all values of t and
is continuous everywhere.

Its derivative f ′ (t) = df/dt, however, given by

f ′ (t) =

{
−e−t, t > 0
et, t < 0

and shown in the figure is discontinuous at t = 0 due to the sudden change of slope of f (t)
at t = 0 where the derivative jumps from 1 at t = 0− to −1 at t = 0+, a jump of −2.
The figure also shows the function f ′′ (t) = d2f/dt2 = e−|t| − 2δ (t). The impulse −2δ (t)
is due to the differentiation of the jump discontinuity, as we shall see shortly and in more
detail later on.
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FIGURE 1.2 Continuous time function defined for all values of time.

FIGURE 1.3 A function and its derivatives.

Note: The notation t−0 and t+0 mean, with ε > 0, the limit, t−0 = lim
ε−→0

(t0 − ε), and

t+0 = lim
ε−→0

(t0 + ε).

1.3 Periodic Functions

A periodic function f (t) is one that repeats periodically over the whole time axis t ∈
(−∞, ∞), that is, for all values of t where −∞ < t < ∞. A periodic function f (t) of
period T satisfies the relation

f(t+ kT ) = f (t) , k = ±1, ±2, . . . (1.3)

as shown in Fig. 1.4.

FIGURE 1.4 Periodic function.
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Example 1.3 A sinusoid v (t) = cos (βt) where β = 2πf0 rad/s, and f0 = 100 Hz has
a period T = 1/f0 = 2π/β = 0.01 sec since cos[β(t+ T )] = cos(βt).

1.4 Unit Step Function

The Heaviside or unit step function u (t), also often denoted u−1 (t), shown in Fig. 1.5, is
defined by

u (t) =

{
1, t > 0
0, t < 0

(1.4)

FIGURE 1.5 Heaviside unit step function.

It has a discontinuity at t = 0, and is thus undefined for t = 0. It may be assigned the
value 1/2 at t = 0 as we shall see in discussing distributions. It is an important function
which, when multiplied by a general function f (t), produces a causal function f (t) u (t)
which is nil for t < 0.

A general function f (t) defined for t ∈ (−∞, ∞) will be called a two-sided function,
being well defined for t < 0 and t ≥ 0. A right-sided function f (t) is one that is defined
for all values t ≥ t0 and is nil for t < t0 where t0 is a finite value. A left-sided function
f (t) is one that is defined for t ≤ t0 and is nil for t > t0.

Example 1.4 The function f (t) = e−t u (t) shown in Fig. 1.6 is a right-sided function
and is causal, being nil for t < 0.

FIGURE 1.6 Causal exponential.
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1.5 Graphical Representation of Functions

Graphical representation of functions is of great importance to engineers and scientists.
As we shall see shortly, the evaluation of convolutions and correlations is often made sim-
pler through a graphical representation of the operations involved. The following example
illustrates some basic signal transformations and their graphical representation.

Example 1.5 The sign function sgn (t) is equal to 1 for t > 0 and to −1 for t < 0, i.e.,

sgn (t) = u (t)− u (−t) .

Sketch the sign and related functions

y1 (t) = sgn (2t+ 2) , y2 (t) = 2sgn (−3t+ 6) , y3 (t) = 2sgn (−3− t/3) .

To draw y1 (t) we apply a time compression to sgn (t) by a factor of 2, which simply
produces the same function, then displace the result with its axis to the point 2t + 2 = 0,
i.e., t = −1. The function y2 (t) is an amplification by 2, a time compression by 3 and a
reflection of sgn (t) followed by a shift of the axis to the point −3t+ 6 = 0, i.e., t = 2. The
function y3 (t) is the same as y2 (t) except shifted to the point −3− t/3 = 0, i.e., t = −9, as
shown in Fig. 1.7. Note that, alternatively, we may sketch the functions by rewriting them
in the forms

y1 = sgn [2 (t+ 1)] , y2 (t) = 2sgn [−3 (t− 2)] , y3 (t) = 2sgn

[
−1

3
(t+ 9)

]

putting into evidence the time shift to be applied.

FIGURE 1.7 Sign and related functions.
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Example 1.6 Given the function f (t) shown in Fig. 1.8, sketch the functions g (t) =
f [−(1/3)t− 1] and y (t) = f [−(1/3)t+ 1].

FIGURE 1.8 Given function f(t).

Proceeding as in the last example we obtain the functions shown in Fig. 1.9.

FIGURE 1.9 Reflection, shift, expansion, ... of a function.

1.6 Even and Odd Parts of a Function

A signal f (t) can be decomposed into a part fe (t) of even symmetry, and another fo (t) of
odd symmetry. In fact,

fe (t) = {f (t) + f (−t)} /2
fo (t) = {f (t)− f (−t)} /2. (1.5)

The inverse relations expressing f (t) and f (−t) as functions of fe (t) and fo (t) are

f (t) = {fe (t) + fo (t)}
f (−t) = {fe (t)− fo (t)} . (1.6)

Example 1.7 Evaluate the even and odd parts of the function

f (t) = e−tu (t) + e4tu (−t) .

We have
fe (t) =

{
e−tu (t) + e4tu (−t) + etu (−t) + e−4tu (t)

}
/2

fo (t) =
{
e−tu (t) + e4tu (−t)− etu (−t)− e−4tu (t)

}
/2.

The function f (t) and its even and odd parts fe (t) and fo (t), respectively, are shown in
Fig. 1.10.
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FIGURE 1.10 A function and its even and odd parts.

Example 1.8 Find the even and odd parts of

f (t) = cos t+ 0.5 sin 2t cos 3t+ 0.3t2 − 0.4t3.

Since the sine function is odd and the cosine function is even we can write fe (t) = cos t+
0.3t2, fo (t) = 0.5 sin 2t cos 3t− 0.4t3.

The function f (t) and its even and odd parts fe (t) and fo (t), respectively, are shown in
Fig. 1.11.

FIGURE 1.11 Even and odd parts of a function.

1.7 Dirac-Delta Impulse

The Dirac-delta impulse is an important member of a family known as “Generalized func-
tions,” or “Distributions.” In the following we study this generalized function by relating it
to the unit step function and viewing it as a limit of an ordinary function.

The Dirac-delta impulse δ (t) represented schematically in Fig. 1.1 above can be viewed
as the result of differentiating the unit step function u (t). Conversely, the integral of the
Dirac-delta impulse is the unit step function.

We note that the derivative of the unit step function u (t), Fig. 1.5, is nil for t > 0, the
function being a constant equal to 1 for t > 0. Similarly, the derivative is nil for t < 0. At
t = 0, the derivative is infinite.

The Dirac-delta impulse δ (t) is not an ordinary function, being nil for all t 6= 0, and yet
its integral is not zero. The integral can be non-nil if and only if the value of the impulse is
infinite at t = 0. We shall see that by modeling the step function as a limit of a sequence,
its derivative tends in the limit to the impulse δ (t).
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FIGURE 1.12 Approximation of the unit step function and its derivative.

A simple sequence and the limiting process are shown in Fig.1.12. Consider the function
µ (t), which is an approximation of the step function u (t), and its derivative ∆ (t) shown
in Fig. 1.12. We have

µ (t) =






t/τ + 0.5, −τ/2 ≤ t ≤ τ/2
0, t ≤ −τ/2
1, t ≥ τ/2.

(1.7)

As τ −→ 0 the function µ (t) tends to u (t). As long as τ > 0 the function µ (t) is
continuous and its derivative is

∆ (t) =

{
1/τ, −τ/2 < t < τ/2
0, t < −τ/2, t > τ/2.

(1.8)

As τ −→ 0 the function ∆ (t) becomes progressively narrower and of greater height. Its
area, however, is always equal to 1. In the limit as τ becomes zero the function ∆ (t) tends
to δ (t), which satisfies the conditions

δ (t) = 0, t 6= 0 (1.9)

ˆ ∞

−∞
δ (t) dt = 1. (1.10)

1.8 Basic Properties of the Dirac-Delta Impulse

One of the basic properties of the Dirac-delta impulse δ (t) is known as the sampling prop-
erty, namely,

f (t) δ (t) = f(0)δ (t) (1.11)

where f (t) is a continuous function, hence well defined at t = 0.
Using the simple model of the impulse as the limit of a rectangle, as we have just seen,

the product f (t)∆ (t) may be represented as shown in Fig.1.13. We may write

g (t) = f (t) δ (t) = lim
τ−→0

f (t)∆ (t) = f (0) δ (t) . (1.12)

Note that the area under g(t) tends to f(0). Another important property is written

ˆ ∞

−∞
f (t) δ (t) dt = f(0). (1.13)

This property results directly from the previous one since

ˆ ∞

−∞
f (t) δ (t) dt =

ˆ ∞

−∞
f(0)δ (t) dt = f(0)

ˆ ∞

−∞
δ (t) dt = f(0). (1.14)
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FIGURE 1.13 Multiplication of a function by a narrow pulse.

Other properties include the time shifted impulse, namely,

f (t) δ(t− t0) = f(t0)δ(t− t0) (1.15)

ˆ ∞

−∞
f (t) δ(t− t0)dt = f(t0)

ˆ ∞

−∞
δ(t− t0)dt = f(t0). (1.16)

The time-scaling property of the impulse is written

δ(at) =
1

|a|δ (t) . (1.17)

We can verify its validity when the impulse is modeled as the limit of a rectangle. This is
illustrated in Fig. 1.14 which shows, respectively, the rectangles ∆ (t), ∆ (3t) and the more
general ∆ (at), which tend in the limit to δ (t), δ (3t) and δ (at), respectively, as τ −→ 0. Note
that as shown in the figure, with a = 3 or a is a general positive value, the function ∆ (at)
is but a compression of ∆ (t) by an amount equal to a. In the limit as τ −→ 0 the rectangle
∆ (3t) becomes of zero width and infinite height, but its area remains (1/τ) · (τ/3) = 1/3.
In the limit we have δ (3t) = (1/3)δ (t) and similarly, δ (at) = (1/a)δ (t), in agreement with
the stated property.

FIGURE 1.14 Compression of a rectangle.

We can, alternatively, establish this relation using the basic properties of the impulse.
Consider the integral

I =

ˆ ∞

−∞
f (t) δ(at) dt. (1.18)

With a > 0, let τ = a t. We have

I =

ˆ ∞

−∞
f
(τ
a

)
δ (τ) · 1

a
dτ =

1

a
f (0) =

1

a

ˆ ∞

−∞
f (t) δ (t) dt. (1.19)
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The last two equations imply (1.17). With a < 0 let a = −α where α > 0. Writing
τ = at = −αt we have

I =

ˆ −∞

∞
f

(−τ
α

)
δ (τ) · dτ

(−α)
=

1

α
f (0) =

1

|a|

ˆ ∞

−∞
f (t) δ (t) dt (1.20)

confirming the general validity of (1.17). Dirac-delta impulses arise whenever differentiation
is performed on functions that have discontinuities. This is illustrated in the following
example.

Example 1.9 A function f (t) that has discontinuities at t = 12 and t = 17, and has
“corner points” at t = 5 and t = 9, whereat its derivative is discontinuous, is shown
in Fig. 1.15, together with its derivative. In particular the function f (t) and its derivative
f ′ (t) are given by

7

6

5

4

3

2

1

0

f t( )

0 5 9 12 17 t

4

3

2

1

0

-1

-2

-3

f t¢( )

5 9 12 17 t

FIGURE 1.15 Function with discontinuities and its derivative.

f (t) =






2e0.1833t, 0 ≤ t ≤ 5

12.5026e−0.1833t, 5 ≤ t ≤ 9

10− 123.4840e−0.3098t, 9 ≤ t < 12

21.1047e−0.1386t, 12 < t < 17

4 + 21.1047e−0.1386t, t > 17
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f ′ (t) =






0.3667e0.1833t, 0 ≤ t < 5

−2.2917e−0.1833t, 5 < t < 9

38.2553e−0.3098t, 9 < t < 12

−2.9251e−0.1386t, 12 < t < 17

−2.9251e−0.1386t, t > 17.

As the figure shows, in addition the derivative f ′ (t) has two impulses, namely, −3δ (t− 12)
and 4δ (t− 17). The function f (t) at t = 12 has both a discontinuity and a corner point,
leading to an impulse and a discontinuous derivative f ′ (t) at t = 12. This is due to the
fact that if the section of the function f (t) between t = 12 and t = 17 is moved upwards
until the “jump” discontinuity at t = 12 is reduced to zero, the function will still display a
corner; hence the discontinuous derivative at t = 12. It is interesting to note that at t = 17
the function has a discontinuity but no corner point. The reason here is that apart from the
jump, due to the addition of the constant value 4, for t ≥ 17, the function is the same for
t ≥ 17 as it is for 12 ≤ t ≤ 17. The student should notice that in the expression of f (t),
as well as that of f ′ (t) above, the function is undefined at each discontinuity. This is stated
by using the inequalities < and > instead of ≤ and ≥.

1.9 Other Important Properties of the Impulse

In Chapter 17, Section 17.16, we list important properties of the Dirac-delta impulse for
future reference. The subject is dealt with at length and all these properties are justified in
Chapter 18.

1.10 Continuous-Time Systems

In this book we deal exclusively with linear time invariant (LTI) systems. A system may
be viewed as a collection of components which, receiving an excitation force, called input,
x (t), produces a response y (t) called the output, as shown in Fig. 1.16.

FIGURE 1.16 System with input and output.

A system is called dynamic if its response y (t) to an input x (t) applied at time t depends
not only on the value of the input at that instant, but also on the history preceding the
instant t. This property implies that a dynamic system can memorize its past history. A
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dynamic system has therefore memory and is generally described by differential equations.

1.11 Causality, Stability

To be physically realizable a system has to be causal. The name stems from the fact that a
physically realizable system should reflect a cause-effect relation. The system input is the
“cause,” its output the “effect,” and the effect has to follow the cause and cannot precede
it. If the input to the system is an impulse δ (t), its output is called the “impulse response,”
denoted h (t). The symbol h(t) is due to the fact that the Laplace transform of the system
impulse response is the system transfer function H(s), that is,

H (s) = L [h (t)] . (1.21)

where the symbol L stands for ’Laplace transform’. Since the input δ (t) is nil for t < 0, a
physically realizable system would produce an impulse response that is nil for t < 0, and
non-nil for solely t ≥ 0. Such an impulse response is called “causal.” On the other hand,
if the impulse response h (t) of a system is not nil for t < 0 then it is not causal and the
system would not be physically realizable since it would respond to the input δ (t) before
the input is applied. A noncausal impulse response is an abstract mathematical concept
that is nevertheless useful for analysis. We shall see in Chapter 4 that a system is stable if
the Fourier transform H(jω) of its impulse response h (t) exists.

1.12 Examples of Electrical Continuous-Time Systems

A simple example of a system without memory is the simple electric resistance shown in Fig.
1.17(a). A voltage v (t) volts applied across an ideal resistor of resistance R ohms produces
a current

i (t) =
v (t)

R
Ampere. (1.22)

FIGURE 1.17 Resistor and capacitor as linear systems.

The output i (t) is function of the input v (t) and is not function of any previous value of
the input. The resistor is therefore a memory-less system.

An electric capacitor, on the other hand, is a dynamic system; a system the response of
which depends on the past and not only on the value of the input v (t) applied at a time t.
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The charge stored by the capacitor shown in Fig. 1.17(b) is given by

q (t) = C ν (t) (1.23)

and the current i (t) is the derivative of the charge

i (t) =
dq (t)

dt
= C

dν

dt
. (1.24)

The capacitor memorizes the past through its accumulated charge. We note that if the input
is a current source, Fig. 1.17(c), the output would be the voltage v (t) across the capacitor.
The input–output relation is written

ν (t) =
q (t)

C
=

1

C

ˆ t

−∞
i (τ) dτ. (1.25)

We see that the output v (t) at time t is a function of the accumulated input rather than
only the value of the input i (t) at an instant t.

Example 1.10 Evaluate the current i (t) in the capacitor, Fig. 1.17(b), in response to a
step function input voltage v (t) = u (t) volts.

We have

i (t) = C
dv

dt
= C

d

dt
u (t) = Cδ (t) ampere.

An electric circuit containing an inductor is similarly a dynamic system that memorizes
its past.

Example 1.11 Consider the electric circuit shown in Fig. 1.18. Write the relation between
the output current i (t) and the input voltage v (t).

FIGURE 1.18 R-L-C electric circuit.

We have

R i (t) + L
di

dt
+

1

C

ˆ

i dt = ν (t)

The derivative and integral reflect the memorization of the past values of i (t) in determining
the output.

1.13 Mechanical Systems

We shall see later on that a homology exists that relates a mechanical system to an equivalent
electrical system and electric circuits in particular. Similarly, homologies exist between
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hydraulic, heat transfer and other systems on the one hand and electric circuits on the
other. Such homologies may be used to convert the model of any physical system into its
equivalent electrical homologue, solve the equivalent electric circuit, and convert the results
to the original system.

1.14 Transfer Function and Frequency Response

The transfer function H (s) of a linear system, assuming zero initial conditions, is defined
by

H (s) =
Y (s)

X (s)
(1.26)

where X (s) = L [x (t)] and Y (s) = L [y (t)]. We shall use the notation L and L−1 to denote
the direct and inverse Laplace transform, respectively, so thatX (s) is the Laplace transform
of the input x (t), Fig. 1.19, and Y (s) is the transform of the output y (t), respectively.
Conversely, if the transfer function H (s) of a system is known and if the system is “at

FIGURE 1.19 Linear system with input and output.

rest”, meaning zero initial conditions, its output y (t) is such that Y (s) = X (s) H (s).
This means that in the time domain the output y (t) is the convolution of the input x (t)
with the system’s impulse response h (t). We write

y (t) = x (t) ∗ h (t) (1.27)

where the asterisk symbol ∗ denotes the convolution operation. As we shall see in more
detail in Chapter 3, the Laplace variable s is a generally complex variable. We shall
throughout write s = σ + jω, so that σ = ℜ[s] and ω = ℑ[s]. The Laplace s plane has
s = σ as its horizontal axis and s = jω as its vertical axis. The transfer function H(s) is
generally well defined over only a a limited region of the s plane. This is called the region of
convergence (ROC) of H(s). If this ROC includes the jω axis, then the substitution s = jω
is permissible, resulting in H(s) = H (jω) which is referred to as the system frequency
response.

The frequency response H (jω) is in fact the Fourier transform of the impulse response
h (t), in as much as the transfer function H(s) is its Laplace transform. As we shall see in
Chapter 4 the Fourier transform of any function of time is simply the Laplace transform
evaluated on the jω axis of the s plane, if such substitution is permissible, i.e. if the ROC
of the Laplace transform contains the jω axis.

When the frequency response H (jω) exists, the system input–output relation is the same
input–output relation given above with s replaced by jω, that is, Y (jω) = X(jω)H(jω),
and the frequency response is given by

H(jω) = Y (jω)/X(jω). (1.28)



Continuous-Time and Discrete-Time Signals and Systems 15

Example 1.12 Consider a linear system having the transfer function

H (s) =
1

s+ 3
, ℜ[s] > −3.

Evaluate the frequency response H (jω). Does such system behave as a highpass or lowpass
filter?

Since the ROC of H(s) is σ = Re[s] > −3, i.e. the line σ = 0, which is the vertical axis
s = jω of the s plane, is in the ROC, the frequency response exists and is given by

H (jω) = H(s)|s=jω =
1

jω + 3
=

3− jω
ω2 + 9

=
1√

ω2 + 9
ej arctan[−ω/3]

|H (jω)| = 1√
ω2 + 9

, arg [H (jω)] = arctan [−ω/3] .

The modulus |H (jω)|, which is the Fourier amplitude spectrum, and the phase spectrum
arg [H (jω)] of the frequency response are shown in Fig.1.20. The amplitude spectrum of the
output y (t) is related to that of the input x (t) by the equation

|Y (jω)| = |X (jω)| |H (jω)| .
The higher frequency components of X (jω) are attenuated by the drop in value of |H (jω)|
as ω > 0 increases.. The system acts therefore as a lowpass filter.

FIGURE 1.20 Modulus and phase of frequency response.

1.15 Convolution and Correlation

Convolution and correlation are important mathematical tools that are encountered in
evaluating the response of linear systems and in signal spectral analysis. In this section we
study properties of the convolution and correlation integrals. The convolution y (t) of two
general functions x (t) and v (t), denoted symbolically

y (t) = x (t) ∗ v (t) (1.29)

is given by

y (t) =

ˆ ∞

−∞
x(τ) v(t − τ) dτ =

ˆ ∞

−∞
v(τ)x(t − τ)dτ (1.30)
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The convolution integral is commutative, distributive and associative, that is,

x (t) ∗ v (t) = v (t) ∗ x (t) (1.31)

x (t) ∗ [v1 (t) + v2 (t)] = x (t) ∗ v1 (t) + x (t) ∗ v2 (t) (1.32)

x (t) ∗ [v1 (t) ∗ v2 (t)] = [x (t) ∗ v1 (t)] ∗ v2 (t) = [x (t) ∗ v2 (t)] ∗ v1(t). (1.33)

In evaluating the convolution integral, as in Equation (??), it is instructive to visualize the
two functions in the integrand, namely, x(τ) and v(t− τ) versus the integral variable τ as
they relate to the given functions x (t) and v (t), respectively. We first note that the function
x(τ) versus τ is the same as x (t) versus t apart from a change of label of the horizontal
axis. We need next to deduce the shape of v(t− τ) versus τ . To this end consider the simple

FIGURE 1.21 Step function and its mobile reflection.

step function u (t) shown in Fig. 1.21 and its reflection and shifting leading to the function
u(t − τ), which we shall call the “mobile function,” and which is plotted versus τ in the
same figure. This mobile function is plotted as shown since by definition it should equal 1
if and only if τ < t and 0 otherwise. Note that the value t has to be a fixed value on the
τ axis, and that the position of the mobile function u(t− τ) depends on the value of t. As
shown in the figure a vertical dashed axis with an arrow head, which we shall call the mobile
axis, is drawn at the point τ = t. If t is varied the mobile axis moves, dragging with it the
mobile function u(t− τ). The function u(t− τ) is thus the reflected function u(−τ) frozen
as an image then slid by its mobile axis to the point τ = t. Similarly, the signal v(t − τ)
is obtained by reflecting the signal v(t) and then sliding the result as a frozen image by its
mobile axis to the point τ = t.

Example 1.13 Let

x (t) = 3{u(t+ 4)− u(t− 7)}

v (t) = eαt{u(t+ 2)− u(t− 6)}, α = 0.1831.

Evaluate the convolution y (t) = x (t) ∗ v (t).
The two functions are shown in Fig. 1.22 (a) and (b), respectively. To evaluate the integral

y (t) =

ˆ ∞

−∞
x(τ) v(t − τ)dτ

we start with the reflection v(−τ) of v(τ) versus τ shown in Fig. 1.22 (c). The rest of
Fig. 1.22 shows the function v(t− τ) versus τ for t = −3, t = 4 and t = 10, respectively.
As seen in the figure, the mobile function v(t − τ), in the interval where it is non-nil, is
simply the function v(t) with t replaced by t − τ , so that v(t − τ) = eα(t−τ). Figures 1.22
(d), (e), (f) show the three distinct positions of the function v(t− τ), which produce three
distinct integrals that need be evaluated.
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FIGURE 1.22 Step by step convolution of two functions.

As Fig. 1.22 (d) shows, if t + 2 < −4, i.e. t < −6, then the two functions x(τ) and
v(t − τ) do not overlap, their product is therefore nil and y (t) = 0. If on the other hand
t+ 2 > −4 and t− 6 < −4, that is, for −6 < t < 2

y (t) =

ˆ t+2

−4

3eα(t−τ)dτ = 3eαt e
−ατ

α

∣∣∣∣
−4

t+2

=
3

α
eαt
{
e4α − e−α(t+2)

}
.

Referring to Fig. 1.22 (e), we have for t− 6 > −4 and t+ 2 < 7, that is, for 2 < t < 5

y (t) =

ˆ t+2

t−6

3eα(t−τ)dτ = 3eαt e
−ατ

α

∣∣∣∣
t−6

t+2

=
3

α
eαt
{
e−α(t−6) − e−α(t+2)

}
.

From Fig. 1.22 (f), for t− 6 < 7 and t+ 2 > 7, that is, for 5 < t < 13,

y (t) =

ˆ 7

t−6

3eα(t−τ)dτ = 3eαt e
−ατ

α

∣∣∣∣
t−6

7

= (3/α)eαt
{
e−α(t−6) − e−7α

}
.

With t− 6 > 7, i.e. t > 13, the mobile function v(t− τ) does not overlap with x(τ) so that
the product is nil and we have y (t) = 0. The function y (t) is shown in Fig. 1.23.

Example 1.14 Using MATLABr verify the result of the convolution y (t) = x (t) ∗ v (t)
of the last example.

We may write
alpha=0.1831
x(1:110)=3
for n=1:80
v(n)=exp(alpha*(n-20)*0.1)
end



18 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

y=conv(x,v)
plot(y)
The result is the same as that obtained above.

FIGURE 1.23 Result of the convolution of two functions.

Analytic Approach
In the analytic approach we write

y (t) =

ˆ ∞

−∞
x(τ)v(t − τ)dτ

=

ˆ ∞

−∞
3[u(τ + 4)− u(τ − 7)]eα(t−τ)[u(t− τ + 2)− u(t− τ − 6)]dτ.

This is the sum of four integrals. Consider the first integral, namely,

I1 =

ˆ ∞

−∞
3u(τ + 4)eα(t−τ)u(t− τ + 2)dτ.

In the integrand the step function u(τ + 4) is non-nil if and only if τ > −4, and the step
function u(t−τ+2) is non-nil if and only if τ < t+2. The limits of integration are therefore
to be replaced by −4 and t+ 2, the interval wherein the integrand is non-nil. Moreover, the
two inequalities τ > −4 and τ < t+ 2 imply that t > τ − 2 > −6. We therefore write

I1 =

{
ˆ t+2

−4

3eα(t−τ)dτ

}
u(t+ 6) =

3

α

(
e4αeαt − e−2α

)
u(t+ 6).

The three other integrals are similarly evaluated obtaining

I2 = −
ˆ ∞

−∞
3u(τ + 4)eα(t−τ)u(t− τ − 6)dτ = −3

ˆ t−6

−4

eα(t−τ)dτ u(t− 2).

I2 = − 3

α

(
e4αeαt − e6α

)
u(t− 2).

I3 = −3

ˆ t+2

7

eα(t−τ)dτ u(t− 5) = − 3

α

(
e−7αeαt − e−2α

)
u(t− 5)

I4 = 3

ˆ t−6

7

eα(t−τ)dτ u(t− 13) =
3

α

(
e−7αeαt − e6α

)
u(t− 13).

y (t) = I1 + I2 + I3 + I4.
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FIGURE 1.24 Two right-sided exponentials.

Using Mathematica we can verify the result by plotting the function y (t), obtaining the
same result as found above.

Example 1.15 Evaluate the convolution of the two exponential functions shown in Fig.
1.24.

From the function forms we can write x (t) = 4e−0.69tu(t−1), v (t) = 0.5e−0.55tu(t+2).
We may start by drawing the function x(τ) and the mobile one v(t − τ) as shown in Fig.
1.25.

FIGURE 1.25 The functions x(τ), v(t− τ) and the convolution y(t).

From the figure we note that y (t) = 0 for t+ 2 < 1, i.e. t < −1 and that for t > −1

y (t) = x (t) ∗ v (t) =

ˆ t+2

1

4e−0.69τ0.5e−0.55(t−τ)dτ

y (t) =
(
12.43e−0.55t − 10.8e−0.69t

)
, t > −1.

Alternatively we proceed analytically by writing

y (t) =

ˆ ∞

−∞
4e−0.69τu (τ − 1) 0.5e−0.55(t−τ)u (t− τ + 2) dτ

y (t) = 2

{
ˆ t+2

1

e−0.69τ −0.55t+0.55τdτ

}
u(t+ 1)

=
(
12.43e−0.55t − 10.8e−0.69t

)
u(t+ 1)

The following Mathematica program plots y (t) as can be seen in Fig. 1.25.
Clear
y[t ]:=(12.43*Exp[-0.55 t] - 10.8 Exp[-0.69t]) UnitStep[t+1]
Plot[y[t],{t,-2,15},AxesLabel →{t,y},PlotRange →{0,2}]
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1.16 A Right-Sided and a Left-Sided Function

The convolution, analytically, of two opposite-sided functions requires special attention as
the following example illustrates.

Example 1.16 Evaluate the convolution of the two exponential functions x (t) and v (t)
shown in Fig. 1.26.

FIGURE 1.26 Left-sided and right-sided exponential.

We have, from the forms of the functions, x (t) = eαt, t ≤ 2, where α = 0.35. Similarly,
v (t) = Be−βt, t ≥ 1, where B = 3.2 and β = 0.47. The convolution is given by

y (t) =

ˆ ∞

−∞
e0.35τu (2− τ) 3.2e−0.47(t−τ)u (t− τ − 1) dτ.

The product of the step functions is non-nil if and only if τ < 2 and τ < t − 1. These
conditions do not imply an upper and a lower bound for the variable τ . Instead, these are
two upper bounds. We note in particular that the product of the two step-functions is non-nil
if τ < 2 in the case where 2 ≤ t− 1, i.e. t ≥ 3 and that, on the other hand, the product
is non-nil if τ < t− 1 in the case where t− 1 ≤ 2, i.e. t ≤ 3. We can therefore write

y (t) =

{
ˆ 2

−∞
e0.35τ 3.2e−0.47(t−τ)dτ

}
u(t− 3) +

{
ˆ t−1

−∞
e0.35τ 3.2e−0.47(t−τ)dτ

}
u(3− t).

y (t) = 20.11e−0.47t u(t− 3) + 1.72e0.35t u(3− t).
The result can be verified graphically as seen in Fig. 1.27. The figure confirms that in the
case where t− 1 ≤ 2, i.e. t ≤ 3 we have

y (t) =

{
ˆ t−1

−∞
e0.35τ 3.2e−0.47(t−τ)dτ

}

and that for the case where t− 1 ≥ 2, i.e. t ≥ 3 we have

y (t) =

{
ˆ 2

−∞
e0.35τ 3.2e−0.47(t−τ)dτ

}

The function y (t) is shown in Fig. 1.28.
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FIGURE 1.27 Convolution detail of left-sided and right-sided exponential.

FIGURE 1.28 Convolution result y(t).

1.17 Convolution with an Impulse and Its Derivatives

The properties of Distributions such as the Dirac-delta impulse and its derivatives are
discussed at length in Chapter 17. We summarize here some properties of the convolution
with an impulse and its derivatives.

f (t) ∗ δ (t) =

ˆ ∞

−∞
f(τ)δ(t − τ)dτ = f (t) . (1.34)

f (t) ∗ δ(t− t0) =

ˆ ∞

−∞
f(τ)δ(t − τ − t0)dτ = f(t− t0). (1.35)

f (t) ∗ δ′ (t) =

ˆ ∞

−∞
f(τ)δ′(t− τ)dτ = −

ˆ ∞

−∞
f ′(τ)δ(t − τ)dτ = −f ′ (t) . (1.36)

f (t) ∗ δ(n) (t) = (−1)n

ˆ ∞

−∞
f (n)(τ)δ(t − τ)dτ = (−1)nf (n) (t) . (1.37)

1.18 Additional Convolution Properties

The following properties of the convolution integral are worthwhile remembering

v (t) ∗ x′ (t) = v′ (t) ∗ x (t) = [v (t) ∗ x (t)]
′
. (1.38)
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If z (t) = v (t) ∗ x (t) then

v (t) ∗ x (t− t0) =

ˆ ∞

−∞
v (τ) x (t− t0 − τ) dτ = z (t− t0) . (1.39)

1.19 Correlation Function

The correlation function measures the resemblance between two signals or the periodicity
of a given signal. Operating on two aperiodic, generally complex, functions x (t) and v (t),
it is called the cross-correlation function denoted by the symbol rxv (t) and defined by

rxv (t)=△x (t) ⋆ v (t) =

ˆ ∞

−∞
x(t+ τ)v∗(τ)dτ (1.40)

where the star symbol ⋆ will be used to denote correlation and the asterisk ∗ stands for the
complex conjugate. The autocorrelation of a function x (t) is given by

rxx (t)=△x (t) ⋆ x (t) =

ˆ ∞

−∞
x(t+ τ)x∗(τ)dτ. (1.41)

Replacing t+ τ by λ and then replacing λ by τ we obtain the equivalent forms

rxv (t) =

ˆ ∞

−∞
x(τ)v∗(τ − t)dτ (1.42)

rxx (t) =

ˆ ∞

−∞
x(τ)x∗(τ − t)dτ (1.43)

and the same without the asterisk if the functions are real.

1.20 Properties of the Correlation Function

The correlation function can be expressed as a convolution. In fact,

rxv (t) =

ˆ ∞

−∞
x(τ)v∗(τ − t)dτ =

ˆ ∞

−∞
x(τ)v∗[−(t− τ)]dτ = x (t) ∗ v∗(−t). (1.44)

In other words, the cross correlation rxv (t) is but the convolution of x (t) with the reflection
of v∗ (t). For real functions

rxv (t) = x (t) ∗ v(−t). (1.45)

The cross-correlation function is not commutative. In fact, for generally complex functions,

rvx (t)=△v (t) ⋆ x (t) =

ˆ ∞

−∞
v(t+ τ)x∗(τ)dτ. (1.46)

By replacing t+ τ by λ and then replacing λ by τ we can write using (Equation 1.40)

rvx (t) =

ˆ ∞

−∞
v(λ)x∗(λ − t)dλ =

ˆ ∞

−∞
v(τ)x∗(τ − t)dτ = r∗xv(−t). (1.47)
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In other words the correlation of v (t) with x (t) is equal to the conjugate of the reflection
about t = 0 of the correlation of x (t) with v (t). Moreover, rxx(−t) = r∗xx (t). For real
functions it follows that rvx (t) = rxv(−t), and rxx(−t) = rxx (t). We deduce that the
autocorrelation function of a real signal is real and even, while that of a complex one has
an even modulus and an odd argument.

1.21 Graphical Interpretation

We assume for simplicity the two functions v (t) and x (t) to be real. Consider the cross-
correlation rvx (t). We have

rvx (t) =

ˆ ∞

−∞
v(t+ τ) x(τ)dτ. (1.48)

Similarly to the convolution operation we should represent graphically the two functions in
the integrand, x(τ) and v(t + τ). To deduce the effect of replacing the variable t by t + τ
we visualize the effect on a step function u (t) and compare it with u (t+ τ), as shown in
Fig. 1.29.

FIGURE 1.29 Unit step function and its mobile form u(t+ τ).

We note that the effect of replacing t by t + τ is to simply displace the function to the
point τ = −t. Note that contrary to the convolution the function is not folded around
the vertical axis but rather simply displaced. Moreover, the mobile axis represented by a
dashed vertical line with an arrowhead is now at τ = −t instead of τ = t.

Example 1.17 Evaluate the cross-correlation rgf (t) of the two causal functions

f (t) = eαtu (t) , g (t) = eβtu (t)

where α, β < 0.
We have

rgf (t) =

ˆ ∞

−∞
g(t+ τ) f(τ)dτ.

The two functions are shown in Fig. 1.30.
Referring to Fig. 1.31 showing the stationary and mobile functions versus the τ axis we

can write:
For −t < 0, i.e. t > 0

rgf (t) =

ˆ ∞

0

eβ(t+τ)eατdτ = eβt e
(α+β)τ

α+ β

∣∣∣∣
∞

0

=
−eβt

α+ β
, (α+ β) < 0.
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FIGURE 1.30 Two causal exponentials.

FIGURE 1.31 Correlation steps of two causal exponentials.

For −t > 0, i.e. t < 0

rgf (t) =

ˆ ∞

−t

eατeβ(t+τ)dτ = eβt e
(α+β)τ

α+ β

∣∣∣∣
∞

−t

=
−e−αt

α+ β
, (α+ β) < 0.

Analytic Approach

Alternatively we may employ an analytic approach. We have

rgf (t) =

ˆ ∞

−∞
eβ(t+τ)u(t+ τ)eατu(τ)dτ.

The step functions in the integrand are non-nil if and only if τ > 0 and τ > −t, wherefrom
the integrand is non-nil if τ > 0 and 0 > −t, i.e. t > 0, or if τ > −t and −t > 0, i.e.
t < 0. We can therefore write

rgf (t) =

ˆ ∞

0

eατeβ(t+τ)dτ u (t) +

ˆ ∞

−t

eατeβ(t+τ)dτ u(−t).

We note that these two integrals are identical to those deduced using the graphic approach.
We thus obtain the equivalent result

rgf (t) =
−eβt

α+ β
u (t)− e−αt

α+ β
u(−t), (α + β) < 0

which is shown in Fig. 1.32 for the case α = −0.5 and β = −1.
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FIGURE 1.32 Correlation result rgf (t).

1.22 Correlation of Periodic Functions

The cross-correlation function rvx (t) of two periodic generally complex signals v (t) and
x (t) of the same period of repetition T0 is given by

rvx (t) =
1

T0

ˆ T0/2

−T0/2

v (t+ τ)x∗ (τ) dτ. (1.49)

The integral is evaluated over one period, for example, between t = 0 and t = T0, the
functions being periodic. The autocorrelation function is similarly given by

rxx (t) =
1

T0

ˆ T0/2

−T0/2

x (t+ τ) x∗ (τ) dτ. (1.50)

The auto- and cross-correlation functions are themselves periodic of the same period as can
easily be seen through a graphical representation.

1.23 Average, Energy and Power of Continuous-Time Signals

The average or d-c value of a real signal f(t) is by definition

f(t)=△ lim
T−→∞

1

2T

ˆ T

−T

f(t)dt. (1.51)

The normalized energy, or simply energy, E is given by

E =

ˆ ∞

−∞
f2(t)dt. (1.52)

A signal of finite energy is called an energy signal. The normalized power of an aperiodic
signal is defined by

f2(t)=△ lim
T−→∞

1

2T

ˆ T

−T

f2(t)dt. (1.53)

A signal of finite normalized power is called a power signal. If the signal f (t) is periodic of
period T , its normalized power is given by

P = f2(t) =
1

T

ˆ

T

f2(t)dt (1.54)
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Note that a power signal has infinite energy; an energy signal has zero power. If the signal
f(t) is in volts , the power is in watts and the energy in joules.

Example 1.18 Evaluate the average value of the unit step function f(t) = u(t).
We have

f(t) = lim
T−→∞

1

2T

ˆ T

−T

f(t)dt = lim
T−→∞

1

2T

ˆ T

0

dt = 0.5

It is interesting to note that the average power of a sinusoid of amplitude A, such as
v(t) = A sin(βt+ θ), is

v2(t) =
A2

T

ˆ T

0

sin2(βt+ θ)dt (1.55)

and since its period is T = 2π/β, the average power simplifies to v2(t) = A2/2.

1.24 Discrete-Time Signals

Discrete-time signals will be dealt with at length in Chapter 6. We consider here only
some basic properties of such signals. By convention, square brackets are used to designate
sequences, for example, v[n], x[n], f [n], . . ., in contrast with the usual parentheses used in
designating continuous-time functions, such as v (t) , x (t) , f (t) , . . .. A discrete-time signals
x[n] is a sequence of values that are functions of the integer values n = 0, ±1, ±2, . . ..
(See Fig. 1.33.) A sequence x[n] may be the sampling of a continuous-time function xc (t)
with a sampling interval of T seconds. In this case we have

x[n] = xc (t) |t=nT = xc(nT ). (1.56)

FIGURE 1.33 Discrete time signal.

Unit Step Sequence or Discrete Step The unit step sequence or discrete step is defined
by

u[n] =

{
1, n ≥ 0
0, otherwise

(1.57)

and is shown in Fig. 1.34. We note that the unit step sequence is simpler in concept than
the continuous-time Heaviside unit step function, being well defined, equal to 1, for n = 0.
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FIGURE 1.34 Unit step sequence.

Discrete impulse or unit sample sequence The discrete impulse, also referred to as
the unit sample sequence, shown in Fig. 1.35, is defined by

δ[n] =

{
1, n = 0
0, otherwise.

(1.58)

We note, similarly, that the discrete impulse δ[n] is a much simpler concept than the
continuous-time Dirac-delta function δ (t), the former being well defined equal to 1 at n = 0.

FIGURE 1.35 Discrete-time impulse or unit sample sequence.

1.25 Periodicity

Similarly to continuous-time functions a periodic sequence x[n] of period N satisfies

x [n+ kN ] = x[n], k = ±1, ±2, ±3, . . . (1.59)

Example 1.19 Let x[n] = cos γn, γ = π/8. The period N of x[n] is evaluated as the
least value satisfying x [n+N ] = x[n], that is, cos [γ(n+N)] = cos γ n or γN = 2kπ, k
integer. The period N is the least value satisfying this condition, namely, N = 2π/γ = 16.

Sequences that have the form of periodic ones in the continuous-time domain may not be
periodic in the discrete time domain.

Example 1.20 Is the sequence x[n] = cosn periodic?

To be periodic with period N it should satisfy the condition cosn = cos(n + N). This
implies that the value N should be a multiple of 2π, i.e. N = 2kπ, k integer. Since π is an
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irrational number, however, no value for k exists that would produce an integer value for
N . The sequence is therefore not periodic.

The sum of two periodic sequences is in general periodic. Let y[n] = v[n] + x[n], where v[n]
and x[n] are periodic with periods K and M , respectively. The period N of the sum y[n] is
the least common multiple of K and M , i.e.

N = lcm(K,M). (1.60)

If y[n] = v[n]x[n], the value N = lcm(K,M) is the period or a multiple of the period of
y[n].

1.26 Difference Equations

Similarly to continuous-time systems a dynamic discrete-time linear system is a system
that has memory. Its response is not only function of the input but also of past inputs and
outputs. A discrete-time dynamic linear system is in general described by one or more linear
difference equations relating its input x[n] and output y[n], such as the equation

N∑

k=0

dky[n− k] =

M∑

k=0

ckx[n− k]. (1.61)

We can extract the first term of the left-hand side in order to evaluate the output y[n]. We
have

d0y[n] = −
N∑

k=1

dky[n− k] +

M∑

k=0

ckx[n− k] (1.62)

y[n] = −
N∑

k=1

aky[n− k] +
M∑

k=0

bkx[n− k] (1.63)

where
ak = dk/d0, bk = ck/d0. (1.64)

We note that the response y[n] is a function of the past values y[n− k] and x[n − k], and
not only of the input x[n].

1.27 Even/Odd Decomposition

Similarly to continuous-time systems a given sequence may be decomposed into an even
and an odd component as the following example illustrates.

Example 1.21 Given the sequence h[n] defined by h[n] = (1 + n2)u[n] + eαnu[−n] with
α > 0, evaluate and sketch its even and odd parts.

We have, as depicted in Fig. 1.36.

he[n] = (1/2)
[
1 + n2 + e−α|n|] (1.65)
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ho (n) =
1

2

[
1 + n2 − e−αn

]
, n > 0

=
1

2

[
eαn − 1− n2

]
, n 6 0

(1.66)

h n[ ]

n

1

1+n2

ean

n n

1

h ne[ ] h no[ ]

FIGURE 1.36 Even and odd parts of a general sequence.

1.28 Average Value, Energy and Power Sequences

The average value of a sequence x[n] which may be denoted x[n] is by definition

x[n] = lim
M−→∞

1

2M + 1

M∑

n=−M

x [n]. (1.67)

As we shall see in more detail in Chapter 12, a real sequence x[n] is an energy sequence
if it has a finite energy E which can be defined as

E =

∞∑

n=−∞
x [n]

2
. (1.68)

A real aperiodic sequence x[n] is a power sequence if it has a finite average power P which
may be defined as

P = x[n]2 = lim
M−→∞

1

2M + 1

M∑

n=−M

x [n]
2
. (1.69)

If the sequence is periodic of period N it is a power sequence and its average power may be
defined as

P = x[n]2 =
1

N

N−1∑

n=0

x [n]
2
. (1.70)

Note that an energy sequence has zero power and a power sequence has infinite energy.
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1.29 Causality, Stability

Similarly to continuous-time systems, a discrete-time system is causal if its impulse response,
also called unit sample response, h[n] is causal, that is, if the impulse response is nil for
n < 0. Moreover, a discrete-time system is stable if its impulse response is right-sided and
lim

n−→∞
h[n] = 0, or if its impulse response is left-sided and lim

n−→−∞
h[n] = 0. We shall see in

Chapter 6 that a system is stable if the Fourier transform H
(
ejΩ
)

of its impulse response
h[n] exists; otherwise the system is unstable. If the poles of the system transfer function
H (z) are on the unit circle in the z-plane, the system is critically stable.

Example 1.22 A causal system is described by the difference equation

y[n]− ay[n− 1] = x[n].

Evaluate the system impulse response.

Since the system is causal its impulse response is nil for n < 0. To evaluate the impulse
response we assume the input x[n] = δ[n], that is, x[0] = 1 and x[n] = 0, otherwise. With
n = 0 we have y[0] = x[0] = 1 since y[−1] = 0, the system being causal. With n = 1 we
have x[1] = 0 and y[1] = ay[0] = a. With n = 2 we have y[2] = ay[1] = a2. Repeating
this process for n = 2, 3, . . . we deduce that the impulse response is given by

h[n] = y[n] =

{
an, n = 1, 2, 3, . . .
0, otherwise.

which can be written in the form

h[n] = anu[n]

The z transform that is presented in Chapter 6 simplifies the evaluation of a system
response y[n] to a general input sequence x[n], and its impulse response among others.
The following chapters deal with continuous time and discrete time systems, their Fourier,
Laplace and z transforms, signal and system mathematical models and solutions to their
differential and difference equations.

1.30 Problems

Problem 1.1 What are the even and odd parts of the signal v (t) = 10 sin (3πt+ π/5)?

Problem 1.2 Let

f (t) =






1, 0 ≤ t < 1
0.5 t+ 1, −2 ≤ t ≤ 0
0, otherwise.

Sketch the function f (t) and

a) g (t) = f (−2t+ 4)

b) y (t) = f(−t/2− 1).
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Problem 1.3 Given the signals

f (t) =





t− 1, 1 ≤ t ≤ 2
e−(t−2), t ≥ 2
0, t ≤ 1

and g (t) = f (t+ 3).
Draw the signals
a) f (t) and g (t)
b) f (−t) and g (−t)
c) v (t) = f (2t) , w (t) = g (2t)
d) x (t) = f (2t+ 4) , y (t) = f (t/2 + 2)
e) p (t) = g (−2t+ 4) , r (t) = g (−t/2− 2).
Re-do using Mathematica.

Problem 1.4 Let f (t) be the function shown in Fig. 1.37 which is nil for |t| > 2.

Sketch
a) f1 (t) = f(−t)− 2, b) f2 (t) = 2− f(t+ 3), c) f3 (t) = f(2t), d) f4 (t) = f(t/3), e)

f5 (t) = f(−2t− 6), f) f6 (t) = f(−2t+ 8).

FIGURE 1.37 Function f(t) of Problem 1.4

Problem 1.5 Sketch the functions f1 (t) = u(−t − 2), f2 (t) = −u(−t + 2), f3 (t) =
te−tu (t), f4 (t) = (t+ 2)e−(t+2)u(t+ 2), f5 (t) = (2t2 − 12t+ 22)u(3− t).
Problem 1.6 Sketch the functions
u(t− 1), u(t+ 2), u(1− t), u(−2− t),
e−tu(t), e−(t−1)u(t− 1), e2tu(2− t),
δ(t+ 2), e−tδ(t+ 2) e2tdδ(t)/dt, e2(t−3)dδ(t− 3)/dt
cos(8πt− π/3), e−tcos(4πt+ π/4)u(t)
δ(2t), et [δ (t) + δ (t− 1)], Sa (πt), Sa [π (t− 1)], Sa (πt− 1), x(2t) where x(t) = ART (t).
Note that x (t) dδ (t) /dt = x (0) dδ (t) /dt− δ (t) dx (t) /dt|t=0

Problem 1.7 Given that x(t) = 2(t+2)R1(t+2)+1.5e−0.2877tu(t+1), sketch the functions
x (t− 3), x (t+ 3), x (3− t), x (−t), x (−t− 3), x (t) δ (t− 1),

´∞
−∞ x (τ)δ (τ − t− 1) dτ .

Problem 1.8 Let f (t) = u (t). Represent graphically the functions f(τ), f(t−τ), f(t+τ)
versus τ , assuming a) t = 3 and b) t = −4. Describe in words the kind of operations,
such as reflection, shift, etc. that need be applied on f (t) to produce each of these functions.
Re-do the solution for the case f (t) = e−tu (t).
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Problem 1.9 Sketch the signals
a) δ (t)+ δ (t− 3) b) et [δ (t) + δ (t− 1)] c) etu (t− 2) d) Sa (πt) e) Sa [π (t− 1)]

f) Sa [πt− 1]

Problem 1.10 Evaluate the autocorrelation of the periodic function

x (t) = e−a|t|, −T0/2 ≤ t ≤ T0/2.

Problem 1.11 Evaluate and sketch the convolution

z (t) = x (t) ∗ v (t)

and the cross-correlation rvx (t) of the two functions v (t) and x (t) given by :

v (t) = v0 (t) + 2δ (t+ 1)

where

v0 (t) =





3, 1¡t¡2
1, 2¡t¡3
2, 3¡t¡4
0, elsewhere,

x (t) =





1, -5¡t¡-3
2, -3¡t¡-2
3, -2¡t¡-1
0, elsewhere.

Problem 1.12 Given the signals

v (t) = u (t+ 2)− u (t− 1)

x (t) = (2− t) {u (t)− u (t− 2)}
y (t) = y1 (t) + 2δ (t− 1)

where

y1 (t) =






1, -3¡t¡-2
2, -2¡t¡-1
0, otherwise

evaluate the convolutions z(t) = v (t) ∗ x (t) , g(t) = v (t) ∗ y (t) and the correlations
rxv = x (t) ⋆ v (t) and ryv = y (t) ⋆ v (t). Verify the correlation results by comparing them
with the corresponding convolutions.

Problem 1.13 Evaluate the cross-correlation rvx (t) of the two signals

v (t) = u (5− t) and x (t) = eαt {u (t+ 5)− u (t− 5)} .
Problem 1.14 Evaluate the cross-correlation rvx (t) of the two signals

x (t) = e1−tu (t+ 5) and v (t) = e−t−2u (t− 5) .

Problem 1.15 Let

x0 (t) =





1, 0 < t < T
−1, T < t < 2T
0, otherwise

x (t) =
∞∑

n=−∞
x0 (t− 3nT )

y (t) = ΠT/2 (t) = u (t+ T/2)− u (t− T/2) .

Sketch the convolution z (t) = x (t) ∗ y (t).
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Problem 1.16 Evaluate the cross correlation rvx (t) of the two signals

x (t) = u (t− 2) and v (t) = sin tu (4π − t) .

Problem 1.17 Given v (t) = Πλ/2 (t) and x (t) = sinβt, with β = 2π/T
a) evaluate the cross-correlation rvx (t) of the two signals v (t) and x (t).
b) Under what condition would the cross-correlation rvx (t) be nil?

Problem 1.18 Evaluate and sketch the convolution y (t) and the cross-correlation rvx (t)
of the two functions

v (t) =





3, 1 6 t 6 4
3e−(t−4), 4 6 t 6 7
0, otherwise

x (t) =





t− 1, 1 6 t 6 4

(t− 7)
2
/3, 4 6 t 6 7

0, otherwise.

Problem 1.19 Evaluate the convolution z (t) and the cross correlation rvx (t) of the two
signals

v (t) = e−βtu (t− 4)

x (t) = eαtu (−t− 3)

with α > 0 and β > 0. Sketch z (t) and rvx (t) assuming that x (−3) = v (4) = 0.5.

Problem 1.20 Evaluate the period and the fundamental frequency of the signals
(a) 2 cos (t), (b) 5 sin (2000πt+ π/4), (c) cos (2000πt) + sin (4000πt), (d) cos (2000πt) +

sin (3000πt), (e)
∞∑

n=−∞
v (t− n/10), where v (t) = R0.12 (t).

Problem 1.21 A system has the impulse response g(t) = RT (t − T ). Sketch the impulse
response and evaluate the system response y(t) if its input x(t) is given by

a) x(t) = δ(t− T )
b) x(t) = K
c) x(t) = sin(2πt/T )
d) x(t) = cos(πt/T )
e) x(t) = u(t)
f) x(t) = u(t)− u(−t).

Problem 1.22 Sketch the functions x(t) = Π2(t) and y(t) = (1− t)R2(t) and evaluate
a) x(t) ∗ x(t)
b) x(t) ∗ y(t)
c) y(t) ∗ y(t)
d) rxy(t)
e) ryx(t)
f) ryy(t).

Problem 1.23 A system has an impulse response h (t) = 3e−tR4.2 (t)+δ (t− 4.2). Evaluate
the system response to the input x (t) = 2R3.5 (t)

Evaluate the convolutions z (t) = v (t) ∗ x (t) and w (t) = v (t) ∗ y (t) where

x (t) = (2− t)R2 (t)
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y (t) = y1 (t) + 2δ (t− 1)

and

y1 (t) =





1, −3 < t < −2
2, −2 < t < −1
0, elsewhere

Problem 1.24 Evaluate
a) 2e−0.46tu (t+ 2) ∗ u (t− 3)
b) e0.55tu (2− t) ∗ e0.9tu (1− t)
c) 0.25e−0.46tu (t+ 3) ∗ u (1− t)
d) x (t)u (t) ∗ y (t)u (t− T )
e) y (t)u (t) ⋆ x (t)u (t)
f) y (t)u (−t) ⋆ x (t)u (t)
g) sin (πt) ⋆ sin (πt)R1 (t).

Problem 1.25 Evaluate the convolution z (t) = x (t) ∗ v (t)
where

x (t) =





1, 0 < t < 2
−1, 2 < t < 4
0, elsewhere

and v (t) is a periodic signal of period T = 4 sec. such that

v (t) =

{
1 0 < t < 1
0 1 < t < 4

.

Problem 1.26 Evaluate the convolution

z (t) = v (t)x (t)

where
v (t) = tRT (t)

x (t) = t2R2T (t)

where T = 1 sec.

Problem 1.27 A system has the impulse response

h (t) = (1− t) {u (t)− u (t− 1)} .
Evaluate the system output if the input is

x (t) = t {u (t)− u (t− 1)} .
Problem 1.28 a) Evaluate the convolution

z (t) = x (t) ∗ v (t)

and the cross-correlation rxv (t) of the two signals

x (t) =

{
t, 0 6 t 6 1
0, elsewhere

v (t) =





t, 0 6 t 6 1
2− t, 1 6 t 6 2
0, elsewhere.

b) Show that if the convolution z (t) is known then the correlation rxv (t) for this example
can be deduced directly thereof.
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Problem 1.29 Let
x (t) = tRT (t)

v (t) = 10e−tRT (t)

where
RT (t) = u (t)− u (t− T )

and T = 10 sec. Evaluate and plot the convolution v (t) ∗ x (t) and the correlation rxv (t).
Use Mathematica to evaluate the integrals. Verify the results using MATLAB.

Problem 1.30 a) Evaluate the cross-correlation rwv (t) of the signals

w (t) = (1− t)u (t) + (t− 1)u (t− 1)

v (t) = tu (t)− 2 (t− 1)u (t− 1) + (t− 2)u (t− 2) .

Note : A graphic approach may simplify the solution.
b) Evaluate the convolution z(t) = w(t) ∗ v(t).

Problem 1.31 Evaluate the response of the system of which the impulse response is

h (t) =
(
e−t − e−3t

)
u (t)

to the input
x (t) = e−tu (t) .

Problem 1.32 Evaluate the convolution of the signals h (t) and x (t) where

x (t) = h (t) = (1− t)R1 (t) = (1− t) {u (t)− u (t− 1)} .

Problem 1.33 Evaluate the impulse response of the electric circuit shown in Fig. 1.38.

FIGURE 1.38 R-L circuit.

Deduce by convolution the response of the circuit to the input

e (t) = e−tRT (t) = e−t [u (t)− u (t− T )] , with T = 1.

Verify the result T using a solution in Laplace domain.

Problem 1.34 Evaluate the convolution

z (t) = x (t) ∗ y (t)

where
x (t) = e−atRT (t) = e−at {u (t)− u (t− T )}

T = 1, and
y (t) = −R2 (t) = u (t)− u (t− 2) .
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Problem 1.35 Evaluate and sketch the convolution z (t) and correlation rxv (t) of the sig-
nals v (t) and x (t) for the three cases :

a) v (t) = {2− |t|}Π2 (t) = {2− |t|} {u (t+ 2)− u (t− 2)}

x (t) = 2
∞∑

n=−∞
δ (t− 1.5n) .

b) v (t) and x (t) are periodic with period T = 4 sec, and

v (t) = x (t) =

{
2, |t| < 1
0, 1 < |t| ≤ 2.

c) v (t) and x (t) are periodic with period T = 1 sec, with

v (t) =

{
1, 0 < t < 0.5
0, 0.5 < t < 1

x (t) = e−2t, 0 < t < 1.

Problem 1.36 Show the correlation transition from simple correlation to cyclic by evalu-
ating and plotting the autocorrelation of the signal.

f (t) = Πτ/2 (t) = u (t+ τ/2)− u (t− τ/2)

and that of

g (t) =

∞∑

n=−∞
f (t− nT )

with a) T > 2τ and b) T = 1.5τ.

Problem 1.37 Evaluate and sketch the cross-correlation rvx (t) of the two signals

x (t) = − (t+ 10) {u (−10− t)− u (−20− t)}+ 250e0.16tu (−20− t)

and

v (t) = 1.64e−0.06tu (t+ 30) .

Problem 1.38 Evaluate the cross-correlation rvx (t) of the two signals

v (t) = u (t+ 3)

x (t) = 2δ (t− 6) +
(
0.5− e2−t

)
[u (t− 2)− u (t− 6)] .

Problem 1.39 The objective is to evaluate the convolution z (t) of the two functions x (t) =
1 + Π1 (t) and y (t) = Π1 (t).

a) Sketch the two functions.

b) Consider the result of evaluating dz/dt as the convolution of [dx (t) /dt] ∗ y (t)and then
integrating the result to deduce z (t).

Is this the proper value of convolution z (t) of the two functions? If not, evaluate the true
value and state the reason the suggested approach produces the wrong result.
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Problem 1.40 A weak signal s (t) that is of a finite duration
(
0, 10−3

)
sec and zero else-

where is transmitted at t = 0. It is then received with appreciable added noise after undergo-
ing a delay of an unknown amount τ0. A radar-type receiver should evaluate the delay. It is
proposed to apply the received signal, namely, the noise plus the delayed signal s (t− τ0), to
the input of a filter the impulse response of which is h (t) = s

(
10−3 − t

)
, that is, an impulse

response corresponding to an inverted but realizable version of the signal s (t).

State if the filter output does reveal the delay of the signal. Explain.

Problem 1.41 The video black and white signal v (t) is a periodic signal of period T =
1/15750 sec defined by

v (t) =





1.0, 0 < t < 0.02T
1.4, 0.02T < t < 0.1T
1.0, 0.1T < t < 0.16T
0, 0.16T < t < T

.

Sketch the signal v (t). Evaluate

a) The average value v(t) of v(t)

b) The average power v2(t) of v(t)

c) The energy E of v (t) over one period.

Problem 1.42 Evaluate the average value, the average power and the total energy of each
of the following signals

a) va (t) = 1 + 2 cos (50πt) + 5 sin (200πt+ π/8)

b) vb (t) = 2R5 (t)

c) vc (t) =
∞∑

n=−∞
v2 (t− 10n)

d) The periodic ramp vd (t) shown in Fig. 1.39.

FIGURE 1.39 Periodic ramp.

Problem 1.43 Given the two signals

x (t) = A1 cos (2πf1t+ θ1) and y (t) = A2 cos (2πf2t+ θ2), where 0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤
2π, f1 > 0 and f2 > 0.

1. Let v (t) = x (t) + y (t). Evaluate the average power v2(t) of v (t) for the two cases
f1 = f2 and f1 6= f2.

2. Let z (t) = x (t) y (t). Evaluate the average power z2(t) of z (t) for the two cases f1 = f2
and f1 6= f2..
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Problem 1.44 Sketch each of the following periodic signals of period T and evaluate the
average value and average power.

a) v (t) =

{
sin 4πt/T, 0 ≤ t ≤ T/4
0, T/4 ≤ t ≤ T

b) w (t) = sinπt/T, 0 ≤ t ≤ T

c) x (t) =

{
− sin 6πt/T, 0 ≤ t ≤ T/3
0, T/3 ≤ t ≤ T

d) y (t) = 4− 2 sin 2πt/T

e) With T = 1 and t0 = 0.0796

z (t) =

{
sin [2π (t− t0)] , 0 < t < 2t0, T/2 < t < T/2 + 2t0
0 2t0 ≤ t ≤ T/2, T/2 + 2t0 < t < T .

Problem 1.45 Given the periodic signal x (t) of period T

x (t) =






6− 15t/T, 0 < t < T/5
3, T/5 < t < 2T/5
0, 2T/5 < t < T

Sketch the signal x(t). Evaluate a) its average value, b) its average power, c) its total energy,
d) its energy over one period.

Problem 1.46 The signal x (t) = R0.001 (t) represents an electric potential given in volts
versus the time t in seconds. Let

v (t) =
∞∑

n=−∞
x (t− nT ).

Evaluate the period T ensuring that the average power of v (t) be a) 0,8 watt, b) 8 Watt.

Problem 1.47 Given a periodic signal

x (t) =





5, 0 < t < 0.01, 0.03 < t < 0.04, 0.06 < t < 0.07
−5, 0.01 < t < 0.02, 0.05 < t < 0.06, 0.08 < t < 0.09
0, 0.02 < t < 0.03, 0.04 < t < 0.05, 0.07 < t < 0.08, 0.09 < t < 0.1

of which the values are given in volts versus t in seconds, with a period T = 0.1 sec.

1. Sketch the signal.

2. Evaluate the average value x (t) in volts .

3. Evaluate the average power x2 (t) in watts.

4. Evaluate the energy in joules over a one period.

Problem 1.48 Let v (t) = x (t) + y (t), where x (t) is the signal defined in Problem 1.47
and y (t) is a periodic signal of period T = 0.05 sec,

y (t) =

{
5, 0 < t < 0.04
0, 0.04 < t < 0.05
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1. Sketch v (t) and evaluate its average value v (t).

2. Evaluate the average power v2 (t).

3. Evaluate the energy over a one period.

Problem 1.49 Let z (t) = y (t) sin (200πt), where y (t) is the signal defined Problem 1.48.

1. Evaluate the average value z (t) in volts .

2. Evaluate the average power z2 (t) in watts.

3. Evaluate the energy in joules over a one period.

Problem 1.50 Given a periodic signal x (t) with period T sec.

x (t) =

{
At/T, 0 < t < τ0
0, τ0 < t < T

where τ0 = 0.75T . Evaluate the average value x (t). A clipping of x (t) produces the signal

y (t) =






At/T, 0 < t < ta
a0 ta < t < τ0
0 τ0 < t < T

with, τ0 =0.5T and A = 1. Sketch the signal y (t) for a0 = 0.3A. Find the value(s) of a0

producing an average signal value of 0.1 Volt.

Problem 1.51 Consider the sequence x[n] = u[n+ 4].
a) Sketch x[m], x[n−m] and x[n+m] versus m for n = 3 and for n = −5.
b) Repeat a) if x[n] = 0.9nu[n− 3].

Problem 1.52 a) Show that the sum of the energy of the even part xe[n] plus that of the
odd part xo[n] of a sequence x[n] is equal to the energy of the sequence itself.

b) Given the sequence x[n] = 3anu[−n] − a−nu[n], evaluate the even and odd parts xe

and xo and their energies Ee and Eo, respectively, and compare the sum to the energy E of
x[n].

Problem 1.53 Evaluate the average values of the two sequences x[n] = a−nu[n], a > 1
and y[n] = u[n].

Problem 1.54 Evaluate the energy of the sequence x[n] = nanu[−n], a > 1.

Problem 1.55 Evaluate the period of each the following sequences if it is periodic and show
why it is aperiodic otherwise.

a) sin(0.25πn− π/3)
b) x[n] = cos(0.5n+ π/4)
c) x[n] = sin[(π/13)n+ π/3] + cos[(π/17)n− π/8]
d) x[n] = cos[(π/105)n+ π/3] sin[(π/133)n+ π/4]

Problem 1.56 A system is described by the difference equation

y [n] = ay [n− 1] + x [n]

Assuming zero initial conditions evaluate the impulse response h [n] of the system, that is,
the response y [n] if the input is the impulse x [n] = δ [n].
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1.31 Answers to Selected Problems

Problem 1.1
ve (t) = 10 sin (π/5) cos 3πt = 5.878 cos3πt

vo (t) = 10 cos (π/5) sin 3πt = 8.090 sin3πt

Problem 1.2 See Fig. 1.40.
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FIGURE 1.40 Functions of Problem 1.2.

Problem 1.3 See Fig. 1.41.
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FIGURE 1.41 Functions of Problem 1.3.

Problem 1.4 See Fig. 1.42.
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Problem 1.5 See Fig. 1.43.
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FIGURE 1.43 Functions of Problem 1.5.

Problem 1.6 See Fig. 1.44.

FIGURE 1.44 Partial answer to Problem 1.6.

Problem 1.8 See Fig. 1.45.

Problem 1.10

rxx (t) = eat

[
e−2at − e−aT0

2aT0

]
+ (t/T0) e

−at + e−at 1− e2a(t−T0/2)

2aT0
+ (t/T0) e

−aT0+at, for
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1
1 1

t t t

f( )t f t( - )t
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FIGURE 1.45 Functions of Problem 1.8.

0 < t < T0/2.and rxx(−t) = rxx(t), as shown in Fig. 1.46.

FIGURE 1.46 A periodic function for autocorrelation evaluation.

Problem 1.11 See Fig. 1.47.

FIGURE 1.47 Results of Problem 1.11.

Problem 1.12 See Fig. 1.48.

Problem 1.15 See Fig. 1.49.

Problem 1.17
a) rvx (t) = −λ Sa (λβ/2) sinβt. b) rvx (t) = 0 if λ = kT .
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FIGURE 1.48 Functions of Problem 1.12.

FIGURE 1.49 Functions of Problem 1.15.

Problem 1.18 See Fig. 1.50.

FIGURE 1.50 Functions of Problem 1.18.

Problem 1.20

a) 6.283 s, 0.159 Hz. b) 1 ms, 1 kHz. c) 1 ms, 1 kHz. d) 2 ms, 500 Hz. e) 0.1 s, 10 Hz.

Problem 1.21

a) g(t−T ), b) KT , c) 0, d) (−2T/π) sin (πt/T ), e) 0 for t ≤ T ; t−T for T ≤ t ≤ 2T ;
T for t ≥ 2T , f) −T for t ≤ T ; 2t− 3T for T ≤ t ≤ 2T ; T for t ≥ 2T .

Problem 1.22

a) t + 4 for −4 ≤ t ≤ 0; 4 − t for 0 ≤ t ≤ 4; 0 otherwise. b) t2/2 − t for −2 ≤ t ≤ 0 ;
t2/2− 3t+ 4 for 2 ≤ t ≤ 4; 0 otherwise. c) t3/6− t2 + t for 0 ≤ t ≤ 2; −t3/6 + t2 − t− 4/3
for 2 ≤ t ≤ 4; 0 otherwise. d) −t2/2 + t for 0 ≤ t ≤ 2 ; t2/2 + 3t+ 4 for −4 ≤ t ≤ −2; 0
otherwise. e) See part b). f) −t3/6 + t+ 2/3 for −2 ≤ t ≤ 0; t3/6− t+ 2/3 for 0 ≤ t ≤ 2 ;
0 otherwise.

Problem 1.23

0 for t ≤ 0; 6 − 6e−t for 0 ≤ t ≤ 3.5; 192.7e−t for 3.5 ≤ t ≤ 4.2; 198.7e−t + 1.91 for
4.2 ≤ t ≤ 7.7; 0 for t > 7.7.

Problem 1.24

a)
{
10.91− 4.35e−0.46(t−3)

}
u (t− 1), b)

{
4.05e0.55t − 1.42e0.9t

}
u (3− t), c) 2.16u (−2− t)+
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0.86e−0.46tu (t+ 2), d)

{
t−T
´

0

x (τ) y (t− τ) dτ
}
u (t− T ), e)

{∞́

0

x (τ) y(t+ τ)dτ

}
u(t) +

{
∞́

−t

x (τ) y(t+ τ)dτ

}
u(−t), f)

{
t́

0

x (τ) y(t+ τ)dτ

}
u(−t), g) (1/2) cos (πt).

Problem 1.25 See Fig. 1.51.

FIGURE 1.51 Convolution result of Problem 1.25.

Problem 1.38
0 for t < 9; 5.52 + t/2− 148.4et for −9 < t ≤ −5; 2.018 for t ≥ −5.

Problem 1.39
See Fig.1.52.

FIGURE 1.52 Convolution result of Problem 1.39.

Problem 1.40
t = τ0 + 10−3 sec.

Problem 1.41
a) 0.192 V, b) 0.237 W, c) 15× 10−6 J.

Problem 1.42
a) 1 V, 15.5 W, ∞ J. b) 0 V, 0 W, 20 J. c) 1 V, 2 W, ∞ J. d) 0 V, 0.33 W, ∞ J.

Problem 1.43
a) 0.5A2

1 + 0.5A2
2 for f1 6= f2; 0.5A2

1 + 0.5A2
2 + A1A2 cos (θ1 − θ2), for f1 = f2. b)

0.25A2
1A

2
2 for f1 6= f2; 0.25A2

1A
2
2 + 0.125A2

1A
2
2 cos (2 [θ1 − θ2]) for f1 = f2.

Problem 1.44
a) 0.159 V, 0.125 W. b) 0.637 V, 0.5 W. c) 0 V, 0.167 W. d) 4 V, 18 W. e) 0 V,
28.8× 10−3 W.
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Problem 1.45
a) 1.5 V, b) 6 W, c) ∞ J, d) 2.4 J.

Problem 1.46
a) 5× 10−3 s b) 0.75× 10−3s.

Problem 1.47
a) x (t) = 0 volt, b) x2 (t) = 15 watts, c) Ex = 1.5 joule.

Problem 1.48
a) v (t) = x (t) + y (t), v (t) = 4 V, b) v2 (t) = 35 W, c) Ev = 3.5 J.

Problem 1.49
a) z (t) = 0 V, b) z2 (t) = 10 W, c) Ez = 0.5 J.

Problem 1.50
a) Aτ2

0 /(2T
2). b) a0 = 0.2764 or 0.7236.

Problem 1.51
See Fig. 1.53.

FIGURE 1.53 Sequences of Problem 1.51.

Problem 1.52

E =
∞∑

n=1

a−2n +
−1∑

n=−∞
9a2n + 4 = (10a−2/(1− a−2)) + 4

Ee =

∞∑

n=1

a−2n +

−1∑

n=−∞
a2n + 4 = (2a−2/(1− a−2)) + 4

Eo =

∞∑

n=1

4a−2n +

−1∑

n=−∞
4a2n = 8a−2/(1− a−2).

Problem 1.53

x[n] = 0

y[n] = 0.5

Problem 1.54

E =

∞∑

m=0

m2bm = b(1 + b)/(1− b)3 = a−2(1 + a−2)/(1− a−2)3.
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Problem 1.55
a) N = 8. N is rational. The signal is periodic
b) N = 4π. N is not rational. The signal is aperiodic
c) x[n] is periodic with a period N = 442.
d) x[n] is a product of two periodic signals, is periodic with a period N = 3990.

Problem 1.56
y [n] = an, n ≥ 0.



2

Fourier Series Expansion

A finite duration, or periodic, function f (t) can in general be decomposed into a sum
of trigonometric or complex exponential functions called Fourier series [31] [57] [71]. The
Fourier series, which is then referred to as the expansion of the given function f (t), will

be denoted by the symbol f̂(t), in order to distinguish the expansion from the expanded

function. The Fourier series f̂(t) is said to represent the given function f (t) over its interval
of definition.

In proving many properties of Fourier series there arises the need to interchange the order
of integration or differentiation and summation. The property of infinite series or infinite
integrals that ensures the validity of interchanging the order of integration and summation
is uniform convergence. Throughout this book uniform convergence will by assumed, thus
allowing the reversal of order of such operations.

2.1 Trigonometric Fourier Series

Let f(t) be a time function defined for all values of the real variable t, that is, for t ∈
(−∞,∞) such as the function shown in Fig. 2.1.

FIGURE 2.1 A function and an analysis interval.

A section of f(t) of finite duration T0 spanning the interval (t0, t0+T0) can be represented

as a trigonometric series f̂(t) such that

f̂(t) = f(t), t0 < t < t0 + T0. (2.1)

The Fourier series f̂(t) is given by:

f̂(t) = a0/2 +

∞∑

n=1

(an cosnω0t+ bn sinnω0t) (2.2)

47
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where ω0 = 2π/T0 and

an =
2

T0

ˆ t0+T0

t0

f(t) cosnω0t dt

bn =
2

T0

ˆ t0+T0

t0

f(t) sinnω0t dt.

(2.3)

The part of f(t) defined over the interval (t0, t0 + T0) which is analyzed in a Fourier series
will be referred to as the analysis section . Physically, the coefficient a0/2 measures the
zero-frequency component of f(t). The coefficients an and bn are the amplitudes of the
components cosnω0t and sinnω0t respectively, the nth harmonics, of frequency nω0, that
is, n times the fundamental frequency ω0 = 2π/T0, corresponding to the analysis interval of
f(t).

Note on Notation In referring to the trigonometric series coefficients of two functions
such as f(t) and g(t) we shall use the symbols an,f and bn,f to denote the coefficients of
f(t), and an,g and bn,g for those of g(t). When, however, only one function f(t) is being
discussed or when it is clear from the context that the function in question is f(t) then for
simplicity of notation we shall refer to them as an and bn, respectively.

An alternative expression of the trigonometric Fourier series may be obtained by rewriting
Equation (2.2) in the form

f̂(t) = a0/2 +
∞∑

n=1

√
a2

n + b2n

{
an cosnω0t√

a2
n + b2n

+
bn sinnω0t√
a2

n + b2n

}

= a0/2 +

∞∑

n=1

√
a2

n + b2n cos

{
nω0t− arctan

(
bn
an

)}

= C0 +

∞∑

n=1

Cn cos(nω0t− φn)

(2.4)

C0 = a0/2, Cn =
√
a2

n + b2n and φn = arctan(bn/an). (2.5)

These relations between the Fourier series coefficients are represented vectorially in Fig. 2.2.

FIGURE 2.2 Fourier series coefficient Cn as a function of an and bn.

2.2 Exponential Fourier Series

The section of the function f(t) defined over the same interval (t0, t0+T0) can alternatively

be represented by an exponential Fourier series f̂(t) such that

f̂(t) = f(t), t0 < t < t0 + T0 (2.6)
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the exponential series having the form

f̂(t) =
∞∑

n=−∞
Fne

jnω0t (2.7)

so that

f(t) =

∞∑

n=−∞
Fne

jnω0t, t0 < t < t0 + T0 (2.8)

where ω0 = 2π/T0 and the coefficients Fn are given by

Fn =
1

T0

ˆ t0+T0

t0

f(t)e−jnω0tdt. (2.9)

The value T0 is the Fourier series expansion analysis interval and ω0 = 2π/T0 is the
fundamental frequency of the expansion.

We note that the coefficient F0, given by

F0 =
1

T0

ˆ t0+T0

t0

f(t)dt (2.10)

is the average value (d-c component) of f(t) over the interval (t0, t0 + T0). Moreover, we
note that if the function f(t) is real we have

F−n =
1

T0

ˆ t0+T0

t0

f(t)ejnω0tdt = F ∗n , f(t) real (2.11)

where F ∗n is the conjugate of Fn. In other words

|F−n| = |Fn|, arg [F−n] = − arg [Fn], f(t) real. (2.12)

The phase angle arg[Fn] may be alternatively written ∠[Fn]. We shall adopt the notation

f (t)
FSC←→ Fn (2.13)

or simply
f (t)←→ Fn (2.14)

to denote by Fn the exponential Fourier series coefficients (FSC) of f(t). The notation
Fn = FSC[f(t)] will also be used occasionally. The following example shows that for
basic functions we may deduce the exponential coefficients without having to perform an
integration.

Example 2.1 Evaluate the exponential coefficients of v(t) = A sin(βt), x(t) = A cos(βt)
and y(t) = A sin(βt+ θ) with an analysis interval equal to the function period.

The period of v(t) is T = 2π/β. The analysis interval is the same value T and the
fundamental frequency of the analysis is ω0 = 2π/T = β. We may write

v(t) = A sin(βt) = A(ejβt − e−jβt)/(2j) =

∞∑

n=−∞
Vne

jnω0t =

∞∑

n=−∞
Vne

jnβt. (2.15)

Equating the coefficients of the exponentials in both sides we obtain the exponential series
coefficients of v(t) = A sin(βt), namely,

Vn =

{
∓jA/2, n = ±1
0, otherwise
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Similarly, we obtain the exponential series coefficients of x(t) = A cos(βt)

Xn =

{
A/2, n = ±1
0, otherwise

and those of y(t) = sin(βt+ θ)

Yn =

{
∓(jA/2)e−j±θ, n = ±1
0, otherwise

These results are often employed and are thus worth remembering.

2.3 Exponential versus Trigonometric Series

To establish the relations between the exponential and trigonometric Series coefficients for
a real function f(t), we write

f̂(t) = F0 +
(
F1e

jω0t + F−1e
−jω0t

)
+
(
F2e

2jω0t + F−2e
−j2ω0t

)
+ . . . (2.16)

Fn = |Fn|ejarg[Fn] (2.17)

f̂(t) = F0 +
(
|F1| ej arg[F1]ejω0t + |F1| e−j arg[F1]e−jω0t

)

+
(
|F2| ej arg[F2]ej2ω0t + |F2| e−j arg[F2]e−j2ω0t

)
+ . . .

(2.18)

f̂(t) = F0 +
∞∑

n=1

2 |Fn| cos(nω0t+ arg[Fn]). (2.19)

FIGURE 2.3 Fourier series coefficient Fn as a function of an and bn.

Comparing this expression with (2.4) we have F0 = C0 = a0/2; |Fn| = Cn/2 =√
a2

n + b2n /2, n > 0; arg[Fn] = −φn = − arctan (bn/an) , n > 0. This relation can
be represented vectorially as in Fig. 2.3. We can also write

Fn = (Cn/2)e−jφn = (1/2) (an − j bn) , n > 0 (2.20)

F−n = (Cn/2)ejφn = (1/2) (an + j bn) , n > 0. (2.21)

as can be seen in Fig. 2.4.
The inverse relations are C0 = 2F0; Cn = 2 |Fn| , n > 0; φn = − arg[Fn], n > 0;

a0 = 2F0; an = 2ℜ[Fn], n > 0; bn = −2 ℑ [Fn] , n > 0.
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FIGURE 2.4 Fourier series coefficients Fn and F−n as functions of an and bn.

2.4 Periodicity of Fourier Series

As shown in Fig. 2.1 the function f(t) outside the analysis interval is assumed to have any

shape unrelated to its form within the interval. How then does the Fourier series f̂(t) com-
pare with f(t) outside the analysis interval? The answer to this question is straightforward.
The Fourier series is periodic with period T0, and is none other than a periodic extension,
that is, a periodic repetition, of the analysis section of f(t). In fact

f̂(t+ kT0) =
∞∑

n=−∞
Fne

jnω0(t+kT0) =
∞∑

n=−∞
Fne

jnω0t = f̂(t) (2.22)

since ej2πnk = 1, n and k integers. The Fourier series f̂(t) appears as in Fig. 2.5 where it
is simply the periodic extension of the analysis section shown in Fig. 2.1.

FIGURE 2.5 Periodic extension induced by Fourier series.

We note that if the function f(t) is itself periodic with period T0 then its Fourier series

f̂(t), evaluated over one period as an analysis interval, is identical to the function f(t) over
the entire time axis t, and this is the case whatever the value of the starting point t0 of the
analysis interval. We therefore write

f̂(t) = f(t), −∞ < t <∞, f(t) periodic. (2.23)

Fn =
1

T0

ˆ

T0

f(t)e−inω0t dt (2.24)

It is important to note that the Fourier series “sees” the given finite duration function as
if it were periodically extended. In other words, the Fourier series is simply an expansion
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of the periodic extension of the given function. In what follows, a periodic extension of
the analyzed function is applied throughout, in order to view the function as the Fourier
series sees it. We shall occasionally use the symbol f̃(t) to denote the periodically extended
version of the finite duration function f(t). For a periodic function, the analysis interval is
assumed to be, by default, equal to the function period.

We also note that we have assumed the function f(t) to be continuous. If the function
has finite discontinuities then in the neighborhoods of a discontinuity there exists what is
called “Gibbs phenomenon.” which will be dealt with in Chapter 16. Suffice it to say that
if f(t) has a finite discontinuity at time t = t1, say, then its Fourier series converges to the

average value at the “jump” at t = t1. In other words f̂(t1) =
{
f
(
t+1
)

+ f
(
t−1
)}
/2.

Example 2.2 For the function f(t) given by

f(t) =

{
A(t− 0.5), 0 < t ≤ 1
A/2, t ≤ 0 and t ≥ 1

shown in Fig. 2.6 evaluate (a) the trigonometric and (b) the exponential Fourier series

expansions f̂(t) of f(t) on the interval (0, 1).

FIGURE 2.6 Function f(t).

By performing a periodic extension we obtain a periodic ramp of a period equal to 1
second, which is the form of the sought expansion f̂(t).

(a) Trigonometric series

an = 2A

ˆ 1

0

(t− 0.5) cosnω0t dt = 0

bn = 2A

ˆ 1

0

(t− 0.5) sin(2πnt)dt = − A

πn
.

Hence

f̂(t) =
∞∑

n=1

(−A
πn

)
sin 2πnt.

f (t) = A (t− 0.5) =
−A
π

∞∑

n=1

sin 2πnt

n
, 0 < t < 1.

Moreover, if f̃(t) refers to the periodic extension of f(t) then it has discontinuities at t =
0, ±1, ±2, . . . wherefrom

f̂(0) = f̂(1) =
{
f̃
(
0+
)

+ f̃
(
0−
)}
/2 = (A/2−A/2) = 0.
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FIGURE 2.7 Fourier series coefficient an and bn of Example 2.2.

The coefficients an and bn are represented graphically in Fig. 2.7.
(b) Exponential series

Fn =

ˆ 1

0

A(t - 0, 5) e−j2π ntdt = jA/(2πn), n 6= 0

|Fn| = A/(2π |n|), n 6= 0; arg[Fn] =

{
π/2, n > 0
−π/2, n < 0.

F0 =

ˆ 1

0

A(t− 0, 5) dt = 0.

f̂(t) =
jA

2π

∞∑

n = −∞, n 6= 0

1

n
ej2πnt

and

f̂ (t) =

{
f(t) = A(t− 0, 5), 0 < t < 1
0, t = 0 and t = 1.

The exponential coefficients are shown in Fig. 2.8.
The form of f̂(t), identical to the periodic extension f̃(t) of f(t), is shown in Fig. 2.9.

As we shall see shortly, the periodic ramp has odd symmetry about the origin t = 0,
which explains the fact that the coefficients an are nil and the exponential coefficients Fn

are pure imaginary.

2.5 Dirichlet Conditions and Function Discontinuity

A function f (t) that is of finite duration, and equivalently its periodic extension f̃(t),
which satisfies the Dirichlet conditions, can be expanded in a Fourier series. To satisfy the
Dirichlet conditions the function has to be bounded in value, and be single-valued, that is,
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FIGURE 2.8 Fourier series coefficient Fn of Example.

FIGURE 2.9 Periodic extension of the analysis section as seen by Fourier series.

continuous, or else have a finite number of finite jump discontinuities, and should have at
most a finite number of maxima and minima. Consider three functions, assuming that the
interval of analysis is, say, (−1, 1), thus containing the point of origin, t = 0. The first,
f1(t) = Ae−tu(t), shown in Fig. 2.10, is discontinuous at t = 0. Since the jump discontinuity
A is finite the function does not tend to infinity for any value of t and is therefore bounded
in value, thus satisfying the Dirichlet conditions.

The second function f2(t) = 1/t not only has a discontinuity at t = 0, it is not bounded
at t = 0, tending to +∞ if t is positive and t −→ 0, and to −∞ if t is negative and
t −→ 0. This function does not, therefore, satisfy the Dirichlet conditions. The third function
f3(t) = cos(1/t), as can be seen in the figure, tends to unity as t −→ ±∞. However, as
t −→ 0 through positive or negative values, the argument 1/t increases rapidly so that f3(t)
increases in frequency indefinitely producing an infinite number of Maxima and minima.
This function does not, therefore, satisfy the Dirichlet conditions.
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FIGURE 2.10 Functions illustrating Dirichlet conditions.

2.6 Proof of the Exponential Series Expansion

To prove that the Fourier series coefficients are given by Equation (2.7) multiply both sides
of the equation by e−jkω0t, obtaining

f̂(t) e−jkω0t =

∞∑

n=−∞
Fne

jnω0te−jkω0t. (2.25)

Integrating both sides over the interval (t0, t0 + T0) and using Equation (2.8) we have

ˆ t0+T0

t0

f̂(t)e−jkω0tdt =

ˆ t0+T0

t0

f(t)e−jkω0tdt =

ˆ t0+T0

t0

∞∑

n=−∞
Fne

j(n−k)ω0tdt.

Interchanging the order of integration and summation and using the property

ˆ t0+T0

t0

ejmω0tdt =

{
0, m 6= 0
T0, m = 0.

(2.26)

we have
ˆ t0+T0

t0

f (t)e−jkω0tdt = T0Fk (2.27)

and a replacement of k by n completes the proof.

2.7 Analysis Interval versus Function Period

Given a periodic signal, we consider the effect of performing an expansion using an analysis
interval that is a multiple of the signal period. The fundamental frequency of a periodic
function f(t) of period τ0 will be denoted ω0, i.e. ω0 = 2π/τ0. If a Fourier series expansion,
with analysis interval T0 equal to the function period τ0 as usual, is performed, the Fourier
series has a fundamental frequency of analysis equal to the signal fundamental frequency
ω0. The Fourier series coefficients in this case are the usual coefficients Fn. In particular,
we have

f(t) =
∞∑

n=−∞
Fne

jnω0t (2.28)
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FIGURE 2.11 Periodic ramp.

Consider now the Fourier series expansion using an analysis interval T1 = mτ0. In this
case let us denote by Ω0 this Fourier series fundamental frequency of analysis, and by Gn

the Fourier series coefficients. We have Ω0 = 2π/T1 = ω0/m and we may write

f(t) =

∞∑

n=−∞
Fne

jnω0t =

∞∑

k=−∞
Gke

jkΩ0t =

∞∑

k=−∞
Gke

jkω0t/m. (2.29)

Comparing the powers of the exponentials on both sides we note that the equation is satisfied
if and only if G0 = F0, Gm = F1, G2m = F2, . . . , Grm = Fr, r integer, i.e.

Gn =

{
Fn/m, n = r m, i.e. n = 0, ±m, ±2m, . . .
0, otherwise.

(2.30)

In other words

Gn =

{
Fn|n−→n/m, n = 0, ±m, ±2m, . . .
0, otherwise.

(2.31)

The coefficientsGn are therefore all nil except for those where n is a multiple ofm. Moreover,
G0 = F0, G±m = F±1, G±2m = F±2, . . ..

Example 2.3 Evaluate the Fourier series coefficients of the function f(t) shown in Fig.
2.11 over an analysis interval i) T0 = 1 second and ii) T0 = 3 seconds. i) We note that
the analysis section of f(t), which we can take as that bounded between t = 0 and t = 1,
is the same as that of f(t) of Example 2.2 (Fig. 2.9) except for a vertical shift of A/2.

We may therefore write

Fn =

{
A/2, n = 0
jA/(2πn), n 6= 0.

The modulus |Fn| and phase arg[Fn] are shown in Fig. 2.12.
ii) We have T0 = 3τ0 and, from Equation (2.31),

Gn =






A/2, n = 0
Fn|n−→n/3 = j3A/(2πn), n = ±3, ±6, ±9, . . .
0, otherwise

The modulus |Gn| and phase arg[Gn] are shown in Fig. 2.13.

2.8 Fourier Series as a Discrete-Frequency Spectrum

The Fourier series exponential coefficients |Fn| and arg[Fn], or trigonometric ones, an and
bn, as seen plotted versus the index n represent the frequency spectrum of the function f (t).
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FIGURE 2.12 Fourier series coefficients of the periodic ramp.

FIGURE 2.13 Fourier series coefficients of periodic ramp with analysis interval triple its
period.
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The abscissa of the graph represents, in fact, the frequency ω in r/sec, such that the values
n = ±1 correspond to ω = ±ω0, the values n = ±2 correspond to ω = ±2ω0, and so on.
The student may have noticed such labeling of the abscissa in Fig. 2.8 in relation to Example
2.2 We note, moreover, that the Fourier series spectrum is defined only for multiples of the
fundamental frequency ω0. The Fourier series thus describes a discrete spectrum.

Example 2.4 Show that the result of adding the fundamental and a few harmonics of
Example 2.2 converges progressively toward the analyzed ramp.

We have found the expansion of a ramp

f(t) = −A
π

∞∑

n=1

sin 2πnt

n
.

We note that the fundamental component is −(A/π) sin 2πt, of period 1 sec., the period of
repetition T0 of f (t), as it should be. The second harmonic, −A/(2π) sin 4πt, has a period
equal to 0.5 sec., that is T0/2, and amplitude A/(2π), that is, half that of the fundamental
component. Similarly, the third harmonic −A/(3π) sin 6πt, has a period 1/3 sec. = T0/3
and has an amplitude 1/3 of that of the fundamental; and so on. All these facts are described,
albeit in different forms, by the frequency spectra shown in Fig. 2.14. Part (a) of the figure
shows the first four and the 20th harmonic of the Fourier series expansion of f (t). Part (b)
shows the results of cumulative additions of these spectral components up to 20 components.
In this figure, every graph shows the result of adding one or more harmonics to the previous
one. We see that the Fourier series converges rapidly toward the periodic ramp f (t).

2.9 Meaning of Negative Frequencies

We encounter negative frequencies only when we evaluate the exponential form of Fourier
series. To represent a sinusoid in complex exponential form we need to add the conjugate
e−jkω0t to each exponential ejkω0t to form the sinusoid. Neither the positive frequencies kω0

nor the negative ones −kω0 have any meaning by themselves. Only the combination of the
two produces a sinusoid of a meaningful frequency kω0.

2.10 Properties of Fourier Series

Table 2.1 summarizes basic properties of the exponential Fourier series, but can be rewritten
in a slightly different form for the trigonometric series, as we shall shortly see. The properties
are stated with reference to a function f(t) that is periodic of period T0 and fundamental
frequency ω0 = 2π/T .

2.10.1 Linearity

This property states that the Fourier series coefficients of the (weighted) sum of two func-
tions is the sum of the (weighted) coefficients of the two functions. i.e. a1f(t)+a2g(t) ←→
a1Fn + a2Gn where a1 and a2 are constants.
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FIGURE 2.14 Result of cumulative addition of harmonics.
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TABLE 2.1 Properties of Fourier series of a periodic function
with analysis interval T0 equal to the function period, and
ω0 = 2π/T0

Function f(t) Fourier series coefficients

af(t) + bg(t) aFn + bGn

f(t− t0) Fne
−jnω0t0

ejmω0tf(t) Fn−m

f∗(t) F ∗−n

f(−t) F−n

f(at), a > 0,

(
period

T0

a

)
Fn

1

T0

ˆ

T0

f(τ)g(t− τ)dτ FnGn

f(t)g(t)

∞∑

m=−∞
FmGn−m

f(t) real F−n = F ∗n

df(t)

dt
jnω0Fn

ˆ t

−∞
f(t)dt, F0 = 0

1

jnω0
Fn

2.10.2 Time Shift

The time shift property states that g(t) = f (t− t0)←→ Fne
−jnω0t0 .

Proof For simplicity the amount of time shift t0 is taken to be not more than one period
T0; see Fig. 2.15. The more general case directly follows. We have

Gn =
1

T0

ˆ t0+T0

t0

f (t− t0)e−jnω0tdt. (2.32)

Setting t− t0 = u completes the poof. The trigonometric coefficients are

an,g = an,f cosnω0t0 − bn,f sinnω0t0, bn,g = bn,f cosnω0t0 + an,f sinnω0t0. (2.33)

2.10.3 Frequency Shift

To show that
g(t) = f (t) ejkω0t ←→ Fn−k, k integer. (2.34)

We have

Gn =
1

T0

ˆ t0+T0

t0

f (t) ejkω0te−jnω0tdt = Fn−k (2.35)
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FIGURE 2.15 Periodic function and its time-shifted version.

an,g = 2ℜ [Gn] = 2ℜ [Fn−k] = an−k,f , bn,g = −2ℑ [Gn] = −2ℑ [Fn−k] = bn−k,f . (2.36)

2.10.4 Function Conjugate

If the function f(t) is complex then its conjugate f∗ (t) has Fourier series coefficients equal
to F ∗−n.

Proof We have

Fn =
1

T0

ˆ

T0

f (t) e−jnω0tdt (2.37)

F ∗−n =
1

T0

ˆ

T0

f∗ (t) e−jnω0tdt = FSC[f∗(t)]. (2.38)

2.10.5 Reflection

If f (t)
FSC←→ Fn then f (−t) FSC←→ F−n.

Proof With reference to Fig. 2.16,

FIGURE 2.16 A function and its reflection.
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let g(t) = f(−t) and ω0 = 2π/T ,

Gn =
1

T

ˆ T

0

g(t)e−jnω0tdt =
1

T

ˆ T

0

f(−t)e−jnω0tdt. (2.39)

Let τ = −t.

Gn =
−1

T

ˆ −T

0

f(τ)ejnω0τdτ =
1

T

ˆ 0

−T

f(τ)ejnω0τdτ = F−n (2.40)

Example 2.5 Consider the function f (t) = eα t {u(t)− u(t− T )}, where T = 2π, shown
in Fig. 2.17 for a value α < 0.

FIGURE 2.17 Function f(t).

a) Evaluate the exponential Fourier series expansion of f(t) with a general analysis
interval (0, T ).

b) Deduce the exponential and trigonometric series expansion of the exponential function
w(t) shown in Fig. 2.18.

FIGURE 2.18 Three related functions.

c) Using the reflection and shifting properties deduce the expansions of the functions x(t)
and y(t) shown in the figure. d) As a verification deduce the expansion of z(t) = et, −π <
t < π.

From the function forms in the figure we note that x(t) = f(−t) and y(t) = x(t−T/2).
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a) We have, with ω0 = 2π/T ,

Fn =
1

T

ˆ T

0

eαte−jnω0t dt =
1

T

eαT − 1

α− jn2π/T

The expansion can be written in the form

eα t =

∞∑

n=−∞
Fne

jn ω0t =

∞∑

n=−∞

1

T

eαT − 1

α− jn2π/T
ejn(2π/T )t, 0 < t < T.

With T = 2π, ω0 = 1,

eα t =
1

2π

∞∑

n=−∞

e2πα − 1

(α − jn)
ejnt, 0 < t < 2π

and the trigonometric series is given by

an,f =
α
(
e2πα − 1

)

π (α2 + n2)
, n ≥ 0, bn,f =

−
(
e2πα − 1

)
n

π (α2 + n2)
, n ≥ 1

eαt =
(e2απ − 1)

2απ
+

∞∑

n=1

α (e2απ − 1)

π (α2 + n2)
cos nt−

∞∑

n=1

(e2απ − 1)n

π (α2 + n2)
sin nt

for 0 < t < 2π.
b) We have w(t) = eαt, −π < t < π; w(t) = f(t+ π)e−απ,

Wn = e−απFne
jnω0π = e−απFne

jnπ = e−απ (−1)n(e2απ − 1)

2π(α− jn)
=

(−1)n sinh(απ)(α + jn)

π(α2 + n2)

an, w = 2ℜ[Wn] =
(−1)n2α sinh(απ)

π(α2 + n2)
, bn, w = −2ℑ[Wn] =

(−1)n2n sinh(απ)

π(α2 + n2)

eαt =
2 sinh απ

π

{
1

2α
+

∞∑

n=1

(−1)n α

α2 + n2
cos nt−

∞∑

n=1

(−1)n n

α2 + n2
sin nt

}

for −π < t < π.
c) Since x (t) = f (−t), x (t) = e−αt , −T < t < 0,

Xn = F−n =
1

T

eαT − 1

(α+ jn2π/T )
.

y (t) = x (t− T/2)
FSC←→ Xne

−j n ω0 (T/2) = Xne
−j n π = (−1)nXn

Yn = (−1)n eαT − 1

T (α+ jn2π/T )
.

The trigonometric coefficients, an, y and bn, y, of y (t) are given by

a0, y =
e2απ − 1

2πα

an, y = 2ℜ[Yn] = (−1)nα (e2απ − 1)

π (α2 + n2)
, bn, y = −2ℑ[Yn] = (−1)n (e2απ − 1)n

π (α2 + n2)
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e−α (t−π) =
(e2απ − 1)

2απ
+

∞∑

n=1

(−1)nα (e2απ − 1)

π (α2 + n2)
cos nt

+

∞∑

n=1

(−1)n (e2απ − 1)n

π (α2 + n2)
sin nt, −π < t < π

which agrees with the result obtained in the expansion of w(t). Note that
y(t) = eαπ × w(t)|α→−α.

d) z(t) = e−πy(−t)|α=1,

Zn = (−1)n eπ − e−π

2π(1− jn)

which agrees with Wn|α=1.

2.10.6 Symmetry

Given a general aperiodic function f(t), defined over a finite interval (t0, t0 + T0), to study
its Fourier series properties we extend it periodically in order to view it as it is seen by
Fourier series. Symmetry properties are revealed by observing a given periodic or periodi-
cally extended function over the interval of one period, such as the interval (−T0/2, T0/2),
or (0, T0). We have, with ω0 = 2π/T0,

Fn =
1

T0

{
ˆ T0/2

−T0/2

f(t) cosnω0t− j
ˆ T0/2

−T0/2

f(t) sinnω0t

}
dt. (2.41)

Even Function
Let f(t) be even over the interval (−T0/2, T0/2), Fig. 2.19.

FIGURE 2.19 A periodic function and its time-shifted version.

f (−t) = f (t) , −T0/2 < t < T0/2. (2.42)

In this case the second integral vanishes and we have

Fn =
2

T0

ˆ T0/2

0

f(t) cosnω0t dt (2.43)

f(t) =

∞∑

n=−∞
Fne

jnω0t = F0 +

∞∑

n=1

2Fn cosnω0t (2.44)

wherefrom an even (and real) function has a real spectrum.
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The trigonometric coefficients are given by

an = 2ℜ[Fn] = 2Fn =
4

T0

ˆ T0/2

0

f(t) cosnω0t dt, n ≥ 0. (2.45)

f(t) = a0/2 +

∞∑

n=1

an cosnω0t (2.46)

Odd Function
Let f(t) be an odd function over the interval (−T0/2, T0/2), as shown in Fig. 2.20.

FIGURE 2.20 A function with odd symmetry.

We have
f(−t) = −f(t), −T0/2 < t < T0/2. (2.47)

The first integral vanishes and we have ℜ [Fn] = 0,

Fn =
−2j

T0

ˆ T0/2

0

f(t) sinnω0t dt (2.48)

bn = j2Fn =
4

T0

ˆ T0/2

0

f(t) sinnω0t dt, an = 0, n ≥ 0 (2.49)

and the expansion has the form

f(t) =

∞∑

n=1

bn sinnω0t =

∞∑

n=1

(j2Fn) sinnω0t. (2.50)

We deduce that an odd (and real) function has an imaginary exponential Fourier series
spectrum.

2.10.7 Half-Periodic Symmetry

There are two types of symmetry over half a period:

Even Half-Periodic Symmetry
A function f(t) satisfying the condition

f (t± T0/2) = f (t) (2.51)
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is said to have even half-periodic symmetry. The form of such a function is shown in Fig.
2.21. We notice that f(t) in fact has a period of T0/2, half the analysis period T0. Half-
periodic symmetry, therefore, means symmetry over half the analysis period, rather than
half the function period. We have already treated in the above such a case where the analysis
interval was assumed to be a multiple of the signal period. We have with ω0 = 2π/T0

Fn =
1

T0

[
ˆ T0/2

0

f (t)e−jnω0tdt+

ˆ T0

T0/2

f (t)e−jnω0tdt

]
. (2.52)

FIGURE 2.21 A function with even half-periodic symmetry.

Denoting by I2 the second integral and letting τ = t− T0/2 we have

I2 =

ˆ T0/2

0

f (τ + T0/2) e−jnω0(τ+T0/2)dτ = (−1)n

ˆ T0/2

0

f(τ)e−jnω0τdτ (2.53)

since f(t) is periodic of period T0/2, and since e−jnω0(τ+T0/2) = e−jnω0τ−jnπ = (−1)
n
e−jnω0τ .

Hence

Fn =





2

T0

ˆ T0/2

0

f (t) e−jnω0tdt, n even

0, n odd.

(2.54)

Moreover

F0 =
2

T0

ˆ T0/2

0

f(t)dt (2.55)

an = 2ℜ[Fn] =






4

T0

ˆ T0/2

0

f(t) cosnω0t dt, n = 0, 2, 4, . . .

0, n odd

(2.56)

bn = −2ℑ[Fn] =





4

T0

ˆ T0/2

0

f(t) sinnω0t dt, n = 2, 4, 6, . . .

0, n odd

(2.57)

f(t) =
∞∑

n = −∞
n even

Fne
jnω0 t (2.58)

f(t) = a0/2 +

∞∑

n=2, 4, 6, ...

(an cosnω0t+ bn sinnω0t) (2.59)

wherefrom a function that has even half-periodic symmetry has only even harmonics.
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Odd Half-Periodic Symmetry
A function satisfying the condition

f (t± T0/2) = −f (t) (2.60)

is said to have odd half-periodic symmetry. Fig. 2.22 shows the general form of such a
function.

FIGURE 2.22 A function with odd half-periodic symmetry.

We can similarly show that

Fn =





2

T0

ˆ T0/2

0

f (t) e−jnω0tdt, n odd

0, n even

(2.61)

an = 2ℜ[Fn] =





4

T0

ˆ T0/2

0

f(t) cosn(2π/T0)t dt, n odd

0, n even

(2.62)

bn = −2ℑ[Fn] =






4

T0

ˆ T0/2

0

f(t) sinn(2π/T0)t dt, n odd

0, n even

(2.63)

f(t) =

∞∑

n = −∞
n odd

Fne
jn ω0 t (2.64)

f(t) =

∞∑

n = 1
n odd

(an cosnω0t+ bn sinnω0t) (2.65)

wherefrom a function that has odd half-periodic symmetry has only odd harmonics.

2.10.8 Double Symmetry

We consider here a case of double symmetry, namely double odd symmetry, such as the one
shown in Fig. 2.23.

Other cases of double symmetry can be similarly considered. We note that this function
is odd and has odd half-periodic symmetry. We have f (−t) = −f(t) and f (t± T0/2) =
−f(t). Since the function is odd we can write
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FIGURE 2.23 Double symmetry.

Fn =
−2j

T0

ˆ T0/2

0

f(t) sinnω0t dt

=
−2j

T0

{
ˆ T0/4

0

f(t) sinnω0t +

ˆ T0/2

T0/4

f(t) sinnω0t

}
dt =

−2j

T0
{I1 + I2}

(2.66)

where I1 and I2 denote the first and second integral, respectively. Letting t = T0/2− τ we
have

I2 = −
ˆ 0

T0/4

f

(
T0

2
− τ
)

sinnω0

(
T0

2
− τ
)
dτ =

ˆ T0/4

0

f (τ) sin (nπ − nω0τ) dτ (2.67)

I2 =

ˆ T0/4

0

f (τ) sinnω0τ (−1)
n+1

dτ = (−1)
n+1

I1 (2.68)

wherefrom

Fn =
−2j

T0

[
1 + (−1)

n+1
]
I1 (2.69)

i.e.

Fn =





(−4j/T0)

ˆ T0/4

0

f(t) sinnω0t dt, n odd

0, n even.

(2.70)

Figure 2.24 shows functions with different types of symmetry, with an analysis interval
assumed equal to T in each case.

We notice that the function f1(t) is even and has odd symmetry over half the period T,
while f2(t) is odd and has odd half-periodic symmetry. To verify function symmetry its
average d-c value should be rendered zero by a vertical shift which affects only its zeroth
coefficient.

Removing the d-c average value reveals any hidden symmetry. The function f3(t) is
identical in appearance apart from a vertical shift to f2(t), wherefrom it too is odd and has
odd half-periodic symmetry. The function f4(t) is similar to f1(t) and is therefore even and
has odd half-periodic symmetry.

The function f5(t) is identical in form to f2(t), but has even half-periodic symmetry.
The reason for the difference is that half-periodic symmetry means symmetry over half the
analysis period rather than the function period.

Example 2.6 Assuming an analysis interval equal to the period, evaluate the exponential
and the trigonometric series expansions of the function f(t), shown in Fig. 2.25.

To reveal the symmetry we effect a vertical shift of −1, rendering the average value of the
function equal to zero, thus obtaining the function g(t) = f(t)− 1.
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FIGURE 2.24 Functions with different types of symmetry.

The function g(t) has a period τ = 4 seconds. It is odd and has odd half-periodic sym-
metry; hence double symmetry. We have

Gn =
−4j

T0

ˆ T0/4

0

g(t) sinnω0t dt = −j
ˆ 1

0

t sinn
π

2
t dt, n odd

= −j
{

sin(nπt/2)

(n2π2)/4
− t cos(nπt/2)

nπ/2

}
, n odd.

Simplifying and noticing that Fn = Gn, n 6= 0 and F0 = 1 we obtain

Fn =






(−1)(n+1)/2j4

π2n2
, n = ±1, ±3, ±5, . . .

1, n = 0
0, otherwise

and

f(t) = 1 +

∞∑

n=±1, ±3, ±5, ...

(−1)(n+1)/2j4

π2n2
ejn(π/2)t.
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FIGURE 2.25 Function with double symmetry.

FIGURE 2.26 Discrete spectrum of Example 2.6.

The coefficients Fn are shown in Fig. 2.26. The trigonometric coefficients are given by:

an,f = 2 ℜ[Fn] = 0, n 6= 0, a0,f = 2

bn,f = −2 ℑ[Fn] =





8

π2n2
, n = 1, 5, 9, . . .

−8

π2n2
, n = 3, 7, 11, . . .

f(t) = 1 +
8

π2

(
sin

π

2
t− 1

32
sin

3π

2
t+

1

52
sin

5π

2
t− . . .

)

= 1 +
8

π2

∞∑

n=1

(−1)
n−1 sin (2n− 1) (π/2)t

(2n− 1)
2

2.10.9 Time Scaling

Let a function f (t) be periodic of a period T0. Let g (t) = f (αt), α > 0.
A function f (t) and the corresponding time scaled version g (t) = f (αt) with α = 2.5

are shown in Fig. 2.27.
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FIGURE 2.27 A function and its compressed form.

The function g(t) is periodic with period T0/α = 0.4T0. We show that the Fourier series
coefficients Gn of the expansion of g(t) over its period (T0/α) are equal to the coefficients
Fn of the expansion of f(t) over its period T0. We have

g (t) =

∞∑

n=−∞
Gne

jn 2π
(T0/α)

t
(2.71)

Gn =
1

(T0/α)

ˆ

T0/α

g (t) e
−jn 2π

(T0/α)
t
dt. (2.72)

Letting αt = τ, α dt = dτ we have

Gn =
α

T0

1

α

ˆ

T0

g
( τ
α

)
e−jn2π τ/T0 dτ =

1

T0

ˆ

T0

f(τ) e−jn2πτ/T0 dτ = Fn. (2.73)

We conclude that if g(t) = f(αt) , α > 0, then Gn = Fn. The trigonometric coefficients of
g(t) are therefore also equal to those of f(t). The difference between the two expansions is
in the values of the fundamental frequency in both cases, i.e. 2π/T0 versus 5π/T0.

Example 2.7 Let f (t) = t2, 0 < t < 1. Deduce the exponential and trigonometric Fourier
series expansions of f(t) using the fact that the expansion of the function g (t) = t2, 0 <
t < 2π is given by

t2 =
4π2

3
+
∞∑

n=1

(
4

n2
cos nt− 4π

n
sin nt

)
, 0 < t < 2π.

We note that apart from a factor 4π2 the function f (t) is a compressed version of the
function g(t), as can be seen in Fig. 2.28. In fact

f (t) =
1

4π2
g(2πt)

The trigonometric coefficients of f(t) are therefore given by

a0,f =
1

4π2
a0,g =

2

3
, an,f =

1

4π2
an,g =

1

π2 n2
, bn,f =

1

4π2
bn,g =

−1

πn
.
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FIGURE 2.28 Function and stretched and amplified version thereof.

We can write

t2 =
1

3
+

∞∑

n=1

1

π2 n2
cos 2πnt−

∞∑

n=1

1

πn
sin 2πnt, 0 < t < 1.

The exponential coefficients of g(t) are G0 = a0,g/2 = 4π2/3,

Gn =
1

2
(an,g − j bn,g) =

1

2

(
4

n2
+ j

4π

n

)
=

2(1 + jπn)

n2
, n > 0

wherefrom F0 = 1/3,

Fn =
1

4π2
Gn =

1 + jπn

2π2n2
, n > 0

and the exponential series expansion is

f(t) = t2 =
1

3
+

∞∑

n=−∞

1 + jπn

2π2n2
ejn2πt, 0 < t < 1.

2.10.10 Differentiation Property

The differentiation property states that f ′(t)
FSC←→ (jnω0)Fn. To prove this property let

g(t) = f ′(t). We may write with ω0 = 2π/T ,

f (t) =
∞∑

n=−∞
Fne

jnω0t (2.74)

and differentiating both sides we have

g(t) = f ′ (t) =
d

dt

∞∑

n=−∞
Fne

jnω0t =

∞∑

n=−∞
jnω0Fne

jnω0t (2.75)

wherefrom Gn = jnω0Fn as stated. Repeated differentiation leads to the more general form

f (m) (t) =
dmf (t)

dtm
FSC←→ (jnω0)

m
Fn. (2.76)

Similarly, the trigonometric series expansion of f(t) is given by

f (t) = a0,f/2 +

∞∑

n=1

(an,f cosnω0t+ bn,f sinnω0t). (2.77)

Differentiating both sides of the expansion we have

g (t) = f ′(t) = ω0

∞∑

n=1

n (bn,f cosnω0t− an,f sinnω0t) (2.78)

wherefrom an,g = nω0bn,f and bn,g = −nω0an,f .
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Example 2.8 Let f (t) =
(
t2 − t

)
, 0 ≤ t ≤ 1 be the periodic parabola shown in Fig.

2.29. Evaluate the Fourier series of f (t) using the differentiation property.
Since f (t) is continuous everywhere its derivative f ′ (t) has at most finite discontinuities

and hence satisfies the Dirichlet conditions, as can be seen in the figure.

FIGURE 2.29 Repeated parabola and its derivative.

Let g (t)=△f ′ (t) = 2t− 1, 0 < t < 1. The derivative function f ′ (t) is thus the periodic
ramp shown in the figure. From Example 2.2 the series coefficients of the ramp are given by
Gn = j/(πn), n 6= 0 and G0 = 0, so that with ω0 = 2π

Fn = Gn/(jnω0) =
1

2π2n2
, n 6= 0

F0 =

ˆ 1

0

(
t2 − t

)
dt =

[
t3/3− t2/2

]1
0

=
−1

6
.

The trigonometric coefficients are given by

an,f = 2 ℜ[Fn] =
1

π2n2
, n 6= 0

a0,f = 2F0 = −1/3 and bn,f = −2ℑ[Fn] = 0. We can therefore write

t2 − t =
−1

6
+

1

2π2

∞∑

n=−∞

ej2πnt

n2
=
−1

6
+
∞∑

n=1

cos 2πnt

π2n2
, 0 ≤ t ≤ 1.

Note that by putting t = 0 we obtain

∞∑

n=1

1

n2
=
π2

6
,

which is a special case of the Euler sum of powers of reciprocals of natural numbers

∞∑

k=1

1

k2n
=

22n−1π2n

(2n)!
|B2n|

where B2n is the Bernoulli number of index 2n, and B2 = 1/6.
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2.11 Differentiation of Discontinuous Functions

As noted earlier, in manipulating expressions containing infinite series and infinite integrals
we often need to interchange the order of differentiation or integration and summation. As
an example that illustrates that such is not always the case we have obtained the Fourier
series expansion for the function f (t) = t, 0 < t < 1

Fn = j/(2πn), n 6= 0, F0 = 0.5 (2.79)

t = 0.5− 1

π

∞∑

n=1

sin 2π nt

n
, 0 < t < 1. (2.80)

The derivative of the left-hand side of this equation is equal to 1. The derivative of the sum
on the right-hand side evaluated as a sum of derivatives produces

d

dt

{
0.5− 1

π

∞∑

n=1

sin 2πnt

n

}
= − 1

π

∞∑

n=1

d

dt

(
sin 2πnt

n

)
= −

∞∑

n=1

2 cos (2πnt) (2.81)

which is divergent since lim
n−→∞

cos (2πnt) 6= 0 implying nonuniform convergence of the sum

of derivatives. We note therefore that a simple differentiation of the Fourier series expansion
by interchanging the order of differentiation and summation is not always possible. The
problem is due to the jump-discontinuities of the periodic extension of the function f(t)
at each period boundary; discontinuities that lead to impulses when differentiated. The
differentiation property holds true as long as we take into consideration such impulses.

2.11.1 Multiplication in the Time Domain

Let x (t) and f (t) be two periodic functions of period T0. Let their Fourier series coefficients
with an interval of analysis T0 be Xn and Fn, respectively. Consider their product g(t) =
x(t)f(t). We assume that x (t) , f (t) and hence g (t) satisfy the Dirichlet conditions.The
Fourier series coefficients of g(t) are

Gn =
1

T0

ˆ T0/2

−T0/2

g (t)e−jnω0tdt =
1

T0

ˆ T0/2

−T0/2

x (t)f (t) e−jnω0tdt. (2.82)

Replacing f (t) by its Fourier series expansion we have

Gn =
1

T0

ˆ T0/2

−T0/2

x (t)

{ ∞∑

k=−∞
Fke

jkω0t

}
e−jnω0tdt. (2.83)

Interchanging the order of integration and summation, we have

Gn =
1

T0

∞∑

k=−∞
Fk

ˆ T0/2

−T0/2

x (t)ej(k−n)ω0tdt. (2.84)

Now using the definition of the Fourier series coefficients of x (t), namely,

Xn =
1

T0

ˆ T0/2

−T0/2

x (t)e−jnω0tdt (2.85)
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we have

Xn−k =
1

T0

ˆ T0/2

−T0/2

x (t)e−j(n−k)ω0tdt (2.86)

Gn =

∞∑

k=−∞
FkXn−k. (2.87)

The relation states that multiplication in the time domain corresponds to convolution in the
frequency domain.

2.11.2 Convolution in the Time Domain

Let x (t) and f (t) be two periodic functions of period T0. Let g (t) be the convolution of
x (t) and f (t), defined as

g (t) = x (t) ∗ f (t) =
1

T0

ˆ T0/2

−T0/2

x (τ)f (t− τ ) dτ =
1

T0

ˆ T0/2

−T0/2

x (t− τ ) f (τ) dτ . (2.88)

The Fourier series coefficients Gn are given by

Gn =
1

T0

ˆ T0/2

−T0/2

g (t)e−jnω0tdt =
1

T 2
0

ˆ T0/2

−T0/2

ˆ T0/2

−T0/2

x (τ) f (t− τ ) dτ e−jnω0tdt.

Interchanging the order of the two integrals

Gn =
1

T 2
0

ˆ T0/2

−T0/2

x (τ)

ˆ T0/2

−T0/2

f (t− τ)e−jnω0tdt dτ. (2.89)

Let t− τ = u

Gn =
1

T 2
0

ˆ T0/2

−T0/2

x (τ)

ˆ T0/2

−T0/2

f (u)e−jnω0(τ−u)du dτ

=
1

T 2
0

ˆ T0/2

−T0/2

x (τ)e−jnω0τ

ˆ T0/2

−T0/2

f (u) e−jnω0udu dτ.

(2.90)

We note however that the second integrand is periodic with period T0 since f (u) is periodic
and e−jnω0(T0+u) = e−jnω0u is also periodic of period T0. The second integrand could thus
be written as

ˆ T0/2

−T0/2

f (u)e−jnω0udu = T0Fn. (2.91)

Substituting we have
Gn = XnFn. (2.92)

This is the dual important relation to the one just seen. It states that convolution in the
time domain corresponds to multiplication in the frequency domain.

2.11.3 Integration

We evaluate the effect of integration of a function f (t) and its Fourier series expansion

f(t) = F0 +

∞∑

n=−∞, n6=0

Fne
jnω0t, ω0 = 2π/T (2.93)
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ˆ

f(t)dt = F0t+

∞∑

n=−∞, n6=0

Fn
ejnω0t

jnω0
+ C (2.94)

where C is a constant. Let g(t) =

ˆ

f(t)dt−F0t and Gn its Fourier series coefficients. We

deduce that

g(t) =

∞∑

n=−∞, n6=0

Fn
ejnω0t

jnω0
+ C (2.95)

Gn =
Fn

jnω0
, n 6= 0, G0 = C. (2.96)

Similarly, for the trigonometric coefficients,

f(t) = a0,f/2 +

∞∑

n=1

an,f cosnω0t+ bn,f sinnω0t. (2.97)

Let g(t) =

ˆ

f(t)dt− (a0,f/2)t.

g(t) =

∞∑

n=1

an,f
sinnω0t

nω0
− bn,f

cosnω0t

nω0
+ C

= (a0,g/2) +

∞∑

n=1

an,g cosnω0t+ bn,g sinnω0t.

(2.98)

Hence a0,g/2 = C, an,g = −bn,f/(nω0), bn,g = an,f/(nω0).

Example 2.9 Show the result of integrating the Fourier series expansion of the periodic
function f(t) of period T = 1, where f(t) = At, 0 < t < 1.

From Example 2.3

f(t) = At = F0 +
∞∑

n=−∞, n6=0

Fne
jnω0t = A/2 +

∞∑

n=−∞, n6=0

jA

2πn
ejn2πt

ˆ

f(t)dt = At2/2 = At/2 +

∞∑

n=−∞, n6=0

A

4π2n2
ejn2πt + C

g(t) = At2/2−At/2 = C +

∞∑

n=−∞, n6=0

A

4π2n2
ejn2πt

C = G0 =

ˆ

g(t)dt =

ˆ 1

0

(
At2 −At/2

)
dt =

−A
12

.

We obtain the expansion

At2/2−At/2 =
−A
12

+

∞∑

n=−∞, n6=0

A

4π2n2
ejn2πt, 0 < t < 1

and we note that Gn = Fn/(jnω0) = A/(4π2n2) as expected.
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2.12 Fourier Series of an Impulse Train

Let the function f(t) be the impulse train ρT (t) shown in Fig. 2.30. The Fourier series
expansion is given by

ρT (t) =

∞∑

n=−∞
Fne

jnω0t (2.99)

where

Fn =
1

T

ˆ T/2

−T/2

ρT (t)e−jnω0tdt =
1

T

ˆ T/2

−T/2

δ(t)e−jnω0tdt =
1

T
(2.100)

wherefrom the coefficients are all equal to the reciprocal 1/T of the period T leading to the
comb-like spectrum shown in the same figure.

T 2T

rT ( )t

0-T-2T t

1

-3T-4T 4T3T -4 -3 -2 -1 0 1 2 3 n4

Fn

1/T

FIGURE 2.30 Impulse train and its Fourier series coefficients

Example 2.10 Half-Wave Rectification Evaluate the Fourier series over an interval
(0, 2π) of the function

f(t) =

{
sin t, 0 ≤ t ≤ π
0, π ≤ t ≤ 2π.

Effecting a periodic extension we obtain the function and its derivative f ′ (t) shown in
Fig. 2.31. The second derivative x(t) = f ′′ (t), is also shown in the figure.

x(t) = f ′′(t) = −f (t) +

∞∑

n=−∞
δ (t− 2nπ) +

∞∑

n=−∞
δ (t− π − 2nπ)

Since the analysis interval is 2π the function x(t) has two impulse trains of period 2π each,
with a time shift of π separating them. The coefficients of each train is the reciprocal of its
period, wherefrom

Xn = −n2Fn = −Fn + 1/(2π) + 1/(2π) e−jnπ

Fn =
1

2π

1 + (−1)n

1− n2
, n 6= ±1 =





−1

π(n2 − 1)
, n even

0, n odd
∓j/4, n = ±1

where L’Hopital’s rule was used by writing

F1 = lim
n−→1

{
1

2π

1 + e−jnπ

1− n2

}
=

1

2π
lim

n−→1

{−jπe−jnπ

−2n

}
=
−j
4
.
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FIGURE 2.31 Half-wave rectified sinusoid.

2.13 Expansion into Cosine or Sine Fourier Series

FIGURE 2.32 A function, made even by reflection.

Given a function f(t) defined in the interval (0, T ) we can expand it into a cosine
Fourier series by reflecting it into the vertical axis, as shown in Fig. 2.32, establishing even
symmetry. In particular, we write

g(t) =

{
f(t), 0 < t < T
f(−t), −T < t < 0

(2.101)

so that g(−t) = g(t), −T < t < T , and extend g(t) periodically with a period 2T , that is,
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g(t+ 2kT ) = g(t), k integer. The function g(t) being even, the coefficients are given by

Gn =
1

2T

ˆ 2T

0

g(t)ejnω0tdt =
1

T

ˆ T

0

g(t) cosnω0t dt (2.102)

where ω0 = 2π/2T = π/T .

an,g = 2Gn =
2

T

ˆ T

0

f(t) cosnω0t dt, n ≥ 0, bn,g = 0 (2.103)

g(t) =

∞∑

n=−∞
Gne

jnω0t = G0 + 2

∞∑

n=1

Gn cosnω0t, −T < t < T

= a0,g/2 +
∞∑

n=1

an,g cosnω0t, −T < t < T

(2.104)

and since g(t) = f(t) for 0 < t < T we can write

f(t) = a0,g/2 +

∞∑

n=1

an,g cosn(π/T )t, 0 < t < T. (2.105)

We have thus expanded the given function f(t) into a Fourier series containing only cosine
terms.

FIGURE 2.33 A function made odd by reflection.

Similarly, we can expand the function into a sine Fourier series by reflecting it in the
origin, as shown in Fig. 2.33, establishing odd symmetry. We write

g(t) =

{
f(t), 0 < t < T
−f(−t), −T < t < 0

(2.106)

so that g(t) and its periodic extension, with period 2T , are odd, g(−t) = −g(t). We obtain,
with ω0 = π/T ,

Gn =
−j
T

ˆ T

0

g(t) sinnω0t dt =
−j
T

ˆ T

0

f(t) sinnω0t dt (2.107)

bn,g = −2ℑ[Gn] =
2

T

ˆ T

0

f(t) sinnω0t dt (2.108)
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g (t) = 2j

∞∑

n=1

Gn sinnω0t =

∞∑

n=1

bn,g sinn (π/T ) t, −T < t < T (2.109)

We have thus obtained the expansion as the sine series

f(t) = g(t) =

∞∑

n=1

bn,g sinn (π/T ) t, 0 < t < T . (2.110)

Example 2.11 Consider a function f(t) which over the time interval (0, θ) is given
by f(t) = eαt, 0 ≤ t < θ, with α = −1. Show how to obtain cosine and sine Fourier
series expansions of f(t).

(a) Cosine series
The given function f(t) is shown in Fig. 2.34. To obtain a cosine series of the function

we establish even symmetry, with

g(t) =

{
f(t), 0 ≤ t < θ
f(−t), −θ < t < 0

as shown in the figure, i.e.

g (t) =

{
e−t, 0 ≤ t < θ
et, −θ < t < 0.

FIGURE 2.34 A function rendered even and odd, respectively.

Since g(t) is an even function and its periodic extension is of a period equal to T = 2θ,
writing ω0 = 2π/T = π/θ, we have

Gn =
1

θ

ˆ θ

0

eα t cosnω0t dt =
1

θ

ˆ θ

0

ℜ[eα t e−j n ω0 t]dt

=
1

θ
ℜ
ˆ θ

0

eα te−j n ω0 tdt =
α

θ

[
(−1)neα θ − 1

]

(α2 + n2 π2/θ2) .

The trigonometric series coefficients of g(t) are given by

an,g = 2ℜ[Gn] =
2α

θ

(−1)neα θ − 1

α2 + n2π2/θ2
, n ≥ 0

bn,g = 0

wherefrom we can write the expansion

eα |t| =
1

αθ
(eαθ − 1) +

∞∑

n=1

2α

θ

[
(−1)neαθ − 1

]

(α2 + n2π2/θ2)
cos(nπt/θ) , −θ ≤ t ≤ θ.
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The expansion of the given function f(t) can be written, noticing that f (t) = g (t) , 0 <
t < θ, so that

eαt =
(eαθ − 1)

α θ
+

∞∑

n=1

2α

θ

[
(−1)n eαθ − 1

]

(α2 + n2π2/θ2)
cos (nπt/θ) , 0 < t < θ.

We have thus obtained a cosine series expansion of the function f (t).
(b) Sine series
A sine series expansion can be obtained if an odd function is constructed from f(t), as

shown in the figure. We write

v(t) =

{
f(t), 0 < t < θ
−f(−t), −θ < t < 0

=

{
e−t, 0 < t < θ
−et, −θ < t < 0.

The coefficients Vn of v(t) are pure imaginary due to the odd symmetry. We have, with
ω0 = 2π/T = π/θ,

Vn =
−j
θ

ˆ θ

0

eαt sin(nω0t) dt =
−j
θ

ˆ θ

0

eαtℑ [ ejnω0 t] dt =
−j
θ
ℑ
[
ˆ θ

0

eαtejnω0tdt

]
.

Integrating we obtain

Vn = j
nπ

θ2
(−1)neαθ − 1

(α2 + n2π2/θ2)
.

The trigonometric series coefficients are given by an, v = 0, n ≥ 0,

bn, v = −2 ℑ[Vn] =
2nπ

θ2
1− (−1)neαθ

(α2 + n2π2/θ2)
.

We can therefore write the expansion

v(t) =

∞∑

n=1

2nπ

θ2
1− (−1)neαθ

(α2 + n2π2/θ2)
sin(nπt/θ) , −θ < t < θ

and

eαt =

∞∑

n=1

2nπ

θ2
1− (−1)neαθ

(α2 + n2π2/θ2)
sin(nπt/θ) , 0 < t < θ.

2.14 Deducing a Function Form from Its Expansion

If we are given a Fourier series expansion of an interval of a function f(t) we can deduce
the function overall periodic form using the symmetry property reflected in its expansion,
as the following examples illustrate.

Example 2.12 Deduce the overall form of the function f(t) of which the Fourier series
expansion is given by

∞∑

n=0

sin (2n+ 1) t

2n+ 1
=
π

4
, 0 < t < π.
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We note that the expansion is a sum of sine functions of the form sin kt, k = 2n + 1.
We can write the trigonometric expansion

f(t) =

∞∑

k=1, 3, 5, ...

bk sin kω0t

where sinω0t = sin t, sin 3ω0t = sin 3t, . . .. The fundamental frequency ω0 = 1 = 2π/T ,
that is, T = 2π. The expanded function is therefore of period T = 2π. It is odd since its
expansion is a sine series. Moreover, since it has only odd harmonics it has odd half-periodic
symmetry, that is, f(t+ T/2) = −f(t). These results are summarized in Fig. 2.35.

FIGURE 2.35 Function form deduced from Fourier series expansion.

Example 2.13 Deduce the overall form of the function f(t) which has the Fourier series
expansion

∞∑

n=0

(−1)n cos (2n+ 1) t

2n+ 1
=
π

4
, −π

2
< t <

π

2
.

Similarly to the previous example we have cos kω0t = cos kt, k = (2n + 1) so that the
fundamental frequency is ω0 = 1, that is, ω0 = 2π/T = 1 or T = 2π. The periodically
extended function f(t) is therefore of period T = 2π. Since the expansion is a cosine
series the function is even. Since it contains only odd harmonics the function has odd half-
periodic symmetry. The function f(t), shown in Fig. 2.36, has double symmetry, being even
and having half-periodic odd symmetry.

FIGURE 2.36 Function form deduced from Fourier series expansion.
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2.15 Truncated Sinusoid Spectral Leakage

In this section we study a phenomenon referred to as spectral leakage. This phenomenon is
observed if a Fourier series expansion of a sinusoid is performed with an analysis interval
that is not related to the function period. Instead of a sharp spectral line at the signal
frequency, the result is “spectral leakage” as we shall shortly see. We start by evaluating
the Fourier series of a sinusoid with an analysis interval that is a multiple of its period.

Example 2.14 Evaluate the expansion of f(t) = cos(βt) over an analysis interval T0 that
is five times the period.
We have ω0 = 2π/T0 = 2π/5τ = β/5, and the expansion has the form

f(t) = cos(βt) = (ejβt + e−jβt)/2 =

∞∑

n=−∞
Fne

jnω0t =

∞∑

n=−∞
Fne

jn(β/5)t.

Equating coefficients of similar terms we obtain Fn = 1/2, for n = ±5 and Fn = 0
otherwise, as expected.

We consider now the more general problem of the analysis of a sinusoid f(t) = sin(βt+θ)
with an arbitrary analysis interval unrelated to its period. Writing

f(t) = sin(βt + θ) =
{
ej(θ+βt) − e−j(θ+βt)

}
/(2j) (2.111)

we note that since the analysis interval T0 is not a multiple of or equal to the period τ0 the
series depends on the starting point t0 of the analysis interval (t0, t0 + T0). For simplicity
we assume t0 = 0. We have ω0 = 2π/T0,

Fn =
1

T0

ˆ T0

0

f(t)e−jnω0tdt

=
1

T02j

{
ejθ

ˆ T0

0

ejβte−jnω0tdt− e−jθ

ˆ T0

0

e−jβte−jnω0tdt

}

=
−1

2

{
ejθ e

j(βT0−2πn) − 1

(βT0 − 2πn)
+ e−jθ e

−j(βT0+2πn) − 1

(βT0 + 2πn)

}
(2.112)

which can be rewritten in the form

Fn = −1

2

{
jej(βT0/2−πn+θ) sin(βT0/2− πn)

(βT0/2− πn)
− je−j(βT0/2+πn+θ) sin(βT0/2 + πn)

(βT0/2 + πn)

}
.

(2.113)

We shall use the sampling function defined by Sa(x) = (sin x)/x, noticing that Sa (0) =
lim

x−→0
(sin (x))/x = 1 using l’Hopital’s rule. We also note in passing that sincλ = sin(πλ)/

(πλ) = Sa(πλ), and conversely Sa(x) = sinc(x/π). The Sa function is shown schematically
in Fig. 2.37. We can rewrite the equation of Fn in the form

Fn = − j
2

{
ej(βT0/2−πn+θ)Sa(βT0/2− nπ) − e−j(βT0/2+πn+θ)Sa(βT0/2 + nπ)

}
(2.114)

i.e.

Fn =
1

2

{
ej[(T0/τ0−n−0.5)π+θ]Sa[π(T0/τ0 − n)] + e−j[(T0/τ0+n−0.5)π+θ]Sa([π(T0/τ0 + n)]

}
.

(2.115)
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FIGURE 2.37 Sampling function Sa(x).

Having found the coefficients we can write the expansion in the form

sin (βt+ θ) =
∞∑

n=−∞

{
1

2
e

j
n“

T
τ0
−n−0.5

”

π+θ
o

Sa

[
π

(
T0

τ0
− n

)]

+
1

2
e
−j

n“

T
τ0

+n−0.5
”

π+θ
o

Sa

[
π

(
T0

τ0
+ n

)]}
ej 2π

T0
nt, 0 < t < T0.

(2.116)

As may be expected, in the case T0 = mτ0, m positive integer, the expression of the
coefficients should reduce to the simple form corresponding to that of a pure sinusoid with
an analysis interval that is multiple of its period. In fact, substituting we obtain

Fn =





1

2
ej(θ−π/2), n = m

1

2
e−j(θ−π/2), n = −m

0, otherwise.

(2.117)

Example 2.15 For the signal f(t) = sin (6t+ π/4) evaluate the Fourier series over the
interval (0, T0) with (a) T0 = 15π/6 s (b) T0 = 3π s Represent graphically the series
coefficients.

The period of f(t) is given by τ0 = 2π/6 = π/3.
(a) T0/τ0 = 7.5.
The analysis interval T0 is not a multiple of τ0. Substituting in Equation (2.115) we have

Fn =
1

2
ej(7.25−n)πSa [(7.5π − n)π] +

1

2
e−j(7.25+n)πSa [(7.5 + n)π] .

The modulus |Fn| and argument arg[Fn], that is, the amplitude and phase spectrum, are
represented graphically in Fig. 2.38. We note that the amplitude spectrum rises to a maxi-
mum that lies between n = ±7 and n = ±8 respectively. Each sampling function Sa(.)
peaks when its argument is equal to zero, that is, at n ± 7.5 but these true peaks are not
seen since the coefficients Fn are defined only for integer values of n.
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FIGURE 2.38 Fourier series coefficients of truncated sinusoid and corresponding Fourier
transform spectrum.

If n is made to vary as a real (continuous) variable ω we would see the continuous form of
the curve of coefficients as defined by this last equation. The resulting curves are shown in
the figure. The exponential coefficients Fn are in fact the discrete functions resulting from
sampling at integer values of n these continuous functions, which are none other than the
Fourier transform spectra, as we shall see in Chapter 4.

(b) We have T0/τ0 = 3π/(π/3) = 9. Since T0 is a multiple of τ0, the coefficients Fn are
given by

Fn =
1

2
ej(8.75−n)πSa [(9− n)π] +

1

2
e−j(8.75+n)πSa [(9 + n)π]

Fn =

{
0, n 6= ±9
1

2
e∓jπ/4, n = ±9

|F9| = |F−9| = 1/2, arg[F9] = −arg[F−9] = −π/4, as shown in Fig. 2.39.
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FIGURE 2.39 Fourier series coefficients of a properly truncated sinusoid and correspond-
ing Fourier transform spectrum.

The corresponding continuous functions, of which the coefficients Fn are but samples
taken at discrete values of n, as we have just seen, are shown in the figure. As will be
noted in Chapter 4 this continuous function is none other than the Fourier transform of the
analysis section of the sinusoid.

2.16 The Period of a Composite Sinusoidal Signal

Let f (t) be the sum of several sinusoidal components of different frequencies. To effect a
Fourier series expansion of f (t) while avoiding spectral leakage we need to evaluate the
period of f (t) or, equivalently, its fundamental frequency. We note that the fundamental
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frequency of f (t) is the highest frequency of which each of the frequencies of the different
components is a multiple. The fundamental frequency of f(t) can thus be found by evaluat-
ing the greatest common divisor (GCD) of the frequencies of its components. Equivalently,
the period of f(t) is the least common multiple (LCM) of the periods of its components.

Example 2.16 Given a signal x (t) defined by

x (t) = A sinβ1t+B cosβ2t

with β1 = 23100π r/s and β2 = 8820π r/s.
a) Evaluate the fundamental frequency of x (t).
b) Evaluate the Fourier series coefficients of x (t) with an analysis interval T0 = 4.8 ms.
c) Evaluate the Fourier series coefficients with an analysis interval T0 = 48 ms.

a) Let x (t) = x1 (t) + x2 (t), where x1 (t) = A sinβ1t and x2 (t) = B cosβ2t.
The value of the fundamental frequency Ω0 is the GCD of β1 and β2. By successive simpli-
fication of the ratio β1/β2, eliminating common factors, we obtain Ω0 = 420π r/s.

It is worthwhile noticing that in general the GCD may be evaluated by decomposing each
of β1 and β2 into the product of its prime numbers. We have

β1 = 22 × 3× 52 × 7× 11× π, β2 = 22 × 32 × 5× 72 × π.
The intersection of the corresponding two sets of prime numbers, that is,

{2, 2, 3, 5, 5, 7, 11} ∩ {2, 2, 3, 3, 5, 7, 7} = {2, 2, 3, 5, 7}
is the set of elements of which the product forms the greatest common divisor. The GCD of
the prime numbers is thus given by 2× 2× 3× 5× 7 = 420., and Ω0 = 420 π.

b) With an analysis interval T0 = 0.0048 = τ0 the Fourier series fundamental frequency is
ω0 = 2π/T0 = Ω0, β1 = 55ω0, β2 = 21ω0. Hence

Xn =






(A/2) e∓jπ/2 = ∓jA/2, n = ±55
B/2, n = ±21
0, otherwise.

c) With an analysis interval T0 = 0.048 = 10τ0 that is, with a Fourier series fundamental
frequency of ω0 = 2π/(10τ0) = 0.1Ω0, β1 = 55Ω0 = 550ω0, β2 = 21Ω0 = 210ω0 and

Xn =






(A/2) e∓jπ/2, n = ±550
B/2, n = ±210
0, otherwise.

Example 2.17 Find the fundamental frequency and period of the signal

x(t) = cosβ1t sinβ2t

where β1 = 2πf1, β2 = 2πf2, f1 = 19053144 Hz, f2 = 57499200 Hz.
We may write the two frequencies as products of prime numbers

f1 = 23 · 39 · 112

f2 = 26 · 33 · 52 · 113

wherefrom f0 = GCD (f1, f2) = 23 ·33 ·112 = 26136, τ0 = 1/f0 = 3.8261×10−5 s. We note
that we may also write x(t) = 1

2 [sin γ1t− sin γ2t], where γ1 = β1 + β2 = 2π × 76552344,
γ2 = β2 − β1 = 2π × 38446056 and f0 = GCD (γ1/(2π), γ2/(2π)) = 26136, as found.
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The GCD of two numbers m and n can be evaluated using the MATLABr function
gcd(m, n). Decomposition into prime numbers of a number n can be effected using the
MATLAB function factor(n). For three numbers m, n, k the GCD can be evaluated by
writing

gcd{gcd (m, n), k}.
Note that for the sum or product of two sinusoids of frequencies f1 and f2 Hz to be

periodic the ratio f1/f2 of their frequencies should be a rational value, i.e. can be expressed
as the ratio of two integers. If the ratio is irrational the sum or product of the sinusoids is
not periodic.

The period of a signal x(t) that is the sum of two sinusoids x1 (t) and x2 (t) may
be evaluated as the least common multiple LCM of the periods of x1 (t) and of x2 (t).
The LCM is obtained as the union of the two prime number sets corresponding to the two
periods.

Example 2.18 A signal is the sum of two sinusoids of periods T1 = 2063.698 sec and
T2 = 60.605 sec. Evaluate its period.
Let

τ1 = T1 × 103 = 2063698 = 2× 7× 13× 17× 23× 29, (2.118)

τ2 = T2 × 103 = 60605 = 5× 17× 23× 31. (2.119)

Now

{2, 7, 13, 17, 23, 29} ∪ {5, 17, 23, 31} = {2, 5, 7, 13, 17, 23, 29, 31} (2.120)

τ = 2× 5× 7× 13× 17× 23× 29× 31 = 319873190. (2.121)

Hence the period is T = 319873.190 sec.

The LCM of two numbers m and n can be evaluated using the MATLAB instruction
lcm(m, n).

2.17 Passage through a Linear System

Let x (t) and y (t) be the input and output of a linear time invariant (LTI) system. As stated
in Chapter 1 we may write, with zero initial conditions,

Y (s) = X (s)H (s) (2.122)

Y (jω) = X (jω)H (jω) (2.123)

where the transfer function H (jω) is referred to as the system frequency response. Let the
input x (t) be periodic of period T . We can write the Fourier series expansion

x (t) =

∞∑

n=−∞
Xne

jnω0t, ω0 = 2π/T. (2.124)

As we shall see in Chapter 4 the Fourier transform of 1 is 2πδ(ω) and using the shift in
frequency property, the transform of ejnω0t is 2πδ(ω − nω0). If the input to the system is
x(t) = ejnω0t then the input output relation is

Y (jω) = X(jω)H(jω) = 2πδ(ω − nω0)H(jω) = 2πH(jnω0)δ(ω − nω0). (2.125)
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Hence
y(t) = H(jnω0)e

jnω0t. (2.126)

The response of the system to each complex exponential ejnω0t is therefore H (jnω0) e
jnω0t,

and the response to the sum of such exponentials is the sum of the responses to each of
them. The output of the system is thus given by

y (t) =

∞∑

n=−∞
XnH (jnω0) e

jnω0t. (2.127)

This last equation has the form of a Fourier series expansion of the output y(t)

y (t) =

∞∑

n=−∞
Yne

jnω0t (2.128)

where the coefficients are given by

Yn = XnH (jnω0) . (2.129)

In other words the output (discrete) spectrum is equal to the multiplication of the input
spectrum by the frequency response “sampled” at multiples of the fundamental frequency.

2.18 Parseval’s Relations

As observed in Chapter 1, the “normalized energy” or simply energy of a real signal f (t)
expressed in volts is given by

E =

ˆ ∞

−∞
f2 (t) dt joules (2.130)

If f (t) is a periodic signal of period T then the average power dissipated in one period T
is given by

P = f2(t) =
1

T

ˆ

T

f2 (t) dt watts. (2.131)

Let Fn be the Fourier series coefficients of the periodic function f (t). Parseval’s relation
states that

1

T

ˆ

T

f(t)2dt =

∞∑

n=−∞
|Fn|2. (2.132)

Proof We have

1

T

ˆ

T

|f(t)|2dt =
1

T

ˆ

T

f(t) f∗(t)dt =
1

T

ˆ

T

f(t)

{ ∞∑

n=−∞
Fne

jnω0t

}∗
dt

=
1

T

∞∑

n=−∞
F ∗n

ˆ

T

f(t) e−jnω0tdt =

∞∑

n=−∞
F ∗n Fn = F 2

0 + 2

∞∑

n=1

|Fn|2.

In terms of the trigonometric Fourier series, since F0 = a0/2, and Fn = (an − jbn)/2,
i.e. |Fn| =

√
a2

n + b2n /2, n ≥ 1, Parseval’s relation takes the form

1

T

ˆ

T

f(t)2dt = a2
0/4 +

1

2

∞∑

n=1

(a2
n + b2n). (2.133)
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2.19 Use of Power Series Expansion

For certain functions the Fourier series can be evaluated using a power series expansion as
the following example demonstrates.

Example 2.19 Evaluate the expansions of f (t) = ln[2 cos(t/2)] and g (t) = ln[2 sin(t/2)].

The functions are depicted in Fig. 2.40.

FIGURE 2.40 Log-cosine and log-sine functions.

We make use of the power series expansion

ln(1 + z) =
∞∑

n=1

(−1)n−1

n
zn

ln(1 + ejt) =

∞∑

n=1

(−1)n−1

n
ejnt.

We note that f(t) is finite if and only if 2 cos(t/2) > 0 i.e. −π < t < π so that

|2 cos(t/2)| = |ejt/2 + e−jt/2| = |e−jt/2(ejt + 1)| = |ejt + 1|, −π < t < π

and if z = rejθ then

ln(z) = ln(rejθ) = ln
(
rejθej2kπ

)
= ln(r) + j(θ + 2kπ) = ln(|z|) + j{arg(z) + 2kπ}

i.e. ln(|z|) = ℜ[ln z].
We may therefore write

ln [2 cos(t/2)] = ln
[
|1 + ejt|

]
= ℜ

[
ln
[
(1 + ejt

)]
, −π < t < π
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ln [2 cos(t/2)] = ℜ
[ ∞∑

n=1

(−1)n−1

n
ejnt

]
=

∞∑

n=1

(−1)n−1

n
cos (nt), −π < t < π

which is the trigonometric Fourier series expansion. The coefficients are

a0 = 0, an = (−1)n−1/n, n 6= 0; bn = 0, Fn = an/2 = (−1)n−1/(2n).

The exponential coefficients Fn are shown in Fig. 2.41.

FIGURE 2.41 Discrete spectra of log-cosine and log-sine functions.

Similarly,
2 sin(t/2) = | − j(ejt/2 − e−jt/2)| = |1− ejt|, 0 < t < 2π

ln[2 sin (t/2)] = ℜ
[
ln
{
1 + ej(t+π)

}]
= ℜ

[ ∞∑

n=1

(−1)n−1 e
j(t+π)n

n

]
= −

∞∑

n=1

cosnt

n
, 0 < t < 2π

which is the trigonometric Fourier series expansion. The coefficients are

a0 = 0, an = −1/n, n 6= 0; bn = 0, G0 = 0, Gn = −1/(2n).

The exponential Coefficients Gn are shown in the figure.

2.20 Inverse Fourier Series

In some applications that call for the evaluation of infinite summations it is sometimes
possible to obtain solutions which may be viewed as evaluations of an inverse Fourier
series. The following example illustrates the approach.

Example 2.20 Evaluate the function described by the expansion

∞∑

n=1

(−1)n sinnt

n
, −π < t < π.
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Let

S =

∞∑

n=1

(−1)n sinnt

n
= ℑ

[ ∞∑

n=1

(−1)n e
jnt

n

]
.

We note that

ln(1 + z) =

∞∑

n=1

(−1)n−1 z
n

n

S = −ℑ
[ ∞∑

n=1

(−1)n−1 e
jnt

n

]
= −ℑ[ln(1 + ejt)].

Writing ln(rejθ) = ln r + jθ, −π < θ ≤ π, we have

1 + ejt = ejt/2
[
e−jt/2 + ejt/2

]
= 2ejt/2 cos(t/2) = rejθ

r = 2 cos(t/2), θ = t/2, −π < t < π

ln(1 + ejt) = ln r + jθ = ln {2 cos(t/2)}+ jt/2, −π < t < π

S = −t/2, −π < t < π.

2.21 Problems

Problem 2.1 Consider a periodic signal f (t) of period T = 2

f (t) = 4t, 0 < t < 1

and

f (t+ T/2) = −f (t) .

Sketch the signal f (t). Evaluate the Fourier series expansion over one period T = 2, by
integrating over the intervals a) (0, 2), b) (−1, 1) and c) (0, 1) successively, comparing
the results obtained with those produced by Mathematica or Maple.

Problem 2.2 Consider the periodic signal y (t) of period T = 16τ such that

y (t) =

{
1, 0 < t < τ, 6τ < t < 10τ, 15τ < t < 16τ
0, τ < t < 6τ, 10τ < t < 15τ.

Evaluate the Fourier series coefficients of y (t) with an analysis interval a) (−4τ, 4τ), b)
(0, 16τ).

Problem 2.3 Let f (t) be periodic with period T = 2 sec. With f (t) = tk, 0 < t < 1
i) If k = 2, sketch the function and evaluate the Fourier series expansion of f (t) for the
cases:

a) f (t) = tk, −1 < t < 0
b) f (t) = −tk, −1 < t < 0
c) f (t+ 1) = −f (t).

ii) Repeat the above if k = 3.



Fourier Series Expansion 93

Problem 2.4 Consider the periodic signal

x(t) = C0 +

+∞∑

n=1

Cn cos (20πnt− φn)

For each of the following functions evaluate the coefficients Cn and φn. Note that the
amplitude coefficients Cn cannot be negative and that the phase coefficients are such that
0 ≤ φn < 2π.
a) x(t) = 5
b) x(t) = cos (40π [t− 0.02])
c) x(t) = sin (60πt)

d) x(t) = 3 + 3 cos (20πt) + 4 sin (20πt) + 0.5 sin
(
40πt− π

4

)

e) x(t) = cos (40πt) cos (60πt)

Problem 2.5 The Fourier series expansion of a periodic signal x(t) with an analysis in-
terval equal to the signal period T sec is given by

x(t) = C0 +

+∞∑

n=1

Cn cos (20πnt− φn).

Evaluate in terms of C0, Cn and φn, the corresponding coefficients of the signals :
a) 5x(t), b) x(t) +5, c) x(t+ 5T ), d) x(t+ T/5), e) dx(t)/dt.

Problem 2.6 Let v(t) =
∞∑

n=−∞
v0(t− 2nπ) where v0(t) = sin (t)Rπ (t).

a) Sketch the signal v(t) and evaluate its exponential Fourier series coefficients Vn with an
analysis interval of T = 2π.
b) Let y (t) = [sin (t)Rπ (t)] ∗ ρπ (t). Evaluate the Fourier series coefficients Yn with the
same analysis interval T = 2π, in terms of the coefficients Vn.

Problem 2.7 Evaluate as a sum of trigonometric functions the signal v(t), given that its
exponential Fourier series coefficients, with an analysis interval equal to T , are given by

Vn =





1, n = 0
2e+jπ/4 + je−j20π/T , n = +1

2e−jπ/4 − je+j20π/T , n = −1.

Problem 2.8 For each of the following signals

f(t) = 6, g(t) = cos(2πt/T ), h(t) = sin(6πt/T )

s(t) = h(t) + 2g(t) + 3, v(t) = g(t+ 2T ), w(t) = dg(t)/dt

x(t) = cos[4π(t− 1)/T ], y(t) = sin(6πt/T + π/4).

a) Evaluate the trigonometric Fourier series coefficients with an analysis interval equal to
T .
b) Repeat the above, evaluating instead the exponential coefficients.

Problem 2.9 Let an and bn be the trigonometric Fourier series coefficients of a signal
v(t), with an analysis interval T . For the same analysis interval, evaluate the trigonometric
series coefficients of the following signals expressed in terms of the coefficients an and bn.
a) y(t) = α0v (t) + α1, where α0 and α1 are real constants
b) y(t) = dv (t) /dt
c) y(t) = v (t− t0), where t0 is a constant delay
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Problem 2.10 Evaluate the exponential Fourier series coefficients of the two periodic fol-
lowing signals x(t) and y(t) with an analysis interval equal to one period

a) x (t) = Aρ0.1 (t) b) y (t) = 4ρ3 (t)− 2ρ3 (t+ 1)

Problem 2.11 Consider the periodic signal x (t) =
∑

n

v (t− 3n) where v (t) = (A/3)t R3 (t).

a) Evaluate the trigonometric Fourier series coefficients of the signal y (t) = dx (t) /dt,
with an analysis interval of 3 seconds.
b) Deduce from the result obtained in part a) the trigonometric coefficients of the signal
x(t) with the same analysis interval.

Problem 2.12 Evaluate the exponential Fourier series coefficients of each of the following
signals with an analysis interval equal to T .

a) x (t) =
∑

n

AΠd/2

(
t− T

2
− nT

)
, where d ≤ T

b) y (t) = 3x

(
t+

T

4

)
− 1

c) The signal z (t) obtained after the component of frequency 2/T Hz is removed from the
signal x(t)

Problem 2.13 Let the signal v (t) = sin (t)
∑

n

R2π (t− 4πn).

a) Evaluate the exponential Fourier series coefficients Vn of v(t) with an analysis interval
equal to 4π.
b) Given that the exponential coefficients Xn, of a signal x(t) have the values

Xn =

{
0, n = ±2
Vn, otherwise.

Sketch x(t).
c) Let y (t) = v (t− π)− v (t+ π).

Deduce the exponential coefficients of y(t) with an analysis interval of 4π in terms of the
coefficients Vn.
d) Redo part c) with an analysis interval of 8π.

Problem 2.14 Let x(t) be a periodic signal of period T = 10−3 seconds having exponential
Fourier series coefficients Xn, with an analysis interval 10−3 seconds, given by

Xn = 0.25Sa (πn/4)

a) What is the average value of x(t)?
b) What is the amplitude of the signal component of frequency 9 kHz ?

Problem 2.15 A periodic signal v(t) of period T has exponential Fourier series coeffi-
cients Vn, evaluated with an analysis interval 2T , given by

Vn =





1,
0,

n = 0
n = ±1

(−1)n+1
2π(1−n2) , otherwise.

a) Evaluate the exponential Fourier series coefficients of the signal v(t) if the analysis
interval is T.
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b) Let x (t) = v (t)+3. Evaluate the exponential Fourier series coefficients Xn of the signal
x(t) if the analysis interval is 2T .
c) Let y (t) = v (t) + cos (πt/T ). Evaluate the exponential Fourier series coefficients Yn of
the signal y(t) if the analysis interval is 2T .
d) Let z (t) = v (t− T ). Evaluate the exponential Fourier series coefficients Zn of the signal
z(t) if the analysis interval is 2T .

Problem 2.16 Given the periodic signal v (t) =
∞∑

n=−∞
Vne

j200πnt where the coefficients Vn

are given by

Vn =






5,
3,
1,
0,

n = 0
n = ±1
n = ±3
otherwise.

a) What is the average value of v(t)? b) What is the fundamental frequency of v(t)?

Problem 2.17 A periodic signal is given by v (t) =
∞∑

n=−∞
Vne

j200πnt where

Vn =





3, n = ±3
1, n = ±6
0, otherwise.

a) What is the signal average value?
b) What is the fundamental frequency of the signal v(t)?

Problem 2.18 A periodic signal is given by v (t) =
∞∑

n=−∞
Vne

j200πnt where

Vn =






3,
1,
0,

n = ±2
n = ±3
otherwise.

a) What is the signal average value?
b) What is its fundamental frequency?

Problem 2.19 Consider the periodic signal v (t) of period T = 2 sec such that

v (t) =

{
t2, 0 < t < 1
0, 1 < t < 2.

Evaluate and plot the Fourier series coefficients of v (t) and of the signal x (t) that is the
modulation of v (t) such that

x (t) = v (t) cos (2mπ/T ) .

Problem 2.20 A linear system receives an input signal v (t) and produces an output signal
x (t). The system output x (t) is then filtered by an ideal lowpass filter of frequency response
G (jω), where

G (jω) = Π9π (ω) = u (ω + 9π)− u (ω − 9π) .

Given that the system impulse response is

h (t) = e−2|t|
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evaluate and sketch the exponential Fourier series coefficients, with analysis interval of
T = 1 sec, of the system input v (t) and output x (t), and of the filter output y (t) for the
following cases :

i) v (t) = sin 2πt,
ii) v (t) = sin 11πt,

iii) v (t) =
∞∑

n=−∞
δ (t− nT ).

Problem 2.21 Given the signal

x (t) = A sinβ1t+B cosβ2 t

where
β1 = 2000π, β2 = 5000π

a) What is the signal fundamental frequency?
b) Evaluate the exponential Fourier series coefficients Xn of x (t) with an analysis interval
of 0.002 sec.
c) What are the values of the coefficients if the analysis interval is 0.01 sec?

Problem 2.22 Given the signal

x (t) = 5 + 2 sin (2.5πt+ π/4) + 3 cos{5π (t− 0.02)} .
a) Evaluate the trigonometric Fourier series coefficients with an analysis interval of 0.8
sec.
b) Evaluate the exponential Fourier series coefficients with an analysis interval of 2.4 sec.

Problem 2.23 For the signal

x (t) =

∞∑

n=−∞
x0 (t− 0.4n)

where

x0 (t) =





2 + 10 t, −0.1 ≤ t ≤ 0.1
4− 10t, 0.1 ≤ t ≤ 0.3
0, otherwise.

a) Sketch the signal x (t).
b) Using differentiation evaluate the exponential Fourier series coefficients Xn of x (t).
c) If a filter suppresses all components of x (t) of amplitude less than 1% of that of its
fundamental, what is the maximum frequency contained in the filtered signal ?

Problem 2.24 A signal x (t) is given by

x (t) =

∞∑

n=−∞
x0 (t− nT )

where

x0 (t) =

{
A− 2At/T, 0 < t < T
0, otherwise.

a) State the kind of symmetry that x (t) has, deducing whether its exponential Fourier series
coefficients Xn are real or imaginary and whether they are nil for even or odd values of n.
b) Evaluate the coefficients Xn and sketch the amplitude spectrum in dB relative to the
fundamental component, versus the positive frequency in Hz, with T = 0.01 sec.
c) Let ξn be the exponential Fourier series coefficients obtained with an analysis interval of
T1 = 0.05 sec. Write the value of ξn in terms of Xn.
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Problem 2.25 Given the signal

v (t) = 3 + 4 sin (0.5πt+ π/4) + 3 cos [π (t− 0.2)] .

a) Evaluate the trigonometric Fourier series coefficients of v (t) with an analysis interval
T1 = 4 sec.
b) Evaluate the exponential series coefficients Vn with analysis interval T2 = 12 sec.

Problem 2.26 Consider the signal

v (t) =

∞∑

n=−∞
v0 (t− nT )

where
v0 (t) = {2At/T − (A/3) sin (6πt/T )}ΠT/2 (t)

a) Sketch the signal v (t).
b) By symmetry consideration state whether its exponential Fourier series coefficients Vn

are real, imaginary, nil or non-nil for only even or only odd n.
c) Evaluate the coefficients Vn and plot the amplitude spectrum in dB relative to the fun-
damental component versus the positive frequency in Hz, given that the period T = 10−3

sec.

Problem 2.27 A signal v (t) has exponential Fourier series coefficients Vn evaluated with
an analysis interval of 10−6 sec, where

Vn =






1, n = 0
1± j, n = ±1
0.5, n = ±3.

a) Evaluate the signal v (t) as a sum of real functions.
b) Let y (t) = 3 + 2v

(
t− 0.2× 10−6

)
. Evaluate the Fourier series coefficients Yn of y (t)

with the same analysis interval 10−6 sec.
c) Let z (t) be a signal having exponential Fourier series coefficients Zn with the same
analysis interval, such that

Zn =

{
1, n = ±1
0, n 6= ±1.

Can the signal z (t) be obtained by feeding the signal v (t) to a linear system of frequency
response H (jω)? If yes, specify the value of H (jω).
d) Repeat part c) for the case where

Zn =





1, n = 0
0.5, n = ±1
3, n = ±4.

Problem 2.28 Given the signal f (t) = 15+2 cos(40πt− π/8)+8 sin (70πt+ 2π/7), eval-
uate the exponential Fourier series coefficients Fn of f (t) using an appropriate analysis
interval.

Problem 2.29 A finite duration section of a signal x (t) is obtained by multiplying it by a
rectangular window. Let f (t) be the finite-duration signal thus obtained

f (t) = x (t)RT (t).
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Let Fn be the exponential Fourier series coefficients of f (t) evaluated with an analysis
interval (0, T ) .
a) With x (t) periodic of frequency β rad/sec, state the conditions under which the expansion

x (t) =

∞∑

n=−∞
Fne

j(2πn/T )t

is valid.
b) If x (t) = A cosβt evaluate the Fourier transform F (jω) of f (t). Sketch the amplitude
spectrum |F (jω)| assuming A = 1 and β ≫ 2π/T . Sketch and describe the effect of
reducing the window width T to β < 2π/T .

Problem 2.30 The two periodic signals x (t) and y (t) have periods T1 = 0.05 sec and
T2 = 0.025 sec, respectively, and complex exponential Fourier series coefficients with analysis
intervals T1 and T2, respectively, given by

Xn =





1, n = 0
±j, n = ±1
1/4, n = ±4
0, otherwise

Yn =





±2j, n = ±1
1/2, n = ±2
0, otherwise.

a) Evaluate the Fourier series coefficients Vn of the signal v (t) = x (t) + y (t) over an
analysis interval of one period.
b) Evaluate the coefficients Zn of the signal z (t) = x (t) cos (80πt) over an appropriately
chosen analysis interval.

Problem 2.31 Given the signal

v (t) =

∞∑

n=−∞
v0 (t− nπ)

where
v0 (t) = sin t Rπ (t) = sin t [u (t)− u (t− π)]

show that by differentiating twice v (t) it is possible to evaluate its exponential Fourier
series coefficients Vn with an analysis interval equal to π. To which frequency in Hz does
the coefficient Vn correspond?

Problem 2.32 Consider the derivative ρT
′ (t) of an impulse train. a) Evaluate the coeffi-

cients of the exponential Fourier series expansion of ρT
′ with a an analysis interval equal

to the period T .
b) Given the signal

f (t) =

∞∑

n=−∞
f0 (t− 2n)

where
f0 (t) = t2R1 (t) = t2 [u (t)− u (t− 1)] .

By differentiating f (t) twice evaluate the exponential Fourier series coefficients Fn of f (t)
with an analysis interval equal to its period T . Deduce the trigonometric series coefficients.
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c) Verify the results obtained in part a) by direct evaluation of the integrals of the Fourier
series coefficients or using Mathematica or Maple.
d) As another verification evaluate and sketch the sum

a0 +

M∑

n=1

{an cos (n2πt/T ) + bn sin (n2πt/T )}

with M = 30, showing that it is an approximation of f (t).

Problem 2.33 Given the signal

v(t) =





A sin (βt+ θ) , 0 ≤ t ≤ t1
A sin θe0.2t, t ≤ 0
0.2t− t1, t ≥ t1

where A = 2, θ = π/4, β = 2π/T and t1 = 5T/2− θ/β.
a) Represent graphically the signal v(t), assuming T = 8 sec.
b) Evaluate the exponential Fourier series coefficients of v(t) over the interval (0, t1).
c) Evaluate the exponential Fourier series coefficients of v(t) over the interval (0, 2T ).
d) The signal w(t) is the truncation in time of the signal v(t) by multiplying v(t) by a
rectangular window, so that

w(t) = v(t)R2T (t)

where R2T (t) = u(t)− u(t− 2T ).
The signal w(t) is then applied to the input of a filter having the frequency response

|H(jω)| = 8Λ4β(ω)

Recall that Λx(ω) is a triangle centered about the origin of total width 2x and a height of
one.

arg [H(jω)] = −π/(4β)

Evaluate the exponential Fourier series coefficients of the filter input w(t) and output y(t)
with an analysis interval (0, 2T ).

Problem 2.34 Evaluate the fundamental frequency f0 and the period T of each of the
following signals
a) f (t) = sin 42π t+ 2 cos 105π t
b) g (t) = 5 sin 294π t sin 126π t
c) v (t) = sin 12 t+ cos 20π t
d) x (t) = 5 sin 15π t+ 7 cos 15π t
e) w (t) = 5 sin 60πt+ 7 cos 140π t+ 3 cos (180π t+ π/3)

Problem 2.35 Determine the types of symmetry and evaluate the trigonometric and ex-
ponential Fourier series of the function

f (t) =

{
t, 0 ≤ t ≤ π
−t, −π ≤ t ≤ 0.

Problem 2.36 State the types of symmetry and evaluate the trigonometric and exponential
Fourier series with analysis interval 2π of the function

f (t) =

{
cos t, 0 < t < π
− cos t, −π < t < 0.
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Problem 2.37 Show that, by differentiation twice, the Fourier series coefficients of the
function

f (t) =

{
cos t, 0 < t < π
− cos t, −π < t < 0

with an analysis interval of 2π can be deduced without integration.

Problem 2.38 Sketch the function y(t) = | sin t| and evaluate its exponential Fourier series
coefficients over an analysis interval T = 2π.

2.22 Answers to Selected Problems

Problem 2.1 Vn = 0, n even; Vn = −8/(n2π2) − j4/(nπ), n odd.

Problem 2.2
a) Yn = (1/4)Sa (nπ/4), b) Yn = (1/8)Sa (nπ/8) + (−1)

n
(1/4)Sa (nπ/4).

Problem 2.3

ii) k=3 c) Vn =

{
[12− 3n2π2 + j

(
6nπ − n3π3

)
]/(n4π4), n odd

0, n even

Problem 2.4
a) Cn = 5, n = 0; Cn = 0, otherwise
b) Cn = 1, n = 2; Cn = 0, otherwise. φn = 0.8π, n = 2
c) Cn = 1, n = 3; Cn = 0, otherwise. φn = π/2, n = 3
d) Cn = 3, n = 0; Cn = 5, n = 1; Cn = 0.5, n = 2; Cn = 0, otherwise. φn =
0.927, n = 1; φn = 3π/4, n = 2.
e) Cn = 0.5, n = 1, 5; Cn = 0, otherwise. φn = 0, n = 1, 5

Problem 2.5

a) 5x(t) = 5C0 +
∞∑

n=1
5Cn cos (2πnt/T − φn)

b) x(t) + 5 = (C0 + 5) +
∞∑

n=1
Cn cos (2πnt/T − φn)

c) x(t+ 5T ) = C0 +
∞∑

n=1
Cn cos (2πnt/T − φn)

d) x(t+ T/5) = C0 +
∞∑

n=1
Cn cos {2πnt/T − (φn − 2πn/5)}

e) (d/dt)[x(t)] =
∞∑

n=1
(2πn/T )Cn cos {2πnt/T − (φn − π/2)}.

Problem 2.6

a) Vn =
1 + e−jπn

2π (1− n2)
, n 6= ±1, V±1 = ∓j/4

b) Yn =
1 + e−jπn

π (1− n2)
, n 6= ±1, V±1 = 0.

Problem 2.7 v (t) = 1 + 4 cos (2πt/T + π/4)− 2 sin (2πt/T − 20π/T ).

Problem 2.8
a) a0,f = 12; an,f = bn,f = 0. a0,g = bn,g = 0; an,g = 1, n = 1; 0 otherwise. a0,h =
an,h = 0; bn,h = 1, n = 3; 0 otherwise. a0,s = 6, an = 2, n = 1; 0 otherwise, bn =
1, n = 3; 0 otherwise.
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a0,v = bn,v = 0; an,v = 1, n = 1; 0 otherwise. a0,w = an,w = 0, bn,w =
−2π/T, n = 1; 0 otherwise.

a0,x = 0, an,x = cos(4π/T ), n = 2; 0 otherwise, bn = sin(4π/T ), n = 2; 0 otherwise.
a0,y = 0, an,y = 1/

√
2, n = 3; 0 otherwise, bn,y = 1/

√
2, n = 3; 0 otherwise.

b) Fn = 6, n = 0; 0 otherwise. Gn = 1/2, n = ±1; 0 otherwise. Hn = ∓j/2, n =
±3; 0 otherwise. Sn = 3, n = 0; Sn = 1, n = ±1; Sn = ∓j/2, n = ±3; 0 otherwise.

Vn = 1/2; n = ±1; 0 otherwise. Wn = ±jπ/T, n = ±1; 0 otherwise, Xn =
(1/2)e∓j4πT n = ±2; 0 otherwise. Yn = (∓j/2)e∓jπ/4 for n = ±3; 0 otherwise.

Problem 2.9

a) a0,y = α0a0 + 2α1, an,y = α0an and bn,y = α0bn
b) a0,y = 0, an,y = 2πnbn/T and bn,y = −2πan/T

c) a0,y = a0, an,y = an cos (2πnt0/T )− bn sin (2πnt0/T ),

bn,y = bn cos (2πnt0/T ) + an sin (2πnt0/T ).

Problem 2.10

a) Xn = 10A, b) Yn = (4/3)− (2/3)e+j2πn/3.

Problem 2.11

a) Yn = 0, n = 0, Yn = −A/3, otherwise. a)Xn = A/2, n = 0, Xn = j(A/2πn), otherwise.

Problem 2.13

a) Vn =
(
1− e−jπn

)
/
[
4π
(
1− n2/4

)]
, n 6= ±2; V±2 = ∓j/4.

c) Yn = j
(
e−jπn − 1

)
sin (πn/2) /2π

(
1− n2/4

)
, n 6= ±2; Y±2 = 0

d) Yn = j [(−1)
n − 1] sin (πn/4) /2π

(
1− n2/16

)
, n = even; Yn = 0, n = odd.

Problem 2.14

a) x (t) = X0 = 0.25. b) 2 |X±9| = 0.05.

Problem 2.15

a) Vn = 1, n = 0; 0 otherwise.

b) Xn = 4, n = 0,Yn = [(−1)n + 1]/2π(1− n2) otherwise.
c) Yn = 1, n = 0, Yn = 0.5, n = ±1;Yn = [(−1)n + 1]/2π(1− n2), otherwise.

d) Zn = Vn.

Problem 2.16 a) v (t) = V0 = 5. b) gcd(100, 300) = 100 Hz.

Problem 2.17 a) v (t) = V0 = 0. b) gcd(300, 600) = 300 Hz.

Problem 2.18 a) v (t) = V0 = 0. b) gcd(200, 300) = 100 Hz.

Problem 2.21 x (t) = A sin β1t+ B cos β2t
∆
= x1 + x2 .

a) ω0 = 1000π.

b) Xn =





(A/2)e∓jπ/2 = ∓j(A/2), n = ±2
B/2, n = ± 5
0, otherwise

c) Xn =






∓jA/2, n = ± 10
B/2, n = ± 25
0, otherwise

Problem 2.23

Xn =
j 100 sin nπ/2

−n2

(
0.4

2π

)2

=
−j4
π2n2

sin (nπ/2) , n 6= 0, X0 = x (t) = 2. See Fig.

2.42. The maximum frequency is ω = 9× fundamental = 9ω0 = 9× 2π
T r/s, f = 22.5 Hz..

Problem 2.24 See Fig. 2.43
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FIGURE 2.42 Function and derivatives, Problem 2.23.
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FIGURE 2.43 Figure for Problem 2.24.

|Xn| =
A

|n|π , |X1| = A/π

ξn =

{
0 , n 6= k5 , k interger
Xn/5 , n = k5 , k interger

Problem 2.29
a) T = k2π/β, k integer. b) See Fig. 2.44.
Problem 2.32 See Figs. 2.45 and 2.46.

a) ρ′T (t)
FSC←→ (jnω0) /T .

b) an = (−1)n 2/(n2π2), bn = −
[
2− 2 (−1)n + (−1)n n2π2

]
/(n3π3).

Problem 2.34
a) T = 1/f0 = 0.0952 sec.
b)f0 = 42 Hz, T = 0.0238 sec.
c) v (t) is not periodic since the ratio of the two frequencies is not rational.
d) f0 = 7.5 Hz, T = 0.1333 sec.
e) f0 = 10 Hz, T = 0.1 sec.
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FIGURE 2.44 Figure for Problem 2.29.

FIGURE 2.45 Derivative of the impulse train.

FIGURE 2.46 Derivatives of the parabola train.
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3

Laplace Transform

3.1 Introduction

The Laplace transform, named after the French mathematician Pierre Simon Laplace (see
Appendix), is a major tool for the analysis of continuous time signals and systems and the
solution of differential equations. In fact the Fourier transform, one of the most important
signal analysis tools is, as we shall see in the next chapter, but a special case of the Laplace
transform.

In this chapter we study the most general form of the Laplace transform, also referred to as
the Bilateral Laplace transform, followed by the one-sided transform known as the unilateral
transform. We shall see that the bilateral Laplace transform is in principle applicable to
general two-sided functions. We shall learn, however, that according to the current literature
the bilateral Laplace transforms of the simplest of two sided functions, such as unity or a
simple pure sinusoid, do not exist even though their Fourier transforms do, [1] [30] [45] [57]
[63] [64] [70]. In fact, the bilateral Laplace transform, according to the present literature,
exists only for right-sided functions or left-sided functions, but the transforms of two-sided
functions such as 1, sin t, et, ... do not exist, and if they are expressed as the sum of
a causal and an anticausal part then their conditions of existence are mutually exclusive,
hence the transforms and cannot be added to produce the overall transform.

The fact that Fourier transform can operate on basic two-sided functions such as 1,
sin t, cos t and t while the more general Laplace transform cannot may be viewed as a
mathematical anomaly.

The key to resolving the anomaly and extending the domain of existence of Laplace
transform to cover these and a much larger class of functions, including functions that have
no Fourier transform, is a generalization of the Dirac-delta impulse introduced in [21]. The
result as we shall see later on is a significant expansion of the domains of existence of Laplace
and z-transform and other related transforms such as Hilbert, Hartley and Mellin transform
[19] [23] [27].

For the benefit of the student and a gradual understanding of the subject this chapter
presents the Laplace transform in the usual form found in the literature. The new recent
developments extending the domains of existence of Laplace, z and related transforms con-
stitutes a slightly more advanced topic and is deferred to Chapter 18.

3.2 Bilateral Laplace Transform

Let f(t) be a two-sided piecewise continuous time function, that is, a time function that is
either continuous for all t or is composed of a succession of continuous sections. The Laplace
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transform of such a function, also known as the bilateral Laplace transform, is defined by

F (s) =

ˆ ∞

−∞
f(t)e−stdt (3.1)

where s is a complex variable s = σ+ jω called the complex frequency. The integral in the
definition is referred to as the “Laplace integral.” Integrals having infinite limits are known
as “improper integrals.” The infinite limits imply that the transform exists if and only if
the integral is convergent. The variable ω is the angular or radian frequency measured in
radians per second. The variable σ is called the damping factor. The s plane with abscissa
σ and ordinate jω is called the complex s plane. We write symbolically F (s) = L[f(t)]

or, alternatively, f(t)
L←→ F (s) meaning that F (s) is the Laplace transform of f(t). The

inverse relation f(t) = L−1[F (s)] stating that the function f(t) is the inverse transform
of F (s) is given by the inversion formula

f(t) =
1

2πj

ˆ σ+j∞

σ−j∞
F (s)estds. (3.2)

As we shall see, the contour of integration, the vertical line extending from the point s =
σ − j∞ to s = σ + j∞ in the complex s plane, has to be in the region of convergence
(ROC) of the transform F (s), that is, in the region where the transform exists. Before
exploring the conditions of existence of the Laplace transform we study two basic but
revealing examples of the Laplace transform of simple exponentials.

Example 3.1 Evaluate the Laplace transform of the right-sided (causal) function.

f(t) = eαtu(t).

We have

F (s) = L [f(t)] =

ˆ ∞

0

eαte−stdt =

[
e−(s−α)t

s− α

]0

∞
=

1

s− α
{
1− lim

t−→∞
e−(σ+jω−α)t

}
.

The limit in question is zero if σ > α and infinity if σ < α. If σ = α the integral is
not convergent. We conclude that the Laplace transform exists if and only if σ > α and
therefore

F (s) =
1

s− α, σ > α.

The condition of existence σ > α is the ROC of the Laplace transform, and the boundary
value α of the ROC is called the abscissa of convergence. In what follows we shall see that
the point s = α in the complex s plane is the pole of the function F (s), since with s = α
the value of F (s) is infinite. The function f(t) is shown in Fig. 3.1, together with its pole
s = α denoted by × in the complex s plane, for the two cases α > 0 and α < 0,
respectively. We see that the ROC of the Laplace transform F (s), shown hatched in the
figure, of this right-sided exponential extends in the s plane to the right of the pole.



Laplace Transform 107

FIGURE 3.1 Functions and regions of convergence.

Example 3.2 Evaluate the Laplace transform of the left-sided (anticausal) function.

f(t) = eαtu(−t).

We have

F (s) = L [f(t)] =

ˆ 0

−∞
eαte−stdt =

[
e−(s−α)t

s− α

]−∞

0

=
1

s− α

{
lim

t−→−∞
e−(σ+jω−α)t − 1

}
.

In this case the limit in question is zero if σ < α and infinity if σ > α. If σ = α the
integral is not convergent. We conclude that the Laplace transform is given by

F (s) =
−1

s− α, σ < α.

The pole s = α and the ROC σ < α can be seen in Fig. 3.2 for the cases α > 0 and
α < 0, respectively.

We see that the ROC of the Laplace transform F (s) of this left-sided function extends in
the s plane to the left of the pole.

In what follows, these important basic properties of the Laplace transform and its conditions
of existence will be seen to be applicable in general.

3.3 Conditions of Existence of Laplace Transform

A sufficient condition for existence of the Laplace transform

F (s) =

ˆ ∞

−∞
f(t)e−stdt (3.3)
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FIGURE 3.2 Functions and regions of convergence.

is that the integral be absolutely convergent, that is, it converges when the integrand is
replaced by its absolute value. We can write

ˆ ∞

−∞
f(t)e−stdt ≤

ˆ ∞

−∞

∣∣f(t)e−st
∣∣ dt =

ˆ ∞

−∞
|f(t)| e−σtdt. (3.4)

If we can find a positive value M and real values α and β such that

|f(t)| ≤
{
Meβt, t ≤ 0
Meαt, t ≥ 0

(3.5)

as shown in Fig. 3.3, then the function f(t) is said to be of exponential order. The right-
sided part is referred to as a function of “exponential order α.” The left-sided part of f(t)
is referred to as a function of “exponential order β.” We can write

ˆ ∞

−∞
|f(t)| e−σtdt ≤

ˆ 0

−∞
Me(β−σ)tdt+

ˆ ∞

0

Me(α−σ)tdt. (3.6)

The first integral reduces to

ˆ 0

−∞
Me(β−σ)tdt = M

e(β−σ)t

β − σ

∣∣∣∣
0

−∞
=

M

β − σ

{
1− lim

t−→−∞
e(β−σ)t

}
. (3.7)

The limit in this equation is equal to zero if σ < β, and infinity if σ > β. For σ = β the
integral is not convergent. Similarly, the second integral reduces to

ˆ ∞

0

Me(α−σ)tdt = M
e(α−σ)t

α− σ

∣∣∣∣
∞

0

=
M

α− σ
{

lim
t−→∞

e(α−σ)t − 1
}

(3.8)

and the limit in this equation is equal to zero if σ > α, and to infinity if σ < α. The
integral does not converge in the case σ = α.
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FIGURE 3.3 Bounding exponentials.
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FIGURE 3.4 Strip of convergence of two-sided function.

We conclude that the transform exists if and only if α < σ < β. This ROC appears
therefore as a vertical strip in the complex s plane. As an illustration the vertical strip of
convergence is depicted in Fig. 3.4 for the case α < 0 and β > 0. It may be worthwhile
adding a few remarks regarding exponential order. A right-sided function f(t) which satisfies
the condition that lim

t−→∞
|f(t)| e−σt = 0 if σ > α is called a function of exponential order α.

For example, the function f(t) = u(t) is of exponential order zero since lim
t−→∞

u(t)e−σt = 0

if σ > 0. If as in the above the function f(t) satisfies the condition|f(t)| ≤ Meαt then
|f(t)| e−σt ≤Meαte−σt. Hence

lim
t−→∞

|f(t)| e−σt = 0 if σ > α (3.9)

so that f(t) is of exponential order α as stated above. Another simple example of a function
of exponential order is the simple causal exponential f(t) = eαtu(t). Since |f(t)| e−σt =
e(α−σ)tu(t) −→ 0 as t −→∞ if σ > α, this is simply a function of exponential order α.

A function f(t) = tneαtu(t) is os exponential order α since lim
t−→∞

|f(t)| e−σt =

lim
t−→∞

tne−(σ−α)t = 0 if σ > α. A function such as f(t) = et2 is not of exponential

order since lim
t−→∞

et2e−σt is infinite.

Finally, note that if a function f(t) is a right-sided function and is of exponential order
α, i.e. |f(t)| ≤ Meαt, t ≥ 0, then from the above we conclude that the Laplace transform
exists for σ > α. The ROC is therefore a half plane, that is, the part of the s plane extending
to the right of the point s = α, as depicted in Fig. 3.5 for two cases α > 0 and α < 0,
respectively.
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FIGURE 3.5 Regions of convergence of right-sided functions.

3.4 Basic Laplace Transforms

The following are examples of Laplace transforms of some basic functions.

Example 3.3 Evaluate the Laplace transform of f(t) = δ(t).
We have

F (s) =

ˆ ∞

−∞
f(t)e−stdt =

ˆ ∞

−∞
δ(t)e−stdt = e0 = 1.

Example 3.4 Evaluate the Laplace transform of the step function

f(t) = u(t).

F (s) =

ˆ ∞

−∞
u(t)e−stdt =

ˆ ∞

0

e−stdt =
1

s
, σ > 0.

The function, its pole marked by an × and the ROC of its transform are shown in Fig. 3.6.

FIGURE 3.6 Unit step function and its ROC.

Example 3.5 Evaluate the Laplace transform of the function

f(t) = sinβtu(t).

We may write

F (s) =

ˆ ∞

0

sinβte−stdt =
1

2j

ˆ ∞

0

(ejβt − e−jβt)e−stdt
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F (s) =
1

2j

[
1

s− jβ −
1

s+ jβ

]
=

β

s2 + β2
, σ > 0.

Table 3.1 lists the Laplace transform of some common basic functions.

TABLE 3.1 Laplace transforms of common functions

f(t) = L−1[F (s)] F (s) = L[f(t)]

δ(t) 1
δ(t− t0) e−st0

u(t)
1

s

tu(t)
1

s2

tnu(t)
n!

sn+1

tn−1

(n− 1)!
u(t)

1

sn

tn−1

(n− 1)!
e−αtu(t)

1

(s+ α)n

eatu(t)
1

s− a
teatu(t)

1

(s− a)2
tneatu(t)

n!

(s− a)n+1

sin(ω0t)u(t)
ω0

(s2 + ω2
0)

cos(ω0t)u(t)
s

(s2 + ω2
0)

e−at sin(ω0t)u(t)
ω0

[(s+ a)2 + ω2
0 ]

e−at cos(ω0t)u(t)
(s+ a)

[(s+ a)2 + ω2
0 ]

t cos(β0t)u(t)
(s2 − β2

0)

(s2 + β2
0)2

(1/
√
t)u(t)

√
π

s

tνu(t), ν > −1
Γ(ν + 1)

sν+1

cosh(at)u(t)
s

s2 − a2

sinh(at)u(t)
a

s2 − a2
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3.5 Notes on the ROC of Laplace Transform

Some exponential and damped sinusoidal functions and their convergence regions are shown
in Fig. 3.7 and Fig. 3.8, respectively. The following remarks can be made:

FIGURE 3.7 One-sided and two-sided functions and their regions of convergence.



Laplace Transform 113
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FIGURE 3.8 Two-sided functions and their regions of convergence.

a) A right-sided exponential e−atu(t) having a Laplace transform 1/(s + a), i.e. a pole at
s = −a, has a ROC that extends in the s plane to the right of the pole.
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b) A left-sided exponential eatu(−t) has a Laplace transform

ˆ 0

−∞
eate−stdt =

−1

s− a , σ < a (3.10)

and a convergence region that extends to the left of the pole s = a.

c) A two-sided exponential has as ROC a vertical strip in the s plane extending to the
right of the pole of the right-sided component and to the left of the pole of the left-sided
component, if such region exists.

d) These properties apply equally to damped sinusoids, the deciding factor on their con-
vergence being their bounding exponential; hence the real parts of their poles.

e) For two-sided exponential function the transform exists if and only if the entire two-sided
function, over the whole time axis t ∈ (−∞, ∞), can be bounded by a single exponential
as can be seen in Fig. 3.9. If no bounding exponential exists, such as in the case shown in
Fig. 3.10, then the Laplace transform does not exist.

FIGURE 3.9 Set of bounding exponentials and corresponding ROC.

FIGURE 3.10 Absence of transform due to absence of bounding exponential.

f) The Laplace transform of a function composed of a sum of right-sided exponentials and
left-sided exponentials has a convergence region which extends to the right of the rightmost
pole(s) of the right-sided function and to the left of the leftmost pole(s) of the left-sided
function, if such a region exists.
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g) The ROC of the Laplace transform of a finite duration function is the entire s plane since
the integral converges absolutely.

h) As we shall see in the next chapter, the Fourier transform F (jω) of a function f(t) is but
a special case of its Laplace transform F (s) and may be obtained by simply substituting
s = jω, if such a substitution is permissible, meaning that the jω axis is in the ROC, or is
itself the boundary of the ROC, of Laplace transform.

3.6 Properties of Laplace Transform

Table 3.2 lists basic properties of the Laplace transform. Some of the proofs of these prop-
erties are given in what follows.

TABLE 3.2 Basic properties of Laplace transform

Operation Time domain Laplace Domain

Linearity a1f1(t) + a2f2(t) a1F1(s) + a2F2(s)

Differentiation in time
dnf(t)

dtn
snF (s)

Multiplication by time −tf(t)
dF (s)

ds

Integration

ˆ t

−∞
f(t)dt

F (s)

s

Time shift f(t− t0) F (s)e−st0

Modulation f(t)es0t F (s− s0)

Time scale f(at)
1

|a|F
( s
a

)

Reflection f(−t) F (−s)

Convolution in frequency f1(t)f2(t)
1

2πj

ˆ c+j∞

c−j∞
G(p)F (s− p)dp

Initial value theorem f(0+) = lim
s−→∞

[sF (s)]

Final value theorem f(∞) = lim
s−→0

[sF (s)]
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3.6.1 Linearity

Let

f(t) = a1f1(t) + a2f2(t) + . . .+ anfn(t) =

n∑

i=1

aifi(t) (3.11)

where the values ai are constants and fi(t)
L←→ Fi(s). The linearity property states that

the Laplace transform of f(t) is given by

F (s) = L{f(t)} =

n∑

i=1

aiFi(s). (3.12)

3.6.2 Differentiation in Time

If f(t) is a continuous two-sided function and g(t) its derivative g(t) = f ′(t) then G(s) =
sF (s).
Proof We recall the inversion formula

f(t) =
1

2πj

ˆ σ+j∞

σ−j∞
F (s)estds. (3.13)

Differentiating both sides we obtain

f ′(t) =
1

2πj

ˆ σ+j∞

σ−j∞
sF (s)estds (3.14)

implying that L [f ′(t)] = sF (s) as stated. Repeating we obtain

f ′′(t) = {f ′(t)}′ L←→ s {sF (s)} = s2F (s) (3.15)

f (n)(t)=△
dn

dtn
f(t) = snF (s). (3.16)

Example 3.6 Evaluate the Laplace transform of δ′(t) and δ(n)(t).

We have δ(t)←→ 1, hence δ′(t)
L←→ s, and δ(n)(t)

L←→ sn.

3.6.3 Multiplication by Powers of Time

To prove the multiplication by time t property of Laplace transform listed in Table 3.2 we
differentiate the Laplace transform of the function f(t), obtaining

F ′ (s) =

ˆ ∞

−∞
(−t)f (t) e−stdt (3.17)

so that (−t) f (t)←→ F ′ (s) , as stated. Repeated differentiation produces

tnf (t)←→ (−1)n F (n) (s) . (3.18)

Example 3.7 Evaluate L[tnu(t)].

u (t)←→ 1

s
, σ > 0

tnu (t)←→ (−1)
n

[
n!

sn+1
(−1)

n

]
=

n!

sn+1
, σ > 0.
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Example 3.8 Evaluate L[teαt cosβtu(t)].
We have

L
[
eαt cosβtu(t)

]
=

(s− α)

(s− α)2 + β2
, σ > α

L
[
teαt cosβtu(t)

]
=

(s− α)2 − β2

[(s− α)2 + β2]2
, σ > α.

Example 3.9 Evaluate L[tneαtu(t)] and L[tn−1eαt/(n− 1)! u(t)].

Let f(t) = eαtu(t). We have

F (s) =
1

s− α, σ > α

F (n)(s) =
dn

dsn

1

s− α = (−1)n n!

(s− α)n+1
, σ > α

L
[
tneαtu(t)

]
= (−1)nF (n)(s) =

n!

(s− α)n+1
, σ > α

tn−1

(n− 1)!
eαtu(t)

L←→ 1

(s− α)n
, σ > α.

3.6.4 Convolution in Time

f1 ∗ f2=△
ˆ ∞

−∞
f1(τ)f2(t− τ)dτ L←→ F1(s)F2(s). (3.19)

Proof

L
[
ˆ ∞

−∞
f1(τ)f2(t− τ)dτ

]
=

ˆ ∞

−∞

ˆ ∞

−∞
f1(τ)f2(t− τ)dτ e−stdt. (3.20)

Reversing the order integration assuming uniform convergence

L[f1 ∗ f2] =

ˆ ∞

−∞
f1(τ)

ˆ ∞

−∞
f2(t− τ)e−stdt dτ. (3.21)

Letting t− τ = λ

L[f1 ∗ f2] =

ˆ ∞

−∞
f1(τ)e

−sτdτ

ˆ ∞

−∞
f2(λ)e

−sλdλ = F1(s)F2(s). (3.22)

3.6.5 Integration in Time

According to this property

L
[
ˆ t

−∞
f(τ)dτ

]
=

1

s
F (s). (3.23)

Proof Let g(t) =

ˆ t

−∞
f(τ)dτ . We have f(t) = g′(t), F (s) = sG(s) wherefrom G(s) =

F (s)/s, as stated.

Example 3.10 Show that integration of a function f(t) is equivalent to its convolution with
a unit step function; deducing the transform of the integral.
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We may write

f(t) ∗ u(t) =

ˆ ∞

−∞
f(τ)u(t− τ)dτ =

ˆ t

−∞
f(τ)dτ

confirming the fact that the integration is equivalent to a convolution with the step function.

Since u(t)
L←→ 1/s

L
[
ˆ t

−∞
f(τ)dτ

]
=

1

s
F (s).

3.6.6 Multiplication by an Exponential (Modulation)

eatf(t)
L←→ F (s− a). (3.24)

Proof

L
[
eatf(t)

]
=

ˆ ∞

−∞
f(t)e−(s−a)tdt = F (s− a). (3.25)

Example 3.11 Evaluate the transform of f(t) = eαt cosβtu(t).
We may write

cosβtu(t)
L←→ s

s2 + β2
, σ > 0

eαt cosβtu(t)
L←→ (s− α)

(s− α)2 + β2
, σ > α.

Note that multiplication by a real exponential eαt shifts the poles, hence the boundary of the
ROC in the s plane, from the line σ = 0 to the line σ = α.

3.6.7 Time Scaling

f(at)
L←→ 1

|a|F
( s
a

)
(3.26)

where a is a constant.

Proof We may write g(t) = f(at)

G(s) =

ˆ ∞

−∞
f(at)e−stdt.

If a > 0, let at = τ

G(s) =

ˆ ∞

−∞
f(τ)e−sτ/a dτ

a
=

1

a
F
( s
a

)
.

If a < 0 we put a = −α where α > 0

G(s) =

ˆ ∞

−∞
f(−αt)e−stdt

and with τ = −αt we have

G(s) =

ˆ −∞

∞
f(τ)esτ/α dτ

(−α)
=

1

α

ˆ ∞

−∞
f(τ)e−sτ/(−α)dτ =

1

|a|F
( s
a

)

as stated.
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3.6.8 Reflection

Using the time scaling property with a = −1 we have

f(−t) L←→ F (−s). (3.27)

Note that if f(t) is right-sided and its transform has a ROC σ > α then its reflection
f(−t), has a ROC σ < −α, and vice versa.

3.6.9 Initial Value Theorem

The initial value theorem states that if a function f(t) is a causal function, being nil for
t < 0, and if F (s) is its Laplace transform then

f(0+) = lim
s−→∞

sF (s). (3.28)

Proof The Taylor series expansion of f(t) can be written in the form

f(t) =

[
f(0+) + f ′(0+)t+ f ′′(0+)

t2

2!
+ f ′′′(0+)

t3

3!
+ . . .

]
u(t) =

∞∑

k=0

f (k)(0+)
tk

k!
u(t). (3.29)

Using the transform L[tnu(t)] = n!/sn+1 obtained above we have

F (s) =

∞∑

k=0

f (k)(0+)
1

sk+1
=
f(0+)

s
+
f ′(0+)

s2
+
f ′′(0+)

s3
+ . . . (3.30)

sF (s) = f(0+) +
f ′(0+)

s
+
f ′′(0+)

s2
+ . . . (3.31)

wherefrom f(0+) = lim
s−→∞

sF (s).

Example 3.12 Using Laplace transform find the initial value of the function

f(t) = Aeαt cos(βt+ θ)u(t).

We have
f(t) = Aeαt{cos θ cosβt− sin θ sinβt}u(t)

F (s) = A
cos θ(s− α)− β sin θ

(s− α)2 + β2
, σ > α

f(0+) = lim
s−→∞

sF (s) = lim
s−→∞

A
cos θ(1 − α/s)− β sin θ/s

(1− α/s)2 + β2/s2
= A cos θ

which is the same value obtained by letting t −→ 0+ in the expression of f(t).

3.6.10 Final Value Theorem

If a function f(t) is causal
lim

s−→0
sF (s) = f(∞). (3.32)

Proof From the differentiation property we have L[f ′(t)] =

ˆ ∞

0+

f ′(t)e−stdt = sF (s) −
f(0+) wherefrom

lim
s−→0

ˆ ∞

0+

f ′(t)e−stdt =

ˆ ∞

0+

f ′(t) lim
s−→0

e−stdt = lim
s−→0

sF (s)− f(0+) (3.33)
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ˆ ∞

0+

f ′(t)dt = f(t)|∞0+ = f(∞)− f(0+) = lim
s−→0

sF (s)− f(0+). (3.34)

Hence lim
s−→0

sF (s) = f(∞) as stated.

Example 3.13 Verify the final value of the function

f(t) = Aeαt cosβtu(t).

We have

F (s) = A
s− α

(s− α)2 + β2
, σ > α.

If α ≥ 0, applying the stated property we obtain f(∞) = lim
s−→0

sF (s) = 0, which is not true

since with α ≥ 0 the function does not tend to zero as t −→ ∞. The reason for the false
conclusion is the fact that the ROC of sF (s), i.e. that of F (s), does not include the point
s = 0 as can bee seen in Fig. 3.11. We cannot therefore let s tend toward zero as required
by the final value theorem. If α < 0, as can be in seen Fig. 3.12 the ROC of sF (s) does
include the point s = 0 and the property produces the expected result f(∞) = 0.

FIGURE 3.11 Growing causal exponential.

FIGURE 3.12 Decaying causal exponential.

3.6.11 Laplace Transform of Anticausal Functions

Applying the reflection property f (−t) L←→ F (−s) we obtain the transforms of basic
left-sided functions listed in Table 3.3.
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TABLE 3.3 Laplace transforms of anticausal functions

f(t) = L−1[F (s)] F (s) = L[f(t)]

u(−t) −1

s

−tu(−t) 1

s2

tnu(−t) −n!

sn + 1

e−atu(−t) −1

s+ a

te−atu(−t) −1

(s+ a)2

tne−atu(−t) −n!

(s+ a)n+1

sin(ω0t)u(−t)
−ω0

s2 + ω2
0

cos(ω0t)u(−t)
−s

s2 + ω2
0

eat sin(ω0t)u(−t)
−ω0

(s− a)2 + ω2
0

eat cos(ω0t)u(−t)
−(s− a)

(s− a)2 + ω2
0

It is worthwhile remembering that the pole location of the transform of the anticausal
function eatu(−t) is s = a, the same as that of the causal counterpart eatu(t), and that
the ROC of the first is to the left of the pole while that of the second is to the right.
Similarly, the poles of the anticausal functions eat sin(ω0t)u(−t) and eat cos(ω0t)u(−t) are
at s = −a± jω0, the same locations as those of the causal counterparts eat sin(ω0t)u(t) and
eat cos(ω0t)u(t).

3.6.12 Shift in Time

If f(t)
L←→ F (s) then f(t− t0) L←→ e−t0sF (s).

Proof

L [f(t− t0)] =

ˆ ∞

−∞
f(t− t0)e−stdt. (3.35)

Let t− t0 = τ . We have

L [f(t− t0)] =

ˆ ∞

−∞
f(τ)e−s(t0+τ)dτ = e−t0s

ˆ ∞

−∞
f(τ)e−sτdτ = e−t0sF (s) (3.36)
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as stated.

Example 3.14 Evaluate the Laplace transform of f(t) = sin(βt)u(t− T ).
We have

f(t) = sin{β(t− T + T )}u(t− T ) = [sin{β(t− T )} cos(βT ) + cos{β(t− T )} sin(βT )]u(t− T )

F (s) = cos(βT )
βe−sT

s2 + β2
+ sin(βT )

se−sT

s2 + β2
=
β cos(βT ) + sin(βT )s

s2 + β2
e−sT , σ > 0.

3.7 Applications of the Differentiation Property

It is often possible to evaluate the Laplace transform by successive differentiation as the
following examples illustrate.

Example 3.15 Evaluate by differentiation the Laplace transform of

f(t) = eαtu(−t).

We have f ′(t) = −eαtδ(t) + αeαtu(−t) = −δ(t) + αf(t), sF (s) = −1 + αF (s) wherefrom
F (s) = −1/(s− α), σ < α.

Example 3.16 Let v(t) = cosβtu(t). Evaluate the Laplace transform V (s) by evaluating
the two first derivatives of v(t).

v′(t) = cosβtδ(t)− β sinβtu(t) = δ(t)− β sinβtu(t)

v′′(t) = δ′(t)− β {sinβtδ(t) + β cosβtu(t)} = δ′(t)− β2v(t).

s2V (s) = s− β2V (s); hence V (s) = s/(s2 + β2).

Example 3.17 Let f(t) be the truncated sinusoid

f(t) = sin(βt+ θ)RT (t).

Evaluate the Laplace transform of f(t) through successive differentiation.
We have

f ′(t) = sin(βt+ θ)R′T + β cos(βt+ θ)RT (t)
= sin(βt+ θ) {δ(t)− δ(t− T )}+ β cos(βt+ θ)RT (t)
= sin θδ(t) − sin(βt + θ)δ(t− T ) + β cos(βt+ θ)RT (t)

f ′′(t) = sin θδ′(t)− sin(βT + θ)δ′(t− T ) + β cos θδ(t)− β cos(βT + θ)δ(t− T )− β2f(t)

s2F (s) = −β2F (s) + β cos θ − β cos(βT + θ)e−Ts + sin θs− sin(βT + θ)se−Ts

F (s) =
β cos θ + sin θs− {β cos(βT + θ) + sin(βT + θ)s}e−Ts

s2 + β2
.

Since the function f(t) is of finite duration, the ROC of its Laplace transform F (s) is the
entire s plane.
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3.8 Transform of Right-Sided Periodic Functions

Consider a right-sided periodic function f(t) of period T , as the one shown in Fig. 3.13,
which is a repetition to the right of a base function f0(t). We can write

f(t) =

∞∑

n=0

f0(t− nT ). (3.37)

Let F0(s) = L[f0(t)]. We have

F (s) =

∞∑

n=0

F0(s)e
−nTs =

F0(s)

1− e−Ts
, σ = ℜ[s] > 0. (3.38)

FIGURE 3.13 Causal periodic function and its base period.

Example 3.18 Evaluate the Laplace transform of the causal periodic function shown in
Fig. 3.14

The transform of the base period is

F0(s) =

ˆ τ

0

e−stdt =
1

s
(1− e−τs)

F (s) =
1

s

(1− e−τs)

(1 − e−Ts)
.

FIGURE 3.14 Causal train of rectangular pulses.
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Example 3.19 Evaluate by differentiation the Laplace transform of the function f(t) =
Πτ (t). Show that the transform can be written using the hyperbolic sampling function

Sh(x) = sinh(x)/x. Deduce the transform of the function g(t) =

∞∑

n=0

f(t− 4nτ).

We have f ′(t) = δ(t+ τ) − δ(t− τ), sF (s) = eτs − e−τs.

F (s) =
eτs − e−τs

s
= τ

2 sinh(τs)

τs
= 2τSh(τs)

G(s) =
∞∑

n=0

F (s)e−4nτs =
F (s)

1− e−4τs
=

2τSh(τs)

1− e−4τs
.

Example 3.20 Evaluate the Laplace transform of the causal periodic ramp

v (t) =

∞∑

n=0

v0 (t− nT )

where v0 (t) = AtRT (t) and RT (t) = u (t)− u (t− T ).
Let

x0 = v′0 (t) =
A

T
RT (t)−Aδ (t− T )

X0 (s) =
A

T

ˆ T

0

e−stdt−Ae−sT =
A

T

1− e−sT

s
−Ae−sT = A

{
1− e−Ts − Tse−Ts

Ts

}

V0 (s) =
X0 (s)

s
=
A

T

1− e−Ts − Tse−Ts

s2

V (s) =
V0 (s)

1− e−Ts
=
A

T

1− e−Ts − Tse−Ts

s2 (1− e−Ts)
.

Example 3.21 Evaluate the inverse transform of

V (s) =
1

(s+ a) (1− e−bs)
.

Let V (s) = V0 (s)/(1− e−bs) where V0 (s) = 1/(s+ a), v0 (t) = e−atu (t),

v (t) =
∞∑

n=0

v0 (t− nb) =
∞∑

n=0

e−a(t−nb)u(t− nb).

We note that in the interval (kb, (k + 1) b) the function v (t) is given by

v (t) = e−at + e−a(t−b) + . . .+ e−a(t−kb) = e−at
k∑

m=0

emab = e−at 1− eab(k+1)

1− eab
.

3.9 Convolution in Laplace Domain

Let f(t) and g(t) be two functions having Laplace transforms F (s) and G(s) with converge
regions σf1 < σ < σf2 and σg1 < σ < σg2 , respectively, and let x(t) be their product
x(t) = f(t)g(t). The Laplace transform of x(t) is given by

X(s) = L [f(t)g(t)] =
1

2πj

ˆ c+j∞

c−j∞
G(p)F (s− p)dp, (3.39)
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σf1 + σg1 < σ=△ℜ[s] < σf2 + σg2 . (3.40)

The path of integration being in the convergence region of the integrand, namely, max[σg1 , σ−
σf2 ] < ℜ[p] < min[σg2 , σ − σf1 ].
Proof We can write

X(s) =

ˆ ∞

−∞
f(t)g(t)e−stdt =

ˆ ∞

−∞
f(t)e−st 1

2πj

ˆ c+j∞

c−j∞
G(p)eptdp dt. (3.41)

Replacing g(t) by its value as the inverse transform of G(s) we can write

X(s) =

ˆ ∞

−∞
f(t)e−st 1

2πj

ˆ c+j∞

c−j∞
G(p)eptdp dt (3.42)

where the contour integral has to be in the ROC of G(p), namely, σg1 < ℜ[p] < σg2 .
Interchanging the order of integration

X(s) =
1

2πj

ˆ c+j∞

c−j∞
G(p)

ˆ ∞

−∞
f(t)e−(s−p)tdt dp

=
1

2πj

ˆ c+j∞

c−j∞
G(p)F (s − p)dp.

(3.43)

The function F (s− p) in the integrand implies that for convergence σf1 < ℜ[s− p] < σf2 ,
i.e.

σ − σf2 < ℜ[p] < σ − σf1 (3.44)

and since the region of conversion of the function G(p) in the integrand is σg1 < ℜ[p] < σg2 ,
the overall region of conversion of the integrand in the p plane is

max [σg1 , {σ − σf2}] < ℜ[p] < min [σg2 , {σ − σf1}] . (3.45)

The p plane line integral in the definition of X(s) has to lie in this ROC. In other words
the value of c should satisfy the condition

max[σg1 , {σ − σf2}] < c < min[σg2 , {σ − σf1}]. (3.46)

This completes the proof. Convolution in Laplace domain is often evaluated using the theory
of residues.

3.10 Cauchy’s Residue Theorem

This important theorem states that if f(p) is a function of the complex variable p, which is
analytic inside and on a closed contour Γ except at a finite number of poles inside Γ, then

‰

C

f(p)dp = 2πj [sum of residues of f(p) at its poles inside Γ] . (3.47)

Example 3.22 Using the complex convolution theorem evaluate the Laplace transform X(s)
of the function x(t) = f(t)g(t) where

f(t) = etu(−t) + e−4(t−2)u(t− 2)
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and g(t) = e3tu(−t) + e−5tu(t).
We have

F (s) =
1

−s+ 1
+
e−2s

s+ 4
=
−1

s− 1
+
e−2s

s+ 4
, −4 < σ < 1

G(s) =
1

−s+ 3
+

1

s+ 5
=
−1

s− 3
+

1

s+ 5
, −5 < σ < 3.

The regions of convergence of F (s) and G(s) are shown in Fig. 3.15(a) and (b), respectively.
We note that they are bounded by the poles at σf1 = −4, σf2 = 1 and σg1 = −5, σg2 = 3,
respectively. The ROC of X(s) is σf1 + σg1 < σ < σf2 + σg2 , i.e. −9 < σ < 4.

Â [ ]p

C j- ¥

C+j¥

F s( ) G s( )

(c)

j jw w

-5 30s-4 0 1 s

(a) (b)

F s p G p( - ) ( )

C-5 30

s-1 s+4
s

FIGURE 3.15 Convolution in Laplace domain.

Let P (s) = G(p)F (s−p). The ROC of the product P (s) is shown in Fig. 3.15(c), together
with the contour of integration. As stated in the theorem the ROC of the product P (s) is
seen in the figure bounded such that

max[−5, σ − 1] < ℜ[p] < min[3, σ + 4].

The ROC of P (s) is the cross-hatched region σ−1 < ℜ[p] < 3.. The contour of integration
of the complex convolution integral has to lie within this region. It is closed by drawing a
semicircle to the left or, alternatively, by a semicircle to the right. In the first case, shown
in the figure, the poles enclosed are seen to be those at p = −5 and p = s− 1.

We have

P (s) =

{ −1

p− 3
+

1

p+ 5

}{ −1

s− p− 1
+
e−2(s−p)

s− p+ 4

}

or

P (s) =
8 (s− p+ 4)− 8e−2(s−p) (s− p− 1)

(p− 3) (p+ 5) (p− s+ 1) (p− s− 4)
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X(s) = L [x(t)] =
∑

[residues of P (s) at the poles p = −5 and p = s− 1]

i.e.

X(s) =
8(s+ 9)− 8e−2(s+5)(s+ 4)

−8(−4− s)(−9− s) +
8(5)

(s− 4)(s+ 4)(−5)
.

Using a partial fraction expansion we obtain

X(s) =
−1

s− 4
+
e−2(s+5)

s+ 9
.

We note that the inverse transform of X(s) is given by

x(t) = L−1 [X(s)] = e4tu(−t) + e(−9t+8)u(t− 2)

which agrees with the value x(t) = f(t)g(t).

Example 3.23 Evaluate the Laplace transform of te−atu(t) using the complex convolution
property.

Writing w(t) = te−atu(t) = tu(t)e−atu(t), we have tu(t)
L←→ 1/s2, σ > 0; e−atu(t)

L←→
1/(s+ a), σ > −a..

W (s) =
1

2πj

ˆ c+j∞

c−j∞

1

p2

1

s− p+ a
dp, σ > (−a), 0 < c < σ + a.

p plane
p s a= +

Â [ ]p0 C

j Á [ ]p

C+j¥

C j- ¥

FIGURE 3.16 Closing the contour of integration in the complex s plane.

Referring to Fig. 3.16 we note that if the contour of integration is taken as the vertical
line, extending from c− j∞ to c+ j∞, followed by the counterclockwise arc then the closed
contour contains the double pole at p = 0. If on the other hand the vertical line is followed
by the clockwise arc, shown dotted in the figure, the enclosed pole would be the simple one
at p = s+ a. Choosing the first contour we have

W (s) = Res

[
1

p2(s− p+ a)
at p = 0

]

= lim
p−→0

d

ds

{
1

s− p+ a

}
=

[
1

(s− p+ a)2

]

p=0

=
1

(s+ a)2
, σ > (−a).
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a result that can be found alternatively using the property

tf(t)
L←→ −dF (s)

ds

with f(t) = e−atu(t). If instead the second, clockwise, contour is chosen, we obtain

W (s) = −Res
[ −1

p2(s− p− a) at p = s+ a

]
=

1

(s+ a)2
, σ > −a.

3.11 Inverse Laplace Transform

Given a Laplace transform F (s) we recall the inversion formula, Equation (3.2), which pro-
duces f(t). If F (s) is rational, that is, a ratio of two polynomials in s, F (s) = N(s)/D(s),
the inverse transform can be evaluated by first effecting a partial fraction expansion of F (s)
into a sum of simple terms, followed by the use of tables of transforms to find the inverse of
each term. We assume F (s) to be a “proper fraction,” that is, the order of the numerator
polynomial N(s) is less than that of the denominator, D(s), otherwise a long division is
effected to obtain a proper fraction.

Example 3.24 Evaluate the inverse transform of F (s) = (s2 + 5s+ 10)/(s+ 2). Using
long division we have F (s) = s+3 + 4/(s+ 2), wherefrom f(t) = δ

′
(t) + 3δ(t)+ 4e−2tu(t).

Effecting a partial fraction expansion assuming simple poles pi of F (s) we obtain

F (s) =

n∑

i=1

Ci

s− pi
(3.48)

having as inverse transform

f(t) =
n∑

i=1

Cie
pitu(t). (3.49)

The residues Ci associated with the poles pi are given by

Ci = (s− pi)F (s)|s=pi . (3.50)

A multiple pole pi of order mi appears as a factor of the form (s−pi)
mi in the denominator.

Such a multiple pole produces mi terms in the decomposition

Ci1

(s− pi)
+

Ci2

(s− pi)2
+ . . .+

Cimi

(s− pi)mi
=

mi∑

j=1

Cij

(s− pi)j
. (3.51)

The residues Cij are given by

Cij =
1

(mi − j)!
dmi−j

dsmi−j
[(s− pi)

miF (s)]|s=pi
, i = 1, 2, . . . , mi (3.52)

wherefrom

F (s) =

n∑

i=1

mi∑

j=1

Cij

(s− pi)j
. (3.53)
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Now

eαt tn−1

(n− 1)!

L←→ 1

(s− α)n
, σ > α (3.54)

so that

f(t) =

n∑

i=1

epit
mi∑

j=1

Cij
tj−1

(j − 1)!
. (3.55)

Example 3.25 Evaluate the inverse transform of

F (s) =
9s2 − 38s+ 55

(s+ 3)(s− 2)3
, σ > 2.

We write

F (s) =
A

s+ 3
+

C3

(s− 2)3
+

C2

(s− 2)2
+

C1

(s− 2)

A = (s+ 3)F (s)|s=−3 =
9s2 − 38s+ 55

(s− 2)3

∣∣∣∣
s=−3

= −2

C3 = (s− 2)3F (s)|s=2 =
9s2 − 38s+ 55

(s+ 3)

∣∣∣∣
s=2

= 3.

To evaluate C1 and C2 we may differentiate obtaining

C2 =
1

(3− 2)!

d

ds
[(s− 2)3F (s)]|s=2

= lim
s−→2

d

ds

9s2 − 38s+ 55

(s+ 3)
= lim

s−→2

9s2 + 54s− 169

(s+ 3)2
= −1

C1 =
1

2!

d2

ds2
[
(s− 2)3F (s)

]∣∣
s=2

=
1

2

d

ds

[
9s2 + 54s− 169

(s+ 3)2

]
= 2.

Alternatively, using the values of A and C3 we have

F (s) =
9s2 − 38s+ 55

(s+ 3)(s− 2)3
=
−2

s+ 3
+

3

(s− 2)3
+

C2

(s− 2)2
+

C1

(s− 2)
.

Putting s = 0 we obtain −5 = C2 − 2C1. Putting s = 1 we have −3 = C2 − C1. Solving
we find C1 = 2 and C2 = −1, wherefrom

f(t) =

[
−2e−3t +

3

2
t2e2t − te2t + 2e2t

]
u(t).

3.12 Case of Conjugate Poles

A rational Laplace transform F (s), a ratio of real coefficient polynomials, has as inverse
transform a real function f(t). Each complex root of each of the two polynomials is ac-
companied by its conjugate. It is useful to develop the form that results from combin-
ing the expressions of each such pair and use it in deducing the inverse transform. If
f (t) = Aeαt cos (βt+ θ)u (t) then

F (s) = A
cos θ (s− α)− sin θβ

(s− α)2 + β2
, σ > α. (3.56)
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If we rewrite F (s) in this form we can deduce the values of α, β, A and θ, hence directly
the inverse transform. We can also rewrite f (t) in the form

f (t) = (A/2)
{
e(α+jβ)tejθ + e(α−jβ)te−jθ

}
u (t)

= (A/2)
{
eptejθ + ep∗te−jθ

}
u (t) = {Cept + C∗ep∗t} u (t)

(3.57)

where p = α+ jβ and C = (A/2) ejθ, i.e. A = 2|C| and θ = arg[C], so that

F (s) =
C

s− p +
C∗

s− p∗ , σ > α (3.58)

and, conversely, if this is the value of F (s) then

f (t) =
{
Cept + C∗ep∗t} = 2 |C| eαt cos (βt+ arg [C])u (t) . (3.59)

It is worthwhile memorizing this form as the inverse transform of the given F (s). Other
forms are worth remembering. Writing C = a+ jb, i.e. a = (A/2) cos θ, b = (A/2) sin θ,
then A = 2

√
a2 + b2 and θ = arctan(b/a),

F (s) =
2a (s− α)− 2bβ

(s− α)2 + β2
, σ > α (3.60)

so that the inverse transform is directly written as f (t) = Aeαt cos (βt+ θ)u (t).

Example 3.26 Evaluate the Inverse transform of

F (s) =
4s2 + s− 1

(s+ 1)(s2 + 1)
.

We write

F (s) =
A

(s+ 1)
+

C

(s− j) +
C∗

(s+ j)

A = (s+ 1)F (s)|s=−1 = 1

C = lim
s−→j

(s− j)F (s) = lim
s−→j

4s2 + s− 1

(s+ 1)(s+ j)
= 3/2 + j.

Note that for the pole p = α+ jβ = j, we have α = 0 and β = 1. Writing C = a+ jb,
we have a = 3/2 and b = 1, wherefrom

F (s) =
1

(s+ 1)
+

3s− 2

s2 + 1
.

Alternatively, having evaluated A we can write

F (s) =
4s2 + s− 1

(s+ 1)(s2 + 1)
=

1

(s+ 1)
+
Bs+ C

(s2 + 1)
.

Multiplying both sides by the common denominator of F (s) we have

4s2 + s− 1 = s2 + 1 + (Bs+ C)(s+ 1)

3s2 + s− 2 = B(s2 + s) + C(s+ 1).

Equating the coefficients of equal powers of s, that is, si, i = 1, 2, . . . we obtain B = 3,
B + C = 1, wherefrom C = −2 as just found. We can write

f(t) =
[
e−t + 3 cos t− 2 sin t

]
u(t)

or, still,

f(t) =
[
e−t +

√
13 cos(t+ arctan(2/3))

]
u(t).
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Example 3.27 Evaluate L−1[F (s)] where

F (s) =
4s+ 16

(s2 + 4s+ 15)(s2 + 6s+ 13)
.

We write

F (s) =
As+B

(s2 + 4s+ 15)
+

Cs+D

(s2 + 6s+ 13)
.

Multiplying both sides by the denominator of F (s)

4s+ 16 = (As+B)(s2 + 6s+ 13) + (Cs+D)(s2 + 4s+ 15).

Equating the coefficients of the same powers of s

A+ C = 0

6A+B + 4C +D = 0

13A+ 6B + 5C + 4D = 4

13B + 5D = 16.

By successive elimination of variables we obtain A = C = 0, B = 2, D = −2 wherefrom

F (s) =
2

(s+ 2)2 + 1
− 2

(s+ 3)2 + 4

f(t) =
[
2e−2t sin t− e−3t sin 2t

]
u(t).

3.13 The Expansion Theorem of Heaviside

According to the expansion theorem of Heaviside if F (s) is a proper fraction, i.e.

F (s) =
N(s)

D(s)
(3.61)

with N(s) of lower order than D(s), and if the poles pi of F (s) are simple then

F (s) =

n∑

i=1

N(pi)

D′(pi)

1

(s− pi)
(3.62)

and

f(t) =

n∑

i=1

N(pi)

D′(pi)
epit. (3.63)

Proof An expansion in partial fractions of F (s), assuming simple poles can be written in
the form

F (s) =

n∑

i=1

Ci

s− pi
(3.64)

where
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Ci = lim
s−→pi

(s− pi)F (s) = lim
s−→pi

(s− pi)N(s)

D(s)
= N(pi) lim

s−→pi

(s− pi)

D(s)
. (3.65)

Using l’Hopital’s rule

Ci = N(pi)
1

D′(pi)
(3.66)

wherefrom

F (s) =

n∑

i=1

N(pi)

D′(pi)

1

s− pi
(3.67)

and the inverse transform f(t) follows.

Example 3.28 Evaluate the inverse transform of

F (s) =
−2s2 − 9s+ 11

(s− 2)(s+ 3)(s+ 1)
=△
N(s)

D(s)
.

We have
D(s) = (s− 2)(s+ 3)(s+ 1) = s3 + 2s2 − 5s− 6

D
′
(s) = 3s2 + 4s− 5

N(p1)

D′(p1)
=

N

D′

∣∣∣∣
s−→2

= −1

N(p2)

D′(p2)
=

N

D′

∣∣∣∣
s−→−3

= 2

N(p3)

D′(p3)
=

N

D′

∣∣∣∣
s−→−1

= −3

so that
f(t) =

[
−e2t + 2e−3t − 3e−t

]
u(t).

3.14 Application to Transfer Function and Impulse Response

If the input x(t) of a linear time invariant LTI system with zero initial is the impulse
x(t) = δ(t) then Y (s) = X(s)H(s) = H(s), and the output is called the system impulse
response, denoted h(t), being the inverse of H(s)

h(t) = L−1[H(s)]. (3.68)

The system frequency response H(jω) of a system is simply the Fourier transform of its
impulse response h(t)

H(jω) = F [h(t)] (3.69)

and it may be deduced directly from the transfer function H(s) by the substitution s = jω,
if the ROC of H(s) includes the imaginary axis s = jω.

In the time domain the output is the convolution of the input with the impulse response,
y(t) = x(t) ∗ h(t). Moreover, if the input x(t) is the unit step function u(t) then the output
is called the unit step response, and Y (s) = X(s)H(s) = H(s)/s, implying that the unit
step response is simply the integral of the impulse response. These are important system
response properties that will be often used in what follows.
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3.15 Inverse Transform by Differentiation and Integration

Given a function F (s) its inverse Laplace transform f(t) may be formed by evaluating the
inverse transform g(t) of G(s) = F (s)/s, so that F (s) = sG(s) and f(t) = dg (t) /dt.

Example 3.29 Knowing that L
[√
tu(t)

]
= (
√
π/2) s−3/2 evaluate the inverse transform

of F (s) =
√
π/
√
s.

Let G(s) = F (s)/s =
√
π/s3/2. We have g(t) = 2

√
tu(t); hence f(t) = g′(t) =

(1/
√
t)u(t).

Similarly, given a function F (s) its inverse transform may be found by evaluating the

inverse g(t) of G(s) = sF (s), so that F (s) = G(s)/s and f(t) =

ˆ t

0

g(t)dt.

Example 3.30 Evaluate f(t) given that

F (s) =
2a2

s(s2 − 4a2)
.

Let

G(s) = sF (s) =
2a2

s2 − 4a2
=

a× 2a

s2 − (2a)2
.

We have

sinh bt u(t)←→ b

s2 − b2
g(t) = a sinh 2at u(t)

f (t) =

ˆ t

0

a sinh 2at dt = a cosh2at/ (2a)|t0 u (t) = (1/2) [cosh 2at− 1] = sinh2 at.

We have seen that tf(t)←→ −F ′(s). Given a transform F (s), to evaluate its inverse f(t)
we may start by letting G(s) = −F ′(s) of which the inverse transform is g(t) = tf(t).
Hence f(t) is deduced as f(t) = g(t)/t.

Example 3.31 Evaluate the inverse transform of F (s) = ln [(s− a)/(s− b)].
Let

G (s) = −F ′ (s) = −
{

(s− b)
(s− a)

(s− b)− (s− a)
(s− b)2

}
=

b− a
(s− a) (s− b) =

−1

s− a +
1

s− b

g(t) =
(
ebt − eat

)
u(t) and f(t) =

(
ebt/t− eat/t

)
u(t).

The dual of this approach stems from the property that

f(t)/t←→
ˆ ∞

0

F (s)ds. (3.70)

Using this property, given a transfer function F (s), to evaluate its inverse f(t) we let G(s) =
ˆ ∞

s

F (s)ds. Its inverse transform is g(t) = f(t)/t. We thus deduce f(t) as f(t) = tg(t).
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Example 3.32 Find the inverse transform of

F (s) =
as

(s2 − a2)2
.

We write

G(s) =

ˆ ∞

s

as ds

(s2 − a2)2
=

1

2

a

s2 − a2

g(t) = (1/2) sinhat u(t); hence f(t) = (t/2) sinhat u(t).

3.16 Unilateral Laplace Transform

The unilateral Laplace transform is closely related to the bilateral Laplace transform studied
above. Its raison d’être is the solution of boundary value problems and in particular linear
constant coefficients differential equations with nonzero initial conditions. In such problems
an input is usually applied at a time instant such as t = 0, to a causal system and the
solution of the differential equations describing the system is sought for t > 0. The unilateral
Laplace transform of a function f(t), which will be denoted FI(s), is by definition

FI(s) = LI [f(t)] =

ˆ ∞

0+

f(t)e−stdt. (3.71)

Symbolically we may write FI(s) = LI [f(t)]; f(t)
LI←→ FI(s). The unilateral transform

thus views the function starting from the instant t = 0+. Note that if the function f(t)
is nil for t < 0, such as the functionf(t) = eαtu(t), its unilateral transform is identical to
the bilateral transform. The transforms differ if and only if the function is non-nil for any
t < 0. Moreover, in contrast with the bilateral Laplace transform, the unilateral transform
ignores any value of the function at t = 0, and therefore ignores any impulse or derivatives
of an impulse that the function may have at t = 0.

The inverse unilateral Laplace transform is given by

f(t) =
1

2πj

ˆ σ+j∞

σ−j∞
FI(s)e

stds, t > 0 (3.72)

f(t) = 0, t ≤ 0 (3.73)

where the line integral has to be in the ROC of FI(s).

Example 3.33 Evaluate the unilateral Laplace transform of the function f(t) = e−αtu(t).
We have

FI(s) = LI [f(t)] =

ˆ ∞

0+

e−αte−stdt =
1

s+ α
, σ > −α

which is identical to the bilateral transform F (s) of f(t).

Example 3.34 Evaluate the unilateral Laplace transform of the function f(t) = δ(t) +
e−αtu(t).

We have

FI(s) =

ˆ ∞

0+

e−αte−stdt =
1

s+ α
, σ > −α
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which is not the same as the bilateral transform F (s) of f(t) given by

F (s) =

ˆ ∞

−∞
{δ(t) + e−αtu(t)}e−stdt = 1 +

1

s+ α
, σ > −α.

Example 3.35 Compare the unilateral and bilateral Laplace transforms of the function
f(t) = eβtu(−t) + e−αtu(t), α > 0, β > 0.

We have, as obtained above,

FI(s) = L
[
e−αtu(t)

]
=

1

s+ α
, σ > −α

which is not the same as the bilateral transform F (s) of f(t) given by

F (s) =
−1

s− β +
1

s+ α
, −α < σ < β.

Most properties of the bilateral transform apply with slight modification to the unilateral
transform as will be seen in what follows. Only the properties of differentiation, integration,
initial and final value theorems need be rewritten to incorporate the initial values of the
transformed function and its derivatives and integrals.

Example 3.36 Show that LI [1] = LI [u(t)] = L[u(t)].
We have

LI [1] =

ˆ ∞

0+

e−stdt =
e−st

s

∣∣∣∣
0+

∞
=

1

s
, σ > 0 = L[u(t)]

LI [u(t)] =

ˆ ∞

0+

u(t)e−stdt =

ˆ ∞

0

e−stdt =
e−st

s

∣∣∣∣
0

∞
=

1

s
, σ > 0 = LI [1].

Example 3.37 Evaluate the unilateral transform of f(t) = cosβt using the bilateral
transform. We have

LI [cos βt] = L [cosβtu(t)] =
s

s2 + β2
, σ > 0.

3.16.1 Differentiation in Time

Given a function f(t) and its unilateral Laplace transform FI(s), let the function g(t) be
its derivative

g(t) = df(t)/dt = f ′(t). (3.74)

The unilateral Laplace transform of g(t) is given by

GI(s) = sFI(s)− f(0+) (3.75)

i.e.
LI [f ′(t)] = sFI(s)− f(0+). (3.76)

Proof

GI(s) =

ˆ ∞

0+

g(t)e−stdt =

ˆ ∞

0+

f ′(t)e−stdt. (3.77)

Integrating by parts, with u′ = f ′(t), v = e−st, u = f(t), v′ = −se−st,

GI(s) = uv −
ˆ

uv′ = f(t)e−st
∣∣∞
0+ + s

ˆ ∞

0+

f(t)e−stdt. (3.78)
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Since f(t) is assumed to be of exponential order we have lim
t−→∞

f(t)e−st = 0 and

GI(s) = −f(0+) + sFI(s) (3.79)

as asserted.
Similarly, let x(t) = dg(t)/dt = f ′′(t). We have

XI(s) =

ˆ ∞

0+

x(t)e−stdt =

ˆ ∞

0+

f ′′(t)e−stdt. (3.80)

Integrating by parts, with u′ = f ′′(t), v = e−st, u = f ′(t), v′ = −se−st,

XI(s) = uv −
ˆ

uv′ = f ′(t)e−st|∞0+ + s

ˆ ∞

0+

f
′
(t)e−stdt

= sGI(s)− f ′(0+) = s{sFI(s)− f(0+)} − f ′(0+)
= s2FI(s)− sf(0+)− f ′(0+).

(3.81)

Summarizing we write

f ′(t)
LI←→ sFI(s)− f(0+) (3.82)

f ′′(t)
LI←→ s2FI(s)− sf(0+)− f ′(0+). (3.83)

It can be shown that more generally

f (n)(t)
LI←→ snFI(s)−

n∑

i=1

sn−if (i−1)(0+) (3.84)

i.e.

f (n)(t)
LI←→ snFI(s)− sn−1f(0+)− sn−2f (1)(0+)− . . .− sf (n−2)(0+)− f (n−1)(0+). (3.85)

Example 3.38 Evaluate LI [t
n] using the differentiation theorem.

Let f(t) = tn. We note that f (n)(t) = n! and f (n+1)(t) = 0. We can therefore write

LI

[
f (n+1)(t)

]
= 0 = sn+1FI(s)−

n+1∑

i=1

sn+1−if (i−1)(0+)

0 = sn+1FI(s)− snf(0+)− sn−1f (1)(0+)− . . .− f (n)(0+).

Now f(0+) = f ′(0+) = f (2)(0+) = . . . = f (n−1)(0+) = 0, f (n)(0+) = n! and f (n+1)(0+) =
0, wherefrom

sn+1FI(s) = n!

FI(s) =
n!

sn+1
, σ > 0.

Note that this is equal to the bilateral transform of its causal component tnu(t).

Example 3.39 Evaluate LI [sin
2 βt]. Let f(t) = sin2 βt and g(t) = f ′(t). We have

g(t) = 2β sinβt cosβt

GI(s) = sFI(s)− f(0+) = sFI(s)

FI(s) =
GI(s)

s
=

2β2

s(s2 + 4β2)
.
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3.16.2 Initial and Final Value Theorem

The initial value of the function f(t) is given by

f(0+) = lim
s−→∞

sFI(s). (3.86)

Proof We have already shown that if g(t) = f ′(t) then

GI(s) = sFI(s)− f(0+). (3.87)

We also know that the existence ofGI(s) implies that as s −→∞ in the ROC, lim
s−→∞

GI(s) =

0. We can therefore write

lim
s−→∞

GI(s) = 0 = lim
s−→∞

sFI(s)− f(0+) (3.88)

f(0+) = lim
s−→∞

sFI(s) (3.89)

as stated. The Final Value theorem is proved in a similar way as was done in relation with
the bilateral Laplace transform.

3.16.3 Integration in Time Property

This property states that if a function f(t) is piecewise continuous and of exponential order
then

ˆ t

−∞
f(τ)dτ

LI←→ 1

s

[
F (s) + f (−1)(0+)

]
(3.90)

where the symbol f (−1)(.) stands for the integral of the function.

Proof With g(t) =

ˆ t

−∞
f(τ)dτ , which is a continuous function of exponential order, we

have f(t) = g′(t), wherefrom

FI(s) = sGI(s)− g(0+) (3.91)

GI(s) =
1

s

[
FI(s) + g(0+)

]
=

1

s

[
FI(s) +

ˆ 0+

−∞
f(τ)dτ

]
(3.92)

i.e.

GI(s) =
1

s

[
FI(s) + f (−1)(0+)

]
(3.93)

as stated.

3.16.4 Division by Time Property

If LI [f(t)] = FI(s), σ > α and if lim
t−→0+

f(t)/t exists, then

f(t)

t

L←→
ˆ ∞

s

FI(y)dy. (3.94)

Consider the integral

I =

ˆ ∞

s

FI(y)dy =

ˆ ∞

s

ˆ ∞

0+

f(t)e−ytdt dy. (3.95)
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Interchanging the order of integration we have

I =

ˆ ∞

0+

f(t)

ˆ ∞

s

e−ytdy dt =

ˆ ∞

0+

f(t)
e−yt

−t

∣∣∣∣
∞

s

dt =

ˆ ∞

0+

f(t)

t
e−stdt, σ > α (3.96)

i.e.
ˆ ∞

s

FI(y)dy = LI

[
f(t)

t

]
(3.97)

as stated.

3.17 Gamma Function

The Gamma function is given by

Γ(x) =

ˆ ∞

0

e−ttx−1dt. (3.98)

Integrating by parts with u = e−t, v′ = tx−1, u′ = −e−t, v = tx/x, we have

Γ(x) = e−t t
x

x

∣∣∣∣
∞

0

+
1

x

ˆ ∞

0

e−ttxdt. (3.99)

If x > 0 we have

Γ(x) =
1

x

ˆ ∞

0

e−ttxdt =
Γ(x+ 1)

x
. (3.100)

We have, therefore, the recursive relation

Γ(x+ 1) = x Γ(x). (3.101)

Since Γ(1) = 1 we deduce that Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3! and

Γ(n+ 1) = n!, n = 1, 2, 3, . . . . (3.102)

It can be shown that Γ(1/2) =
√
π. Indeed,

Γ(1/2) =

ˆ ∞

0

t−1/2e−tdt. (3.103)

Letting t = x2 we have Γ(1/2) =

ˆ ∞

0

e−x2

2dx = 2

√
π

2
=
√
π.

Example 3.40 Evaluate the Laplace transform of f(t) = tνu(t).
We have

F (s) =

ˆ ∞

−∞
tνu(t)e−stdt =

ˆ ∞

0

tνe−stdt.

The integral has the form of the Gamma function. Writing t = y/s we have

F (s) =
1

s

ˆ ∞

0

(y
s

)ν

e−ydy =
1

sν+1

ˆ ∞

0

yνe−ydy =
Γ(ν + 1)

sν+1
, ν > −1.

If ν is an integer, ν = n, we have f(t) = tnu(t), Γ(n + 1) = n!, n = 1, 2, 3, . . .
wherefrom

F (s) =
n!

sn+1
, σ > 0

as found earlier.
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Example 3.41 Evaluate LI

[
1√
t
u(t)

]
.

We have

LI

[
t−1/2

]
=

Γ(1/2)

s1/2
=

√
π

s
.

Note that the function 1/
√
t is not of exponential order. Yet its Laplace transform exists.

As noted earlier the condition that the function be of exponential order is a sufficient but
not necessary condition for the existence of the transform.

Example 3.42 Evaluate LI [Si(t)] using the transformation

LI

[
sin t

t

]
= arctan

1

s
.

Using the integration in time property we have

LI [Si(t)] = LI

[
ˆ ∞

0

sin τ

τ
dτ

]
=

arctan(1/s)

s
.

Example 3.43 Evaluate the impulse response of the system characterized by the differential
equation

d2y

dt2
+ 3

dy

dt
+ 2y =

1

2

dx

dt
+ x

if y′(0) = 2, y(0) = 1, x(0) = 0. We have

d2y

dt2
+ 3

dy

dt
+ 2y =

1

2

dx

dt
+ x.

Using the differentiation property of the unilateral Laplace transform, in transforming both
sides of the equation, we obtain

s2Y (s)− sy(0+)− dy(0+)

dt
+ 3sY (s)− 3y(0+) + 2Y (s) =

1

2
sX(s)− 1

2
x(0+) +X(s).

Substituting the initial conditions y(0+) = 1 and
dy(0+)

dt
= 2, we have

(s2 + 3s+ 2)Y (s)− s− 2− 3 =
(s

2
+ 1
)
X(s).

If x(t) = δ(t), X(s) = 1

Y (s) =
(s+ 2)

2(s2 + 3s+ 2)
+

(s+ 5)

(s2 + 3s+ 2)

The second term of y(t) is due to the initial conditions. The first term is the impulse re-
sponse, being the response of the system to an impulse with zero initial conditions. Writing Y (s) =
H(s) + YI.C(s) we have

YI.C.(s) =
s+ 5

s2 + 3s+ 2
=

4

s+ 1
− 3

s+ 2
.

The impulse response is given by h(t) = L−1 [H(s)] = 1
2e
−tu(t), y(t) = h(t) + yI.C.(t) and

yI.C.(t) = L−1 [YI.C.(s)] = (4e−t − 3e−2t)u(t).
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FIGURE 3.17 Electric circuit with voltage source.

Example 3.44 Determine the expression of E2(s) = L[e2(t)] as a function of E1(s) for
the electric circuit shown in Fig. 3.17 if ec(0) 6= 0.

The loop equations are given by

(
2di1
dt

+ 3i1

)
−
(

2di2
dt

+ 2i2

)
= e1

−
(

2di1
dt

+ 2i1

)
+

(
2di2
dt

+ 3i2 + 2

ˆ

i2dt

)
= 0.

Laplace transforming the equations we have

(2s+ 3)I1(s)− (2s+ 2)I2(s) = E1(s) + 2[i1(0
+)− i2(0+)]

−(2s+ 2)I1(s) + (2s+ 3 + 2/s)I2(s) = −(2/s)i
(−1)
2 (0+)− 2[i1(0

+)− i2(0+)]

= − ec(0
+)

s
− 2iL(0+)

with iL(0+) = 0. Eliminating I1(s), we obtain

E2(s) = I2(s) =
(2s2 + 2s)E1(s)− (2s+ 3)ec(0

+)

4s2 + 9s+ 6
.

Example 3.45 Evaluate the Laplace transform of the alternating rectangles causal function
f(t) shown in Fig. 3.18. Evaluate the transform for the case a = 1. The base function for

FIGURE 3.18 Causal periodic function with alternating sign rectangles.
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this causal periodic function is given by

fT (t) = M

[
u(t)− u

(
t− a

2
T
)
− u

(
t− T

2

)
+ u

{
t− T

2
(1 + a)

}]
.

The Laplace transform of fT (t) is given by

FT (s) =
M

s

[
1− e−aTs/2 − e−Ts/2 + e−T (1+a)s/2

]
.

We deduce that the transform of f(t) is given by

F (s) =
M

s

(
1− e−aTs/2 − e−Ts/2 + e−T (a+1)s/2

)

(1− e−Ts)
.

With a = 1

F (s) =
M

s

(1− 2e−Ts/2 + e−Ts)

(1− e−Ts)
=
M

s

(1− e−Ts/2)2

(1− e−Ts/2)(1 + e−Ts/2)
=
M

s

(1 − e−Ts/2)

(1 + e−Ts/2)
.

3.18 Table of Additional Laplace Transforms

Additional Laplace transforms are listed in Tables 3.4 and 3.5. New extended bilateral
Laplace transforms thanks to a recent generalization of the Dirac-delta impulse are presented
in Chapter 18.
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TABLE 3.4 Additional Laplace transforms

f(t) F (s)

tν−1eαtu(t), ℜ[ν] > 0
Γ(ν)

(s− α)
ν

(
βeβt − αeαt

)
u(t)

(β − α) s

(s− α) (s− β)

t sinβt u(t)
2βs

(s2 + β2)
2

(sinβt+ βt cosβt)u(t)
2βs2

(s2 + β2)
2

t cosβt u(t)
s2 − β2

(s2 + β2)
2

t coshβt u(t)
s2 + β2

(s2 − β2)
2

t2 sinβt u(t)
2β
(
3s2 − β2

)

(s2 + β2)
3

t2 cosβt u(t)
2
(
s3 − 3β2s

)

(s2 + β2)
3

t2 coshβt u(t)
2
(
s3 + 3β2s

)

(s2 − β2)
3

t2 sinhβt u(t)
2β
(
3s2 + β2

)

(s2 − β2)
3

cosβt coshβt u(t)
s3

s4 + 4β4

(cosβt+ coshβt)u(t)
2s3

s4 − β4

e−aet

u(t), ℜ [a] > 0 asΓ (−s, a)

sin 2
√
at u(t)

√
πas−3/2e−a/s

cos 2
√
at√

πt
u(t)

e−a/s

√
s



Laplace Transform 143

TABLE 3.5 Additional Laplace transforms (contd.)

f(t) F (s)

sin 2
√
at u(t)

√
πa
e−a/s

s3/2

e−a2/(4t)

√
πt

u(t)
e−a
√

s

√
s

a

2
√
πt3

e−a2/(4t)u(t) e−a
√

s

erf

(
a

2
√
t

)
u(t)

1− e−a
√

s

s

erfc

(
a

2
√
t

)
u(t)

e−a
√

s

s

e−2
√

at

√
πt

u(t)
e−a/s

√
s

erfc[s/(2a)]

2a√
π
e−a2t2u(t)

es2/(4a2)erfc [s/ (2a)]

s

1

t
u(t) Ei(as)

1

t2 + a2
u(t) [cos as {π/2−Si(as)} − sin asCi(as)] /a

t

t2 + a2
u(t) sin as {π/2−Si(as)}+ cos asCi (as)

3.19 Problems

Problem 3.1 For the filter shown in Fig. 3.19, let the initial charge on the capacitor be

v (0) = v0. and let the input be the causal signal e (t) =

∞∑

n=0

e0(t− 2n) where e0 = tR1(t) =

t[u(t)−u(t−1)]. Evaluate the transient and steady-state components of the output v (t). Set
v0 so that the transient response be nil. Evaluate and sketch the output that results.

Problem 3.2

a) Evaluate the impulse response h (t) of the filter shown in Fig. 3.20.

b) Without Laplace transform evaluate the filter unit step response

c) Deduce the response y (t) of the filter to the input

x (t) = u (t)− u (t− 1) .
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FIGURE 3.19 R-C electric circuit.

R

L

+

-

y( )t1H

1W
+

-

e t( )

+

-

e t( )

FIGURE 3.20 R-L circuit.

d) Using Laplace transform and the filter transfer function evaluate the response of the
system to the input

x (t) =
∞∑

n=0

δ (t− n) .

Problem 3.3 Given a system with impulse response h (t) = e−tu (t), evaluate the response
y1 (t) and y2 (t) of this system to the inputs x1 (t) and x2 (t) where

x1 (t) = (1/k) [u (t)− u (t− k)]
x2 (t) =

(
t/k2

)
u (t)− 2

{
(t− k) /k2

}
u (t− k) +

{
(t− 2k) /k2

}
u (t− 2k) .

a) Sketch x1 (t) and x2 (t).

b) Confirm that as k −→ 0 the inputs
·
x1 (t) and x2 (t) tend to the Dirac-delta impulse

δ (t) by showing that the responses y1 (t) and y2 (t) tend to the impulse response h (t).

Problem 3.4 Let

h (t) =






t, 0 6 t 6 1
2− t, 1 6 t 6 2
0, otherwise

be the impulse response of a filter. Without using Laplace transform:
a) sketch the unit step response of the filter
b) sketch the response of the filter to the input

x (t) = u (t)− u (t− 4)

c) sketch its response to

v (t) =
∞∑

n=0

nT δ (t− nT ) , T = 1.

Problem 3.5 Evaluate the response y (t) of a system of transfer function

H (s) =
4s+ 2

s3 + 4s2 + 6s+ 4

to the input
x (t) = e−(t−1)u (t− 1) .
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Problem 3.6 Evaluate the transfer function of a system of which the impulse response is
u (t− 1). Sketch the step response of the system.

Problem 3.7 For the circuit shown in Fig. 3.20
a) Evaluate the transfer function H (s) between the input e (t) and output v (t)
b) Evaluate the system impulse response.
c) Evaluate the response of the circuit to the inputs

i) e1 (t) = RT (t) = u (t)− u (t− 1)

ii) e2 (t) =

∞∑

n=−∞
δ (t− n)

iii) e3 (t) =

∞∑

n=0

δ (t− n)

Problem 3.8 Let x (t) = x1 (t)+x2 (t) , v (t) = v1 (t)+v2 (t) where x1 (t) = u (t) , x2 (t) =
u (−t)

v1 (t) = sinβt u (t) , v2 (t) = sinβt u (−t) .
Evaluate Laplace and Fourier transform of x (t) and v (t) if they exist, stating the regions
of convergence and the reason if nonexistent.

Problem 3.9 Given the transfer function of a system

H (s) =
s+ 13

s2 + s− 6
.

For all possible regions of convergence of H (s) state whether the system is realizable and/or
stable.

Problem 3.10 Evaluate the inverse Laplace transform of F (s) =
as+ b

s2 + β2
.

Problem 3.11 Given v (t) = cos (t)Rτ (t), where τ > 0,
a) evaluate by successive differentiation the Laplace transform V (s) of v(t). State its ROC.
b) deduce the Laplace transform of cos tu(t) by evaluating lim

τ−→∞
V (s).

Problem 3.12 Evaluate the Laplace transform of each of the following signals, specifying
its ROC.
a) va (t) = −eαtu (β − t) , α > 0
b) vb (t) = (t/2) [u (t)− u (t− 2)]
c) vc (t) = e−2tu (−t) + e4tu (t)

Problem 3.13 Evaluate the impulse response h(t) of the systems having the following
transfer functions:

a) H(s) =
1

s+ 1
, ROC: ℜ [s] > −1.

b) H(s) =
1

s+ 1
, ROC: ℜ [s] < −1.

c) H(s) =
s

s+ 1
, ROC: ℜ [s] > −1.

d) H(s) =
s+ 1

s2 + 6s+ 8
, ROC: ℜ [s] > −2.

e) H(s) =
2s

s2 − s− 6
, ROC: −2 < ℜ [s] < +3.
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f) H(s) =
1

(s+ 1)2
, ROC: ℜ [s] > −1.

g) H(s) =
1

(s+ 1)
2
(s+ 2)

, ROC: ℜ [s] > −1.

Problem 3.14 Given the Laplace transform

X(s) =
5

s+ 4
− 2

s
.

Evaluate the inverse transform x(t) for all possible regions of convergence of X(s).

Problem 3.15 For a given signal x(t) the Laplace transform X(s) has poles at s = −10
and s = +10 and a zero at s = −2. Determine the ROC of X(s) under each of the
following conditions
a) x(t) = 0 for t < 5
b) x(t) = 0 for t > 0
c) The Fourier transform X (jω) of x(t) exists
d) The Fourier transform of x(t+ 10) exists
e) The Fourier transform of e−tx(t) exists
f) The Fourier transform of e−12tx(t) exists

R1

L

Cx2v t( )

R2

x1

y1( )t

y2( )t

FIGURE 3.21 RLC circuit.

Problem 3.16 For the circuit shown in Fig. 3.21, with v(t) the input, and y1(t) and y2(t)
the outputs
a) With R1 = 103Ω, R2 = 102Ω, L = 10 H and C = 10−3 F evaluate the transfer
function H (s) and the impulse response.
b) Assuming the initial conditions x1 (0) = 0.1 Amp, x2 (0) = 10 volts evaluate the response
of the circuit to the input v (t) = 100u (t) volts.

Problem 3.17 The switch S in the electric circuit depicted in Fig. 8.35 is closed at t = 0,
the circuit having zero initial conditions.

Evaluate the voltage drop x1 across the capacitor C and the current x2 through the in-
ductance L once the switch is closed.

FIGURE 3.22 RLC electric circuit
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Problem 3.18 For each of the following cases specify the values of the parameter α ensur-
ing the existence of the Laplace transform and that of the Fourier transform of x(t).
a) x(t) = e4tu (−t) + eαtu(t)
b) x(t) = u(t) + e−αtu (−t)
c) x(t) = e3tu(t)− eαtu(t)
d) x(t) = u (t− α) − e−3tu(t)
e) x(t) = e−3tu(t) + e−4tu (αt) , where α 6= 0
f) x(t) = cos (20πt)u (t) + α u (t)

Problem 3.19 For the function

f (t) =

M∑

i=1

Aie
αit sin (βit+ θi)u (t)

where
β1 > β2 > . . . > βM > 0

represent graphically the poles in the s plane, evaluate the Laplace transform and state if
the Fourier transform exists for the following three cases:

i) α1 > α2 > . . . > αM > 0, ii) α1 < α2 < . . . < αM < 0,
iii) α1 = α2 = . . . = αM = 0.

Problem 3.20 For each of the following signals evaluate the Laplace transform, the poles
with the ROC, and state whether or not the Fourier transform exists.

a) v1(t) =

P∑

i=1

Aie
−ait cos(bit+ θi)u(t) +

P∑

i=1

Bie
cit cos(dit+ φi)u(−t), where the ai, bi

and ci are distinct and bi > 0, di > 0, ai > 0, ci > 0, ∀ i
b) The same function v1(t) but with the conditions:

bi > 0, di > 0, ai > 0, ci < 0, ∀ i

c) The same function v1(t) but with the conditions:

bi > 0, ai = 0, Bi = 0, ∀ i

d) v2(t) = A cos(bt+ θ), −∞ < t <∞
e) v3(t) = Ae−t, −∞ < t <∞

Problem 3.21 Given the transfer function

H (s) =
2s+ 2

s2 + 2s+ 5
.

a) Evaluate and sketch the zeros and poles in the complex s plane.
b) Assuming that H (s) is the transfer function of an unstable system evaluate the system

impulse response h (t).
c) Assuming the frequency response H (jω) exists, state the ROC of H (s) and evaluate

h (t) and H (jω).

Problem 3.22 The signals f1 (t) , f2 (t) , . . . , f12 (t) shown in Fig. 3.23 are composed
of exponentials and exponentially damped sinusoids. For each of these signals

a) Without evaluating the Laplace transform nor referring to the ROC state whether or
not the signal has a Laplace transform and the basis for such conclusion.

b) Draw the ROC and deduce whether or not the Fourier transform exists.
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FIGURE 3.23 Exponential and damped sinusoidal signals.

Problem 3.23 Let X (s) be the Laplace transform of a signal x (t), where

X (s) =
1

s+ 1
+

1

s− 3
.

a) Given that the ROC of X (s) is ℜ [s] > 3, evaluate x (t). Evaluate the Fourier trans-
form X (jω) of x (t).

b) Redo part a) if the ROC is ℜ [s] < −1 instead.
c) Redo part a) if the ROC is, instead, −1 < ℜ [s] < 3.

Problem 3.24 Given the system transfer function

H (s) =
7s3 − s2 + 3s− 1

s4 − 1
(3.104)

a) Evaluate the poles and zeros of H (s).
b) Specify the different possible ROC’s of H (s).
c) Evaluate the system impulse response h (t), assuming that i) the system is causal, ii)

the system is anticausal, and iii) the system impulse response is two-sided.
d) Evaluate H (jω) the Fourier transform of h (t) if it exists. If it does not, explain why.

Problem 3.25 A causal linear system has an input v (t), and output y (t) and an impulse
response h (t). Assuming that the input v (t) is anticausal, i.e. v (t) = 0 for t > 0, that

V (s) =
s+ 2

s− 2

and that the output is given by y (t) = e−tu (t)− 2e2tu (−t).
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a) Evaluate and sketch the poles and zeros and the regions of convergence of V (s), H (s)
and Y (s).

b) Evaluate h (t).

c) Evaluate the system frequency response H (jω) and its output y (t) in response to the
input v (t) = cos (2t− π/3).

3.20 Answers to Selected Problems

Problem 3.1 See Fig. 3.24.

1 2 3 4 5 t

v tss( )

FIGURE 3.24 System total response.

Problem 3.2 a) h (t) = δ (t) − e−tu (t); b) y (t) = e−tu (t) − e−(t−1)u (t− 1); c)
X (s) = (1/1− e−s); d) yss (t) = δ (t)−e−tu (t)−C1e

−tu (t)+C1e
−(t−1)u (t− 1), ytr. (t) =

C1e
−tu (t).

Problem 3.3 See Fig. 3.25. lim
k−→0

Y2 (s) =
1

s+ 1

FIGURE 3.25 Two input signals, Problem 3.3.

Problem 3.4 See Fig. 3.26 and Fig. 3.27.

Problem 3.5 y (t) =
{
3 e−2(t−1) + 3.162 e−(t−1) cos (t− 2.893)− 2 e−(t−1)

}
u (t− 1). See

Fig. 3.28

Problem 3.7 ii) v2 (t) =
∞∑

n=−∞
h (t− n) =

∞∑
n=−∞

{
δ (t− n)− e−(t−n)u (t− n)

}
. iii) v3 (t) =

∞
Σ

n=0

{
δ (t− n)− e−(t−n)u (t− n)

}
.

Problem 3.8 X (s) and V (s) do not exist. X (jω) = F [1] = 2πδ(/omega). V (jω) =
V1 (jω) + V2 (jω) = (π/j) {δ (ω − β)− δ (ω + β)}. = F [sin βt].
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FIGURE 3.26 Impulse response of Problem 3.4.
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FIGURE 3.27 Results of Problem 3.4.

y t1( )

t

4
0

0.4

FIGURE 3.28 Figure for Problem 3.5.

Problem 3.9 1. σ > 2. Realizable, unstable. 2. σ < −3. Not realizable, unstable. 3.
−3 < σ < 2. Not realizable. Stable.

Problem 3.11 a) V (s) = (s+ sin τe−τs − s cos τe−τs)/(s2 + 1). ROC entire plane. b)
lim

τ→∞
V (s) = s/(s2 + 1), σ => 0

Problem 3.12 c) va (t) = −eαtu (β − t) = −eαβeα[t−β]u (− [t− β]) Va (s) = (eαβe−βs)/(s−
α), ROC: σ = ℜ [s] < α b) Vb (s) = (1/2) 1

s2 − (1/2) e−2s 1
s2 − e−2s 1

s , ROC: entire s plane.
c) No Laplace transform.

Problem 3.13 a) h (t) = e−tu (t); b) h (t) = −e−tu (t) + δ (t); d) h (t) = 1.5e−4tu (t) −
0.5e−2tu (t); e) h (t) = 0.8e−2tu (t)−1.6e+3tu (−t); f) h (t) = te−tu (t); g) h (t) = −e−tu (t)+
te−tu (t) + e−2tu (t)

Problem 3.14 1. ROC ℜ [s] < −4 : : h (t) = −5e−4tu (−t)+2u (−t). ROC−4 < ℜ [s] < 0 :
: h (t) = 5e−4tu (t) + 2u (−t). ROC ℜ [s] > 0 : h (t) = 5e−4tu (t)− 2u (t)

Problem 3.15 ROC’s: ℜ [s] < −10, −10 < ℜ [s] < +10 and ℜ [s] > 10. a) ℜ [s] > 10;
b) ℜ [s] < −10; c) −10 < ℜ [s] < +10; d) −10 < ℜ [s] < +10; e) −10 < ℜ [s] < +10 f)
ℜ [s] > 10.

Problem 3.16 a) H(s) = (s+ 10) /
(
s2 + 11 s+ 110

)
,

h(t) = 1.119 e−5.5t cos (8.93t− 0.467)u (t).
b) y(t) = 11.74 e−5.5t cos (8.93 t+ 0.552)u (t).

Problem 3.17 x2(t) = 2[(1/2)(1− e−2t)− (1/3)(1− e−3t)]u(t).
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Problem 3.18
a) x(t) = e4tu(-t)+ eαtu(t) ROC of X(s) : α < σ < 4, X(s) exists iff α <4,, X( j ω) exists
iff α ≤0
b) x(t) = u(t)+ e−αtu(-t) ROC of X(s) : 0 < σ < −α, X(s) exists iff α <0, X( j ω) exists
if α ≤0.
c) x(t) = e3tu(t) − eαtu(t) ROC: σ > max(3, α), X(s) exists for ∀ α , X( j ω) does not
exist.
d) x(t) = u(t-α) – e−3tu(t) ROC: σ > 0, X(s) exists for ∀ α , X( j ω) exists for ∀ α.
e) x(t) = e−3tu(t) + e−4tu(α t), where α 6=0. ROC: σ > −3 if α > 0, X(s) exists iff α >0,
X( j ω) exists iff α >0.
f) x(t) = cos(20π t)u(t) + α u(-t) ROC: σ > 0 iff α = 0, X(s) exists iff α = 0, X( j ω)
exists for ∀ α
Problem 3.21
a) Zero: s = −1. Poles: s = −1± j2
b) h (t) = −2e−t cos 2t u (−t).
c) h (t) = 2e−t cos 2t u (t).

Problem 3.22
a) f1 (t): Transform exists, f2 (t): No transform. f3 (t): No transform. f4 (t): Transform
exists. f5 (t): Transform exists. f6 (t): No transform. f7 (t): No transform. f8 (t):
Transform exists. f9 (t): Transform exists. f10 (t): No transform. f11 (t): Transform
exists. f12 (t): No transform.
b) f1 (t): No Fourier transform. f2 (t): No Fourier transform. f3 (t): No Fourier transform.
f4 (t): No Fourier transform. f5 (t): Transform exists. f6 (t): No Fourier transform. f7 (t):
No Fourier transform. f8 (t): No Fourier transform. f9 (t): No Fourier transform. f10 (t):
No Fourier transform. f11 (t): No Fourier transform. f12 (t): No Fourier transform.

Problem 3.23
a) x (t) = e−tu (t) + e3tu (t). X (jω) does not exist
b) x (t) = −e−tu (−t)− e3tu (−t). X (jω) does not exist
c) x (t) = e−tu (t)− e3tu (−t).

X (jω) =
1

jω + 1
+

1

jω − 3

Problem 3.24 See Fig. 3.29

FIGURE 3.29 System poles, Problem 3.24.

b)
i) h (t) =

(
2et + 3e−t + 2 cos t

)
u (t) (3.105)

ii) h (t) =
{
−2et − 3e−t − 2 cos t

}
u (−t) (3.106)
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iii) Case A: The ROC is 0 < σ < 1

h (t) =
(
3e−t + 2 cos t

)
u (t)− 2etu (−t) (3.107)

See Fig. 3.30.

FIGURE 3.30 Problem 3.24. Two possible ROCs.

Case B: The ROC is −1 < σ < 0

h (t) = 3e−tu (t)−
{
2et + 2 cos t

}
u (−t)

d)
Case A: H (jω) = 3

jω+1 + 2 F [cos t u (t)]− 2
jω−1

and F [cos t u (t)] = (1/2)
[

1
j(ω−1) + π δ (ω − 1) + 1

j(ω+1) + π δ (ω + 1)
]
.

Case B: H (jω) = 3
jω+1 − 2

jω−1 − 2 F [cos t u (−t)] ,

cos t u (−t)←→ 1
2 [−1/ [j (ω − 1)]− 1/ [j (ω + 1)] + π δ (ω − 1) + π δ (ω + 1)].

Problem 3.25
a) See Fig. 3.31.

t

-2 (- )e u t2t

0

v t( )

s

jw

H s( )

-2 0-1

(c)(b)

t

e u( )
-t

t

0

h t( )

(a)

s

jw

Y s( )

2-1 0

(e)

s

jw

V s( )

2-2 0

(d)

1

-2

FIGURE 3.31 Figure for Problem 3.25.

b) h (t) =
(
−3e−t + 6e−2t

)
u (t)

c) y (t) = 0.9487 cos(2t+ 1.7726) .
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Fourier Transform

In Chapter 3 we have studied the Laplace transform and noted that a special case thereof is
the Fourier transform. As we shall note in this chapter, the Fourier transform, similarly to
the bilateral Laplace transform, decomposes general two-sided functions, those defined over
the entire time axis −∞ < t <∞. We shall also note that by introducing distributions, and
in particular, impulses, their derivatives and integrals, we can evaluate Fourier transforms of
functions that have no transform in the ordinary sense, such as infinite duration two-sided
periodic functions.

4.1 Definition of the Fourier Transform

The Fourier transform of a generally complex function f (t), when it exists, is given by

F (jω) =

ˆ ∞

−∞
f (t) e−jωtdt. (4.1)

We write F (jω) = F [f (t)] and f (t)
F←→ F (jω). The inverse Fourier transform f (t) =

F−1 [F (jω)] is written:

f (t) =
1

2π

ˆ ∞

−∞
F (jω) ejωtdω. (4.2)

As in the previous chapter, in what follows the Laplace complex frequency variable is written
as s = σ + jω. We note that when it exists, the Fourier transform F (jω) can be written
in the form

F (jω) =

ˆ ∞

−∞
f (t) e−stdt

∣∣∣∣
s=jω

= F (s)|s=jω . (4.3)

The Fourier transform is thus the Laplace transform evaluated on the vertical axis s = jω
in the s plane. The substitution s = jω is permissible and produces the Fourier transform
if and only if the s = jω axis is in the ROC of F (s). We shall see shortly that in addition
the Fourier transform exists if the s = jω axis is the boundary line of the ROC of Laplace
transform.

Example 4.1 Evaluate F (jω) if f (t) = e−αtu (t) , α > 0.
We have

F (s) =
1

s+ α
, σ = ℜ [s] > −α.

The ROC of F (s) includes the jω axis, as seen in Fig. 4.1; hence

F (jω) = F (s)|s=jω =
1

α+ jω
=

1√
α2 + ω2

e−j arctan(ω/α).

153
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FIGURE 4.1 Laplace transform ROC.

Example 4.2 Evaluate F (jω) given that f (t) = e−α|t|.

Referring to Fig. 4.2 we have

F (s) =
1

s+ α
+

1

−s+ α
, −α < σ < α.

FIGURE 4.2 Two-sided exponential and ROC.

The ROC of F (s) exists if and only if α > 0 in which case it includes the axis σ = 0
in the s plane, the Fourier transform F (jω) exists and is given by

F (jω) =
1

jω + α
− 1

jω − α =
2α

α2 + ω2
, α > 0.

NOTE: If α = 0 the function f(t) becomes the unity two-sided function, f(t) = 1,
the region of convergence (ROC) strip shrinks to a line, the jω axis itself, and as we
shall subsequently see the Fourier transform is given by F (jω) = 2πδ(ω). In this case
according to the current literature the Laplace transform does not exist. As observed in the
previous chapter a recent development [19] [21] [23] [27] extends the domains of Laplace
and z-transform. Among the results is that the Laplace transform of f(t) = 1 and more
complex two-sided functions are made to exist, and that the Fourier transform can be
directly deduced thereof, as we shall see in Chapter 18.
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4.2 Fourier Transform as a Function of f

In this section we focus our attention on a variant of the definition of the Fourier transform
which defines the transform as a function of the frequency f in Hz rather than the angular
frequency ω in r/s.

In what follows, using the notation F (f), which employs the special sans serif font
F, rather than the usual roman F , to designate the Fourier transform of a function f(t)
expressed as a function of f in Hz, we have

F (f) = F (jω)|ω=2πf = F (j2πf) =

ˆ ∞

−∞
f (t) e−j2πftdt. (4.4)

Since ω = 2πf , dω = 2πdf the inverse transform is given by

f (t) =
1

2π

ˆ ∞

−∞
F (j2πf) ej2πft2π df =

ˆ ∞

−∞
F (f) ej2πftdf. (4.5)

To simplify the notation the transform may be denoted F (jw) meaning F (f). In de-
scribing relations between F (f) and F (jω) it would be judicious to use the more precise
notation, namely, F (f).

Example 4.3 Let
f (t) = e−αtu (t) , α > 0.

Evaluate the Fourier transform expressed in ω r/s and in f Hz.
We have

F (jω) =
1

jω + α

F (f) =
1

j2πf + α
.

It is worthwhile noticing that in the case of transforms containing distributions such as
impulses and their derivatives, or integrals, which we shall study shortly, the expression of
a transform F (f) will be found to differ slightly from that of F (jω). The following example
illustrates this point. It uses material to be studied in more detail shortly, but is included
at this point since it is pertinent in the present context.

Example 4.4 Let f (t) = cos (βt), where β = 2πf0 and f0 = 100 Hz. Evaluate F (jω)
and F (f).

We shall see shortly that the Fourier transform F (jω) is given by

F (jω) = π [δ (ω − β) + δ (ω + β)] = π [δ (ω − 200π) + δ (ω + 200π)] .

To evaluate F (f) we can write:

F (f) = F (jω) |ω=2πf = π [δ (2πf − β) + δ (2πf + β)] .

Using the scaling property δ (ax) = (1/ |a|)δ (x) we have

F (f) = (1/2)

[
δ

(
f − β

2π

)
+ δ

(
f +

β

2π

)]

i.e.
F (f) = (1/2) [δ (f − f0) + δ (f + f0)] .
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4.3 From Fourier Series to Fourier Transform

Let f (t) be a finite duration function defined over the interval (−T/2, T/2). We have seen
in Chapter 2 that the function f (t), or equivalently its periodic extension, can be expanded
into a Fourier series with exponential coefficients Fn that represent a discrete spectrum,
function of the harmonic frequencies ω = nω0 r/s, n = 0, ±1, ±2, ±3, . . ., where
ω0 = 2π/T . For our present purpose we shall write F (jnω0) to designate T Fn

F (jnω0) =△TFn =

ˆ T/2

−T/2

f (t) e−jnω0tdt. (4.6)

We now view the effect of starting with a finite duration function and its Fourier series
and see the effect of increasing its duration T toward infinity. We note that by increasing
the finite duration T of the function until T −→ ∞ the fundamental frequency ω0 tends
toward a small value ∆ω which ultimately tends to zero:

ω0 −→ ∆ω −→ 0. (4.7)

Meanwhile the Fourier series sum tends to an integral, the spacing ω0 between the coef-
ficients tending to zero and the discrete spectrum tending to a function of a continuous
variable ω. We can write

lim
T−→∞

F (jnω0) = lim
∆ω−→0

F (jn∆ω) = lim
T−→∞

ˆ T/2

−T/2

f (t) e−jn∆ωtdt. (4.8)

With ∆ω −→ 0, n∆ω −→ ωand under favorable conditions such as Dirichlet’s we may
write in the limit

F (jω) =

ˆ ∞

−∞
f (t) e−jωtdt. (4.9)

This is none other than the definition of the Fourier transform of f (t). We conclude that
with the increase of the signal duration the Fourier series ultimately becomes the Fourier
transform.

Example 4.5 For the function f (t) shown in the Fig. 4.3 (a) evaluate the coefficients Fn

of Fourier series for a general value τ , and for τ = 1, with:
i) T = 2τ , ii) T = 4τ , iii) T = 8τ , iv) T −→∞.

Represent schematically the discrete spectrum F (jnω0) = TFn as a function of ω = nω0

for the first three cases, and the spectrum F (jω) for the fourth case.
We have

Fn =
1

T

ˆ τ/2

−τ/2

e−jnω0tdt =
τ

T

ejnω0
τ
2 − e−jnω0

τ
2

2jnω0
τ

2

=
τ

T
Sa
(
nπ

τ

T

)
.

i) Fn =
1

2
Sa
(
n
π

2

)
, ii) Fn =

1

4
Sa
(
n
π

4

)
, iii) Fn =

1

8
Sa
(
n
π

8

)
.

In the fourth case, as T −→∞ the function becomes the centered rectangle of total width
τ shown in Fig. 4.3 (b).

This function will be denoted by the symbol Πτ/2(t). As T −→∞, therefore, the function
becomes

f(t) = Πτ/2 (t) = u (t+ τ/2)− u (t− τ/2)
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FIGURE 4.3 (a) Train of rectangular pulses, (b) its limit as T −→∞.

The Fourier transform of f(t) is F (jω) = τSa (ωτ/2) . The spectra F (jnω0) = TFn are
given by

i) F (jnω0) = Sa
(
n
π

2

)
, ii) F (jnω0) = Sa

(
n
π

4

)
,

iii) F (jnω0) = Sa
(
n
π

8

)
, iv) F (jω) = τSa(τω/2) = Sa(ω/2).

These spectra, shown in Fig. 4.4, illustrate the transition from the Fourier series discrete
spectrum to the continuous Fourier transform spectrum as the function period T tends to
infinity.

4.4 Conditions of Existence of the Fourier Transform

The following Dirichlet conditions, are sufficient for the existence of the Fourier transform
of a function f (t)

1. The function f (t) has a single value for every value t, it has a finite number of maxima
and minima and a finite number of discontinuities in every finite interval.

2. The function f (t) is absolutely integrable, i.e.

ˆ ∞

−∞
|f (t)|dt <∞. (4.10)

Since the Fourier transform F (jω) is generally complex we may write

F (jω) = Fr (jω) + jFi (jω) (4.11)

where Fr (jω)=△ℜ [F (jω)], Fi (jω)=△ℑ [F (jω)] and in polar notation

F (jω) = A (ω) ejφ(ω) (4.12)

so that the amplitude spectrum A (ω) is given by A (ω) = |F (jω)| and the phase spectrum
φ (ω) is given by φ (ω) = arg [F (jω)].
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1
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FIGURE 4.4 Effect of the pulse train period on its discrete spectrum.

4.5 Table of Properties of the Fourier Transform

Table 4.1 lists basic properties of the Fourier transform. In the following we state and prove
some of these properties.
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TABLE 4.1 Properties of Fourier transform

Property Function Transform

Linearity αf1 (t) + βf2 (t) , αF1 (jω) + βF2 (jω)
α and β constants

Duality F (jt) 2πf (−ω)

Time Scale f (at) , a constant
1

|a| F
(
j
ω

a

)

Reflection f (−t) F (−jω)

Time shift f (t− t0) F (jω) e−jt0ω

Frequency shift ejω0tf (t) F [j (ω − ω0)]

Initial value in time f (0)
1

2π

ˆ ∞

−∞
F (jω) dω

Initial value in frequency

ˆ ∞

−∞
f (t) dt F (0)

Differentiation in time f (n) (t) (jω)
n
F (jω)

Differentiation in frequency tnf (t) jnF (n) (jω)

Integration in time

ˆ t

−∞
f (τ) dτ

F (jω)

jω
+ πF (0) δ (ω)

Conjugate functions f∗ (t) F ∗ (−jω)

Multiplication in time f1 (t) f2 (t)
1

2π

ˆ ∞

−∞
F1 (jy)

F2 {j (ω − y)} dy

Multiplication in frequency

ˆ ∞

−∞
f1 (τ) f2 (t− τ) dτ F1 (jω)F2 (jω)

Parseval Relation

ˆ ∞

−∞
|f (t)|2 dt =

1

2π

ˆ ∞

−∞
|F (jω)|2 dω

4.5.1 Linearity

a1f1 (t) + . . .+ anfn (t)
F←→ a1F1 (jω) + . . .+ anFn (jω) . (4.13)
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4.5.2 Duality

F (jt)←→ 2πf (−ω) . (4.14)

Proof Since

f (t) =
1

2π

ˆ ∞

−∞
F (jω) ejωtdω

if we write t = −τ we have

2πf (−τ) =

ˆ ∞

−∞
F (jω) e−jωτdω.

Replacing ω by t

2πf (−τ) =

ˆ ∞

−∞
F (jt) e−jtτdt

and replacing τ by ω

2πf (−ω) =

ˆ ∞

−∞
F (jt) e−jωtdt = F [F (jt)] .

Example 4.6 Apply the duality property to the function of Example 4.2, with α = 1, i.e.
f (t) = e−|t|.
Since F (jω) = 2/(ω2 + 1), the transform of g (t) = F (jt) = 2/(t2 + 1) is G (jω) =
2πf (−ω) = 2πe−|ω|, as shown in Fig. 4.5.

FIGURE 4.5 Duality property of the Fourier transform.

Example 4.7 Apply the duality property to the Fourier transform of the function f (t) =
e−tu (t) + e2tu (−t) .

F (jω) =
1

jω + 1
− 1

jω − 2
=

3
(
ω2 + 2− jω

)

ω4 + 5ω2 + 4
.

From the duality property, with

g (t) = F (jt) =
3
(
t2 + 2− jt

)

t4 + 5t2 + 4
,

G (jω) = F [F (jt)] = 2πf (−ω) = 2π
{
eωu(−ω) + e−2ωu(ω)

}
.
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4.5.3 Time Scaling

If a is a real constant then

f (at)
F←→ 1

|a| F
(
jω

a

)
. (4.15)

The proof is the same as seen in the context of Laplace transform.

Example 4.8 Using F [f (t)] where f (t) = ΠT/2 (t) evaluate the transform of f (10t).

We have F (jω) = T Sa (Tω/2 ). For g(t) = f (10t) = u (t+ T/20) − u (t− T/20) =
ΠT/20 (t), Fig. 4.6, we have G (jω) = (T/10)Sa (Tω/20 ) as can be obtained by direct
evaluation.

FIGURE 4.6 Compression of a rectangular function.

4.5.4 Reflection

f (−t) F←→ F (−jω) . (4.16)

This property follows from the time scaling property with a = −1.

4.5.5 Time Shift

f (t− t0) F←→ F (jω) e−jt0ω. (4.17)

With F (jω) = A (ω) ejφ(ω), the property means that

f (t− t0) F←→ A (ω) ej[φ(ω)−t0ω]

so that if f (t) is shifted in time by an interval t0 then its Fourier amplitude spectrum
remains the same while its phase spectrum is altered by the linear term −t0ω.

Proof Letting x = t− t0 we have
ˆ ∞

−∞
f (t− t0) e−jωtdt =

ˆ ∞

−∞
f (x) e−jω(t0+x)dx = F (jω) e−jt0ω.

4.5.6 Frequency Shift

ejω0tf (t)
F←→ F [j (ω − ω0)] . (4.18)

Indeed
ˆ ∞

−∞
f (t) ejω0te−jωtdt =

ˆ ∞

−∞
f (t) e−j(ω−ω0)tdt = F [j (ω − ω0)] .
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4.5.7 Modulation Theorem

FIGURE 4.7 Modulation and the resulting spectrum.

Consider a system where a signal f (t) is modulated by being multiplied by the si-
nusoid cos (ωct) usually referred to as the carrier signal. producing the signal g (t) =
f (t) cos (ωct) . The angular frequency ωc is called the carrier frequency. According to this

property, if f (t)
F←→ F (jω) then

f (t) cosωct←→
1

2
[F {j (ω + ωc)}+ F {j (ω − ωc)}] . (4.19)

Proof We have

f (t) cos (ωct) =
1

2

[
f (t) ejωct + f (t) e−jωct

]
.

From the frequency shift property

G (jω) = F [f (t) cos (ωct)] =
1

2
[F {j (ω + ωc)}+ F {j (ω − ωc)}] .

Similarly, we can show that

f (t) sin (ωct)
F←→ −j

2
[F {j (ω − ωc)} − F {j (ω + ωc)}] . (4.20)

The spectra F (jω) and G (jω) of a function f (t) and its modulated version g (t) are shown
in Fig. 4.7. For example if f (t) = e−tu (t) and g (t) = f (t) cosω0t, where ω0 = 10π, the
spectra F (jω) = 1/ (jω + 1) and G (jω) are shown in Fig. 4.8
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FIGURE 4.8 Spectrum of a function before and after modulation.

Example 4.9 Evaluate the Fourier transform of

f (t) = ΠT/2 (t) cos (ω0t) .

FIGURE 4.9 Modulated rectangle.

The function f (t) is shown in Fig. 4.9. The Fourier transform of the centered rectangle
function ΠT/2 (t) is F

[
ΠT/2 (t)

]
= T Sa (ωT/2), wherefrom

ΠT/2 (t) cos (ω0t)
F←→ (T/2) [Sa {(ω − ω0)T/2}+ Sa {(ω + ω0)T/2}] .

4.5.8 Initial Time Value

From Equation (4.2)

f (0) =
1

2π

ˆ ∞

−∞
F (jω)dω. (4.21)

4.5.9 Initial Frequency Value

From Equation (4.1)

F (0) =

ˆ ∞

−∞
f (t) dt. (4.22)

.
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4.5.10 Differentiation in Time

If f (t) is a continuous function, then

F
[
df (t)

dt

]
= jωF (jω) . (4.23)

Proof We have

f (t) =
1

2π

ˆ ∞

−∞
F (jω) ejωtdω

df (t)

dt
=

1

2π

d

dt

ˆ ∞

−∞
F (jω) ejωtdω

df (t)

dt
=

1

2π

ˆ ∞

−∞

d

dt
F (jω) ejωtdω =

1

2π

ˆ ∞

−∞
jωF (jω) ejωtdω

= F−1[jωF (jω)]

as asserted. Similarly we can show that the Fourier transform of the function

f (n)
=△
dn

dtn
f (t) (4.24)

when it exists, is given by

F
[
f (n)

]
= (jω)

n
F (jω) . (4.25)

4.5.11 Differentiation in Frequency

d

dω
F (jω) =

ˆ ∞

−∞
−jtf (t) e−jωtdt = F [−jtf (t)] (4.26)

so that (−jt) f (t)
F←→ dF (jω)/dω. Differentiating further we obtain

(−jt)n f (t)
F←→ dn

dω
F (jω) . (4.27)

4.5.12 Integration in Time

F
[
ˆ t

−∞
f (τ) dτ

]
=
F (jω)

jω
, F (0) = 0. (4.28)

Proof Let

w (t) =

ˆ t

−∞
f (τ) dτ.

For w (t) to have a Fourier transform it should tend to 0 as t −→∞, i.e.
ˆ ∞

−∞
f (τ) dτ = F (0) = 0.

and since f (t) = dw (t)/dt, we have F (jω) = jωW (jω) so that, as stated,

W (jω) = F (jω)/jω.

An n-fold integration leads to F (jω) / (jω)
n
. We shall shortly see that the transform of

the unit step function u(t) is

F [u (t)] = πδ (ω) +
1

jω
. (4.29)
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If F (0) 6= 0, i.e. if w (t) =

ˆ ∞

−∞
f (τ) dτ 6= 0 we can express the function w (t) as a

convolution of f(t) with the unit step function u(t)

w (t) = f (t) ∗ u (t)=△
ˆ ∞

−∞
f (τ) u (t− τ) dτ (4.30)

since the right-hand side can be rewritten as

ˆ t

−∞
f (τ) dτ . Using the property that convo-

lution in the time domain corresponds to multiplication in the frequency domain we may
write

W (jω) = F [w(t)] = F (jω) · F [u (t)] = F (jω)

{
πδ (ω) +

1

jω

}
(4.31)

F
[
ˆ t

−∞
f (τ) dτ

]
=
F (jω)

jω
+ πF (0) δ (ω) (4.32)

which is a more general result.

4.5.13 Conjugate Function

Let w (t) = f∗ (t), i.e. w (t) is the conjugate of f (t). We have

W (jω) =

ˆ ∞

−∞
f∗ (t) e−jωtdt =

{
ˆ ∞

−∞
f (t) ejωtdt

}∗
= F ∗ (−jω) (4.33)

i.e. F [f∗ (t)] = F ∗ (−jω) .

4.5.14 Real Functions

We have so far assumed the function f (t) to be generally complex. If f (t) is real we may
write

F (−jω) =

ˆ ∞

−∞
f (t) ejωtdt =

{
ˆ ∞

−∞
f (t) e−jωtdt

}∗
= F ∗ (jω) (4.34)

i.e. |F (−jω)| = |F (jω)|; arg |F (−jω)| = − arg |F (jω)| . With

Fr (jω)=△ℜ [F (jω)] =

ˆ ∞

−∞
f (t) cosωt dt (4.35)

Fi (jω)=△ℑ [F (jω)] = −
ˆ ∞

−∞
f (t) sinωt dt (4.36)

we have Fr (−jω) = Fr (jω), Fi (−jω) = −Fi (jω), that is, Fr (jω) is an even function and
Fi (jω) is odd. The inverse transform is written

f (t) =
1

2π

ˆ ∞

−∞
F (jω) ejωtdω =

1

2π

{
ˆ ∞

−∞
F (jω) cosωt dω + j

ˆ ∞

−∞
F (jω) sinωt dω

}

wherefrom using the symmetry property of Fr (jω) and Fi (jω),

f (t) =
1

π

{
ˆ ∞

0

Fr (jω) cosωt dω −
ˆ ∞

0

Fi (jω) sinωt dω

}
. (4.37)

We can also write F (jω) = |F (jω)| ej arg[F (jω)] = A (ω) ejφ(ω)

f (t) =
1

π

{
ˆ ∞

0

[A (ω) cos {φ (ω)} cosωt−A (ω) sin {φ (ω)} sinωt]dω

}

=
1

π

ˆ ∞

0

A (ω) cos {ωt+ φ (ω)} dω.
(4.38)
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4.5.15 Symmetry

We have seen that the Fourier transform of a real function has conjugate symmetry. We
now consider the effect of time function symmetry on its transform.

i) Real Even Function

Let f (t) be a real and even function, i.e. f (−t) = f (t). We have

F (jω) =

ˆ ∞

−∞
f (t) (cosωt− j sinωt) dt (4.39)

Fr (jω) = 2

ˆ ∞

0

f (t) cosωt dt (4.40)

Fr (−jω) = Fr (jω), Fi (jω) = 0, that is, the transform of a real and even function is real
(and even). The inverse transform is written

f (t) =
1

2π

ˆ ∞

−∞
Fr (jω) ejωtdw =

1

π

ˆ ∞

0

Fr (jω) cosωt dω. (4.41)

ii) Real Odd Function

Let f (t) be real and odd, i.e. f (−t) = −f (t). We have Fr (jω) = 0

Fi (jω) = −2

ˆ ∞

0

f (t) sinωt dt (4.42)

Fi (−jω) = −Fi (jω), that is, the transform of a real and odd function is imaginary (and
odd). The inverse transform is written

f (t) =
1

2π

ˆ ∞

−∞
jFi (jω) ejωtdω =

1

π

ˆ ∞

0

Fi (jω) sinωt dω. (4.43)

4.6 System Frequency Response

Given a linear system with impulse response h (t) we have seen that its transfer function,
also called system function, is given by H (s) = L [h (t)]. As stated earlier, the frequency
response of the system is H (jω) = F [h (t)]. We deduce that the frequency response exists
if the transfer function exists for s = jω, and may be evaluated as its value on the jω axis
in the s plane.

Example 4.10 Evaluate the transfer function and the frequency response of the system of
which the impulse response is given by h (t) = e−αt sin (βt)u (t) , α > 0.

The frequency response is

H (jω) = F [h (t)] = H (s)|s=jω =
β

(jω + α)
2
+ β2

= A(ω)ejφ(ω).

The impulse response h(t), the amplitude and phase spectra A(ω) and φ(ω) are shown in
Fig. 4.10.
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FIGURE 4.10 Damped sinusoid and its spectrum.

4.7 Even–Odd Decomposition of a Real Function

Let f (t) be a real function. As we have seen in Chapter 1, we can decompose f (t) into a sum
of an even component fe (t) = (f (t) + f (−t))/2, and an odd one fo (t) = (f (t)− f (−t))/2,
so that

Fe (jω) = F [fe (t)] = 2

ˆ ∞

0

fe (t) cosωt dt (4.44)

Fo (jω) = F [fo (t)] = −j
ˆ ∞

−∞
fo (t) sinωt dt = −2j

ˆ ∞

0

fo (t) sinωt dt. (4.45)

Since fe (t) and fo (t) are real even and real odd respectively their transforms Fe (jω) and
Fo (jω) are real and imaginary respectively. Now F (jω) = Fe (jω)+Fo (jω), and by defini-
tion F (jω) = Fr (jω) + jFi (jω), wherefrom Fr (jω) = Fe (jω), and Fi (jω) = Fo (jω)/j,
i.e.

Fr (jω) = 2

ˆ ∞

0

fe (t) cosωt dt (4.46)

Fi (jω) = −2

ˆ ∞

0

fo (t) sinωt dt (4.47)

and recalling that for f (t) real, Fr (jω) and Fi (jω) are even and odd respectively we have
the inverse relations

fe (t) = F−1 [Fr (jω)] =
1

π

ˆ ∞

0

Fr (jω) cosωt dω (4.48)

fo (t) = F−1 [jFi (jω)] = − 1

π

ˆ ∞

0

Fi (jω) sinωt dω. (4.49)



168 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

4.8 Causal Real Functions

We show that a causal function f (t) can be expressed as a function of Fr (jω) alone or
Fi (jω) alone. For t > 0 we have f (−t) = 0, wherefrom

f (t) =






2fe (t) = 2fo (t) , t > 0
fe (0) , t = 0
0, otherwise.

(4.50)

Using the equations of fe (t) and fo (t)

f (t) =
2

π

ˆ ∞

0

Fr (jω) cosωt dω = − 2

π

ˆ ∞

0

Fi (jω) sinωt dω, t > 0 (4.51)

and

f (0) =
1

π

ˆ ∞

0

Fr (jω) dω =
f (0+)

2
(Gibbs phenomenon). (4.52)

Knowing Fr (jω) we can deduce f (t), using

f (t) =
2

π

ˆ ∞

0

Fr (jω) cosωt dω, t > 0 (4.53)

and Fi (jω) can be evaluated using f (t) or directly from Fr (jω)

Fi (jω) = −
ˆ ∞

0

f (t) sinωt dt = − 2

π

ˆ ∞

0

ˆ ∞

0

Fr (jy) cos(yt) sinωt dy dt. (4.54)

Similarly Fr (jω) can be deduced knowing Fi (jω)

Fr (jω) =

ˆ ∞

0

f (t) cosωt dt = − 2

π

ˆ ∞

0

ˆ ∞

0

Fi (jy) sin(yt) cosωt dy dt. (4.55)

FIGURE 4.11 Causal function, even and odd components.

We conclude that if a system impulse response h(t) is a causal function, as shown in Fig.
4.11, we may write the following relations, where H (jω) = HR (jω) + jHI (jω)

h (0) =
1

2π

ˆ ∞

−∞
H (jω) dω (4.56)
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[
h
(
0+
)

+ h
(
0−
)]
/2 =

1

2π

ˆ ∞

−∞
H (jω)dω (4.57)

h
(
0+
)

=
1

π

ˆ ∞

−∞
HR (jω)dω =

2

π

ˆ ∞

0

HR (jω) dω (4.58)

h (t) = he (t) + ho (t) . (4.59)

Since he (t)←→ HR (jω), ho (t)←→ jHI (jω)
ˆ ∞

−∞
h2

e (t) dt =
1

2π

ˆ ∞

−∞
H2

R (jω) dω (4.60)

ˆ ∞

−∞
h2

o (t) dt =
1

2π

ˆ ∞

−∞
H2

I (jω) dω (4.61)

ˆ ∞

0

h2 (t) dt =
2

π

ˆ ∞

0

H2
R (jω) dω. (4.62)

More formal relations between the real and imaginary parts of the spectrum, known as
Hilbert transforms, will be derived in Chapter 14.

4.9 Transform of the Dirac-Delta Impulse

For f (t) = δ (t),

F (jω) =

ˆ ∞

−∞
δ (t) e−jωtdt = 1 (4.63)

as shown in Fig. 4.12. δ (t)
F←→ 1.

FIGURE 4.12 Impulse and transform.

We deduce from the time shifting property that δ (t− t0) F←→ e−jωt0 , as represented in Fig.
4.13.

4.10 Transform of a Complex Exponential and Sinusoid

The transform of unity is given by

F [1] =

ˆ ∞

−∞
e−jωtdt = 2πδ (ω) . (4.64)
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t w0 0

1

f t( ) F ( )wj

1 | ( )|F wj

arg [ j ]F ( )wt0

FIGURE 4.13 Delayed impulse and transform.

Note that since δ (t)
F←→ 1, using duality, 1

F←→ 2πδ (−ω) = 2πδ (ω), as shown in Fig.
4.14.

FIGURE 4.14 Unit constant and its Fourier transform.

Using the shift-in frequency property,

ejω0t F←→ 2πδ (ω − ω0) .

f t( )

jp

-w0
t w0 0

1

F ( )wj

w0

-jp

FIGURE 4.15 Sine function and its transform.

For f (t) = sin (ω0t) = 1
2j (ejω0t − e−jω0t)

F (jω) = jπ [δ (ω + ω0)− δ (ω − ω0)] (4.65)

as shown in Fig. 4.15. For f (t) = cos (ω0t) = 1
2

(
ejω0t + e−jω0t

)
,

F (jω) = π [δ (ω + ω0) + δ (ω − ω0)] (4.66)

as shown in Fig. 4.16.
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FIGURE 4.16 Cosine function and its transform.

4.11 Sign Function

The sign function f (t) = sgn (t), seen in Fig. 4.17, is equal to 1 for t > 0 and -1 for
t < 0. With K a constant, we can write (d/dt) [sgn (t) +K] = 2δ (t),

F
[
d

dt
{sgn (t) +K}

]
= jωF [sgn (t) +K] = 2 (4.67)

jωF [sgn (t)] + jω2πK δ (ω) = 2 (4.68)

F [sgn (t)] = 2/(jω)− 2πK δ (ω) . (4.69)

The value of K should be such that

sgn (t) + sgn (−t) = 0 (4.70)

i.e.
[2/(jω)− 2πK δ (ω)] + [2/(−jω)− 2πK δ (ω)] = 0 (4.71)

wherefrom K = 0 and, as depicted in Fig. 4.17,

F [sgn (t)] = 2/(jω). (4.72)

FIGURE 4.17 Signum function and its transform.
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4.12 Unit Step Function

Let f (t) = u (t). Writing u (t) = 1/2 + (1/2) sgn (t), we have

u (t)
F←→ πδ (ω) + 1/(jω).

Now F (s) = L [u (t)] = 1
s , σ > 0. The pole is on the s = jω axis; the boundary of the

ROC. The Fourier transform is thus equal to the value of the Laplace transform on the jω
axis plus an impulse due to the pole.

4.13 Causal Sinusoid

Let f (t) = cos (ω0t)u (t). Using the modulation theorem we can write

cos (ω0t)u (t)
F←→ π

2
[δ (ω − ω0) + δ (ω + ω0)] +

1

2j (ω − ω0)
+

1

2j (ω + ω0)
F←→ π

2
[δ (ω − ω0) + δ (ω + ω0)] +

jω

(ω2
0 − ω2)

.
(4.73)

The function, its poles and Fourier transform are shown in Fig. 4.18. Similarly,

sin (ω0t)u (t)
F←→ π

2j
[δ (ω − ω0)− δ (ω + ω0)] +

ω0

(ω2
0 − ω2)

. (4.74)

t

-jw

jw

jw

s

-w w w

p/2

f t( ) F( jw)

0

-p/2

FIGURE 4.18 Causal sinusoid and its transform.

4.14 Table of Fourier Transforms of Basic Functions

Table 4.2 shows Fourier transforms of some basic functions.
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TABLE 4.2 Fourier Transforms of some basic functions

f (t) F (jω)

sgn t 2/(jω)

e−αtu(t), α > 0
1

α+ jω

te−αtu(t), α > 0
1

(α+ jω)
2

|t| −2/ω2

δ(t) 1
δ(n)(t) (jω)n

1 2πδ (ω)
ejω0t 2πδ (ω − ω0)
tn 2πjnδ(n)(ω)
1/t −jπsgn (ω)

u (t) πδ (ω)+
1

jω
tnu(t) n!/ (jω)

n+1
+ πjnδ(n) (ω)

tu(t) jπδ′(ω)− 1/ω2

t2u(t) −πδ′′(ω) + j2/ω3

t3u(t) −jπδ(3)(ω) + 3!/ω4

cosω0t π [δ (ω − ω0) + δ (ω + ω0)]
sinω0t jπ [δ (ω + ω0)− δ (ω − ω0)]

cosω0t u (t)
π

2
[δ ( ω − ω0)+δ (ω + ω0)] +

jω

ω2
0 − ω2

sinω0t u (t)
π

2j
[δ ( ω − ω0)−δ (ω + ω0)]+

ω0

ω2
0 − ω2

e−αt sinω0t u(t), α > 0
ω0

(α+ jω)2 + ω2
0

Πτ (t) 2τSa [ωτ ]
W

π
Sa [Wt] ΠW (ω)

Λτ (t) =

{
1− |t|

τ
, |t| < τ

0, |t| > τ
τ
[
Sa
(ωτ

2

)]2

W

2π

[
Sa

(
Wt

2
t

)]2
ΛW (ω)

e−α|t|, α > 0
2α

α2 + ω2

e−t2/(2σ2) σ
√

2πe−σ2ω2/2

ρT (t) =
∞∑

n=−∞
δ (t− nT ) ω0ρω0 = ω0

∞∑

n=−∞
δ (ω − nω0) , ω0 = 2π/T
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4.15 Relation between Fourier and Laplace Transforms

Consider a simple example relating Fourier to Laplace transform.

Example 4.11 Let f (t) = e−αt cos (βt) u (t) , α > 0. We have

F (s) =
(s+ α)

(s+ α)
2
+ β2

, σ = ℜ [s] > −α.

Since −α < 0 the Laplace transform F (s) converges for σ = 0, i.e., for s = jω; hence

F (jω) = F (s)|s=jω =
jω + α

(jω + α)2 + β2
.

The poles of F (s), that is, the zeros of the denominator (s+ α)2 + β2 of F (s), are given
by s = −α ± jβ. If the s plane is seen as a horizontal plane the modulus |F (s) | of F (s)
would appear as a surface on the plane containing two mountain peaks that rise to infinity
at the poles as shown in Fig. 4.19(a). The poles and the ROC of the Laplace transform are
also shown in the figure.

FIGURE 4.19 Fourier spectrum seen along the imaginary axis of Laplace transform plane.

The following observations summarize the relations between Fourier transform and Laplace
transform:
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1. The mountain peak of a pole in the s plane at a point, say, s = −α + jβ, as
in the last example, Fig. 4.19 (a), leads to a corresponding valley along the s = jω
axis. The general form of the Fourier transform amplitude spectrum |F (jω)| thus can
be deduced from knowledge of the locations of the poles and zeros of the Laplace
transform F (s). The peaks in the Fourier transform amplitude spectrum resulting
from two conjugate poles are not exactly at the points s = jβ and s = −jβ due to
the superposition of the two surfaces, which tends to result in a sum that has higher
peaks and drawn closer together than those of the separate individual peaks. The two
Fourier transform peaks are thus closer to the point of origin ω = 0, at frequencies
±ωr, where |ωr| is slightly less than β as we shall see later on in Chapter 5. The
closer the poles are to the s = jω axis the higher and more pointed the peaks of
the Fourier transform. Ultimately, if the poles are on the axis itself, the function has
pure sinusoids, a step function or a constant. Such cases lead to impulses along the
axis. In the case β = 0 the function is given by f(t) = e−αtu(t) and its transform
by F (s) = 1/(s + α), as shown in Fig. 4.19(b). The transform has one real pole at
s = −α, a single peak appears on the s plane, and the Fourier transform seen along
the jω axis is a bell shape centered at the frequency jω = 0.

2. In the case α = 0 the function is given by f (t) = cosβtu (t) and

F (s) =
s

s2 + β2
, ℜ [s] > 0. (4.75)

The transform F (s) contains two poles at s = ±jβ and a zero at s = 0. In this case
a slice by a vertical plane applied onto the horizontal s plane taken along the jω axis
would show that the Fourier transform has two sharp peaks mounting to infinity on
the axis itself, and drops to zero at the origin. The Fourier transform in this special
case, where the poles are on the axis itself, contains two impulses at the points s = jβ
and s = −jβ. Due to the presence of the poles on the axis, the Laplace transform
exists only to the right of the jω axis, i.e. for σ > 0. The Fourier transform F (jω)
exists as a distribution. It is equal to the Laplace transform with s = jω plus two
impulses. It is in fact given by

F (jω) = F (s)|s=jω+
π

2
{δ (ω − β) + δ (ω + β)} =

jω

β2 − ω2
+
π

2
{δ (ω − β)+δ (ω + β)}.

3. For two-sided periodic functions such as cosβt, the Fourier transform exists in the
limit, as a distribution, expressed using impulses. The Fourier transform of sin (βt)
e.g., is given by

F [sin (βt)] = −jπδ (ω − β) + jπδ (ω + β) . (4.76)

For such two-sided infinite duration functions the Laplace transform does not exist
according to present literature, even if the Fourier transform, a special case thereof
exists, as mentioned above.

4. A function of which the Laplace transform does not converge on the jω axis, and of
which the ROC boundary line is not the jω axis, has no Fourier transform.

4.16 Relation to Laplace Transform with Poles on Imaginary Axis

If poles are on the imaginary axis the Laplace transform ROC excludes the axis. In such a
case the Fourier transform is equal to the Laplace transform plus impulsive components as
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the following example illustrates.

Example 4.12 Evaluate the Fourier transform of the function

f (t) =

n∑

i=1

Ai cos (ωit+ θi)u (t) .

We can rewrite the function in the form

f (t) =

n∑

i=1

{
(
aie

jωit + a∗i e
−jωit

)
/2}u (t)

where ai = Aie
jθi , obtaining its Fourier transform

F (jω) = F (s)|s=jω + (π/2)

n∑

i=1

{aiδ (ω − ωi) + a∗i δ (ω + ωi)}

where

F (s) = Ai
cos θi s− ωi sin θi

s2 + ω2
i

, σ > 0.

As mentioned earlier, we shall see in Chapter 18 that thanks to a recent generalization of
the Dirac-delta impulse and the consequent extension of the Laplace domain, the Laplace
transform is made to exist on the jω axis itself. Its value includes generalized impulses on the
axis, and the Fourier transform can be obtained thereof by a straight forward substitution
s = jω, impulse and all. The Fourier transform is thus deduced by such simple substitution
rather being equal to a part from Laplace transform and another, the impulsive component,
which is foreign to the Laplace transform and has to be evaluated separately, as is presently
the case.

4.17 Convolution in Time

Theorem: The Fourier transform of the convolution of two functions f1 (t) and f2 (t) is equal
to the product of their transforms, that is,

f1 ∗ f2=△
ˆ ∞

−∞
f1 (τ) f2 (t− τ) dτ F←→ F1 (jω)F2 (jω) . (4.77)

The proof is straightforward and is similar to that employed in the Laplace domain.

Example 4.13 Evaluate the forward and inverse transform of the triangle

Λτ (t) =

{
1− |t|

τ
, |t| < τ

0, |t| > τ

shown in Fig. 4.20, using the convolution in time property.
We note that the rectangle f (t) = ΠT (t) shown in Fig. 4.21 has a Fourier transform

F (jω) = 2T Sa (ωT ). The “auto-convolution” of f (t) gives the triangle w (t) = f (t) ∗
f (t) = 2T Λ2T (t). Therefore W (jω) = {F (jω)}2 = 4T 2Sa2 (ωT ). Substituting τ = 2T

F [Λτ (t)] =
1

τ
W (jω) = τSa2

(ωτ
2

)
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FIGURE 4.20 Triangular signal.

FIGURE 4.21 Rectangle and spectrum.

as shown in Fig. 4.22.

Using the duality property and replacing τ by B we obtain

B

2π
Sa2

{
B

2
t

}
F←→ ΛB (ω)

as shown in Fig. 4.23. The transform of the square of the sampling function is therefore a
triangle as expected.

4.18 Linear System Input–Output Relation

As stated earlier, the frequency response H (jω) of a linear system is the transform of the
impulse response h (t)

H (jω) =

ˆ ∞

−∞
h (t) e−jωtdt=△A (ω) ejφ(ω) (4.78)

where A (ω) = |H (jω)| and φ (ω) = arg [H (jω)]. The response y (t) of the system to an
input x (t) is the convolution

y (t) = x (t) ∗ h (t) =

ˆ ∞

−∞
x (τ) h (t− τ) dτ (4.79)

and by the convolution theorem Y (jω) = X (jω)H (jω).
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FIGURE 4.22 Triangle and spectrum.

FIGURE 4.23 Inverse transform of a triangular spectrum.

4.19 Convolution in Frequency

The duality property of the Fourier transform has as a consequence the fact that multipli-
cation in time corresponds to convolution in frequency.

f1 (t) f2 (t)
F←→ 1

2π

ˆ ∞

−∞
F1 (jy)F2 [j (ω − y)]dy. (4.80)

4.20 Parseval’s Theorem

Parseval’s theorem states that
ˆ ∞

−∞
|f (t)|2 dt =

1

2π

ˆ ∞

−∞
|F (jω)|2 dω. (4.81)

Proof
ˆ ∞

−∞
|f (t)|2 dt =

ˆ ∞

−∞
f∗ (t) f (t) dt =

ˆ ∞

−∞
f∗ (t)

1

2π

ˆ ∞

−∞
F (jω) ejωtdω dt

i.e.
ˆ ∞

−∞
|f (t)|2 dt =

1

2π

ˆ ∞

−∞
F (jω)

ˆ ∞

−∞
f∗ (t) ejωtdt dω =

1

2π

ˆ ∞

−∞
F (jω)F ∗ (jω)dω
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which is the same as stated in (4.81). If f (t) is real then
ˆ ∞

−∞
f (t)

2
dt =

1

2π

ˆ ∞

−∞
|F (jω)|2 dω =

1

π

ˆ ∞

0

|F (jω)|2 dω.

4.21 Energy Spectral Density

The spectrum
ε (ω)=△ |F (jω)|2 (4.82)

is called the energy spectral density. The name is justified by Parseval’s theorem stating
that the integral of |F (jω)|2 is equal to the signal energy. If f (t) is an electric potential

in volts applied across a resistance of 1 ohm then the quantity

ˆ ∞

−∞
f2 (t) dt is equal to the

energy in joules dissipated in the resistance. A function f (t) having a finite energy

E =

ˆ ∞

−∞
f2 (t) dt =

1

2π

ˆ ∞

−∞
ε (ω)dω (4.83)

is called an energy signal. If a signal is periodic of period T , its energy is infinite. Such a
signal is called a power signal. Its power is finite and is evaluated as the energy over one
period divided by the period T . As seen in Chapter 2, Parseval’s relation gives the same
in terms of the Fourier series coefficients. This topic will be dealt with at length in Chapter
12.

Example 4.14 Let

f (t) = A Πτ/2 (t) = A [u (t+ τ/2)− u (t− τ/2)] .

Evaluate the signal energy spectral density.
We have F (jω) = AτSa (τω/2). The energy density spectrum is given by ε (ω) =

|F (jω)|2 = A2τ2Sa2 (τω/2ω). From Parseval’s theorem the area under this density spec-
trum is equal to 2π times the energy of f (t), that is, equal to 2πA2 × τ .

We can measure the energy in a frequency band ω1, ω2, as shown in Fig. 4.24. We write

FIGURE 4.24 Energy density spectrum.

E (ω1, ω2) = 2× 1

2π

ˆ ω2

ω1

|F (jω)|2 dω =
1

π

ˆ ω2

ω1

ε (ω) dω
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where the multiplication by 2 accounts for the negative frequencies part of the spectrum.

4.22 Average Value versus Fourier Transform

We shall see in Chapter 12 that signals of finite energy are called energy signals and those
of finite power are called power signals. In this section we consider closely related properties
and in particular the relation between the signal average value and its Fourier transform.

The average value, also referred to as the d-c average value, of a signal x (t) is by definition

x̄ (t) = lim
T→∞

1

2T

ˆ T

−T

x (t) dt. (4.84)

Consider the case where the value of the Fourier transform X (jω) at zero frequency exists.
Since

X (jω) =

ˆ ∞

−∞
x (t) e−jωtdt (4.85)

implies that

X (0) =

ˆ ∞

−∞
x (t) dt (4.86)

the signal average value is given by

x̄ (t) = lim
T→∞

1

2T

ˆ ∞

−∞
x (t) dt = lim

T→∞

1

2T
X (0) = 0. (4.87)

In other words if the Fourier transform X (jω) at zero frequency has a finite value the signal
has a zero average value x̄ (t).

Consider now the case where the Fourier transform X (jω) at zero frequency does not
exist. This occurs if the transform has an impulse at zero frequency. The transform of a
constant, a unit step function and related signals are examples of such signals. To evaluate
the signal average value under such conditions consider the case where the Fourier transform
is the sum of a continuous nonimpulsive transform Xc (jω) and an impulse of intensity C,
i.e.

X (jω) = Xc (jω) + Cδ (ω) . (4.88)

The inverse transform of X (jω) is given by

x (t) = F−1 [X (jω)] = F−1 [Xc (jω)] + C/ (2π) . (4.89)

The signal average value is

x̄ (t) = lim
T→∞

1

2T

ˆ T

−T

x (t) dt =
C

2π
+ lim

T→∞

1

2T

ˆ T

−T

1

2π

ˆ ∞

−∞
Xc (jω)ejωtdωdt. (4.90)

We may write

x̄ (t) =
C

2π
+ I (4.91)

where

I =
1

2π
lim

T→∞

1

2T

ˆ ∞

−∞
Xc (jω)

ˆ T

−T

ejωtdωdt (4.92)
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i.e.

I =
1

2π
lim

T→∞

1

2T

ˆ ∞

−∞
Xc (jω)2TSa (ωT ) dω. (4.93)

Using the sampling function limit property Equation (17.179) proven in Chapter 17, we can
write

lim
T→∞

T Sa (Tω) = πδ (ω) . (4.94)

Hence

I = lim
T→∞

1

2T

ˆ ∞

−∞
Xc (jω)δ (ω) dω (4.95)

i.e.

I = lim
T→∞

1

2T
Xc (0) = 0 (4.96)

x̄ (t) = C/ (2π) . (4.97)

Example 4.15 Evaluate the average value of the signal x (t) = 10u (t).

We have

X (jω) = 10/ (jω) + 10πδ (ω)

wherefrom x̄ (t) = 5, which can be confirmed by direct integration of x (t).

Example 4.16 Evaluate the average value of the signal x (t) = 5.

We have

X (jω) = 10πδ (ω)

wherefrom x̄ (t) = 10π/(2π) = 5, as expected.

4.23 Fourier Transform of a Periodic Function

A periodic function f (t) of period T , being not absolutely integrable it has no Fourier
transform in the ordinary sense. Its transform exists only in the limit. Its Fourier series can
be written

f (t) =

∞∑

n=−∞
Fne

jnω0t, ω0 = 2π/T (4.98)

F (jω) = F
[ ∞∑

n=−∞
Fne

jnω0t

]
= 2π

∞∑

n=−∞
Fnδ (ω − nω0) . (4.99)

This is an important relation that gives the value of the Fourier transform as a function of
the Fourier series coefficients. We note that the spectrum of a periodic function is composed
of impulses at the harmonic frequencies, equally spaced by the fundamental frequency ω0,
the intensity of the nth harmonic impulse being equal to 2π × the Fourier series coefficient
Fn.
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4.24 Impulse Train

We have found that the Fourier series expansion an impulse train of period T , with ω0 =
2π/T is

f (t) = ρT (t) =
1

T

∞∑

n=−∞
ejnω0t (4.100)

Hence

F [ρT (t)] =
2π

T

∞∑

n=−∞
δ (ω − nω0) = ω0ρω0 (ω) (4.101)

ρω0 (ω)=△
∞∑

n=−∞
δ (ω − nω0) (4.102)

as shown in Fig. 4.25

FIGURE 4.25 Impulse train and spectrum.

4.25 Fourier Transform of Powers of Time

Since 1
F←→ 2πδ(ω), using the property (−jt)n

f (t)
F←→ F (n) (jω), i.e. tnf (t)

F←→
jnF (n) (jω), we deduce that

tn
F←→ 2πjnδ(n) (ω) . (4.103)

In particular

t
F←→ 2πjδ′ (ω) . (4.104)

Moreover,

|t| = t sgn (t) (4.105)

and since sgn (t)
F←→ 2/(jω),

|t| F←→ 1

2π
[2πjδ′ (ω)] ∗ 2/(jω) = 2δ (ω) ∗

[
1

ω

]′
=
−2

ω2
. (4.106)

We also note that

|t|+ t = 2tu (t) (4.107)
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i.e.
tu (t) = (|t|+ t) /2 (4.108)

tu (t)
F←→ jπδ′ (ω)− 1

ω2
. (4.109)

4.26 System Response to a Sinusoidal Input

Consider a linear system of frequency response H (jω). We study the two important cases
of its response to a complex exponential and to a pure sinusoid.

1. Let x (t) be the complex exponential of a frequency β

x (t) = Aejβt. (4.110)

We have
X (jω) = A× 2πδ (ω − β) . (4.111)

The Transform of the output y (t) is given by

Y (jω) = 2πAδ (ω − β)H (jω) = 2πAH (jβ) δ (ω − β) = X (jω)H (jβ) . (4.112)

wherefrom

y (t) = H (jβ)x (t) = AejβtH (jβ) = A |H (jβ)| ej(βt+arg[H(jβ)]). (4.113)

The output is therefore the same as the input simply multiplied by the value of the
frequency response at the frequency of the input.

2. Let
x (t) = A cos (βt) = A(ejβt + e−jβt)/2 (4.114)

Y (jω) = AπH (jβ) δ (ω − β) +AπH (−jβ) δ (ω + β) (4.115)

y (t) = (A/2)ejβtH (jβ) + (A/2)e−jβtH (−jβ) (4.116)

and since H (−jβ) = H∗ (jβ) we have

y (t) = A |H (jβ)| cos {βt+ arg [H (jβ)]} . (4.117)

The response to a sinusoid of frequency β is therefore a sinusoid of the same fre-
quency, of which the amplitude is multiplied by |H (jβ)| and the phase increased by
arg [H (jβ)].

4.27 Stability of a Linear System

A linear system is stable if its frequency response H (jω) exists, otherwise it is unstable. In
other words the existence of the Fourier transform of the impulse response implies that the
system is stable. For a causal system this implies that no pole exists in the right half of the
s plane. For an anticausal (left-sided) system it means that no pole exists in the left half of
the s plane. A system of which the poles are on the jω axis is called critically stable.
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4.28 Fourier Series versus Transform of Periodic Functions

Let f (t) be a periodic function of period T0 and f0 (t) its “base period” taken as that defined
over the interval (−T0/2, T0/2). We note that f (t) is the periodic extension of f0 (t). We
can write

f (t) =

∞∑

n=−∞
f0 (t− nT0) (4.118)

and
f0 (t) = f (t)ΠT0/2 (t) . (4.119)

We can express f (t) as the convolution of f0 (t) with an impulse train

f (t) = f0 (t) ∗
∞∑

n=−∞
δ (t− nT0) (4.120)

F (jω) = ω0

∞∑

n=−∞
F0 (jnω0) δ (ω − nω0) (4.121)

F0 (jω) =

ˆ T0/2

−T0/2

f0 (t) e−jωtdt =

ˆ T0/2

−T0/2

f (t) e−jωtdt (4.122)

F0 (jnω0) =

ˆ T0/2

−T0/2

f0 (t) e−jnω0tdt = T0Fn (4.123)

Fn =
1

T0
F0 (jnω0) (4.124)

which when substituted into Equation (4.121) gives the same relation, Equation (4.99),
found above.These same relations hold if the base period is taken as the value of f (t) over
the interval (0, T0) so that f0 (t) = f (t)RT0 (t).

4.29 Transform of a Train of Rectangles

FIGURE 4.26 Train of rectangles and base period.

The problem of evaluating the Fourier transform of a train of rectangles is often encoun-
tered. It is worthwhile solving for possible utilization elsewhere.
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Consider the function f (t) shown in Fig. 4.26 wherein T0 ≥ τ , ensuring that the
successive rectangles do not touch. Let ω0 = 2π/T0. We have

f(t) = Πτ/2(t) ∗ ρT (t). (4.125)

F (jω) = ω0ρω0 (ω) τSa
(τ

2
ω
)

(4.126)

i.e.

F (jω) = ω0τ

∞∑

n=−∞
Sa
(nω0τ

2

)
δ (ω − nω0) . (4.127)

Moreover, F (jω) = 2π
∞∑

n=−∞
Fnδ(ω − nω0), where

Fn =
τ

T0
Sa

(
nπ

τ

T0

)
. (4.128)

4.30 Fourier Transform of a Truncated Sinusoid

Consider a sinusoid of frequency β, truncated by a rectangular window of duration T ,
namely,

f (t) = sin (βt+ θ)RT (t) .

We have evaluated the Laplace transform of this signal in Chapter 3, Example 3.17. We
may replace s by jω in that expression, obtaining its Fourier transform. Alternatively, to
better visualize the effect on the spectrum of the truncation of the sinusoid, we may write

F (s) =
1

2j

ˆ T

0

{
ej(βt+θ) − e−j(βt+θ)

}
e−stdt =

1

2j
{ejθ 1− e−(s−jβ)T

s− jβ −e−jθ 1− e−(s+jβ)T

s+ jβ
}.

Using the generalized hyperbolic sampling function Sh(z) = sinh(z)/z we can write

F (s) =
1

2j

{
ejθe−(s−jβ)T/2 2 sinh [(s− jβ) T/2]

s− jβ − e−jθe−(s+jβ)T/2 2 sinh [(s+ jβ) T/2]

s+ jβ

}

= [T/(2j)]
{
ejθe−(s−jβ)T/2Sh [(s− jβ)T/2] − e−jθe−(s+jβ)T/2Sh [(s+ jβ) T/2]

}
.

We note that for x real,

Sh (jx) = sinh (jx)/(jx) = (ejx − e−jx)/(2jx) = sin (x)/x = Sa (x) .

We can therefore write

F (jω) = [T/(2j)]
{
e−j(ω−β)T/2+jθSa [(ω − β) T/2] − e−j(ω+β)T/2−jθSa [(ω + β)T/2]

}

F (jω) =
T

2

{
e−j{(ω−β)T/2−θ+π/2}Sa

[
(ω − β) T

2

]
− e−j{(ω+β)T/2+θ+π/2}Sa

[
(ω + β) T

2

]}
.

The Fourier series coefficients Fn in the expansion

f (t) =
∞∑

n=−∞
Fne

jnω0t, 0 < t < T (4.129)
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where ω0 = 2π/T , can be deduced from the Fourier transform. We write

Fn = (1/T )F (jnω0) = (1/2)
{
e−j{(nω0−β)T/2−θ+π/2}Sa [(nω0 − β)T/2]

− e−j{(nω0+β)T/2+θ+π/2}Sa [(nω0 + β)T/2]
} (4.130)

which is identical to the expression obtained in Chapter 2 by direct evaluation of the coef-
ficients. In fact, referring to Fig. 2.38 and Fig. 2.39 of Chapter 2 we can see now that the
continuous curves in the lower half of each of these figures are the Fourier transform spectra
of which the discrete spectra of the Fourier series coefficients are but sampling at intervals
multiple of ω0.

We finally notice that if w (t) is the periodic extension of f (t), we may write

w (t) =

∞∑

n=−∞
f(t− nT ) =

∞∑

n=−∞
Wne

jnω0t =

∞∑

n=−∞
Fne

jnω0t, ∀ t (4.131)

since Wn = Fn,

W (jω) = 2π
∞∑

n=−∞
Wnδ (ω − nω0) = 2π

∞∑

n=−∞
Fnδ (ω − nω0) . (4.132)

W (jω) = π

∞∑

n=−∞

{
e−j{(nω0−β)T/2−θ+π/2}Sa [(nω0 − β) T/2]

− e−j{(nω0+β)T/2+θ+π/2}Sa [(nω0 + β)T/2]
}
δ(ω − nω0).

If T = mτ , where τ = 2π/β is the function period, this expression reduces to

W (jω) = π{ej(θ−π/2)δ(ω − β) + e−j(θ−π/2)δ(ω + β)} (4.133)

which is indeed the transform of w(t) = sin(βt+ θ).

4.31 Gaussian Function Laplace and Fourier Transform

The Gaussian function merits special attention. It is often encountered in studying proper-
ties of distributions and sequences leading to the Dirac-delta impulse among other important
applications.

We evaluate the transform of the Gaussian function

f (x) = e−x2/2 (4.134)

F (jω)=△F [f (x)] =

ˆ ∞

−∞
e−x2/2e−jωxdx. (4.135)

Consider the integral

I =

ˆ

C

e−z2/2dz (4.136)

where z = x+ j y and C is the rectangular contour of width 2ξ and height ω in the z
plane shown in Fig. 4.27. Since the function e−z2/2 has no singularities inside the enclosed
region, the integral around the contour is zero. We have

I =

{
ˆ ξ+j0

−ξ+j0

+

ˆ ξ+jω

ξ+j0

+

ˆ −ξ+jω

ξ+jω

+

ˆ −ξ+j0

−ξ+jω

}
e−z2/2 dz = 0.
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FIGURE 4.27 Integration on a contour in the complex plane.

Consider the second integral.
With z = ξ + jy, dz = jdy,

∣∣∣∣∣

ˆ ξ+j y

ξ+j0

e−z2/2dz

∣∣∣∣∣ =

∣∣∣∣j
ˆ ω

0

e−ξ2/2 e−j yξ ey2/2dy

∣∣∣∣

≤ e−ξ2/2

ˆ ω

0

ey2/2dy ≤ e−ξ2/2

ˆ ω

0

eω2/2dy = e−ξ2/2ωeω2/2

which tends to zero as ξ −→∞. Similarly, the fourth integral can be shown to tend in the
limit to zero. Now in the first integral we have z = x and in the third z = x+ j ω so that

I =

ˆ ξ

−ξ

e−x2/2dx+

ˆ −ξ

ξ

e−(x+j ω)2/2dx. (4.137)

Taking the limit as ξ −→∞ we have

ˆ ∞

−∞
e−(x+j ω)2/2dx =

ˆ ∞

−∞
e−x2/2dx (4.138)

The right-hand side of this equation is equal to
√

2π since

ˆ ∞

−∞
e−α x2

dx =
√
π/α. (4.139)

We may therefore write

eω2/2

ˆ ∞

−∞
e−x2/2e−j ω xdx =

√
2π. (4.140)

Replacing x by t we have

e−t2/2 ←→
√

2π e−ω2/2. (4.141)

Therefore apart from the factor
√

2π the Gaussian function is its own transform. Similarly,
we obtain

e−αt2 L←→
√
π/α es2/(4α). (4.142)

4.32 Inverse Transform by Series Expansion

Consider the Fourier transform

F (jω) =
(
α+ βe−jω

)m
. (4.143)
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To evaluate the inverse transform we may use the expansion

F (jω) =

m∑

i=0

(
m
i

)
αm−iβie−jωi (4.144)

f (t) = F−1 [F (jω)] =

m∑

i=0

(
m
i

)
αm−iβiδ (t− i) . (4.145)

In probability theory this represents the probability density of a lattice-type random vari-
able, with α+ β = 1, referred to as a binomial distribution.

4.33 Fourier Transform in ω and f

Table 4.3 lists some properties of the Fourier transform written as a function of ω and of
f .

TABLE 4.3 Fourier Transform Properties in ω and f

Time domain Time domain Transform in ω Transform in f

Inverse transform f (t)
1

2π

ˆ ∞

−∞
F (jω) ejωtdω

ˆ ∞

−∞
F (f) ej2πftdf

Time shift f (t− t0) e−jt0ωF (jω) e−j2πft0F (f)

Frequency shift ej2πf0tf (t) F [j (ω − ω0)] F (f − f0)

Time scaling f (at)
1

|a|F
[
j
(ω
a

)] 1

|a|F
(
f

a

)

Convolution in time f (t) ∗ g (t) F (jω)G (jω) F (f)G (f)

Multiplication in time f (t) g (t)
1

2π
{F (jω) ∗G (jω)} F (f) ∗ G (f)

Differentiation in time f (n) (t) (jω)
n
F (jω) (j2πf)

n
F (f)

Differentiation in frequency (−jt)n f (t) F (n) (jω)
1

(2π)
n F

(n) (f)

Integration

ˆ t

−∞
f (τ) dτ

F (jω)

jω
+ πF (0) δ (ω)

F (f)

j2πf
+

F (0)

2
δ (f)

Table 4.4 lists basic Fourier transforms as functions of the radian (angular) frequency ω
in rad/sec and of the frequency f in Hz.
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TABLE 4.4 Fourier transforms in ω and f

f (t) F (jω) F (f)

δ (t) 1 1

δ (t− t0) e−jt0ω e−jt02πf

1 2πδ (ω) δ (f)

ejω0t 2πδ (ω − ω0) δ (f − f0)

sgn (t) 2/ (jω) 1/ (jπf)

u (t) 1/ (jω) + πδ (ω) 1/ (j2πf) + (1/2) δ (f)

cosω0t π [δ (ω − ω0) + δ (ω + ω0)] (1/2) [δ (f − f0) + δ (f + f0)]

sinω0t −jπ [δ (ω − ω0)− δ (ω + ω0)] (−1/2) [δ (f − f0)− δ (f + f0)]

δ(n) (t) (jω)
n

(j2πf)
n

tn jn2πδ(n) (ω)

(
j

2π

)n

δ(n) (f)

cosω0t u (t)
π

2
[δ (ω − ω0) + δ (ω + ω0)]

1

4
[δ (f − f0) + δ (f + f0)]

+
jω

ω2
0 − ω2

+
jf

2π (f2
0 − f2)

sinω0t u (t)
−jπ

2
[δ (ω − ω0)− δ (ω + ω0)]

−j
4

[δ (f − f0)− δ (f + f0)]

+
ω0

ω2
0 − ω2

+
f0

2π (f2
0 − f2)

4.34 Fourier Transform of the Correlation Function

Since the cross correlation of two signals f(t) and g(t) can be written as the convolution

rfg(t) = f(t) ∗ g(−t). (4.146)

We have

Rfg(jω) = F (jω)G∗(jω). (4.147)

Rff (jω) = F (jω)F ∗(jω) = |F (jω)|2 . (4.148)

This subject will be viewed in more detail in Chapter 12.
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4.35 Ideal Filters Impulse Response

The impulse response of an ideal filter may be evaluated as the inverse transform of its
frequency response.

Ideal Lowpass Filter

FIGURE 4.28 Ideal lowpass filter frequency and impulse response.

The frequency response H(jω) of an ideal lowpass filter is given by

H(jω) = Πωc(ω) (4.149)

as depicted in Fig. 4.28, which also shows its impulse response

h(t) =
ωc

π
Sa(ωct). (4.150)

Ideal Bandpass Filter
Let G(jω) be the frequency response of an ideal lowpass filter of cut-off frequency ωc =

B/2 and gain 2. Referring to Fig. 4.29 we note that the bandpass filter frequency response
H(jω) can be obtained if modulation is applied to the impulse response of the lowpass filter.
We can write the frequency response H(jω) as a function of the lowpass filter frequency
response G(jω).

H (jω) = (1/2) [G {j (ω − ω0)}+G {j (ω + ω0)}] . (4.151)

H j( )w

1

ww0-w0

B B

w

2
G( )jw

B/2- /2B

FIGURE 4.29 Ideal bandpass filter frequency response.

The impulse response of the lowpass filter is

g(t) = F−1 [G (jω)] =
2B

2π
Sa

(
B

2
t

)
=
B

π
Sa

(
B

2
t

)
(4.152)
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Hence the impulse response of the bandpass filter is

h(t) = g(t) cosω0t =
B

π
Sa

(
B

2
t

)
cosω0t (4.153)

and is shown in Fig. 4.30

FIGURE 4.30 Ideal bandpass filter impulse response.

Ideal Highpass Filter

The frequency response of an ideal highpass filter may be written in the form

H(jω) = 1−Πωc(ω) (4.154)

and its impulse response is

h(t) = δ(t) − ωc

π
Sa (ωct). (4.155)

4.36 Time and Frequency Domain Sampling

In the following we study Shanon’s Sampling Theorem, Ideal, Natural and Instantaneous
sampling techniques, both in time and frequency domains.

4.37 Ideal Sampling

A band-limited signal having no spectral energy at frequencies greater than or equal to
fc cycles per second is uniquely determined by its values at equally spaced intervals T if

T ≤ 1

2fc
seconds.

This theorem, known as the Nyquist–Shannon sampling theorem, implies that if the
Fourier spectrum of a signal f(t) is nil at frequencies equal to or greater than a cut-off fre-
quency ωc = 2πfc r/s, then all the information in f(t) is contained in its values at multiples
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of the interval T if T ≤ 1

2fc
seconds, that is, if the sampling frequency is fs = (1/T ) ≥ 2fc

Hz.

Proof Consider a signal f(t) of which the Fourier transform F (jω) is nil for frequencies
equal to or greater than ωc = 2πfc r/s.

F (jω) = 0, |ω| ≥ ωc. (4.156)

Ideal Sampling of a continuous function f(t) is represented mathematically as a multiplica-
tion of the function by an impulse train ρT (t).

ρT (t) =

∞∑

n=−∞
δ(t− nT ) (4.157)

where T is the sampling period. The ideally sampled signal fs(t), Fig. 4.31, is thus given
by:

fs(t) = f(t)ρT (t) =

∞∑

n=−∞
f(nT )δ(t− nT ). (4.158)

The sampling frequency will be denoted fs in Hz and ωs in rad/sec, that is, fs = 1/T
and ωs = 2πfs = 2π/T . The sampling frequency symbol fs, should not to be confused with
the symbol fs(t) designating the ideally sampled signal.

The Fourier Transform F [ρT (t)] of the impulse train is given by

ρT (t)
F←→ ωs

∞∑

k=−∞
δ(ω − kωs) = ωsρωs(ω) (4.159)

so that,

Fs(jω) = F [fs(t)] =
1

2π
F (jω) ∗ ωs

∞∑

k=−∞
δ(ω − kωs) =

1

T

∞∑

k=−∞
F [j(ω − kωs)]. (4.160)

As can be seen in Fig. 4.31. Since the convolution of a function with an impulse produces
the same function displaced to the position of the impulse, the result of the convolution of
F (jω) with the impulse train is a periodic repetition of F (jω). From the figure we notice
that the replicas of F (jω) along the frequency axis ω will not overlap if and only if the
sampling frequency ωs satisfies the condition

ωs ≥ 2ωc (4.161)

or
2π

T
≥ 4πfc (4.162)

that is,

T ≤ 1

2fc
. (4.163)

In other words, the sampling frequency fs = 1/T must be greater than or equal to twice
the signal bandwidth,

fs =
1

T
≥ 2fc. (4.164)
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FIGURE 4.31 Ideal sampling in time and frequency domains.

If the condition fs ≥ 2fc is satisfied then it is possible to reconstruct f(t) from fs(t). If
it is not satisfied then spectra overlap and add up, a condition called aliasing. If spectra
are aliased due to undersampling then it is not possible to reconstruct f(t) from its sampled
version fs(t). The minimum allowable sampling rate fs,min = 2fc is called the Nyquist rate.
The maximum allowable sampling interval Tmax = 1/(2fc) seconds is called the Nyquist
interval. It is common to call half the sampling frequency the Nyquist frequency, denoting
the maximum allowable bandwidth for a given sampling frequency.

The continuous-time signal f(t) can be recovered from the ideally sampled signal fs(t) if
we can reconstruct the Fourier transform F (jω) from the transform Fs(jω). As shown by
a dotted line in the figure, this can be done by simply applying to fs(t) an ideal lowpass
filter of gain equal to T , which would let pass the main base period of Fs(jω) and cut off all
repetitions thereof. The resulting spectrum is thus F (jω), which means that the filter output
is simply f(t). The filter’s pass-band may be (−ωc, ωc) or (−ωs/2, ωs/2) = (−π/T, π/T ).
In fact, as Fig. 4.31 shows, the filter can have a bandwidth B r/s, where ωc ≤ B < ωs−ωc.
Let H(jω) be the frequency response of the filter. We can write

H(jω) = T ΠB(ω). (4.165)

It is common to choose B = π/T . As Fig. 4.32 shows, if the sampling period is greater
than 1/(2fc) seconds then spectral aliasing, that is, superposition caused by overlapped
spectra, occurs. The result is that the original signal f(t) cannot be recovered from the
ideally sampled signal fs(t).

4.38 Reconstruction of a Signal from its Samples

As we have seen, given a proper sampling rate, the signal f(t) may be reconstructed from
the ideally sampled signal fs(t) by applying to the latter ideal lowpass filtering. The signal
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FIGURE 4.32 Spectral aliasing.

f(t) may be reconstructed using a filter of a bandwidth equal to half the sampling frequency
ωs/2 = π/T

H (jω) = T Πωs/2 (ω) = T {u (ω + π/T )− u (ω − π/T )} . (4.166)

The filter input, as shown in Fig. 4.33, is given by x(t) = fs(t). Its output is denoted by
y (t).

H j( )wf ts( ) y t( )

FIGURE 4.33 Reconstruction filter.

We have
Y (jω) = X(jω)H(jω) = Fs(jω)H(jω) = F (jω) (4.167)

wherefrom y(t) = f(t).
It is interesting to visualize the process of the construction of the continuous-time signal

f(t) from the sampled signal fs(t). We have

y(t) = fs(t) ∗ h(t) (4.168)

where h(t) = F−1 [H(jω)] is the filter impulse response, that is,

h (t) = F−1
[
T Ππ/T (ω)

]
= Sa (πt/T ) . (4.169)

We have
y(t) = f(t) = fs(t) ∗ Sa{(π/T )t}. (4.170)

We can write

fs (t) =

∞∑

n=−∞
f (nT ) δ (t− nT ) (4.171)

f (t) =

{ ∞∑

n=−∞
f (nT )δ (t− nT )

}
∗ Sa (πt/T ) =

∞∑

n=−∞
f (nT )Sa

[π
T

(t− nT )
]
. (4.172)

In terms of the signal bandwidth ωc, with T =
π

ωc
(Nyquist interval), if the filter pass-band

is (−ωc, ωc) then
H (jω) = T Πωc (ω) (4.173)

h (t) = F−1 [H (jω)] =
ωcT

π
Sa (ωct) (4.174)
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FIGURE 4.34 Reconstruction as convolution with sampling function.

f (t) = fs (t) ∗ h (t) =
ωcT

π

∞∑

n=−∞
f (nT )Sa [ωc (t− nT )] . (4.175)

If T equals the Nyquist interval, T = π/ωc then

f (t) =

∞∑

n=−∞
f

(
nπ

ωc

)
Sa (ωct− nπ) . (4.176)

The signal f(t) can thus be reconstructed from the sampled signal if a convolution between
the sampled signal and the sampling function Sa{(π/T )t} is effected, as shown in Fig. 4.34.
The convolution of the sampling function Sa{(π/T )t} with each successive impulse of the
sampled function fs(t) produces the same sampling function displaced to the location of the
impulse. The sum of all the shifted versions of the sampling function produces the continuous
time function f(t). It should be noted that such a process is theoretically possible but not
physically realizable. The ideal lowpass filter having a noncausal impulse response is not
realizable. In practice, therefore, an approximation of the ideal filter is employed, leading
to approximate reconstruction of the continuous-time signal.

4.39 Other Sampling Systems

As we have noted above the type of sampling studied so far is called “ideal sampling.”Such
sampling was performed by multiplying the continuous signal by an ideal impulse train. In
practice impulses and ideal impulse trains can only be approximated. In what follows we
study mathematical models for sampling systems that do not necessitate the application of
an ideal impulse train.

4.39.1 Natural Sampling

Natural sampling refers to a type of sampling where a continuous-time signal is multiplied
by a train of square pulses which may be narrow to approximate ideal impulses. Referring
to Fig. 4.35, we note that a continuous signal f(t) is multiplied by the train qτ (t) of period
T , composed of square pulses of width τ . The function fn(t) produced by such natural
sampling is given by

fn(t) = f(t)qτ (t). (4.177)

We note that the pulse train qτ (t) may be expressed as the convolution of a rectangular
pulse Πτ/2(t) with the ideal impulse train ρT (t)

qτ (t) = Πτ/2(t) ∗ ρT (t). (4.178)
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FIGURE 4.35 Natural sampling in time and frequency.

We can write
Qτ (jω) = F [ρT (t)]F

[
Πτ/2 (t)

]
= ωsρωs (ω) τSa

(τ
2
ω
)

(4.179)

where ωs = 2π/T , i.e.

Qτ (jω) = ωsτ

∞∑

n=−∞
δ (ω − nωs)Sa

(τ
2
ω
)

= ωsτ

∞∑

n=−∞
Sa
(nωsτ

2

)
δ (ω − nωs) . (4.180)

The spectrum Qτ (jω) shown in Fig. 4.35 has thus the form of an ideal impulse train mod-
ulated in intensity by the sampling function. The transform of fn(t) is given by

Fn (jω) =
1

2π
F (jω) ∗Qτ (jω) =

τ

T

∞∑

n=−∞
Sa (nπτ/T )F [j(ω − nωs)] . (4.181)

Referring to Fig. 4.35, which shows the form of Fn(jω), we note that, similarly to what we
have observed above, if the spectrum F (jω) is band-limited to a frequency ωc, i.e.

F (jω) = 0, |ω| ≥ ωc (4.182)

and if the Nyquist sampling frequency is respected, i.e.,

ωs =
2π

T
≥ 2ωc (4.183)

then there is no aliasing of spectra. We would then be able to reconstruct f (t) by feeding
fn (t) into an ideal lowpass filter with a pass-band (−B, B) where ωc < B < ωs − ωc as
seen above in relation to ideal sampling. Again, we can simply choose B = ωs/2 = π/T . The
filter gain has to be G = T/τ , as can be deduced from Fig. 4.35. The frequency response
is given by

H(jω) = (T/τ)Ππ/T (ω) = (T/τ){u(ω + π/T )− u(ω − π/T )}. (4.184)

The transform of the filter’s output is given by

Y (jω) = Fn (jω) (T/τ)Ππ/T (ω) = F (jω). (4.185)

Hence the filter time-domain output is y (t) = f (t) .
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4.39.2 Instantaneous Sampling

In a natural sampling system, as we have just seen, the sampled function fn (t) is composed
of pulses of width τ each and of height that follows the form of f (t) during the duration τ
of each successive pulse. We now study another type of sampling known as instantaneous
sampling, where all the pulses of the sampled function are identical in shape, modulated
only in height by the values of f (t) at the sampling instants t = nT .

FIGURE 4.36 Instantaneous sampling in time and frequency.

Let q (t) be an arbitrary finite duration function, i.e. a narrow pulse, as shown in Fig.
4.36, and let r (t) be a train of pulses which is a periodic repetition of the pulse q (t) with
a period of repetition T , as seen in the figure.

The instantaneously sampled function fi (t) may be viewed as the result of applying the
continuous-time function f (t) to the input of a system such as that shown in Fig. 4.37. As
the figure shows, the function f (t) is first ideally sampled, through multiplication by an
ideal impulse train ρT (t) .The result is the ideally sampled signal fs (t). This signal is then
fed to the input of a linear system, of which the impulse response h (t) is the function q (t)

h (t) = q (t) . (4.186)

The system output is the instantaneously sampled signal fi (t)

f
i
(t) = fs (t) ∗ q (t) =

∞∑

n=−∞
f (nT ) δ (t− nT ) ∗ q (t) =

∞∑

n=−∞
f (nT ) q (t− nT ) . (4.187)
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FIGURE 4.37 Instantaneous sampling model.

We have, with ωs = 2π/T , and using Equation (4.160)

Fi (jω) = Fs (jω)Q (jω) =
1

T
Q (jω)

∞∑

n=−∞
F [j (ω − nωs)]

=
1

T

∞∑

n=−∞
Q (jω)F [j (ω − nωs)] .

(4.188)

as seen in Fig. 4.36. If F (jω) is band-limited to a frequency ωc = 2πfc r/s, i.e.

F (jω) = 0, |ω| ≥ ωc (4.189)

we can avoid spectral aliasing if

ωs =
2π

T
≥ 2ωc (4.190)

i.e.
1

T
≥ 2fc. (4.191)

The minimum sampling frequency is therefore fs,min = 2fc, that is, the same Nyquist rate
2fc which applied to ideal sampling. Note, however, that the spectrum Fi (jω) is no more a
simple periodic repetition of F (jω). It is the periodic repetition of F (jω) but its amplitude
is modulated by that of Q(jω), as shown in Fig. 4.36. We deduce that the spectrum F (jω),
and hence f (t), cannot be reconstructed by simple ideal lowpass filtering, even if the Nyquist
rate is respected. In fact the filtering of fi (t) by an ideal lowpass filter produces at the filter
output the spectrum

Y (jω) = Fi (jω)Ππ/T (ω) =
1

T
Q (jω)F (jω) . (4.192)

To reconstruct f (t) the filter should have instead the frequency response

H (jω) =
T

Q (jω)
Ππ/T (ω) (4.193)

for the output to equal

Y (jω) = Fi(jω)H (jω) =
1

T
Q(jω)F (jω)

T

Q(jω)
= F (jω). (4.194)

Example 4.17 Flat-top sampling. Let q (t) = Πτ/2 (t). Evaluate Fi (jω).
We have Q (jω) = τSa (τω/2)

Fi (jω) =
τ

T

∞∑

n=−∞
Sa (τω/2)F [j (ω − nωs)] .
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Example 4.18 Sample and hold. Evaluate Fi (jω) in the case of “sample and hold” type
of sampling where, as in Fig. 4.38,

q (t) = Rτ (t) = u (t)− u (t− τ) .

We have

Q (jω) = τSa (τω/2) e−jτω/2.

FIGURE 4.38 Sample and hold type of instantaneous sampling.

Such instantaneous sampling is represented in Fig. 4.38. We have

Fi (jω) =
τ

T

∞∑

n=−∞
Sa (τω/2) e−jτω/2F [j(ω − nωs)]

= (τ/T ) e−jτω/2

∞∑

n=−∞
F [j(ω − nωs)]Sa (τω/2) .

(4.195)

The reconstruction of f (t) may be effected using an equalizing lowpass filter as shown in
Fig. 4.39.

| ( )|H jw

- /2ws ws/2

f ti( ) f t( )

FIGURE 4.39 Reconstruction filter.
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4.40 Ideal Sampling of a Bandpass Signal

Consider a signal that is a “bandpass” type, that is, a signal of which the spectrum occupies
a frequency band that does not extend down to zero frequency, such as that shown in Fig.
4.40.

-wc w
c w

F jw)(

1

w /2
c-w /2

c
0

-wc w
c

w

H ( jw)

T

0

-w
c

w
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r(w)

1

0

-w
c

w
c

w

F js w)(

1/T

0

FIGURE 4.40 Ideal sampling of a bandpass signal.

It may be possible to sample such a signal without loss of information at a frequency that
is lower than twice the maximum frequency ωc of its spectrum. To illustrate the principle
consider the example shown in the figure, where the spectrum F (jω) of a signal f (t) extends
over the frequency band ωc/2 < |ω| < ωc and is zero elsewhere. As shown in the figure, the
signal may be sampled at a sampling frequency ωs equal to ωc instead of 2ωc, the Nyquist
rate

ωs = 2π/T = ωc. (4.196)

The sampling impulse train is

ρT (t) =

∞∑

n=−∞
δ (t− nT ) , T = 2π/ωc (4.197)

and the ideally sampled signal is given by

fs (t) = f (t)
∞∑

n=−∞
δ (t− nT ) (4.198)
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having a transform

Fs (jω) =
1

2π
F (jω) ∗ ωs

∞∑

n=−∞
δ (ω − nωs) =

1

T

∞∑

n=−∞
F [j (ω − nωs)] . (4.199)

As the figure shows no aliasing occurs and therefore the signal f (t) can be reconstructed
from fs (t) through bandpass filtering. The filter frequency response H (jω) is shown in the
figure.

We note therefore that for bandpass signals it may be possible to sample a signal at
frequencies less that the Nyquist rate without loss of information.

4.41 Sampling an Arbitrary Signal

FIGURE 4.41 Sampling an arbitrary signal.
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It is interesting to study the effect of sampling a general signal f(t) that is not neces-
sarily of limited bandwidth, or a signal of which the bandwidth exceeds half the sampling
frequency, thus leading to aliasing. Such a signal and its spectrum are shown in Fig. 4.41,
where we notice that the signal spectrum extends beyond a given frequency β that is half
the sampling frequency ωs = 2β. The sampling period is τ = π/β. The sampled signal is
given by

fs (t) = f (t) ρτ (t) = f (t)

∞∑

n=−∞
δ (t− nτ ) =

∞∑

n=−∞
f (nτ )δ (t− nτ) (4.200)

Fs (jω) =
1

2π
F (jω) ∗ 2π

τ

∞∑

n=−∞
δ

(
ω − n2π

τ

)
=

1

τ

∞∑

n=−∞
F

[
j

(
ω − n2π

τ

)]

=
β

π

∞∑

n=−∞
F [j (ω − n2β)] .

(4.201)

As the figure shows this is an aliased spectrum. The original signal f (t) cannot be recon-
structed from fs (t) since the spectrum F (jω) cannot be recovered, by filtering say, from
Fs (jω). Assume now that we do apply on Fs (jω) a lowpass filter, as shown in the figure,
of a cut-off frequency β. The output of the filter is a signal g (t) such that

G (jω) = Fs(jω)H(jω) (4.202)

where H (jω) is the frequency response of the lowpass filter, which we take as

H (jω) =
π

β
Πβ (ω) =

π

β
[u (ω + β)− u (ω − β)] . (4.203)

The impulse response of the lowpass filter is h (t) = F−1 [H (jω)] = Sa (βt). The spectrum
G (jω) of the filter output is, as shown in the figure, the aliased version of F (jω) as it
appears in the frequency interval (−β, β). The filter output g (t) can be written

g (t) = fs (t) ∗ h (t) =

∞∑

n=−∞
f (nτ) δ (t− nτ) ∗ Sa (βt)

=
∞∑

n=−∞
f

(
n
π

β

)
Sa (βt− nπ) .

(4.204)

We note that g (t) 6= f (t) due to aliasing. However,

g (kτ) =
∞∑

n=−∞
f

(
n
π

β

)
Sa (βkτ − nπ) =

∞∑

n=−∞
f (nτ )Sa [(k − n)π] = f (kτ) (4.205)

since Sa [(k − n)π] = 1 if and only if n = k and is zero otherwise. This type of sampling
therefore produces a signal g (t) that is identical to f (t) at the sampling instants. Between
the sampling points the resulting signal g (t) is an interpolation of those values of f (t)
which depends on the chosen sampling frequency (2β). If, and only if, the spectrum F (jω)
is band-limited to a frequency ωc < β, the reconstructed signal g (t) is equal for all t to
f (t).
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4.42 Sampling the Fourier Transform

In a manner similar to sampling in the time domain we can consider the problem of sam-
pling the transform domain. Time and frequency simply reverse roles. In fact, the Fourier
transform of a periodic signal, as we have seen earlier, is but a sampling of that of the
base period. As shown in Fig. 4.42, given a function f (t) that is limited in duration to the
interval |t| < T its Fourier Transform F (jω) may be ideally sampled by multiplying it by
an impulse train in the frequency domain. If the sampling interval is β r/s then the signal
f(t) can be recovered from fs(t) by a simple extraction of its base period, if and only if the
sampling interval β satisfies the condition

τ =
2π

β
> 2T, i.e. β <

π

T
. (4.206)
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FIGURE 4.42 Sampling the transform domain.

This is the Nyquist rate that should be applied to sampling the transform. To show that
this is the case we refer to the figure and note that the impulse train in the frequency
domain is the transform of an impulse train in the time domain. We may write

∞∑

n=−∞
δ (t− nτ )←→ 2π

τ

∞∑

n=−∞
δ

(
ω − n2π

τ

)
= β

∞∑

n=−∞
δ (ω − nβ) (4.207)

Fs (jω) = F (jω)
∞∑

n=−∞
δ (ω − nβ) =

∞∑

n=−∞
F (jnβ) δ ( ω − nβ) . (4.208)
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The effect of multiplication by an impulse train in the frequency domain is a convolution
by an impulse train in the time domain. We have

fs (t) = f (t) ∗ 1

β

∞∑

n=−∞
δ (t− nτ ) =

1

β

∞∑

n=−∞
f

(
t− n2π

β

)
. (4.209)

When the Nyquist rate is satisfied we have

f(t) = fs(t)βΠτ/2(t) (4.210)

F (jω) = β
1

2π
Fs (jω) ∗ F

[
Πτ/2 (t)

]
=

1

τ

∞∑

n=−∞
F (jnβ)δ (ω − nβ) ∗ τSa

(τ
2
ω
)

=

∞∑

n=−∞
F (jnβ)Sa

(
π

β
ω − nπ

)
.

(4.211)

Similarly to sampling in the time domain, the continuous spectrum is reconstructed from
the sampled one through a convolution with a sampling function. Note that given a function
f(t) of finite duration, sampling its transform leads to its periodic repetition. This is the
dual of the phenomenon encountered in sampling the time domain.

Note, moreover, that in the limit case β = π/T i.e. τ = 2T the Fourier series expansion
of the periodic function fs (t) with an analysis interval equal to its period τ may be written

fs (t) =

∞∑

n=−∞
Fs,ne

jn(2π/τ)t (4.212)

Fs,n =
1

τ

ˆ τ/2

−τ/2

1

β
f (t) e−jn(2π/τ)tdt =

1

βτ
F (jn2π/τ) =

1

2π
F (jn2π/τ) (4.213)

Fs (jω) = 2π
∞∑

n=−∞
Fs,nδ (ω − n2π/τ) =

∞∑

n=−∞
F (jnβ) δ (ω − nβ) (4.214)

as expected, being the transform of the periodic function fs(t) of period τ and fundamental
frequency β. The periodic repetition of a finite duration function leads to the Fourier series
discrete spectrum and to sampling of its Fourier transform.

4.43 Problems

Problem 4.1 Consider a function x (t) periodic with period T = 2τ and defined by

x (t) =

{
A, |t| < τ/2
−A, τ/2 < |t| ≤ τ.

a) Evaluate the Fourier transform X (jω) of x (t)
b) Sketch the function

y (t) = sin (4π t/τ) x (t)

and evaluate its Fourier transform
c) Evaluate the Fourier transform of the causal function v (t) = y (t)u (t)



Fourier Transform 205

Problem 4.2 Evaluate Laplace and Fourier transform of the signals
a) f1 (t) = (t− 1)u (t− 1)
b) f2 (t) = t u (t)− (t− t0)u (t− t0) , t0 > 0

Problem 4.3 Evaluate the Fourier transform of the following functions:
a) The even function defined by

x(t) =





2− t, 0 ≤ t ≤ 1
1, 1 ≤ t < 2
0, t > 2

and x(−t) = x(t).

b) The two-sided periodic function y (t) defined by y(t) =

∞∑

n=−∞
x(t− 5n).

c) The causal function z(t) = y(t)u(t).

Problem 4.4 a) Evaluate the Fourier transform of the triangle Λτ (t).
b) Deduce the Fourier transform and the Fourier series expansion of the function

y (t) =

∞∑

n=−∞
x (t− nT )

where T > 2τ and x (t) = τΛτ (t).

Problem 4.5 Evaluate the Fourier series and Fourier transform of the periodic signal y (t)
of period T = 2 defined by:

y (t) = e−t, 0 < t < 1

and the three cases
a) y (−t) = y (t) , −1 < t < 1
b) y (−t) = −y (t) , −1 < t < 1
c) y (t+ 1) = −y (t) , 0 < t < 2

Problem 4.6 Let f (t) be a periodic signal of period T = 2 sec., and

f (t) =

{
t2, 0 ≤ t < 1
0, 1 < t ≤ 2.

a) Evaluate the Fourier series coefficients and the Fourier transform over the interval
(−1, 1) of f (t).

b) The causal function g (t) =
∞∑

n=0

f0 (t− nT ) where f0(t) = f(t)RT (t).

Problem 4.7 Consider the signal

v (t) = (1+cosmω0t) ΠT/2 (t)

where m is an integer and ω0 = 2π/T .
a) Evaluate the Fourier transform V (jω) of v (t).
b) Plot v (t) and |V (jω)| for the cases m = 1, m = 2 and m = 10 showing the fusion

on the two spectral peaks for positive and negative frequencies ±mω0 in the case m = 1.
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c) Evaluate the Fourier transform of the signal

x (t) =

∞∑

n=−∞
v (t− nT ) .

d) Evaluate the transform of the causal signal

w (t) = x (t)u (t) .

Problem 4.8 Given the signals

v (t) = 2Λ2 (t)=△
{

2− |t| , |t| ≤ 2
0, |t| ≥ 2

and

x (t) =

∞∑

n=−∞
{δ (t− 2n) + 2δ [t− (2n+ 1)]} .

a) Evaluate and sketch the convolution

z (t) = v (t) ∗ x (t)

and its Fourier transform Z (jω) and Fourier series coefficients Zn. Verify the result using
V (jω) and X (jω).

b) Evaluate and sketch the Fourier transform of

y (t) = v (t) cos2(2πt).

Problem 4.9 a) Evaluate the Fourier transform of the function

f (t) = a0 + 2

M∑

i=1

Ai cos (ωit+ θi) .

b) Let g (t) = f (t) u (t). Evaluating the Laplace transform G (s) and the Fourier trans-
form G (jω) of g (t) show that the latter is the same as the first except for added impulses.

Problem 4.10 Let
f (t) = A1 sin (ω1t+ θ1)

g (t) = A2 cos (ω2t+ θ2)

where ω2 > ω1.
Evaluate the Fourier series and Fourier transform of the functions
a) x (t) = f (t) + g (t)
b) y (t) = f (t) g (t)

Problem 4.11 A periodic signal f (t) of period T = 0.01 sec. has the Fourier series
coefficients Fn given by

Fn =






5/ (2π) , n = ±1
3/ (2π) , n = ±3
0, otherwise.

The signal f (t) has been recorded using a magnetic-tape recorder at a speed of 15 in./sec.
a) Let v (t) be the signal obtained by reading the magnetic tape at a speed of 30 in./sec.

Evaluate the Fourier transform V (jω) of v (t).
b) Let w (t) be the signal obtained by reading backward the magnetic tape at a speed of 15

in./sec. Evaluate W (jω) = F [w (t)].
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Problem 4.12 The Fourier transform X (jω) of a signal x (t) is given by

X (jω) = 2δ (ω) + 2δ (ω − 200π) + 2δ (ω + 200π) + 3δ (ω − 500π) + 3δ (ω + 500π) .

a) Is the signal x (t) periodic? If yes, what is its period? If no, explain why.
b) The signal x (t) is multiplied by w (t) = sin 200πt. Evaluate the Fourier transform

V (jω) of the result v (t) = w (t)x (t).
c) The signal z (t) is the convolution of x (t) with y (t) = e−tu (t). Evaluate the Fourier

transform Z (jω) of z (t).

Problem 4.13 Given the finite duration signal v (t) = e−tRT (t) .
a) Evaluate its Laplace transform V (s), stating its ROC.
b) Evaluate its Fourier transform V (jω).
c) Let

f (t) =

∞∑

n=−∞
v (t− nT ) .

Sketch f (t). Evaluate its exponential Fourier series coefficients Fn with an analysis interval
equal to T .

d) Deduce the Fourier series coefficients Vn of v (t) with the same analysis interval.
e) Evaluate the Fourier transform F (jω) of f (t).

Problem 4.14 Let z (t) =
∞∑

n=0

δ (t− nT ).

a) Evaluate the Fourier transform Z (jω) and the Laplace transform Z(s).
b) The signal z (t) is applied to the input of a system of impulse response

h (t) = e−tRT (t) = e−t [u (t)− u (t− T )]

Evaluate the system output y (t), its Laplace transform Y (s), its Fourier transform Y (jω)
and the exponential Fourier series coefficients Yn evaluated over the interval (0, T ).
c) Deduce the Fourier transform Yp(jω) of the system response yp(t) to the input x(t) =
ρT (t).

Problem 4.15 Given the system transfer function

H (s) =
2s− 96

s2 + 2s+ 48
.

a) Assuming that the point s = 4
√

2 ej3π/4 is in the ROC of H (s), evaluate the system
impulse response h (t).

b) Assuming that the point s = 12.2ejπ/6 is in the ROC of H (s), evaluate h (t).
c) Assuming that the point s = (8.2)

√
2 e−j3π/4 is in the ROC of H (s), evaluate h (t).

d) Assuming that the system is stable and receives the input x (t) = sin (2.5t+ π/4),
evaluate its output y (t).

e) The system output y (t) in part d) is truncated by a rectangular window of width T . The
result is the signal z0 (t) = y (t)RT (t). Evaluate the Fourier transform Z0 (jω) of z0 (t),
the Fourier transform of the signal

z (t) =

∞∑

n=−∞
z0 (t− nT )

and the Fourier series coefficients Zn over analysis interval (0, T ) for the two cases i)
T = 3.2π sec., ii) T = 6π sec.
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Problem 4.16 A signal v (t) has the Fourier transform

V (jω) = 100Sa2 (50ω) .

The signal x (t) has the transform

X (jω) = 100
{
Sa2 (50ω − 10π) + Sa2 (50ω + 10π)

}
.

a) Evaluate and plot the signal v (t).
b) Suggest a simple system which upon receiving the signal v (t) would produce the signal

x (t). Plot the signal x (t) and its spectrum X (jω).
c) The signal y (t) is given by

y (t) =

∞∑

n=−∞
x (t− 200n) .

Sketch y (t). Evaluate the spectrum Y (jω) = F [y (t)] and plot it for 0.16π < ω < 0.24π.

Problem 4.17 Consider the signal:

vT (t) = v(t)RT (t)

where
v(t) = 10 + 10 cosβ1(t− 4) + 5 sinβ2(t− 1/8) + 10 cosβ3(t− 3/8)

and β1 = π, β2 = 2π, β3 = 4π, T = 4 sec .
a) Evaluate the exponential Fourier series coefficients Vn of vT (t) over the interval (0, T ).
b) Let

x(t) =

∞∑

n=−∞
vT (t− nT ).

Is v(t) periodic? What is its period and relation to x(t)?
c) Evaluate the Fourier transform of x(t).

Problem 4.18 Given a signal x(t), of which the Fourier transform is given by

X(jω) = [δ(ω + 440π) + δ(ω − 440π)] + 0.5 [δ(ω + 880π) + δ(ω − 880π)]

and the signal y(t) given by y(t) = x(t) [1 + cos(πt)].
a) Sketch the spectrum Y (jω), the Fourier transform of y(t).
b) Is the signal y(t) periodic? If yes evaluate its expansion as an exponential Fourier series
with an analysis interval equal to its period.

Problem 4.19 Given a periodic signal x(t) described by its exponential Fourier series

x(t) =

∞∑

n=−∞
Xne

j200πnt where Xn =






2, n = 0
3± j, n = ±2
2.5, n = ±4
0, otherwise

and y(t) = x(t) cos (400πt) .

a) Sketch Y (jω), the Fourier transform of y(t).
b) What is the average value of the signal y(t)?
c) What is the amplitude of the sinusoidal component of y(t) that is of frequency 400 Hz?

Problem 4.20 Given a signal v(t) and its Fourier transform V (jω), can we deduce that
V (0) is the average of the signal? Justify your answer.
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Problem 4.21 Evaluate the Fourier transform of each of the following signals
a) The even function

va(t) =





2− t , 0 < t < 3
t− 4 , 3 < t < 4
0 , t > 4

b) vb(t) =
∞∑

n=−∞
δ(t− 2n− 1)

c) vc(t) =
∞∑

n=−∞
δ (t− 2nT )−

∞∑
n=−∞

δ (t− 2nT − T ).

Problem 4.22 Given a periodic signal x(t) that when expanded in an exponential Fourier
series with an analysis interval equal to its period T produces the coefficients

Xn = 0.25 Sa (πn/4) ,

and a signal z(t) = x(t)y(t) where y(t) has a Fourier transform given by

Y (jω) =
1

jω + 4
.

a) Evaluate the Fourier transform X (jω) of x(t).
b) Evaluate the Fourier transform Z (jω) of z(t).
c) Is the signal z(t) periodic? Justify your answer.

Problem 4.23 Let x(t) be a periodic signal of period 5× 10−2 seconds having exponential
Fourier series coefficients Xn, with an analysis interval equal to the signal period, given by

Xn =





1 , n = 0
±j , n = ±1
1/4 , n = ±4
0 , otherwise.

The signal y(t), be a periodic signal of period 2.5 × 10−2 seconds, having Fourier series
coefficients Yn, with an analysis interval equal to its period, given by

Yn =

{
2 , n = ±1
0 , otherwise

and the signal v(t) given by v(t) = x(t)y(t).
a) Evaluate the Fourier transform V (jω) of v(t).
b) Evaluate the exponential Fourier series coefficients Vn, of the signal v(t) with an analysis
interval that would be considered pertinent.

Problem 4.24 The Fourier transform X (jω) of a signal x(t) is given by

X (jω) = 3 [δ (ω + 500π) + δ (ω − 500π)] + 2 [δ (ω + 200π) + δ (ω) + δ (ω − 200π)] .

a) Is the signal x(t) periodic? If yes, what is its period in seconds?
b) The signal v(t) is obtained by multiplying x(t) by the carrier sin (200πt). Evaluate the

fourier transform V (jω) of v(t).
c) The signal z(t) is obtained as the convolution of x(t) with etu(t). Evaluate the Fourier

transform Z (jω) of z(t).
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Problem 4.25 A given signal x(t) has a Fourier transform X (jω) = [10 + |ω| /4π] Π20π (ω).
a) Let y (t) = x (2t). Sketch the Fourier transform of y(t).
b) Let z (t) = x (T − t), where T is a real constant. Sketch the amplitude spectrum
|Z (jω)| of the signal z(t).

Problem 4.26 A signal f (t) band limited to a frequency B is sampled by the pulse train
g (t) shown in Fig.4.43). The Fourier transform F (jω) of the signal is assumed to have the
form shown in the figure.

FIGURE 4.43 Pulse train g(t) and the spectrum of the signal f(t).

a) Evaluate the spectrum G (jω) of the function g (t).
b) Evaluate and sketch the spectrum of the sampled function fs (t) = f (t) g (t), with i)
T = π/ (2B) and ii) T = 2π/B.
c) Specify the filter needed to reconstruct f (t) from fs (t) if such reconstruction is possible.

Problem 4.27 A system has the impulse response

h (t) = u (t)− 2u (t− 1) + u (t− 2) .

Sketch the response of the system to the inputs
i) x1 (t) = δ (t) + δ (t+ 1) and
ii) x2 (t) = δ (t) + δ (t− 1)

iii) x3 (t) =
∞∑

n=−∞
δ(t− 2n)

Problem 4.28 A band-limited signal v (t) has a Fourier spectrum V (jω) which may be

approximated as V (jω) =

{
2− |ω| / (2π) , |ω| < 2π
0, |ω| > 2π.

The signal v (t) is sampled by the pulse train x (t) defined by x (t) =

∞∑

n=−∞
x0 (t− nT ),

where x0 (t) is the triangle

x0 (t) =






8t/T, 0 < t < T/8
2− 8t/T, T/8 < t < T/4
0, t < 0, t > T/4.

a) Evaluate and sketch the Fourier spectrum Vs (jω) of the sampled signal vs (t) =
v (t)x (t).

b) State whether this is ideal, natural or instantaneous sampling. Can the original signal
v (t) be reconstructed without distortion from vs (t) using ideal filtering with: i) T = 2/3
sec and ii) T = 0.25 sec? If yes, specify the filter’s required frequency response.
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Problem 4.29 In an instantaneous sampling system a continuous-time signal v (t) is mul-

tiplied by the impulse train ρT (t) =

∞∑

n=−∞
δ (t− nT ) and the resulting signal w (t) =

v (t) ρT (t) is the input of a system of which the impulse response h (t) is given by h (t) =
RT/2 (t− τ ), where 0 ≤ τ < T/2 and RT/2 (t) is the rectangle

RT/2 (t) = u (t)− u (t− T/2) .

a) Evaluate Y (jω), the Fourier transform of the system output y (t), as a function of
V (jω), the transform of v (t).

b) Evaluate the filter frequency response H0 (jω) which would reconstruct the original
signal v (t) from the sampling system output y (t) assuming that v (t) is band-limited to a
frequency ωm. What is the maximum permissible value of T to allow such reconstruction?

c) To reconstruct an approximation of the original signal v (t) the system output y (t) is
fed to an ideal lowpass filter of frequency response H2 (jω) defined by

H2 (jω) =





ejπ/4, −π/T < ω < 0
e−jπ/4, 0 < ω < π/T
0, |ω| > π/T.

Let T = 10−3 sec., τ = 0 and v (t) = sin 200 πt. Evaluate the filter output z (t).

Problem 4.30 An ideal lowpass filter of frequency response G (jω) = Πωm (ω), receives
an input signal v (t) given by

v (t) = e−2tu (t) + e2tu (−t) .

The filter output x (t) is sampled by an alternating-sign impulse train r (t)

r (t) =

∞∑

n=−∞
(−1)

n
δ (t− nT ) .

The sampled signal w (t) = x (t) r (t) is then filtered by a bandpass filter of frequency
response

H (jω) =

{
1, π/T < |ω| < 3π/T
0, elsewhere

producing the output y (t). Assuming that the sampling interval T is given by

T = π/ (2ωm) .

a) Evaluate and sketch the Fourier transforms V (jω), X (jω), R (jω) and W (jω) of
v (t), x (t), r (t) and w (t), respectively.

b) How can the signal v (t) be reconstructed from w (t) and from y (t)?
c) What is the maximum value of T for such reconstruction to be possible?

Problem 4.31 A signal v (t) is sampled by an impulse train r (t) resulting in the sampled
signal y (t) = v (t) r (t).

Evaluate and sketch to ω = 7 r/s the spectrum Y (jω) of y (t) given that
i) v (t) = cos t and

a) r (t) =
∞∑

n=−∞
ej2nt.
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b) r (t) =

∞∑

n=−∞
Ππ/6 (t− πn) .

c) r (t) =

∞∑

n=−∞
Ππ/6 (t− 4πn/3) .

Repeat the above given that
ii) v (t) = Sa2 (t/2) instead.

Problem 4.32 In an instantaneous sampling system two input signals x1 (t) and x2 (t) are
sampled by the two impulse trains

p1 (t) =
∞∑

n=−∞
δ (t− nT )

and
p2 (t) = p1 (t− T/2)

respectively. The sum of the two sampled signals v1 (t) = x1 (t) p1 (t) and v2 (t) =
x2 (t) p2 (t) is fed as the input of a system of impulse response h (t)

h (t) = u (t)− u (t− T/8)

and output v (t).
a) Sketch the system output v (t) if x1 (t) = 1, x2 (t) = 4 and T = 8.
b) Can the two sampled signals be separated from the system output v (t)? How?

Problem 4.33 A periodic signal v (t) has the exponential Fourier series coefficients,

Vn =





1, n = ±1
±j4, n = ±5
0, otherwise

with an analysis interval T . The signal v (t) is sampled naturally by the impulse train

p (t) =

∞∑

n=−∞
p0 (t− nT/8)

where
p0 (t) = ΠT/32 (t) .

The sampled signal vs (t) = v (t) p (t) is applied to the input of a filter of frequency response

H (jω) =






A, |ω| ≤ 8π/T
−AT
2π

(t− 10π/T ) ,
8π

T
≤ |ω| ≤ 10π

T
0, otherwise

producing an output y (t). Evaluate V (jω) , P (jω) , Vs (jω) , Y (jω) and y (t), stating
whether or not aliasing results.

Problem 4.34 A signal x (t) is band-limited to the frequency range −B < ω < B r/s.
The signal xs (t) is obtained by sampling the signal x (t)

xs (t) = x (t) p (t)
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where

p (t) =

∞∑

n=−∞
p0 (t− nT )

p0 (t) = ΠT/20 (t) = u (t+ T/20)− u (t− T/20)

and T = π/B.
a) Evaluate Xs (jω) = F [xs (t)] as a function of X (jω).
b) To reconstruct x (t) from xs (t) a filter of frequency response H (jω) is used. Determine

H (jω). Is such filter physically realizable? Explain why.

Problem 4.35 A signal x (t) is band-limited in frequency to the band 0 < |ω| < B, being

zero elsewhere. The signal is ideally sampled by the impulse train ρT (t) =

∞∑

n=−∞
δ (t− nT )

where T = π/B. The resulting sampled signal xs (t) = x (t) ρT (t) is fed as the input of a
linear system of impulse response

h (t) = Sa (πt/T )

∞∑

n=−∞
δ (t− nT/4)

and output y (t).
a) Evaluate Xs (jω) the Fourier spectrum of the sampled signal xs (t), and H (jω) the

system frequency response.
b) Evaluate Y (jω), the Fourier transform of the system output y (t).
c) Can the overall system be replaced by an equivalent simple ideal sampling system? If

so, specify the required sampling frequency and period.

Problem 4.36 In an instantaneous sampling system a signal x (t) is first ideally sampled
with a sampling period of T = 10−3 sec. The ideally sampled signal

xs (t) = x (t)
∞∑

n=−∞
δ (t− nT )

thus obtained is applied to a system of impulse response

h (t) = Rτ (t) = u (t)− u (t− τ )

and output y (t). To reconstruct the original signal from y (t) an ideal lowpass filter of
frequency response

H (jω) = Π1000 π (ω) = u (ω + 1000π)− u (ω − 1000π)

is used, with y (t) as its input and z (t) its output. Let x (t) be a sinusoid of frequency 400
Hz and amplitude of 1. Describe the form, frequency and amplitude of z (t) for the two cases

a) τ = T = 10−3 sec
b) τ = T/2 = 0.5× 10−3 sec

Problem 4.37 A signal x (t) is to be sampled. To avoid aliasing the signal x (t) is fed to a
lowpass-type filter of frequency response H (jω)

H (jω) =





1, |ω| ≤ ωc

−10 (|ω| − 1.6ωc) / (6ωc) , ωc ≤ |ω| ≤ 1.6ωc

0, otherwise.
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See Fig. 4.44.
The signal xf (t) at the filter output is then ideally sampled by the impulse train ρT (t) =
∞∑

n=−∞
δ (t− nT ). The sampled signal xs (t) = xf (t) ρT (t) is fed to a lowpass filter of

frequency response G (jω) = Ππ/T (ω) = u (ω + π/T )− u (ω − π/T ) , and output xg (t).
a) What value of ωc would ensure the absence of aliasing?

Letting ωc = 10π rad/s, T = 0.1 sec. and x (t) =

∞∑

n=−∞
x0 (t− 0.4n)

where

x0 (t) =





1, |t| < 0.1
−1, 0.1 < |t| ≤ 0.2
0, otherwise.

b) Sketch x (t). Evaluate Xf (jω) the Fourier transform of the filter output xf (t), and
Xs (jω), the transform of xs (t).

c) Evaluate Xg (jω) the spectrum of the second filter output xg (t).
d) Evaluate xg (t).

FIGURE 4.44 Filtering-sampling system.

Problem 4.38 A signal v (t) is obtained by the natural sampling of a continuous-time
signal x (t), such that

v (t) = x (t) p (t)

where p (t) is a periodic signal of period T .
a) What conditions should be placed on X (jω) the spectrum of x (t) to avoid aliasing?
b) Evaluate V (jω) = F [v (t)] expressed as a function of X (jω) and Pn the Fourier

series coefficients of p (t).
c) Show that to reconstruct x (t) from v (t) the average value of p (t) should not be nil.

Problem 4.39 A sampled signal xs (t) is obtained by multiplying a continuous-time signal
x (t) by a train of narrow rectangular pulses, with a sampling frequency of 48 kHz, as shown
in Fig.4.45.

xs (t) = x (t) p (t) .

For each of the following signals x (t) state whether or not the Nyquist rate is satisfied to
avoid spectral aliasing, explaining why.

a) x (t) = A cos
(
35π × 103t

)

b) x (t) = RT (t) = u (t)− u (t)− u (t− T ) , T = 1/48000
c) x (t) = e−0.001tu (t)
d) x (t) = A1 cos (300πt) +A2 sin (4000πt) +A3 cos

(
3× 104πt

)

e) x (t) =

∞∑

n=−∞
x0 (t− nτ )

where τ = 0.5× 10−3 sec. and
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FIGURE 4.45 Pulses train.

x0 (t) = 3Π0.1 (t) = 3 [u (t+ 0.1)− u (t− 0.1)]

f) x (t) = sin
(
4× 103πt

)
sin
(
4× 104πt

)

Problem 4.40 In an instantaneous sampling system a signal x (t) is ideally sampled by an
impulse train p (t). The resulting signal xi (t) = x (t) p (t) is applied to a system of impulse
response h (t) and output y (t). Due to extraneous interference the impulse train is in fact
an ideal impulse train ρT (t) plus noise in the form of a 60 Hz interference such that

p (t) = ρT (t) [1 + 0.1 cos (120πt)]

where T = 0.005 sec and

ρT (t) =

∞∑

n=−∞
δ (t− nT ) .

a) Sketch the Fourier transform P (jω) for −600π < ω < 600π.
b) To avoid spectral aliasing and to be able to reconstruct x (t) from the system output

y (t), to what frequency should the spectrum of x (t) be limited?

Problem 4.41 A signal x (t) is sampled by the impulse train

ρT (t) =

∞∑

n=−∞
δ (t− nT )

where T = 1/16000 sec., producing the sampled signal xs (t) = x (t) ρT (t). For each of the
following three cases state the frequency band outside of which the Fourier transform X (jω)
of x (t) is nil. Deduce whether or not it is possible to reconstruct x (t) from xs (t),

a) x (t) is the product of two signals v (t) and y (t) band-limited to |ω| < 2000π and
|ω| < 10000π, respectively.

b) x (t) is the product of a signal y (t) that is band-limited to |ω| < 6000π and the signal
cos (24000πt).

c) x (t) is the convolution of two signals w (t) and z (t) which are band-limited to |ω| <
20000π and |ω| < 14000π, respectively.

Problem 4.42 In a sampling system the input signal v (t) is multiplied by the impulse train

ρT (t) =

∞∑

n=−∞
δ (t− nT ) .

The sampled signal vs (t) = v (t) ρT (t) is then fed to an ideal lowpass filter of frequency
response

H (jω) = T Π2π/(3T ) (ω)
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and output y (t). Sketch the Fourier transforms V (jω), Vs (jω) and Y (jω) of the signals
v (t), vs (t) and y (t), respectively, given that

a) V (jω) =
[
1− {6T/ (5π)}2 ω2

]
Π2π/(3T ) (ω)

b) V (jω) = Λ3π/(2T ) (ω)
c) v (t) is the signal

v (t) = 3 cosβ1t+ 2 cosβ2t− cosβ3t

where β1 = π/ (2T ) , β2 = 5π/ (4T ) , β3 = 3π/ (2T ). Evaluate y (t).

Problem 4.43 A signal v (t) is sampled by the impulse train of “doublets”

r (t) = ρT (t) + ρT (t− T/6)

a) Evaluate the Fourier transform R (jω) and the exponential Fourier series coefficients
Rn of the impulse train r (t).

b) Given that the Fourier transform V (jω) of v (t) is given by

V (jω) =
(
1− ω2/π2

)
Ππ (ω)

evaluate the sampling period T that would ensure the absence of spectral aliasing and hence
the possible reconstruction of v (t) from the sampled function

vs (t) = v (t) r (t) .

c) Sketch the amplitude spectrum |Vs (jω)| of vs (t) assuming T = 1.

Problem 4.44 A signal f (t) that has the Fourier transform

F (jω) =
(
1− ω2/W 2

)
ΠW (ω)

is modulated by a carrier cosβt, where β is much larger than W . The modulated signal
g (t) = f (t) cosβt is then fed to a lowpass filter of frequency response

H1 (jω) = Πβ (ω)

and output v (t).
a) Sketch F (jω), G (jω) and V (jω).
b) The signal v (t) is sampled by the impulse train ρT (t) where T = 2π/β and the result

vs (t) = v (t) ρT (t) is fed to a filter, of which the output should be the signal v (t). Evaluate
the filter frequency response H2 (jω).

Problem 4.45 Given the signal

v (t) = cosβ1t− cosβ2t+ cosβ3t

where
β1 = 800π, β2 = 2400π, β3 = 3200π.

Let vs (t) be the signal obtained by ideal sampling of the signal v (t) with an impulse train
of period T , so that vs (t) = v (t) ρT (t).

a) Evaluate and sketch the spectrum V (jω). Evaluate Vs (jω) as a function of T .
b) The sampled signal vs (t) is fed to ideal lowpass filter of frequency response

H (jω) = ΠB (ω)
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where B = 2000π. For the three cases

T = T1, T = T2 and T = T3

where

T1 = 2π/ (4000π) , T2 = 2π/ (4800π) and T3 = 2π/ (7200π)

sketch the Fourier transforms R1 (jω), R2 (jω) and R3 (jω) of the impulse trains ρT1 (t),
ρT2 (t) and ρT3 (t), respectively, and the corresponding spectra Vs1 (jω), Vs2 (jω) and Vs3 (jω)
of the sampled signals.

c) Sketch the spectra Y1 (jω), Y2 (jω) and Y3 (jω) and the corresponding signals y1 (t),
y2 (t) and y3 (t), at the filter output for the three cases, respectively.

Problem 4.46 Let f (t) = e−αtRτ/2 (t) = e−αt {u (t)− u (t− τ/2)} .
a) Show that by differentiating f (t) it is possible to evaluate its Laplace transform F (s).
b) Let v (t) = e−α|t|Πτ/2 (t). Express V (s) = L [v (t)] as a function of F (s).
c) Evaluate V (jω) = F [v (t)] from V (s) if possible. If not, state why and evaluate

alternatively V (jω). Simplify and plot V (jω). With α = τ = 0.1 evaluate the first zero of
V (jω). You may use Mathematica command FindRoot for this purpose.

d) A signal x (t) is sampled instantaneously by the train of pulses

pT (t) =

∞∑

n=−∞
v (t− nT )

with α = τ = 0.1. The signal has the spectrum

X (jω) =






1, 0 < |ω| < π
2− |ω| /π, π < |ω| < 2π
0, otherwise.

Evaluate and plot the spectrum Xi (jω) of the instantaneously sampled signal xi (t).
e) What is the required value of T to avoid aliasing? Specify the frequency response of the

required filter that would reconstruct x (t) from xi (t).

Problem 4.47 Given the function of duration τ/2

f (t) =
(
4/τ2

)
(t− τ/2)

2
Rτ/2 (t) .

a) By differentiating f (t) twice, deduce its Laplace transform without evaluating integrals.
b) Let v (t) = f (t) + f (−t). Evaluate V (s) = L [v (t)]. Plot the spectrum V (jω)

assuming τ = 0.1.
c) A train of pulses pT (t) of period T is constructed by repeating v (t) so that

pT (t) =
∞∑

n=−∞
v (t− nT ) .

Sketch the spectrum PT (jω) = F [pT (t)].
d) A signal xc (t) has the spectrum

Xc (jω) =





1, 0 < |ω| < πfc

2− |ω| / (πfc) , πfc < |ω| < 2πfc

0, otherwise.
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Natural sampling is applied to the signal xc (t) using the train of pulses pT (t). Evaluate
the spectrum Xn (jω) of the naturally sampled signal xn (t) thus obtained. What is the
minimum value of the sampling frequency fs to avoid aliasing assuming that fc = 1 Hz.
Plot the spectrum Xn (jω) for the case of maximum possible sampling frequency.

e) Repeat part d) assuming now instantaneous instead of natural sampling. Specify the
frequency response H (jω) of the filter that would reconstruct xc (t) from xi (t).

Problem 4.48 In a sampling system signals are sampled ideally at a frequency of 5 kHz and
transmitted over a communication channel. At the receiving end the signal is reconstructed
using an ideal lowpass filter of cut-off frequency equal to half the sampling frequency. As-
suming that the input signal is given by

xc (t) = 10 + 10 cos (3000πt) + 15 sin (6000πt) .

Is the reconstructed signal yc (t) at the receiving end equal to xc (t)? If not what is its value?
Justify your answer in the time domain and by evaluating and sketching the corresponding
spectrum Xc (jω).

Problem 4.49 Consider the signal v (t) = x (t) y (t), where x (t) is a band limited signal
such that its Fourier transform X (jω) is nil for |ω| > 104π, and y (t) is a periodic signal
of frequency of repetition 10 kHz.

a) Express the Fourier transform V (jω) of the signal v (t) as a function of X (jω).
b) Under what condition can the signal x (t) be reconstructed from v (t) using a simple

ideal filter? Specify the requirements of such a filter.

Problem 4.50 A signal x (t) is ideally sampled by the impulse train ρT (t) of period T =
125×10−6. The sampled signal x (t) ρT (t) is applied to the input of a linear system of which
the impulse response is g (t) and frequency response is G (jω) = 125× 10−6Π8000π (ω).

a) Describe the system output v (t) (form, frequency, amplitude) if x (t) is a sinusoid of
frequency 3.6 kHz and amplitude 1 volt.

b) Describe the system output v (t) (form, frequency, amplitude) if x (t) is a sinusoid of
frequency 4.8 kHz and amplitude 1 volt.

c) Sketch the Fourier transform V (jω) of the output signal v (t) if x (t) is a signal of
which the Fourier transform is 3Λπ×104 (ω). Does the signal v (t) contain all the information
necessary to reconstruct the original signal x (t)?

Problem 4.51 A signal x (t) having a Fourier transform

X (jω) =

{
1− |ω|

2π
, |ω| ≤ 2π

0, |ω| > 2π

is the input of a filter of which the frequency response is

H (jω) =

{
|ω| /π, |ω| ≤ π
0, |ω| > π.

a) Evaluate the mean value of x(t).
b) Evaluate the filter response y(t).
c) Evaluate the energy of the signal at the filter output.

Problem 4.52 A signal x (t) has a Fourier transform

X (jω) =





4, |ω| < 1
2, 1 < |ω| < 2
0, elsewhere.
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This signal is multiplied by a signal y (t) where

y (t) = v (t) +
4

π
cos 4t

and v (t) has a Fourier transform

V (jω) = 2Π2 (ω) = 2 {u (ω + 2)− u (ω − 2)} .

The multiplier output z (t) = x (t) y (t) is applied as the input to a filter of frequency
response

H (jω) =

{
1, 1 < |ω| < 3
0, elsewhere

and output w (t).
a) Evaluate the spectra Z (jω) and W (jω) at the input and output of the filter, respec-

tively.
b) Evaluate the energies of the signals z (t) and w (t), in the frequency band 1 < |ω| < 2.

Problem 4.53 A periodic signal v (t) of period T = 1 sec. has a Fourier series expansion

v (t) =

∞∑

n=−∞
Vne

jn2πt

where Vn =

{
4.5 (1 + cosπn/4) , 0 ≤ |n| ≤ 4
0, |n| > 4.

The signal v (t) is multiplied by the signal

x (t) = Sa2 (πt) .

The result g (t) = v (t)x (t) is applied to the input of an ideal lowpass filter of frequency
response

H (jω) = Π2π (ω) = u (ω + 2π)− u (ω − 2π) .

a) Evaluate and sketch the Fourier transforms V (jω) and X (jω) of the signals x (t) and
v (t), as well as G (jω) and Y (jω) the transforms of the input and output g (t) and y (t) of
the filter, respectively.

b) Evaluate y (t).

Problem 4.54 A system is constructed as a cascade of four systems of transfer functions
H1 (s) , H2 (s) , H3 (s) and H4 (s) with impulse responses h1 (t) , h2 (t) , h3 (t) and h4 (t),
where

h1 (t) = δ (t− 2π/β)

h2 (t) = β Sa (βt)

H3 (jω) = jωΠ2β (ω) = jω {u (ω + 2β)− u (ω − 2β)}

h4 (t) = 2 + sgn (t) .

a) Evaluate the frequency response H (jω) of the system, and its impulse response.
b) Evaluate the response y (t) of the system if β = 100π and

i) x (t) = sin (20πt) and ii) x (t) = sin (200πt) .
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Problem 4.55 For each of the following signals evaluate the Laplace transform, the poles
with the region of convergence, and state whether or not the Fourier transform exists.

a) v1(t) =

P∑

i=1

Aie
−ait cos(bit+ θi)u(t) +

P∑

i=1

Bie
cit cos(dit+ φi)u(−t)

where the ai, bi and ci are distinct and bi > 0, di > 0, ai > 0, ci > 0, ∀ i.
b) The same function v1(t) but with the conditions:

bi > 0, di > 0, ai > 0, ci < 0, ∀ i.

c) The same function v1(t) but with the conditions:

bi > 0, ai = 0, Bi = 0, ∀ i.

d) v2(t) = A cos(bt+ θ), −∞ < t <∞.
e) v3(t) = Ae−t, −∞ < t <∞.

Problem 4.56 A periodic signal v (t) of period T = 10−3 sec has the Fourier series
coefficients

Vn =





1, n = 0
∓j, n = ±1
1 /8, n = ±3
0, otherwise.

This signal is applied as the input to a system of frequency response H (jω) and output y (t),
where

|H (jω)| =






|ω| / (2000π) , 0 ≤ |ω| ≤ 2000π
1, 2000π ≤ |ω| < 4000π
0, |ω| > 4000π

arg [H (jω)] =

{
−ω/4000, |ω| < 3000π
0, |ω| > 3000π.

a) Evaluate the Fourier transform V (jω) of v (t).
b) Evaluate the Fourier transform Y (jω) of y (t) .
c) Evaluate y (t).

Problem 4.57 A periodic signal x (t) is given by its expansion over one period

x (t) =

∞∑

n=−∞
Xne

j100πnt

where Xn = (−1)
n
Sa (nπ/4).

a) What is the period of x (t)? What is its average value? What is the amplitude of the
sinusoidal component of frequency 150 Hz?

b) The signal x (t) is applied to a filter of frequency response H (jω) and output y (t),
where

|H (jω)| = Λ200π (ω − 300π) + Λ200π (ω + 300π)

arg [H (jω)] =





−π/2, 100π < ω < 500π
π/2, −500π < ω < −100π
0, otherwise.

Evaluate the filter output y (t) as a sum of solely real functions.
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Problem 4.58 A periodic signal v (t) of period 5 msec has a Fourier transform

V (jω) =

7∑

k=−7

αkδ (ω − 400nπ)

where α−k = α∗k and for k = 0, 1, . . . , 7 the coefficients αk are given by αk =
6π, 10π, 0, 0, 2π, 0, 0, jπ.

a) Evaluate the trigonometric Fourier series coefficients of v (t) over one period and v (t)
as a sum of real trigonometric functions.

b) A signal x (t) is obtained by applying the signal v (t) to the input of a filter of impulse
response h (t). Evaluate the signal x (t) knowing that

H (jω) = 8Λ3200π (ω) .

c) A signal y (t) is obtained by modulating the signal v (t) using the carrier vc (t) =
cos 3200πt and the result vm (t) = v (t) vc (t) is applied to an ideal lowpass filter of
frequency response

H2 (jω) = Π2000π (ω)

and output y (t). Evaluate y (t).
d) A signal z (t) is the sum

z (t) = v (t) + v (t) ∗ h3 (t)

where
h3 (t) = F−1 [H3 (jω)] and H3 (jω) = e−jω/1600.

Evaluate Z (jω) and z (t).

Problem 4.59 The signal f (t) = cosβ1t− sinβ2t is multiplied by the ideal impulse train

ρT (t) =

∞∑

n=−∞
δ (t− nT )

where T = 2π/ (β1 + β2). To reconstruct the signal f (t) from the product signal g (t) =
f (t) ρT (t) a filter is proposed. If this is possible specify the filter frequency response H (jω).

Problem 4.60 The signals x(t), y(t) and z(t) have the Fourier transforms, expressed with
respect to the frequency f in Hz,
X(f) = 0, |f | < 500 or |f | ≥ 8000
Y (f) = 0, |f | ≥ 12000
Z(f) = 0, |f | ≥ 16000
The following related signals should be sampled with no loss of information. Find for each

signal the minimum required sampling rate:
a) x (t)
b) x (t) + z (t)
c) x (t) + y (t) cos (44000πt)
d) x (t) cos2 (17000πt)
e) y (t) z (t)

Problem 4.61 In a sampling system the input signal x (t) is multiplied by the ideal impulse
train ρ0.1 (t). The result is applied to the input of an ideal lowpass filter of cut-off frequency
fc = 5 Hz and a gain of 0.5.

With x (t) = A cos (6πt) +B sin (12πt), evaluate the filter output y(t).
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Problem 4.62 In a natural sampling system the input signal m (t) is multiplied by the

train of rectangles p (t) =
∞∑

n=−∞
Π0.05T (t− nT ) where T = 10−4 s producing the product

y (t).
Given that the signal m (t) is limited in frequency to 7 kHz, suggest a simple operation

to apply to the signal y (t) in order to restore m (t). Specify the required restoring element.
If it is not possible to fully restore m (t) suggest how to recover the maximum bandwidth of
the signal without distortion, and specify the information loss incurred.

Problem 4.63 In a sampling system the input signal x (t) is multiplied by the train of

rectangles p (t) =
∞∑

n=−∞
ΠT/6 (t− nT ) of frequency of repetition fp = 1/T Hz. The product

w (t) = p (t)x (t) is applied to the input of an ideal lowpass filter of frequency response
H (f) = Πfc (f) producing the output v (t).
a) Given that fc = 250 Hz and x(t) = cos (200πt), what should be the values of the frequency
fp (excluding fp = 0) to obtain an output signal v(t) = α cos (2πf0t)? Specify the values of
α and f0.
b) With fc = 250 Hz and x(t) = cos (200πt), what should be the values of the frequency fp

(excluding fp = 0) to obtain an output signal v(t) = α cos (2πf0t) + β cos (2πf1t)? Specify
the values of α, β, f0 and f1.
c) With fp = 150 Hz and x(t) = cos (200πt). what should be the values of the cut-off
frequency frequency fc to obtain an output of nil, i.e. v(t) = 0?

Problem 4.64 Sketch the two signals x(t) = sint and y(t) = 2πΛ2π(t − 3π). By differen-
tiating y(t) twice evaluate the convolution v(t) = x(t) ∗ y(t). Plot the result indicating the
expression that applies to each section.

Problem 4.65 Consider the cross-correlation functions rxy(t) = x(t) ⋆ y(t) and ryx(t) =
y(t) ⋆ x(t), where x(t) and y(t) are real functions.
a) Express the Fourier transforms of rxy(t) and ryx(t) as functions of X(jω) and Y (jω).
b) Given that x(t) 6= y(t), x(t) 6= 0 and y(t) 6= 0, state a sufficient condition in the time
domain and one in the frequency domain which ensure that rxy(t) = ryx(t).

4.44 Answers to Selected Problems

Problem 4.1

a) X (jω) = W (jω)−A 2π δ (ω) = 2πA
∞∑

n=−∞,n6=0

Sa (nπ/2) δ(ω − nπ/τ).

b) Y (jω) = (j/2) [X {j (ω + ωc)} −X {j (ω − ωc)}] .
c) V (jω) = [1/(2π)]Y (jω) ∗ {(1/(jω) + πδ (ω)}.
Problem 4.2
a) (t− 1) u (t− 1)

F←→
(
jπδ′ (ω)− 1

ω2

)
e−jω = jπδ′ (ω)− πδ (ω)− e−jω/ω2

.

b) F2 (jω) = πt0δ (ω) + e−jt0ω

ω2 − 1
ω2 .

Problem 4.3
a) X (jω) = 4Sa (2ω) + Sa2 (0.5ω)

b) Y (jω) = 0.4π
∞∑

n=−∞

{
4Sa (0.8πn) + Sa2 (0.2πn)

}
δ (ω − 0.4πn)
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c)

Z (jω) =

[
0.2

∞∑

n=−∞

{
4Sa (0.8πn) + Sa2 (0.2πn)

} 1

j (ω − 0.4πn)

]

+0.2π
∞∑

n=−∞

{
4Sa (0.8πn) + Sa2 (0.2πn)

}
δ (ω − 0.4πn)

Problem 4.4

Y (jω) = ω0

∞∑

n=−∞
τ2Sa2 (τnω0/2) δ (ω − nω0)

y (t) =
∞∑

n=−∞
Ynejnω0t, Yn =

(
τ2/T

)
Sa2 (τnω0/2)

Problem 4.5

Y (jω) = 2π
∑

Vnδ (ω − nω0) , ω0 = π

a) Vn = e−(−1)n

e(1+n2π2) , V0 = 1− e−1. b) Vn = −jnπ[e−(−1)n]
e(n2π2+1)

c) Vn = 0, n even

Vn =
e+ 1

e (1 + jnπ)
, n odd

Problem 4.6

a) Fn =

{
2+jnπ
2n2π2 , n even, n 6= 0
−2nπ−j(n2π2−4)

2n3π3 , n odd

b) G (jω) =
∞
Σ

n=−∞

{
Fn

1
j(ω−nπ) + πFnδ (ω − nπ)

}

Problem 4.7
a) V (jω) = T Sa (Tω/2) + (T /2)Sa [T (ω − ω0)/2] + (T /2)Sa [T (ω + ω0)/2]
c) X (jω) = 2πδ (ω) + π {δ (ω −mω0) + δ (ω +mω0)}
d)

W (jω) =

{
1

jω
+ πδ (ω)

}
+

1

2

{
1

j (ω −mω0)
+

1

j (ω +mω0)

}

+
π

2
{δ (ω −mω0) + δ (ω +mω0)}

Problem 4.8 See Fig. 4.46. z (t) = 6, Z (jω) = 12 πδ (ω),

Zn =

{
6, n = 0
0, n 6= 0

b) See Fig. 4.47.

Y (jω) = 1
2πV (jω) ∗ π

2 {δ (ω − 4π) + 2δ (ω) + δ (ω + 4π)}
= 1

2V (jω) + 1
4V [j (ω − 4π)] + 1

4V [j (ω + 4π)]
= Sa2 (ω − 4π) + 2 Sa2 (ω) + Sa2 (ω + 4π)

Problem 4.9

G (jω) = G (s) |s=jω + πa0 δ (ω) + π

M∑

i=1

{aiδ (ω − ωi) + a∗i δ (ω + ωi)}



224 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 4.46 Figure for Problem 4.8.

FIGURE 4.47 Figure for Problem 4.8 b).

Problem 4.10

X (jω) = π[−jA1e
jθ1δ (ω − ω1) + jA1e

−jθ1δ (ω + ω1)]

+π[A2e
jθ2δ (ω − ω2) +A2e

−jθ2δ (ω + ω2)]

b) See Fig. 4.48.

FIGURE 4.48 Figure for Problem 4.10.
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Yn =






± (jA1A2/4) e±j(θ2−θ1), n = ± (m− k)
∓ (jA1A2/4) e±j(θ1+θ2), n = ± (m+ k)
0, otherwise

Problem 4.11

V (jω) = 5 {δ (ω − 400π) + δ (ω + 400π)} + 3 {δ (ω − 1200π) + δ (ω + 1200π)}

b) W (jω) = F (jω)

Problem 4.12
a) T = 1/50 = 0.02 sec.
b) W (jω) = (−j/2) {2δ (ω − 200π)− 3 δ (ω − 300π) + 2δ (ω − 400π) + 3δ (ω − 700π)

−2δ (ω + 200π) + 3δ (ω + 300π) −2δ (ω + 400π)− 3δ (ω + 700π)}
c) Z (jω) = 2δ (ω) +

2

1 + j200π
δ (ω − 200π) +

2

1− j200π
δ (ω + 200π)

+
3

1 + j500π
δ (ω − 500π) +

3

1− j500π
δ (ω + 500π)

Problem 4.13

a) V (s) =
´ T

0 e−te−stdt = e−(s+1)t

(s+1)

∣∣∣
0

T
= 1−e−(s+1)T

s+1 , ∀ s
b) V (jω) = 1−e−(jω+1)T

jω+1

c) Fn = 1−e−T

T (jnω0+1) d) Vn = Fn e) F (jω) =
2π

T

(
1− e−T

) ∞∑

n=−∞

1

(jnω0 + 1)
δ (ω − nω0)

Problem 4.14
a)

Z (jω) = 0.5 +
ω0

2

∞∑

n=−∞
δ (ω − nω0) +

1

T

∞∑

n=−∞

1

j (ω − nω0)

Z (s) =
1

1− e−Ts

b)
y (t) =

∞∑

n=0

e−α(t−nT )RT (t− nT )

Y (s) =

[
1− e−(s+α)T

]

(s+ α) (1− e−Ts)

Yn =
1

T
Y0 (jnω0) =

1

T

1− e−αT

α+ jnω0

c)
Yp (jω) = ω0

∞∑

n=−∞

1− e−αT

α+ jnω0
δ (ω − nω0)

Yp (jω) = ω0

∞∑

n=−∞

1− e−αT

α+ jnω0
δ (ω − nω0).

Problem 4.15

a) h (t) = 8e−8tu (t) + 6e6tu (−t)
b) h (t) =

(
8e−8t − 6e6t

)
u (t)

c) h (t) =
(
−8e−8t + 6e6t

)
u (−t)
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d) y (t) = 1.7645 sin (2.5t+ 0.8253)
e) Zn = (−jA/2) {ejθe−j(nπ−Tπ/τ)Sa [nπ − (T/τ)π]}

+ (jA/2) {e−jθe−j(nπ+Tπ/τ)Sa [nπ + (T/τ)π]}
i) Z (jω) = π A

{
ej(θ−π/2)δ (ω − 4ω0) + e−j(θ−π/2)δ (ω + 4ω0)

}

ii) Zn same, with T/τ = 7.5, Z (jω) = 2π
∞∑

n=−∞
Znδ (ω − nω0)

Problem 4.16

b) x (t) = 2v (t) cos 0.2πt

c) Y (jω) = 0.01π
∞∑

n=−∞
X (j0.01nπ) δ (ω − 0.01nπ)

Problem 4.17
a) V0 = 10, V2 = 5, V4 = −j5

2 e−jπ/4, V8 = 5e−j3π/2, V−n = V ∗n ,

Vn = 0 otherwise c) X (jω) = 2π
∞∑

n=−∞
Vnδ (ω − nω0).

Problem 4.18

y(t) =
∞∑

n=−∞
Yne

jπnt where Yn =






1/ (2π) , n = ±440
1/ (4π) , n = ±439,±441,±880
1/ (8π) , n = ±879,±881
0 , otherwise

Problem 4.19
a) Y (jω) = (1/2)X [j (ω − 400π)]+(1/2)X [j (ω + 400π)]; b) y(t) = [1/ (2π)]×6π = 3 volt.
c) [1/ (2π)]× 2 |3π ± πj| = |3± j| = 3.16 volt.

Problem 4.20 V (0) =
+∞́

−∞
v (t) e−jωtdt

∣∣∣∣∣
ω=0

=
+∞́

−∞
v (t) dt 6= v (t).

Problem 4.21
a) Va (jω) = (−2 + 4 cos 3ω − 2 cos 4ω) /ω2

b) Vb (jω) = π
∞∑

n=−∞
(−1)

n
δ (ω − nπ)

c) Vc (jω) = (π/T )
∞∑

n=−∞
[1− (−1)

n
] δ (ω − nπ/T )

Problem 4.22
a) X (jω) = 2π

∑
n

0.25Sa (πn/4) δ (ω − 2πn/T )

b) Z (jω)=
∑
n

0.25Sa(πn/4)
j(ω−2πn/T )+4

c) No. Z (jω) is not impulsive

Problem 4.23
a) V (jω) = πδ (ω + 240π)− 4πjδ (ω + 120π) + 5πδ (ω + 80π) + 4πjδ (ω + 40π)

−4πjδ (ω − 40π) + 5πδ (ω − 80π) + 4πjδ (ω − 120π) + πδ (ω − 240π)

b) Vn =






∓2j,
2.5,
±2j,
0.5,
0,

n = ±1
n = ±2
n = ±3
n = ±6

otherwise

Problem 4.24 c) Z (jω) = 3
1−j500π δ (ω + 500π) + 3

1+j500π δ (ω − 500π)

+
2

1− j200π
δ (ω + 200π) +

2

1 + j200π
δ (ω − 200π) + 2δ (ω)
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Problem 4.25 b) z (t) = x (T − t) , Z (jω) = X∗ (jω) e−jωT , |Z (jω)| = |X (jω)|
Problem 4.28 a) Vs (jω) = (1/8)

∞
Σ

n=−∞
Sa2 (nπ/8) e−jnπ/4V [j (ω − n2π/T )] i) T0 = 2/3 sec,

ω0 = 2π/T = 3π. Aliasing. Reconstruction not possible.
ii) T = 0.25, ω0 = 2π/0.25 = 8π. No aliasing. An ideal lowpass filter of cut-off frequency

B, 2π < B < 6π and gain G = 8.

Problem 4.29 a) Y (jω) = (1/2)Sa (Tω/4) e−j(τ+T/4)ω
∞∑

n−∞
V [j (ω − nω0)] b) (2π/T ) >

2ωm, i.e. T < π
ωm

= π
2πfm

= 1
2fm

c) z(t) = 0.4979 sin (200 πt− 0.30π) .

Problem 4.30 See Figs. 4.49 and 4.50.

T < (π/ωm) .

FIGURE 4.49 Figure for Problem 4.30.

Problem 4.31
i)

a) Y (jω) = 2π
∞∑

n=−∞
δ (ω − 2n− 1).

b) Y (jω) = (2π/3)
∞∑

n=−∞
Sa (nπ/3)δ (ω − 2n− 1).

See Fig. 4.51.

c) Y (jω) = (π/4)
∞∑

n=−∞
Sa (πn/4) {δ (ω − 1.5n− 1) + δ (ω − 1.5n+ 1)}.

ii)

a) Y (jω) = 2π
∞∑

n=−∞
Λ1 (ω − 2n)

b) Y (jω) = (2π/3)
∞∑

n=−∞
Sa (nπ/3)Λ1 (ω − 2n)

See Fig. 4.52.

c) See Fig. 4.53. Y (jω) = (π/2)
∞∑

n=−∞
Sa (nπ/4)Λ1 (ω − 1.5n).
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-wm wm

T
H j( )w

Low Pass
Filter

cos(2 )wmt

X
w t( ) v(t)

-wm wm

2T
H j( )w

Low Pass
Filter

cos( / )pt T

X
y t( ) v(t)

p/T 3 /p T- /p T-3 /p T

Y j( )w

w

w

w

w

FIGURE 4.50 Figure for Problem 4.30.
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FIGURE 4.51 Figure for Problem 4.31.

FIGURE 4.52 Figure for Problem 4.31.
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p/2

1-1-2-3 2 3

4 5

6 7 w

Y j( )w

(2 /3)Sa( /3)p p
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1 2 3 4 5 6
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w

Y j( )w
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(a)

(b)

FIGURE 4.53 Figure for Problem 4.31.

Problem 4.32 See Fig. 4.54.

FIGURE 4.54 Figure for Problem 4.32.

b) By de-multiplexing with a repetition period of 8 sec and a delay between the first and
second signal of 4 seconds.

Problem 4.33 See Fig. 4.55.
y (t) = A cos (2πt/T ) + 8A

π sin (6πt/T ) . Yes. Aliasing results due to inadequate sampling
rate.

Problem 4.34 Xs (jω) == (1/10)
∞∑

n=−∞
Sa (nπ/10)X [j (ω − 2nB)] , B = π/T .

b) H (jω) = ΠB (ω) = u (ω +B)− u (ω −B).
Problem 4.35 See Fig. 4.56.

y (t) = x (t)
∞∑

n=−∞
δ (t− nT/4), which is ideal sampling of x (t) with a sampling frequency

ωs = 8B, i.e. a sampling period of 2π/ (8B) = T/4.



230 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 4.55 Figure for Problem 4.33.

X js( )w

1/T

w0
w

w
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B
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-B

(a)

(c)

(b)

H j( )w

4

8B

8B

-8B

-8B

Y j( )w

4/T

FIGURE 4.56 Figure for Problem 4.35.

Problem 4.36
a) τ = T = 10−3 sec
b) τ = 0.5T . The output z (t) is a sinusoid of frequency 400 Hz and amplitude 0.468.

Problem 4.37 See Fig. 4.57.
a) ωs = 2π/T .

X (jω) = 2πSa (0.5π) {δ (ω − 5π) + δ (ω + 5π)}
+2π(1/6)Sa (1.5π) {δ (ω − 15π) + δ (ω + 15π)}
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x t( )
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FIGURE 4.57 Figure for Problem 4.37.

See Fig. 4.58.

(a)

w
-15p

4

X ( )f jw

(b)

-10p -5p 5p 10p

15p
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-15p

-10p

5p

10p

15p

-20/9

w

40

X ( )s jw

-10p

-5p

-ws
ws

FIGURE 4.58 Figure for Problem 4.37.

b) Xf (jω) = 4 {δ (ω − 5π) + δ (ω + 5π)} − (2/9) {δ (ω − 15π) + δ (ω + 15π)}.
c) Xg (jω) = (40− 20/9) {δ (ω − 5π) + δ (ω + 5π)}.
d) xg (t) = (37.778/π) cos 5πt = 12.03 cos5πt.

Problem 4.60 a) 16 kHz, b) 32 kHz, c) 68 kHz,
d) 50 kHz, e) 56 kHz

Problem 4.61
5Acos(6πt) - 5Bsin(8πt).

Problem 4.62 The lower frequencies of m(t) are recovered by applying y(t) to the input
of a lowpass filter of cut-off frequency of 3 kHz and a gain of 10. Loss of information for
frequencies higher than 3 kHz.

Problem 4.63
a) fp − 100 > 250 or fp − 100 = 100, i.e. fp > 350, or fp = 200, f0 = 100, α = 1/3 =
0.333 if fp > 350; d α = 1/3 + (1/3) Sa (π/3) = 0.609 if fp = 200.
b) 175 < fp < 350, fp 6= 200, α = 0.333 f0 = 100, β = (1/3)Sa (π/3) = 0.276 and f1 =
fp − 100.
c) fc < 50.
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Problem 4.64
The convolution result z(t) is shown in Fig. 4.59.

-6

-4

-2

2

4

6

t

z t( )

p 3p 7p5p

FIGURE 4.59 Convolution result.



5

System Modeling, Time and Frequency Response

The behavior of dynamic physical systems can generally be described or approximated using
linear differential equations [34]. Whether the system is electrical, mechanical, biomedical or
even socioeconomic, its mathematical model can usually be approximated using differential
or difference equations. Once the differential or difference equations have been determined
the system transfer function and its response to different inputs can be evaluated. The
objective in this chapter is to learn about modeling of linear systems, the evaluation of
their transfer functions and properties of their time and frequency response.

5.1 Transfer Function

Consider a linear time invariant (LTI) system described by the linear differential equation

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmv

dtm
+ bm−1

dm−1v

dtm−1
+ . . .+ b0v (5.1)

where v (t) is the system input and y (t) its output. Assuming zero initial conditions we can
evaluate through Laplace transformation its transfer function H(s). We write
(
sn + an−1s

n−1 + an−2s
n−2 + ...+ a0

)
Y (s) =

(
bms

m + bm−1s
m−1 + ...+ b0

)
V (s) (5.2)

H (s) =
Y (s)

V (s)
=
bms

m + bm−1s
m−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
=△
N (s)

D (s)
. (5.3)

A partial fraction expansion can be applied to decompose H (s) into the sum of first or
second order fractions. If the order of the numerator polynomial N (s) is greater than or
equal to that of the denominator polynomial D (s) a long division may be performed to
reduce the expression of H (s) into a polynomial in s plus a proper fraction.

5.2 Block Diagram Reduction

A block diagram describing the model of a physical system can be reduced by applying
basic rules governing transfer functions. We consider the following cases:

1. Cascade Connection: A system composed of a cascade of two blocks G andH of transfer
functions G (s) and H (s) is shown in Fig. 5.1(a). Referring to this figure we can deduce the
overall transfer function Ho (s). We can write

Ho (s) =
Y (s)

X (s)
=

Y (s)

W (s)
· W (s)

X (s)
= G (s)H (s) . (5.4)

233
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FIGURE 5.1 Block diagrams of (a) cascade, (b) parallel and (c) feedback systems.

We deduce that the cascade of two systems of transfer functions G and H leads to an overall
transfer function

Ho = GH. (5.5)

2. Parallel Connection: A system consisting of two subsystems connected in parallel is
shown in Fig. 5.1(b) From this figure we can write

X (s)G (s) +X (s)H (s) = Y (s) (5.6)

Ho (s) =
Y (s)

X (s)
= G (s) +H (s) . (5.7)

3. Feedback Loop: A system that includes a subsystem of transfer function G (s) and
another in the feedback path of transfer function H (s) is shown Fig. 5.1(c). The input to
the system is x (t) and the output y (t). The block diagram can be reduced by opening the
loop and the overall transfer function evaluated by writing the input–output relation. We
have

[X (s)− Y (s)H (s)]G (s) = Y (s) (5.8)

wherefrom the overall transfer function is given by

Ho (s) =
Y (s)

X (s)
=

G (s)

1 +G (s)H (s)
. (5.9)

The relation

Ho =
G

1 +GH
(5.10)

is an important one for reducing a block diagram containing a feedback loop.

5.3 Galvanometer

Evaluating the mathematical model of a given dynamic physical system requires generally
basic knowledge of the physical laws governing the system behavior. In this section an
example is given to illustrate the modeling of a simple electromechanical system.

In modeling mechanical systems it should be noticed that the force F in a spring is
equal to kx where k is the spring stiffness and x is the compression or extension of the
spring. Viscous friction between two surfaces produces a force F equal to bẋ, where b is the
coefficient of friction and ẋ is the relative speed between the moving surfaces generating the
friction.
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FIGURE 5.2 Galvanometer.

The galvanometer, represented schematically in Fig. 5.2, is a moving coil electric current
detector. It employs a coil wound around a cylinder of length l and radius r free to rotate
in the magnetic field of a permanent magnet as seen in the figure. When a current passes
through the coil its interaction with the magnetic field produces a force on each rod of the
coil producing a torque causing the cylinder to turn. As seen in the figure, a restraining
coil-type spring is employed so that the amount of deflection of a needle attached to the coil
is made proportional to the current passing through the coil. In what follows we analyze this
electromechanical system in order to deduce its mathematical model and transfer function.
Let v(t) be the voltage input and i(t) the current through the moving coil, which has
a resistance R ohm and inductance L henry. When the coil rotates an electromotive force
called back emf ec (t) is developed opposing the current flow. The equivalent circuit is shown
in Fig. 5.3. The back emf ec (t) is given by the known expression “Blv,” where B is the
magnetic field, l stands for the coil length which in the present case is replaced by 2nl for
a coil of n windings, each winding having two opposite rods of length l each, moving across
the magnetic field. The speed of rotation of the cylinder is v = rθ̇, where θ is the angle of
rotation. In other words,

ec = 2nBlrθ̇=△k1θ̇ (5.11)

where k1 = 2nBlr. The voltage current equation is

e (t) = Ri+ L
di

dt
+ ec = Ri+ L

di

dt
+ k1θ̇. (5.12)

The torque is produced by the force F on each rod of the coil, given by the know rule
“Bli.” In the present case the overall torque is the couple

C = n× F × 2r = 2nBlri = k1i. (5.13)

The rotation is opposed by viscous friction which is proportional to the rotational speed.
The friction couple is bθ̇. The rotor movement is also opposed by the couple produced by
the coil spring, which is proportional to the angle of rotation θ, i.e., the coil spring exerts
a couple given by kθ. Assuming the rotor has an inertia J (kg/m2), we may write the
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equilibrium of couples as depicted in Fig. 5.3.

C = k1i = Jθ̈ + bθ̇ + kθ. (5.14)

e t( )

R

L

e tc( )

C

Jq
..

bq
.

kq

i

FIGURE 5.3 Galvanometer circuit and balance of couples.

We have thus obtained two differential equations that describe the system. To draw a
block diagram representing it we first note that the current i is determined by the input e (t)
and k1θ̇ which is a differentiation of the system output θ. Hence the system has feedback.
We apply the Laplace transform obtaining

E (s) = (R+ Ls) I (s) + k1sΘ (s) (5.15)

E (s)− k1sΘ (s)=△E1 (s) = (R+ Ls) I (s) (5.16)

I (s) =
1

R+ Ls
E1 (s) (5.17)

C (s) = k1I (s) =
(
Js2 + bs+ k

)
Θ (s) (5.18)

Θ (s) =
k1

Js2 + bs+ k
I (s) . (5.19)

FIGURE 5.4 Galvanometer block diagram.

The block diagram is shown in Fig. 5.4. It can be redrawn as shown on the right in the
same figure, where

H1 =
k1

(R+ Ls) (Js2 + bs+ k)
(5.20)

G1 = k1s. (5.21)

The overall transfer function is given by

H (s) =
Θ (s)

E (s)
=

H1

1 +G1H1
(5.22)
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H (s) =
k1

(R+ Ls) (Js2 + bs+ k) + k2
1s
. (5.23)

5.4 DC Motor

A DC motor is represented schematically in Fig.5.5.

b

R, L

JE ti( )

w

E te( )

R ,Le e

B

FIGURE 5.5 DC Motor.

A coil of resistance Re and inductance Le in the inductor circuit receives a voltage Ee (t)
creating a magnetic field B through which the rotor is free to turn with an angular velocity
ω r/s. A voltage Ei(t) is applied to the armature coil, of resistance R and Inductance L
wound around the rotor, as seen in the figure and in more detail in Fig. 5.6.

Ee

Ei

Re Le

Inductor

S N

+

+

-

-

Ie

(a) (b)

BR , Le e

Ie
Ee

i

J, f
w

Ci

R, L

Ei

+

-

FIGURE 5.6 DC motor (a) armature and inductor, (b) inductor circuit.

The rotor is in the form of a cylinder of length l and radius r around which is wound a coil
of n windings. One such winding is shown in Fig. 5.7.
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FIGURE 5.7 One winding of DC motor coil.

The following are the major component values:

ec : back emf in the rotor armature
Re, Le : resistance in ohms and inductance in henry of the inductor circuit
R, L : resistance and inductance in the armature circuit.

2n : number of rods in the rotor armature circuit
ne : number of turns in the inductor coil

We may write relative to the inductor circuit

Ee = Reie + Le
die
dt
. (5.24)

The magnetic field B is the product of the permeability µ and the magnetic intensity H
and

B = µH = µneie Weber/m2. (5.25)

In relation to the armature circuit we have

Ei = Ri+ L
di

dt
+ ec (5.26)

where ec is the back emf evaluated using the “Blv” rule

ec = 2nBlrω = 2nlrµneieω = k1ieω. (5.27)

The torque in the armature circuit is the couple evaluated using the “Bli” rule, i.e. a force
F = Bli per rod. Referring to Fig 5.7, we have

C = 2nBlri = 2nµHlri = k1iei Newton meter. (5.28)

Let Ci (t) be a couple acting on the load, opposing its rotation. We have, assuming the rotor
has inertia J and viscous friction coefficient b,

C = Ci (t) + Jω̇ + bω. (5.29)

We note that the differential equations are nonlinear, containing the products ieω and iei.
The operation is simplified by fixing one of the two variables ie or i. As an example, consider
the case where ie is a constant, ie = Ke and the control effected by the input voltage Ei (t).
In this case we have

Ei (t) = Ri+ L
di

dt
+ k1Keω (5.30)

k1Kei = Jω̇ + bω + Ci (t) (5.31)
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Ei (s) = (R+ Ls) I (s) + k1Keω (5.32)

E1 (s)=△Ei (s)− k1Keω = (R+ Ls) I (s) (5.33)

I (s) =
1

R+ Ls
E1 (s) (5.34)

k1KeI (s) = (Js+ b)Ω (s) + Ci (s) (5.35)

C1 (s)=△k1KeI (s)− Ci (s) = (Js+ b)Ω (s) (5.36)

Ω (s) =
1

Js+ b
C1 (s) (5.37)

as represented by the block diagram in Fig. 5.8.

1
+Js b

Ci

w

-

-

R Ls+
1

k K1 e

E ti( ) i

k K1 e

C1

FIGURE 5.8 DC motor block diagram.

Usually the armature inductance L is negligible. Writing

G1 =
k1Ke

R+ Ls
=
k1Ke

R
, G2 =

1

Js+B
, G3 = k1Ke (5.38)

and referring to the redrawn block diagram in the form shown in Fig. 5.9(a) with the input
labeled x, output labeled y and the output of the G1 block labeled x1, we may write

X1 = (X −G3Y )G1 = XG1 −G3G1Y (5.39)

which allows us to displace the left adder to the right, leading to the diagram of Fig. 5.9(b)
which upon opening the feedback loop leads to that shown in Fig. 5.9(c) where

H1(s) =

1

Js+ b

1 +
1

Js+ b
× k2

1K
2
e

R

=
1

Js+ b+
k2
1K

2
e

R

=
R

(Js+ b)R+ k2
1K

2
e

. (5.40)

The system transfer function, if the couple Ci(t) is nil, is given by H(s) = G1H1(s).

5.5 A Speed-Control System

We consider a system which regulates rotational speed. As shown in Fig. 5.10, the system
includes a rotary potentiometer at its input, the angular position of which, shown as the
angle θ, determines the speed Ω of the rotary load at its output. The system includes a
differential amplifier, a DC motor, gears for speed conversion and a flywheel representing
the rotary load.
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FIGURE 5.9 DC motor block diagram simplification steps.

It also includes a dynamo used as a tachometer measuring the load rotational speed and
producing an electric signal et that is fed back to the differential amplifier input.

We start by making the following observations:
1. The potentiometer output in volts denoted ei in the figure is given by ei = θE/(2π)

volts.
2. The amplifier has a gain A. Its output voltage is given by v = A (ei − et) volts.
3. The electric motor is assumed to have a rotor in the form of a cylinder of radius r

and length l, similarly to the one described in the last section and shown in Fig. 5.7, which
rotates in the magnetic field B of a magnet. The figures shows the flow of current i in one
winding around the rotor. There are n such windings for a total of 2n rods that rotate in
the magnetic field, with total coil resistance of R ohm and inductance L henry. The rotor is
assumed to have a rotational speed Ωm and a back electromotive force (emf) of ec = kmΩm

volts.

FIGURE 5.10 A system for speed control.

We can therefore write

v = iR+ L
di

dt
+ ec. (5.41)

4. The current i flowing in the magnitic field B Weber/m2 of the motor’s permanent
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magnet, produces a rotational couple C. The couple is proportional to the current. The
force on each rod of the n windings is given by, B l i, the couple per winding is 2B l r i and
the total couple C is thus given by

C = 2nB l r i = kmi Newton Meter (5.42)

where

km = 2nB l r. (5.43)

5. This couple C works against the opposing couples, namely, the couple JmΩ̇m due to the
moment of inertia of the rotor (Jm is in kgm2), viscous friction couple bmΩm, the coefficient
bm being in Nm/(r/s), and a couple Cg1 that is the effect of the load reflected through the
gears. These couples are depicted in Fig. 5.11. We can therefore write

FIGURE 5.11 Equilibrium of couples in rotating systems.

C = JmΩ̇m + bmΩm + Cg1. (5.44)

6. Considering a gear ratio N1/N2, as shown in Fig. 5.11, the following relations apply
between the couple Cg1 due to the load, opposing the rotation of the the motor shaft and
Cg2 its value on the load side; as well as the rotational speeds Ωm and Ω at the two sides
respectively of the gears

Cg1

Cg2
=
N1

N2
(5.45)

Ωm

Ω
=
N2

N1
. (5.46)

Assuming as shown in Fig. 5.10 a load in the form of a flywheel of inertia J and an external
couple CL (t) resisting its rotation, together with viscous friction of coefficient b we can
represent the equilibrium of couples as shown in Fig. 5.11, writing

Cg2 = JΩ̇ + bΩ + CL. (5.47)

As detailed in what follows, using these equations we can construct the block diagram
shown in Fig. 5.12. We apply the Laplace transform to each equation, assuming zero initial
conditions, thus obtaining the transfer function of each subsystem. In particular, starting
by the equation relating v and i we write

v − ec = vd = Ri+ L
di

dt
(5.48)

Vd (s) = (R+ Ls) I (s) (5.49)
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FIGURE 5.12 System block diagram.

H1 (s) =
I (s)

Vd (s)
=

1

R + Ls
. (5.50)

This subsystem appears as part of the block diagram shown in Fig. 5.12. The diagram is
then extended by adding the block representing the relation

C = kmI. (5.51)

Writing

Cd = C − Cg1i = JmΩ̇m + bmΩm (5.52)

we have

Cd (s) = (Jms+ bm)Ωm (s) (5.53)

H2 (s) =
Ωm (s)

Cd (s)
=

1

Jms+ bm
(5.54)

which represents another section of the overall block diagram of Fig. 5.12. We subsequently
use the relation

Ω = (N1/N2)Ωm (5.55)

Cg2 (s) = (Js+ b)Ω (s) + CL (5.56)

Cg1i (s) = (N1/N2)Cg2 (s) (5.57)

thus closing the loop to Cg1i. We also have the relations ec = kmΩm and et = ktΩ as
shown in the figure. Assuming the motor inductance L to be negligibly small, we may write

C = (v − ec) (km/R) = vkm/R− k2
mΩm/R=△x1 − x2 (5.58)

as shown in Fig. 5.13.

FIGURE 5.13 Block diagram of a system component.
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We can displace the second adder in this figure to the left of the first by writing

C2 = C − Cg1i = x1 − x2 − Cg1i = (x1 − Cg1i)− x2 (5.59)

as shown in Fig. 5.14,

FIGURE 5.14 Subsystem block diagram.

FIGURE 5.15 Reduced block diagram.

Letting G = 1/ (Jms+ bm) and H = k2
m/R, we evaluate the transfer function of the loop

with feedback, obtaining

H0 =
G

1 +GH
=

1

Jms+ bm + k2
m/R

(5.60)

as shown in Fig. 5.15. Replacing the section between the amplifier output v and the rota-
tional speed Ωm in the overall system, Fig. 5.12, by its equivalent system of Fig. 5.15 we
obtain the block diagram shown in Fig. 5.16.

FIGURE 5.16 Overall block diagram.

To obtain the overall system transfer function with load torque CL = 0 we follow similar
steps, replacing the subsystem with a feedback loop by its open loop equivalent.
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FIGURE 5.17 Block diagram simplification step.

The result is shown in Fig. 5.17, which can in turn be reduced to Fig. 5.18, wherein

H1 = Ei(s)/Θ(s) = E/ (2π) (5.61)

and

H2 =
A (km/R) (N1/N2)[

Jm + J (N1/N2)
2
]
s+ bm + b (N1/N2)

2
+ k2

m/R+A (kmkt/R) (N1/N2)
(5.62)

H1 H2

Wq

FIGURE 5.18 Two systems in cascade.

and the overall system transfer function is H(s) = H1(s)H2(s). The system may be simu-
lated using MATLABr–Simulink, by connecting appropriate blocks as shown in Fig. 5.19.

J s+b

s

1

c1 s+c0
M

kt

M

R1AK

du/dt

cl

θ q

FIGURE 5.19 Simulink system block diagram.

Alternatively, a simplified block diagram may be used, as shown in Fig. 5.20. The system
step response appears as the oscilloscope output shown in the figure.

The program parameters are:
% Simulink parameters for speed control simulation
theta=pi/2;
Cl=0;
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FIGURE 5.20 Simplified Simulink system block diagram.

E=10;

A=10;

L=0;

R=1;

km=1;

kt=0.3;

R1=km/R;

Jm=100;

bm=0.5;

M=10;

J=2;

b=0.01;

c1=Jm;

c0=bm+(kmˆ2)/R

num=A*km*M/R;

a1=Jm+J*Mˆ2;

a0=bm+b*Mˆ2+(kmˆ2)/R+A*km*kt*M/R;

plot(ScopeData(:,1), ScopeData(:,2))

grid;

title(’Step response of speed control system’);

ylabel(’omega’);

xlabel(’t’);

5.6 Homology

Homology may be used to model a physical system by constructing a homologous, equiva-
lent, system in a different medium. As an illustration, we focus our attention on homologies
that allow us to study a mechanical system by analyzing its equivalent electrical system.
The same approach may be used to convert other systems such as, for example, hydraulic,
acoustic and heat transfer systems into electrical circuit equivalents. An electro-mechanical
homology can be deduced by observing a simple mechanical system and its electrical equiv-
alent. Consider the system of a mass and attached spring shown in Fig. 5.21 (a).

The force in the spring is proportional to its deformation from its rest position. Let the
stiffness of the spring be k (Newton/meter or n/m) and assume that the force F is applied
with the system at rest, so that if the mass m travels a distance x then the force in the
spring is kx. We also assume, as shown in the figure, that there is viscous friction between
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(a) (b)

FIGURE 5.21 (a) A mechanical translational system, (b) Equilibrium of forces on a free-
body diagram.

the mass and the support, with coefficient of friction b. The equilibrium of forces are shown
on an isolated free-body diagram in Fig. 5.21 (b).

We note that the force of inertia mẍ is opposite to the displacement direction x. The
equation describing the balance of forces is given by

F = mẍ+ bẋ+ kx. (5.63)

Consider the electric circuit shown in Fig. 5.22, having as input a current source of i (t)
amperes (A) and has an output of v volts.

FIGURE 5.22 Electric circuit as a homologue of a mechanical system.

We have

i = C
dv

dt
+

1

R
v +

1

L

ˆ

vdt. (5.64)

Rewriting the mechanical system equation as a function of the speed V = ẋ we have

F = m
dV

dt
+ bV + k

ˆ

V dt. (5.65)

Comparing the two last equations we note that the electric circuit homology implies the
following correspondence of variables

Mechanical Electricalhomology

F i
V v
m C
b 1/R
k 1/L

(5.66)
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5.7 Transient and Steady-State Response

Let H (s) be the transfer function of a linear time-invariant system having an input v(t) and
output y(t), Fig. 5.23. We can write the transfer function H(s) as a ratio of two polynomials

H(s) y(t)v(t)

FIGURE 5.23 System with input and output.

H (s) =
N (s)

D (s)
. (5.67)

Let the poles of H (s) be p1, p2, . . . , pn, i.e.

H (s) =
N (s)

(s− p1) (s− p2) . . . (s− pn)
(5.68)

and the input v (t) to the system to be such that

V (s) =
Ni (s)

(s− q1) (s− q2) . . . (s− qm)
. (5.69)

We have

Y (s) = V (s)H (s)

=
N (s)Ni (s)

(s− p1) (s− p2) . . . (s− pn) (s− q1) (s− q2) . . . (s− qm)
.

(5.70)

For simplicity we assume distinct poles. Using a partial fraction expansion of Y (s) we may
write

Y (s) =
A1

s− p1
+

A2

s− p2
+ . . .+

An

s− pn
+

B1

s− q1
+

B2

s− q2
+ . . .+

Bm

s− qm
(5.71)

wherefrom

y (t) = L−1 [Y (s)] =

{
n∑

i=1

Aie
pit+

m∑

i=1

Bie
qit

}
u (t) = yn (t) + ys (t) (5.72)

where

yn (t) =

n∑

i=1

Aie
pitu (t) (5.73)

is called the system natural response, also called the complementary or homogeneous solu-
tion, and

ys (t) =

m∑

i=1

Bie
qitu (t) (5.74)



248 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

is called the steady-state response, the forced response or the particular solution. For a stable
system the poles p1, p2, . . . , pn are all in the left half of the s plane, that is,

ℜ [pi] < 0, i = 1, 2, . . . , n. (5.75)

The natural response yn (t) is thus transient in nature, vanishing as t −→ ∞. The forced
response ys (t) depends on the input excitation force v (t) and constitutes the steady state
response. If in particular the input v (t) has a pure sinusoidal component then two poles qi
and qj = q∗i lie on the jω axis of the s plane. The steady-state output will thus have a
pure sinusoidal component that lasts in the form of a steady-state output as t −→∞.

5.8 Step Response of Linear Systems

We have noted that the transfer function H (s) of a linear system can be decomposed using
a partial fraction expansion into the sum of first order systems. Moreover, by adding two
terms in the case of two conjugate poles, we can combine their contributions into one of a
second order system. Analyzing the time and frequency response of first and second order
systems is thus of interest, an important step in the study of the behavior of general order
linear systems.

5.9 First Order System

To study the step response of a first order system let

H (s) =
1

sτ + 1
(5.76)

be the system transfer function, and let the input v (t) be the unit step function and y(t)
be the output. We have

Y (s) = V (s)H (s) =
1

s (sτ + 1)
=

1

s
− τ

sτ + 1
(5.77)

y (t) =
{

1− e−t/τ
}
u (t) . (5.78)

The system response time is often taken to be the time after which the response y (t) reaches
5% of its final value. It is then referred to as the 5% response time. Since the final value
of the response, the value of y (t) as t −→ ∞, is 1, the response time is the value of t for
which

y (t) = 1− e−t/τ = 1− 0.05 (5.79)

i.e. e−t/τ = 0.05. Now 0.05 ∼= e−3, so that e−t/τ ∼= e−3, or t ∼= 3τ. The 5% response time
may therefore be taken equal to 3τ .

We can similarly find the 2% response time. In this case noticing that 0.02 ∼= e−4 we
write e−t/τ = e−4, wherefrom the time response within 2% is given by t ∼= 4τ.
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FIGURE 5.24 First order system pole and step response.

The system pole and its step response y (t) are shown in Fig. 5.24. Note that the derivative
of y (t) at t = 0+ is

dy

dt

∣∣∣∣
t=0+

=
1

τ
e−t/τu (t)

∣∣∣∣
t=0+

=
1

τ
. (5.80)

This initial slope is shown in the figure, where the tangent line at t = 0 has an abscissa
of τ and ordinate of one. The 5% response time is shown in the figure to be equal to three
times the value τ .

5.10 Second Order System Model

The transfer function H (s) of a second order system is commonly written in the form

H (s) =
ω2

0

s2 + 2ω0ζs+ ω2
0

. (5.81)

We can write

H (s) =
ω2

0

(s− p1) (s− p2)
(5.82)

p1, p2 =





−ω0ζ ± ω0

√
ζ2 − 1 , ζ > 1

−ω0ζ ± jω0

√
1− ζ2 , 0 < ζ < 1

−ω0ζ, ζ = 1
±jω0, ζ = 0.

(5.83)

The positions of the two poles for the different values of ζ, namely, ζ = 0, 0 < ζ < 1,
ζ = 1 and ζ > 1 and a constant ω0 are shown in Fig. 5.25. We note that with ω0 constant
the poles move from the values ±jω0 on the jω axis, along a circle of radius ω0 until they
coincide for ζ = 1. Subsequently, for ζ > 1 and increasing they split and move along the
real axis as shown in the figure.

The value ω0 is called the natural frequency. The imaginary part of the pole position for
the case 0 < ζ < 1 is called the damped natural frequency ωp, that is,

ωp = ω0

√
1− ζ2. (5.84)

We shall see later on that the peak of the frequency response amplitude spectrum |H (jω)|
for this same case 0 < ζ < 1 is at a frequency, known as the resonance frequency, given by

ωr = ω0

√
1− 2ζ2. (5.85)
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FIGURE 5.25 Poles of second order system as damping increases.

If the input v (t) is the unit step function v (t) = u (t) the output is given by

Y (s) = V (s)H (s) =
ω2

0

s (s2 + 2ω0ζs+ ω2
0)
. (5.86)

For the case 0 < ζ < 1 the two complex conjugate poles to the left of the jω axis lead to
a damped sinusoidal system response. In particular, writing p = α+ jβ where α = −ω0ζ
and β = ω0

√
1− ζ2 we have ω0 =

√
α2 + β2 and

Y (s) =
ω2

0

s (s− p) (s− p∗) =
A

s
+

B

s− p +
B∗

s− p∗ (5.87)

A =
ω2

0

pp∗
= 1 (5.88)

B =
ω2

0

p (p− p∗) =
−ω2

0

2β

(β + jα)

α2 + β2
(5.89)

Y (s) =
1

s
− ω2

0

2β (α2 + β2)

{
β + jα

s− p +
β − jα
s− p∗

}
(5.90)

y (t) = 1− 1

2ω0

√
1− ζ2

{
(β + jα) ept + (β − jα) ep∗t

}
. (5.91)

Writing

β + jα = ω0e
j tan−1(α/β) = ω0e

−j tan−1
“

ζ/
√

1−ζ2
”

= ω0e
−j(π/2−cos−1 ζ) = −jω0e

j cos−1 ζ

(5.92)
we obtain

y (t) =

{
1− 1√

1− ζ2
e−ζω0t sin

(
ω0

√
1− ζ2 t+ cos−1 ζ

)}
u (t) . (5.93)

5.11 Settling Time

Similarly to the response time, the settling time ts is the time after which the system step
response deviates by less than 5% of its steady-state value as measured from the instant the
input unit step function is applied. The concept is illustrated schematically in Fig. 5.26(a).
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FIGURE 5.26 Step response of second order system and effect of varying damping coef-
ficient.

In order to plot the response versus t for different values of the damping coefficient ζ
the value of the natural frequency ω0 would need to be specified. Instead of producing a
plot corresponding to each value assigned to ω0 we can produce normalized plots by writing
τ = ω0t and plotting the response as a function of τ . We may write for t > 0

η (τ) = y (t)|t=τ/ω0
= 1− 1√

1− ζ2
e−ζτ sin

(√
1− ζ2 τ + cos−1 ζ

)
. (5.94)

The normalized response η (τ) is shown in Fig. 5.26 (b) for different values of the damping
coefficient ζ. Note the diminishing of the overshoot of η (τ) as ζ increases from ζ = 0
toward ζ = 1. In fact, the overshoot vanishes for ζ ≥ 0.707.

If ζ = 0 the poles are on the jω axis. The system response has a pure sinusoidal
component. As ζ increases from 0, the response becomes more damped. With ζ = 1, the
case of double pole, the response reaches its final value displaying no overshoot. For ζ > 1
the system is over-damped, the poles are both real on both sides of the point σ = −ω0

and the response rises slowly to its final value of 1.
By varying ζ while keeping ω0 constant and evaluating the corresponding settling time

ts we obtain the relation shown in Fig. 5.27, where τs = ω0ts is plotted versus ζ. As
the figure shows, the minimum settling time corresponds to ζ = 0.707. This is called the
optimal damping coefficient.

Example 5.1 Consider the resistance R inductance L capacitance C (R-L-C) circuit shown
in Fig. 5.28. Evaluate the natural frquency ω0 and the damping coefficient ζ. We have

vi (t) = Ri+ L
di

dt
+

1

C

ˆ

i dt

v0 (t) =
1

C

ˆ

i dt.

Assuming zero initial conditions we write

Vi (s) = RI (s) + LsI (s) +
1

Cs
I (s)
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FIGURE 5.27 Settling time as a function of damping coefficient.

FIGURE 5.28 R-L-C circuit.

V0 (s) =
1

Cs
I (s)

H (s) =
V0 (s)

Vi (s)
=

1/ (Cs)

R+ Ls+ 1/(Cs)
=

1/ (LC)

s2 + (R/L) s+ 1/ (LC)
=

ω2
0

s2 + 2ζω0s+ ω2
0

ω0 = 1/
√
LC, 2ζω0 = R/L, ζ = R

√
LC/(2L) = (R/2)

√
C/L.

Example 5.2 A mechanical translation system is shown in Fig. 5.29. A force f is applied
to the mass m, which moves against a spring of stiffness k, a damper of viscous friction
coefficient b1 and viscous friction with the support of coefficient b2.

FIGURE 5.29 Mechanical translation system and mass equilibrium of forces.

The force f(t) is opposed by the force mẍ, which acts in a direction that is opposite to the
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direction x of movement x. We can write

f = mẍ+ bẋ+ kx.

where b = b1 + b2. Laplace transforming we have

F (s) =
(
ms2 + bs+ k

)
X (s) .

The transfer function is given by

H (s) =
X (s)

F (s)
=

1

ms2 + bs+ k
=

1/m

s2 + (b/m) s+ k/m
=

ω2
0/k

s2 + 2ζω0s+ ω2
0

ω0 =
√
k/m, 2ζω0 = b/m, ζ = b/(2

√
km).

A rotational mechanical system shown in Fig. 5.30 represents a rotating shaft with as
input an angular displacement θ1 and as output the angle of rotation θ2 of the load of inertia
J . The balance of couples is shown in the figure.

FIGURE 5.30 Rotational system.

The shaft is assumed to be of stiffness k so that the torque applied to the load is given by
k (θ1 − θ2). This torque is opposed by the moment of inertia Jθ̈2 and the viscous friction
bθ̇2

k (θ1 − θ2) = Jθ̈2 + bθ̇2. (5.95)

Laplace transforming the equations, assuming zero initial conditions, we have

k [Θ1 (s)−Θ2 (s)] = Js2Θ2 (s) + bsΘ2 (s) (5.96)

H (s) =
Θ2 (s)

Θ1 (s)
=

k

Js2 + bs+ k
=

k/J

s2 + (b/J) s+ k/J
=

ω2
0

s2 + 2ζω0s+ ω2
0

(5.97)

ω0 =
√
k/J, 2ζω0 = b/J , ζ = b/(2

√
Jk).

5.12 Second Order System Frequency Response

The frequency response H (jω) of a second order system is given by

H (jω) =
1

(jω/ω0)
2 + j2ζ (ω/ω0) + 1

. (5.98)
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Let Ω = ω/ω0 be a normalized frequency and G (jΩ) be the corresponding normalized
frequency response

G (jΩ) = H (jω)|ω=ω0Ω
=

1

(1− Ω2) + j2ζΩ
. (5.99)

The absolute value and phase of the normalized frequency response are shown in Fig. 5.31 for
different values of the parameter ζ. We note the resonance-type phenomenon that appears in
the curve of |G (jΩ)|. The resonance peak disappears for values of ζ greater than ζ = 0.707.

FIGURE 5.31 Effect of damping coefficient on second order system amplitude and phase
response.

5.13 Case of a Double Pole

With the damping coefficient ζ = 1 the poles coincide so that p, p∗ = −ω0. The step
response is given by

Y (s) =
ω2

0

s (s2 + 2ω0s+ ω2
0)

=
ω2

0

s (s+ ω0)
2 . (5.100)

Effecting a partial fraction expansion we obtain

Y (s) =
1

s
− 1

s+ ω0
− ω0

(s+ ω0)
2 (5.101)

y (t) =
{
1− e−ω0t − ω0te

−ω0t
}
u (t) . (5.102)

We can write

η2 (τ) = y (t)|t=τ/ω0
=
{
1− e−τ − τe−τ

}
u (t) . (5.103)

The response is sketched in Fig. 5.32.
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FIGURE 5.32 Step response of a double pole second order system.

5.14 The Over-Damped Case

With ζ > 1 we have two distinct real poles given by

p1, p2 = −ζω0 ± ω0

√
ζ2 − 1 (5.104)

Y (s) =
ω2

0

s (s− p1) (s− p2)
=
A

s
+

B

s− p1
+

C

s− p2
(5.105)

y (t) =
{
A+ Bep1t + Cep2t

}
u (t) (5.106)

A =
ω2

0

p1p2
= 1, B =

1

p1 (p1 − p2)
=

1

2 (ζ2 − 1)− 2ζ
√
ζ2 − 1

(5.107)

C =
1

p2 (p2 − p1)
=

1

2 (ζ2 − 1) + 2ζ
√
ζ2 − 1

. (5.108)

5.15 Evaluation of the Overshoot

Differentiating the expression of the step response y (t) and equating the derivative to zero
we find the maxima/minima of the response, wherefrom the overshoot. With θ = cos−1 ζ

dy

dt
= −ω0e

−ζω0t cos
(
ω0

√
1− ζ2 t+ θ

)
+

ζω0e
−ζω0t

√
1− ζ2

sin
(
ω0

√
1− ζ2 t+ θ

)
= 0.

tan
(
ω0

√
1− ζ2 t+ θ

)
=

√
1− ζ2

ζ
= tan θ (5.109)

ω0

√
1− ζ2 t = 0, π, 2π, . . . (5.110)

The overshoot occurs therefore at a time t0 given by

t0 = π/[ω0

√
1− ζ2]. (5.111)

At the peak point of the overshoot the value of the response is

y (t0) = 1 +
1√

1− ζ2
e−ζπ/

√
1−ζ2

sin (π + θ) = 1 + e−ζπ/
√

1−ζ2
(5.112)
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and the overshoot, denoted r is given by

r = y (t0)− 1 = e−ζπ/
√

1−ζ2
. (5.113)

The effect of varying ζ on the amount r of overshoot is shown in Fig. 5.33.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0
z

r

FIGURE 5.33 Effect of damping coefficient on overshoot.

5.16 Causal System Response to an Arbitrary Input

In this section we evaluate the response of a causal system to an arbitrary input as well as
to a causal input. Let h(t) = hg(t)u(t) be the causal impulse response of a linear system,
which is expressed as the causal part of a general function hg(t). The system response y(t)
to a general input signal x(t) is given by

y (t) = x (t) ∗ h (t) =

ˆ ∞

−∞
x (τ) hg (t− τ )u (t− τ ) dτ =

ˆ t

−∞
x (τ) hg (t− τ ) dτ (5.114)

or, alternatively,

y(t) =

ˆ ∞

−∞
x(t− τ)hg(τ)u(τ)dτ=

ˆ ∞

0

x(t − τ)hg(τ)dτ =

ˆ ∞

0

x(t− τ)h(τ)dτ. (5.115)

Consider now the case of a causal input. With x(t) = xg(t)u(t), a causal input to the causal
system we obtain

y(t) =

{
ˆ t

0

x(τ)h(t − τ)dτ
}
u(t) =

{
ˆ t

0

h (τ) x (t− τ) dτ
}
u (t) . (5.116)
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5.17 System Response to a Causal Periodic Input

To evaluate the response of a stable linear system to a general (not sinusoidal) causal
periodic input let the system transfer function be given by

H (s) =
N (s)

(s− p1) (s− p2) . . . (s− pn)
(5.117)

and the input be denoted v (t), as shown in Fig. 5.34. We assume distinct poles to simplify
the presentation.

H s( )v t( ) y t( )

FIGURE 5.34 A system with input and output.

A causal periodic signal v (t) is but a repetition for t > 0 of a base period v0(t), as shown
in Fig. 5.35. We have, as seen in Chapter 3,

V (s) =
V0 (s)

1− e−Ts
, σ = ℜ[s] > 0 (5.118)

where V0 (s) = L [v0 (t)]. The system response y (t) is described by

Y (s) = V (s)H (s) =
V0 (s)N (s)

(1− e−Ts) (s− p1) (s− p2) . . . (s− pn)
. (5.119)

FIGURE 5.35 Causal periodic signal and its base period.

The expression of Y (s) can be decomposed into the form

Y (s) = V (s)H (s) =
A1

s− p1
+

A2

s− p2
+ . . .+

An

s− pn
+

F0 (s)

1− e−Ts
. (5.120)

We note that the function F0 (s) satisfies the equation

F0 (s) =
(
1− e−Ts

)
[
V (s)H (s)−

n∑

i=1

Ai

s− pi

]
(5.121)
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and that the system response y (t) is composed of a transient component ytr (t) due to the
poles pi on the left of the jω axis and a steady-state component yss (t) due to the periodic
input. In particular, we can write

Ytr (s) =

n∑

i=1

Ai

s− pi
(5.122)

Yss (s) =
F0 (s)

1− e−Ts
(5.123)

ytr (t) =

n∑

i=1

Cie
pitu (t) (5.124)

yss (t) = f0 (t) + f0 (t− T ) + f0 (t− 2T ) + . . . =

∞∑

n=0

f0 (t− nT ) (5.125)

y (t) = ytr (t) + yss (t) . (5.126)

Example 5.3 Evaluate the response of the first order system of transfer function

H (s) =
1

s+ 1

to the input v (t) shown in Fig. 5.36.

FIGURE 5.36 A periodic signal composed of ramps.

We can write

v0 (t) = At [u (t)− u (t− 1)] = Atu (t)−A (t− 1)u (t− 1)−Au (t− 1)

Y (s) =
A (1− e−s − se−s)

s2 (s+ 1) (1− e−3s)
=

A1

s+ 1
+

F0 (s)

(1− e−3s)

A1 = (s+ 1) Y (s)|s=−1 =
A

(1− e3) =
−A

(e3 − 1)
= −0.0524A.

ytr (t) = L−1

[
A1

s+ 1

]
= A1e

−tu (t)

yss (t) = L−1
[
F0 (s) /

(
1− e−3s

)]
= f0 (t) + f0 (t− 3) + f0 (t− 6) + . . .

F0 (s) =
A (1− e−s − se−s)

s2 (s+ 1)
− A1

(
1− e−3s

)

s+ 1
= A

[
(

1

s2
− 1

s
+

1

s+ 1
)−e−s(

1

s2
− 1

s
+

1

s+ 1
)

− se−s(
1

s2
− 1

s
+

1

s+ 1
)

]
− A1

s+ 1
+

A1

s+ 1
e−3s.
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FIGURE 5.37 System response over one period.

Note that the third term can be rewritten in the form

se−s

(
1

s2
− 1

s
+

1

s+ 1

)
= e−s

(
1

s
− 1 +

s

s+ 1

)
= e−s

(
1

s
− 1

s+ 1

)

wherefrom

f0 (t) = A [{tu (t)− u (t) + e−tu (t)}− (t− 1)u (t− 1)]− A1e
−tu (t) +A1e

−(t−3)u (t− 3)

which is depicted in Fig. 5.37. The periodic component of the output is

yss (t) =

∞∑

n=0

f0 (t− 3n)

and is represented, for the case A = 1 together with the overall output y(t) = ytr(t)+yss(t)
in Fig. 5.38.

y ( )t

0.2

0.4

5 10 15 t

y t( )

5 10 15

ss

t

0.2

0.4

FIGURE 5.38 Periodic component of system response and overall response.

5.18 Response to a Causal Sinusoidal Input

Let the input to a linear system be a causal sinusoidal input v (t)

v (t) = A cosβt u (t) (5.127)
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V (s) = A
s

s2 + β2
, σ > 0. (5.128)

The system response y (t) has the transform

Y (s) = H (s)
As

s2 + β2
=

N (s)

(s− p1) (s− p2) . . . (s− pn) (s2 + β2)
(5.129)

which can be decomposed into the form

Y (s) =
A1

s− p1
+

A2

s− p2
+ . . .+

An

s− pn
+

B

s− jβ +
B∗

s+ jβ
(5.130)

where distinct poles are assumed in order to simplify the presentation. Assuming a stable
system, having its poles pi to the left of the jω axis in the s plane, the first n terms lead to
a transient output

ytr (t) =
n∑

i=1

Aie
pitu (t) (5.131)

which tends to zero as t −→ ∞. The steady state output is therefore due to the last two
terms. We note that

B = (s− jβ) Y (s)|s=jβ = H (jβ)
Ajβ

2jβ
= AH (jβ) /2 (5.132)

B∗ = AH (−jβ) /2. (5.133)

The steady state response yss (t) for t > 0 is given by

yss (t) = (A/2)H (jβ) ejβt + (A/2)H (−jβ) e−jβt = A |H (jβ)| cos {βt+ arg [H (jβ)]} .

The steady state output is therefore also a sinusoid amplified by |H (jβ)| and has a phase
shift equal to arg [H (jβ)].

5.19 Frequency Response Plots

Several kinds of plots are used for representing a system frequency response H (jω), namely,
1. Bode Plot: In this plot the horizontal axis is a logarithmic scale frequency ω axis. The

vertical axis is either the magnitude 20 log10 |H (jω)| in decibels or the phase arg [H (jω)].
2. Nyquist Plot: In this plot the frequency response H (jω) is plotted in polar form as

a vector of length |H (jω)| and angle arg [H (jω)]. As ω increases, the vector tip produces
a polar plot that is the frequency response Nyquist plot.

3. Black’s Diagram: In this plot the vertical axis is the magnitude |H (jω)| in decibels.
The horizontal axis is the phase arg [H (jω)]. The plot shows the evolution of H (jω) as ω
increases.

5.20 Decibels, Octaves, Decades

The number of decibels and the slope in decibel/octave or decibel/decade in a Bode Plot
are defined as follows:
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Number of decibels = 20 log10(output/input).
Octave = The range between two frequencies ω1 and ω2 where ω2 = 2ω1.
Decade = The range between ω1 and ω2 where ω2 = 10ω1.
Number of octaves = log2 (ω2/ω1) .
Number of decades = log10 (ω2/ω1) .
Number of decades corresponding to one octave = log10 2 = 0.3

that is, 1 octave = 0.3 decade.

5.21 Asymptotic Frequency Response

In the following we analyze the frequency response of basic transfer functions and in par-
ticular those of first and second order systems.

5.21.1 A Simple Zero at the Origin

For a simple zero at the origin H (s) = s, H (jω) = jω, |H (jω)| = |ω|,

arg H(jω)| =
{
π/2, ω > 0
−π/2, ω < 0.

(5.134)

The zero on the s plane, and the magnitude and phase spectra, are shown, respectively, in
Fig. 5.39.

Consider the variation in decibels of |H (jω)| in one decade, that is, between a frequency
ω and another 10ω. We have

20 log10(|H (jω2)|/|H (jω1)|) = 20 log10(10 |ω1|/|ω1|) = 20 dB. (5.135)

s

jw
arg[ (H jw)]

w

p/2

-p /2

| ( )|H jw

w0

FIGURE 5.39 Simple zero, amplitude and phase response.

The Bode plot is therefore a straight line of slope 20 dB/decade. In one octave, that is, from
a frequency ω to another 2ω the slope is

20 log10(2 |ω|/|ω|) = 6 dB/octave. (5.136)

The Bode plot shows the magnitude spectrum in decibels and the phase spectrum versus a
logarithmic scale of ω, as shown in Fig. 5.40.
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FIGURE 5.40 Asymptotic magnitude and phase response.

5.21.2 A Simple Pole

Let H (s) = 1/s. We have H (jω) = 1/(jω) = −j/ω, |H (jω)| = 1/|ω|,

arg [H (jω)] =

{
−π/2, ω > 0
π/2, ω < 0

(5.137)

as shown in Fig. 5.41.

| ( )|H jw

w

s

jw
arg[ (H jw)]

w

p/2

-p /2

FIGURE 5.41 Simple pole, magnitude and phase response.

The slope in one decade is given by

20 log10

1/ (10 |ω|)
1/ |ω| = −20 dB/decade = −6 dB/octave (5.138)

as represented in Fig. 5.42.

5.21.3 A Simple Zero in the Left Plane

Consider the case of the transfer function

H (s) = sτ + 1 (5.139)

and the corresponding frequency response H (jω) = jωτ + 1. We have

|H (jω)| =
√

1 + ω2τ2 (5.140)

arg [H (jω)] = tan−1 [ωτ ] (5.141)

as represented schematically in Fig. 5.43.
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FIGURE 5.42 Simple pole, asymptotic magnitude and phase response.
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FIGURE 5.43 A zero, amplitude and phase response.

Asymptotic Behavior
By studying the behavior of the amplitude spectrum H (jω) for both small and large

values of ω we can draw the two asymptotes in a Bode plot. If ω −→ 0 we have

20 log10 |H (jω)| ≈ 20 log10 1 = 0 dB, arg [H (jω)] ≈ 0. (5.142)

If ω −→∞ the change of gain in one decade is given by

20 log10

10ωτ

ωτ
= 20 dB/decade, arg [H (jω)] ≈ π/2. (5.143)

The intersection of the asymptotes is the point satisfying 20 log10 ωτ = 0, i.e., ωτ = 1 or
ω = 1/τ as shown in Fig. 5.44.

w

20 dB/ decade

w1/t

Magnitude dB
p/2

p/4

1/t

Phase

0
w

3

FIGURE 5.44 A zero and asymptotic response.

The true value of the gain at ω = 1/τ is

20 log10 |H (jω)||ω=1/τ = 20 log10

√
1 + ω2τ2

∣∣
ω=1/τ

= 10 log10 2 = 3 dB (5.144)

and the phase φ at ω = 1/τ is given by

φ = tan−1 1 = π/4 (5.145)
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as shown in the figure.

5.21.4 First Order System

Consider the first order system having the transfer function

H (s) =
1

sτ + 1
(5.146)

and the frequency response is

H (jω) =
1

jωτ + 1
(5.147)

|H (jω)| = 1√
1 + ω2τ2

, arg [H (jω)] = − tan−1 [ωτ ] (5.148)

as shown in Fig. 5.45. Following the same steps we obtain the Bode plot shown in Fig. 5.46.
We note that the asymptote for large ω has a slope of −20 dB/decade and meets the 0 dB
asymptote at the point ω = 1/τ .

| ( )|H jw

w

p/2

w

- /2p

arg[ ( )]H jw

-1/t

jw

0 s

FIGURE 5.45 A pole, amplitude and phase response.
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FIGURE 5.46 Asymptotic response.

5.21.5 Second Order System

Consider the transfer function H (s) of the second order system

H (s) =
ω2

0

s2 + 2ω0ζs+ ω2
0

. (5.149)

The frequency response is given by

H (jω) =
ω2

0

−ω2 + j2ω0ζω + ω2
0

=
ω2

0

{(
ω2

0 − ω2
)
−j2ω0ζω

}

(ω2
0 − ω2)

2
+ 4ω2

0ζ
2ω2

(5.150)
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|H (jω)| = ω2
0√

(ω2
0 − ω2)

2
+ 4ω2

0ζ
2ω2

, arg [H (jω)] = − arctan

[
2ω0ζω

ω2
0 − ω2

]
. (5.151)

If ω −→ 0 , |H (jω)| −→ 1 Gain = 20 log10 1 = 0 dB, and arg [H (jω)] −→ 0. If ω −→
∞ , |H (jω)| −→ ω2

0/ω

Gain per decade = 20 log10

{
ω2

0/ (10ω1)
2

ω2
0/ω

2
1

}
= 20 log

(
10−2

)
= −40dB/decade. (5.152)

The slope of the asymptote is therefore −40 dB/decade or −12 dB/octave. As ω −→
∞ , H (jω) −→ −ω2

0/ω
2 wherefrom arg [H (jω)] −→ −π. The Magnitude and phase

responses are shown in Fig. 5.47 for the case ζ = 0.01.
The two asymptotes meet at a point such that 20 log10

{
ω2

0/ω
2
}

= 0, i.e. ω = ω0. This
may be referred to as the cut-off frequency ωc = ω0. The true gain at ω = ωc is given by

Gain = 20 log10 [|H (jω0)|] = 20 log10 {1/ (2ζ)} = −20 log (2ζ) . (5.153)
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FIGURE 5.47 Bode plot of amplitude and frequency response.

For example if ζ = 1 the gain is −6 dB. If ζ = 1/2 the gain = 0 dB. The peak point of
the magnitude frequency response |H (jω)| can be found by differentiating the expression

|H (jω)|2. Writing

d

dω
|H (jω)|2 =

d

dω

ω4
0

(ω2
0 − ω2)

2
+ 4ω2

0ζ
2ω2

= 0 (5.154)

we obtain −4
(
ω2

0 − ω2
)
+ 8ω2

0ζ
2 = 0, wherefrom the frequency of the peak, which shall be

denoted ωr, is given by

ωr = ω0

√
1− 2ζ2. (5.155)

A geometric construction showing the relations among the different frequencies leading to
the resonance frequency of a second order system is shown in Fig. 5.48.
The poles are shown at positions given by

p1, p2 = −ζω0 ± ω0

√
ζ2 − 1. (5.156)

As can be seen from this figure, the peak frequency ωr can be found by drawing a circle
centered at the point σ = −ζω0, of radius ωp =

√
1− ζ2. The intersection of the circle
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with the vertical axis is a point on the jω axis given by jω = jωr that is, a point above
the origin by the resonance frequency ωr. Note that as can be seen in the figure

ω2
r = ω2

p − ζ2ω2
0 = ω2

0

(
1− ζ2

)
− ζ2ω2

0 = ω2
0 − 2ζ2ω2

0 (5.157)

ωr = ω0

√
1− 2ζ2 (5.158)

as expected.

jw

jw0

jw0

w0

zw0
zw0

jw

w
w

w

s

u1

u2

FIGURE 5.48 A construction leading to the resonance frequency of a second order system.

Note that the value of |F (jω)| is given by

|F (jω)| = 1

|u1| |u2|
(5.159)

where u1 and u2 are the vectors extending from the poles to the point on the vertical
axis s = jω, as shown in the figure. The value of |F (jω)| is a maximum when |u1| |u2| is
minimum, which can be shown to occur when u1 and u2 are at right angles; hence meeting
on that circle centered at the point σ = −ζω0 and joining the poles. The value of the peak
of |H (jω)| at the resonance frequency ωr is given by

P (ζ) = |H (jωr)| =
ω2

0√
[ω2

0 − ω2
0 (1− 2ζ2)]

2
+ 4ω4

0ζ
2 (1− 2ζ2)

=
1

2ζ
√

1− ζ2 (5.160)

a relation depicted as a function of ζ in Fig. 5.49.
We note from Fig. 5.31 that if ζ > 0.5 the magnitude spectrum resembles that of a

lowpass filter. On the other hand if ζ −→ 0 then the poles approach the jω axis, producing
resonance, and the resonance frequency ωr approaches the natural frequency ω0 and the
spectrum has a sharp peak as shown in the figure. The quality Q describing the degree of
selectivity of such a second order system is usually taken as

Q =
1

2ζ
(5.161)
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and gives a measure of the sharpness of the magnitude spectral peak. We note that, as
expected, the lower the value of ζ the higher the selectivity.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

20

40

z

P( ) dBz

0

FIGURE 5.49 The resonance peak as a function of damping coefficient.

5.22 Bode Plot of a Composite Linear System

The transfer function of a linear system can be in general factored into a product of basic
first and second order systems. Since the logarithm of a product is the sum of logarithms
the overall Bode plot can be deduced by adding the Bode plots of those basic components.
The resulting amplitude spectrum in decibels is thus the sum of the amplitude spectra of
the individual components. Similarly, the overall phase spectrum may be deduced by adding
the individual phase spectra. The following example illustrates the approach.

Example 5.4 Deduce and verify the Bode plot of the system transfer function

H (s) =
As

(s+ a) (s2 + 2ζω0s+ ω2
0)

with a = 1.5, ζ = 0.1, ω0 = 800. Set the value of A so that the magnitude of the response
at the frequency 1 rad/sec be equal to 20 dB.

Letting τ = 1/a we have

H (s) =
As

(s+ 1/τ) (s2 + 2ζω0s+ ω2
0)

=

(
Aτ/ω2

0

)
s

(sτ + 1) (s2/ω2
0 + 2ζs/ω0 + 1)

.

H (jω) =

(
Aτ/ω2

0

)
jω

(jωτ + 1) (−ω2/ω2
0+j2ζω/ω0+1)

.

The value of the magnitude spectrum |H (jω) | at ω = 1 may be shown equal to 1.554710−7A.
To obtain a spectrum magnitude of 20 dB, we should have 20 log10 |H (j1)| = 20, i.e.
|H (j1) | = 10, wherefrom A = 10/1.554710−7 = 6.4319 107. The Bode plot of the ampli-
tude and phase spectra of the successive components of H (s) are shown in Fig. 5.50. Note
that the command bode of MATLAB may be used to display such plots. The left side of
these figures shows the amplitude spectra in decibels while those on the right show the phase
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spectra. The addition of the amplitude spectra in the figure produces the overall amplitude
spectrum. Similarly the addition of the right parts of the figure produces the overall phase
spectrum. The sum of these plots, the Bode plot of the composite system transfer function
H (s), is shown in Fig. 5.51.

Magnitude

20 dB per decade

1

Phase

p/2

0
ww

w

1/t

- /4p

- /2p

- /2p

-p

1/t

FIGURE 5.50 Bode plot of amplitude and phase spectra of system components.

5.23 Graphical Representation of a System Function

A rational system function H (s), as we have seen, can be expressed in the form

H (s) = K

M∏
i=1

(s− zi)

N∏
i=1

(s− pi)

(5.162)

in which zi and pi are its zeros and poles, respectively. We have also seen that the zeros
and poles can be represented graphically in the s plane. For the system function H (s) to
be graphically represented in the s plane it only remains to indicate the value K, the gain
factor, on the pole-zero diagram. The gain factor K may be added, for example, next to
the origin of the s plane.
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FIGURE 5.51 Overall system Bode plot.

5.24 Vectorial Evaluation of Residues

The evaluation of the inverse Laplace transform of a function F (s) necessitates often evalu-
ating the residues at its poles. Such evaluation may be performed vectorially. To show how
vectors may be used to evaluate a function in the s plane, let

F (s) =
s− z1

(s− p1)(s− p2)
. (5.163)

FIGURE 5.52 Vectors in s plane.

Assuming that the function F (s) needs be evaluated at a point s in the complex plane
as shown in Fig. 5.52, we note that using the vectors shown in the figure we can write
u = s− z1, v1 = s− p1, v2 = s− p2. Hence

F (s) =
u

v1v2
. (5.164)

Consider now the transfer function

F (s) = 10
(s+ 2)

(s+ 1) (s+ 4) (s2 + 4s+ 8)
. (5.165)

Let p1 = −1, p2 = −4. A partial fraction expansion of F (s) has the form

F (s) =
r1
s+ 1

+
r2
s+ 4

+
r3

s− p3
+

r∗3
s− p∗3

(5.166)
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where p3, p
∗
3 = −2± j2. The residue r1 associated with the pole s = −1 is given by

r1 = (s+ 1)F (s)|s=−1 = 10
(s+ 2)

(s+ 4)(s2 + 4s+ 8)

∣∣∣∣
s=−1

. (5.167)

FIGURE 5.53 Graphic evaluation of residues.

The poles and zeros are plotted in Fig. 5.53 where, moreover, the gain factor 10 of the
transfer function can be seen marked near the point of origin. We note that the residue r1
can be evaluated as r1 = 10u/(v1v2v3), where u is the vector extending from the zero at
s = −2 to the pole s = −1 and v1, v2 and v3 are the vectors extending from the poles p2,
p3 and p∗3 to the pole s = −1, as shown in the figure. We obtain

r1 = 10
1

3×
√

5×
√

5
=

2

3
. (5.168)

Similarly, referring to the figure, the residue r2 associated with the pole s = −4 is given
by

r2 = 10
u

v1v2v3
= 10

(−2)

(−3)
√

8
√

8
=

5

6
(5.169)

and the residue r3 associated with the pole s = −2 + j2 is given by

r3 = 10
u

v1v2v3
= 10

2∠90◦√
5∠116.57◦4∠90◦

√
8∠45◦

= 0.7906∠− 161.57◦

= 0.7906e−j2.8199 = −0.75− j0.25
(5.170)
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r∗3 = −0.75 + j0.25, (5.171)

f(t) = L−1 [F (s)] = [(2/3)e−t + (5/6)e−4t + 1.5812e−2t cos(2t− 161.57◦)]u(t). (5.172)

To summarize, for the case of simple poles, the residue at pole s = pi is equal to the
gain factor multiplied by the product of the vectors extending from the zeros to the pole
pi, divided by the product of the vectors extending from the poles to the pole pi. In other
words the residue ri associated with the pole s = pi is given by

ri = K
u1u2 . . . uM

v1v2 . . . vN−1
= K

M∏
i=1

ui

N−1∏
i=1

vi

(5.173)

where K is the gain factor, u1, u2, . . . , uM are the vectors extending from the M zeros of
F (s) to the pole s = pi, and v1, v2, . . . , vN−1 are the vectors extending from all other
poles to the pole s = pi.

Case of double pole

We now consider the vectorial evaluation of residues in the case of a double pole. Let
F (s) be given by

F (s) = K
(s− z1)(s− z2) . . . (s− zM )

(s− p1)2(s− p2)(s− p3) . . . (s− pN )
(5.174)

having a double pole at s = p1. A partial fraction expansion of F (s) has the form

F (s) =
r1

(s− p1)2
+

ρ1

s− p1
+

r2
s− p2

+
r3

s− p3
+ . . .+

rN
s− pN

. (5.175)

The residues ri, i = 1, 2, . . . , N are evaluated as in the case of simple poles, that is, as
the gain factor multiplied by the product of vectors extending from the zeros to the pole
s = pi divided by those extending from the other poles to s = pi. The residue ρ1 is given
by

ρ1 =

{
d

ds

[
(s− p1)

2 F (s)
]}

s=p1

=

{
d

ds

[
K

(s− z1)(s− z2) . . . (s− zM )

(s− p2)(s− p3) . . . (s− pN )

]}∣∣∣∣
s=p1

.

Using the relation
d

ds
{logX(s)} =

1

X(s)

d

ds
X(s) (5.176)

d

ds
X(s) = X(s)

d

ds
{logX(s)} (5.177)

we can write

ρ1 = K

{[
(s− z1)(s− z2) . . . (s− zM )

(s− p2)(s− p3) . . . (s− pN)

]
d

ds
[log(s− z1) + log(s− z2) + . . .

+ log(s− zM )− log(s− p2)− log(s− p3)− . . .− log(s− pN )]}|s=p1
.

Since

r1 = (s− p1)
2F (s)

∣∣
s=p1

= K
(s− z1)(s− z2). . .(s− zM )

(s− p2)(s− p3). . .(s− pN )

∣∣∣∣
s=p1
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we have

ρ1 = r1

[
1

s− z1
+

1

s− z2
+ . . .+

1

s− zM
− 1

s− p2

− 1

s− p3
− . . .− 1

s− pN

]∣∣∣∣
s=p1

= r1

[
1

p1 − z1
+

1

p1 − z2
+ . . .+

1

p1 − zM
− 1

p1 − p2

− 1

p1 − p3
− . . .− 1

p1 − pN

]
.

Vectorially we write

ρ1 = r1

[
∑

i

1

ui
−
∑

k

1

vk

]
(5.178)

whereui = p1 − zi, vi = p1 − pi. The residue ρ1 is therefore the product of the residue
r1 and the difference between the sum of the reciprocals of the vectors extending from the
zeros to the pole s = p1 and those extending from the other poles to s = p1.

Example 5.5 Evaluate vectorially the partial fraction expansion of

F (s) = 12
(s+ 2)

(s+ 1)(s+ 3)2(s+ 4)
.

The poles and zeros of F (s) are shown in Fig. 5.54. We have

F (s) =
r1

(s+ 3)2
+

ρ1

s+ 3
+

r2
s+ 1

+
r3
s+ 4

.

FIGURE 5.54 Poles and zero on real axis.

Referring to Fig. 5.55 we have

r1 = 12
u

v1v2
= 12

(−1)

(−2)(−1)
= 6, r2 = 12

u

v2
1v2

= 12
(1)

(22)(3)
= 1

r3 = 12
u

v1v2
2

= 12
(−2)

(−3)(−1)2
= 8, ρ1 = r1

[
1

(−1)
−
{

1

(−2)
+

1

1

}]
= −9.
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FIGURE 5.55 Vectorial evaluation of residues.

5.25 Vectorial Evaluation of the Frequency Response

Given a system function

H(s) = K
(s− z1) (s− z2) . . . (s− zM )

(s− p1) (s− p2) . . . (s− pN )
= K

M∏
k=1

(s− zk)

N∏
k=1

(s− pk)

(5.179)

the system frequency response is

H(jω) = K
(jω − z1) (jω − z2) . . . (jω − zM )

(jω − p1) (jω − p2) . . . (jω − pN )
= K

M∏
k=1

(jω − zk)

N∏
k=1

(jω − pk)

. (5.180)

Similarly to the vectorial evaluation of residues, the value of H (jω) at any frequency, say
ω = ω0, can be evaluated vectorially as the product of the gain factor and the product of
the vectors extending from the zeros to the point s = jω0 divided by the product of the
vectors extending from the poles to the point s = jω0.

Example 5.6 For the system of transfer function

H (s) =
10 (s+ 2)

(s+ 1) (s+ 4)
.

Evaluate |H (jω)| and arg [H (jω)] for ω = 2 r/s. From Fig. 5.56 we can write

H (j2) = 10
2
√

2∠45◦√
5∠63.435◦

√
20∠26.57◦

|H (j2)| =
√

8 = 2.8284, arg [H (j2)] = −45◦ = −0.7854

wherefrom H (j2) = 2.8284e−j0.7854.
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FIGURE 5.56 Vectors from zero and poles to a point on imaginary axis.

Example 5.7 Evaluate the frequency response of the third order system having the transfer
function

H (s) =
10 (s+ 1)

s3 + 5s2 + 6s

and the system response to the input

x (t) = 5 sin (2t+ π/3) .

We can write

H (s) =
10 (s+ 1)

s (s2 + 5s+ 6)
=

10 (s+ 1)

s (s+ 2) (s+ 3)
.

FIGURE 5.57 Vectors to a frequency point.

Referring to Fig. 5.57 we have

H (jω) = 10
(jω + 1)

jω (jω + 2) (jω + 3)
.

We note that numerator is the vector u1 extending from the point s = −1 to the point
s = jω, i.e. from point A to point B. The denominator, similarly, is the product of the
vectors v1, v2 and v3 extending from the points C, D, and E, respectively to the point B in
the figure. We can therefore write

H (jω) = 10
u1

v1v2v3
= 10

√
1 + ω2ejθ1

ωejπ/2
√

4 + ω2ejθ2

√
9 + ω2ejθ3

= 10

√
1 + ω2

ω
√

4 + ω2
√

9 + ω2
ejφ

where

φ = arg [H (jω)] = θ1 − π/2− θ2 − θ3 = tan−1 (ω)− π/2− tan−1 (ω/2)− tan−1 (ω/3) .
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The system response to the sinusoid x (t) = 5 sin (βt+ π/3), where β = 2 is given by

y (t) = 5 |H (jβ)| sin {βt+ π/3 + arg [H (jβ)]} .

Now

|H (jβ)| = 10

√
1 + β2

β
√

4 + β2
√

9 + β2
= 10

√
5

2
√

8
√

13
= 1.0963

arg [H (jβ)] = tan−1 2− π/2− tan−1 1− tan−1 (1/3) = − π/2

wherefrom
y (t) = 5.4816 sin (2t− π/6) .

5.26 A First Order All-Pass System

The vectorial evaluation of the frequency response provides a simple visualization of the
response of an allpass system. Such a system acts as an allpass filter that has a constant
gain of 1 for all frequencies. Let the system function H (s) have a zero and a pole at s = α
and s = −α, respectively, as shown in Fig. 5.58.

FIGURE 5.58 Allpass system pole–zero–symmetry property.

We note that at any frequency ω the value of H (jω) is given by

H (jω) =
u

v
=

√
α2 + ω2∠(π − φ)√
α2 + ω2∠φ

= 1∠ (π − 2φ) (5.181)

where u and v are the vectors shown in in Fig. 5.58, and φ = tan−1 (ω/α). The amplitude
and phase spectra |(H(jω)| and arg[H(jω)] are shown in Fig. 5.59. We shall view shortly
allpass systems in more detail.

5.27 Filtering Properties of Basic Circuits

In this section we study the filtering properties of first and second order linear systems in
the form of basic electric circuits. Consider the circuit shown in Fig. 5.60(a). We have

V0 (s) = Vi (s)
R

R+
1

Cs

= Vi (s)
RCs

1 +RCs
(5.182)
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FIGURE 5.59 Frequency response of an allpass system.

v0vi v0vi

(a) (b)

C
R

R

L

FIGURE 5.60 Two electric circuits.

H (s) =
V0 (s)

Vi (s)
=

τs

1 + τs
=

s

s+ 1/ τ
, τ = RC. (5.183)

FIGURE 5.61 Vectors to a frequency point.

Referring to Fig. 5.61 we have

H (jω) =
u

v
=

ωejπ/2

√
ω2 + 1/τ2ejθ

(5.184)

where
θ = tan−1 (ωτ) (5.185)

|H (jω)| = |ω|√
ω2 + 1/τ2

(5.186)

arg {H (jω)} = π/2− tan−1 (ωτ) . (5.187)

See Fig. 5.62. Similarly consider the circuit shown in Fig. 5.60(b).

V0 (s) = Vi (s)
Ls

R+ Ls
= Vi (s)

(L/R) s

1 + (L/R) s
= Vi (s)

τs

1 + τs
(5.188)
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FIGURE 5.62 Frequency response of a first order system.

where τ = L/R. This circuit has the same transfer function as that of Fig. 5.60(a). Having a
zero at s = 0, i.e. at ω = 0, these two circuits behave as highpass filters. At zero frequency
the capacitor has infinite impedance, acting as a series open circuit blocking any current
flow, leading to a zero output. At infinite frequency the capacitor has zero impedance,
behaves as a short circuit so that v0 = vi. The same remarks can be made in relation with
Fig. 5.60(b) where the inductor at zero frequency is a short circuit leading to zero output
and at infinite frequency is an open circuit so that v0 = vi.

5.28 Lowpass First Order Filter

Consider the circuit shown in Fig. 5.63(a).

FIGURE 5.63 Two electric circuits.

We have

H (s) =
V0 (s)

Vi (s)
=

1/(Cs)

R+ 1/(Cs)
=

1

1 + RCs
=

1

1 + τs
(5.189)

where τ = RC. Similarly consider the circuit shown in Fig. 5.63(b). The transfer function
is given by

H (s) =
V0 (s)

Vi (s)
=

R

R+ Ls
=

1

1 + (L/R) s
=

1

1 + τs
(5.190)

H (jω) = 1/ (1 + jωτ) (5.191)

where τ = L/R. We have

H(s) = (1/τ) / (s+ 1/τ) . (5.192)
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FIGURE 5.64 Vector to a frequency point and the evolution of magnitude spectrum in
the phase plane.

Referring to Fig. 5.64(a) we have H(jω) = 1/u,

|H (jω)| = (1/τ)/
√
ω2 + (1/τ)2 = 1/

√
1 + ω2τ2, θ = arg [H (jω)] = − tan−1 (ωτ) .

The polar plot showing the evolution in the complex plane with the frequency ω increasing
from 0 to ∞ of H(jω) is shown in Fig. 5.64(b). This can be verified geometrically and
confirmed by the MATLAB command polar (Hangle, Habs).

We note that each of these two circuits acts as a lowpass filter. At zero frequency the
capacitor has infinite impedance, appearing as an open circuit, and the inductor has zero
impedance acting as a short circuit, wherefrom v0 = vi. At infinite frequency the reverse
occurs, the capacitor is a short circuit and the inductor an open circuit, so that v0 = 0.
A second order system with a zero in its transfer function H (s) at s = 0 behaves as a
bandpass filter. Consider the circuit shown in Fig. 5.65.

FIGURE 5.65 R-L-C electric circuit.

We have

H (s) =
V0 (s)

Vi (s)
=

R

R+ Ls+ 1/(Cs)
=

(R/L) s

s2 + (R/L) s+ 1/(LC)
=

2ζω0s

s2 + 2ζω0s+ ω2
0

where

ω0 =
1√
LC

, 2ζω0 = R/L, i.e. ζ =
R

2Lω0
=
R

2

√
C

L
(5.193)

H (jω) = j2ζω0ω/(ω
2
0 − ω2 + j2ζω0ω). (5.194)

The general outlook of the amplitude and phase spectra of H(jω) are shown in Fig. 5.66
for the case ω0 = 1 and ζ = 0.2.

We note that the system function H (s) has a zero at s = 0 and at both H (0) and
H (j∞) are equal to zero, implying a bandpass property of this second order system.

At zero frequency the inductor is a short circuit but the capacitor is an open one, where-
from the output voltage is zero. At infinite frequency the inductor is an open circuit and
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the capacitor a short circuit; hence the output is again zero. At the resonance frequency
ω0 = 1/

√
LC the output voltage v0 reaches a peak. Note that the impedance of the L− C

component is given by

Z (s) = Ls+
1

Cs
=
LCs2 + 1

Cs
= L

s2 + 1/ (LC)

s
. (5.195)

p/2

- /2p

arg[H(jw)]

| ( )|H jw

w

w1 2-1-2

1 2-1-2

1

FIGURE 5.66 Amplitude and phase spectra of a second order system.

Referring to Fig. 5.67, we note that Z (s) has two zeros on the jω axis, and one pole at
s = 0.

The zeros of Z(s) are given by LCs2 = −1, i.e.

−ω2 +
1

LC
= 0 (5.196)

ω2 =
1

LC
, i.e. ω =

1√
LC

. (5.197)

FIGURE 5.67 Transfer function with a pole and two zeros an its frequency spectrum.

Let L = C = 1

Z (jω) =
1− ω2

jω
=
j
(
ω2 − 1

)

ω
, |Z (jω)| = |ω

2 − 1|
|ω| (5.198)

as represented graphically in the figure.
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5.29 Minimum Phase Systems

We have seen that a causal system is stable if and only if its poles are all in the left half
of the s plane. For stability there is no restriction on the location of zeros in the plane.
The location of a zero, whether it is in the left half or right half of the s plane, has an
effect, however, on the phase of the frequency response. The following example illustrates
the effect of reflecting a zero into the s-plane’s jω axis on the phase of the system frequency
response.

Example 5.8 Evaluate the magnitude and phase of a system frequency response H1 (jω)
for a general value ω given that

H1 (s) =
10 (s+ 3)

(s− p1) (s− p∗1) (s+ 5)

where p1 = −2 + j2. Repeat for the case of the same system but where the zero is reflected
into the jω axis, so that the system transfer function is given by

H2 (s) =
10 (s− 3)

(s− p1) (s− p∗1) (s+ 5)
.

Compare the magnitude and phase response in both cases.

We have

H1 (jω) =
10 (jω + 3)

(jω − p1) (jω − p∗1) (jω + 5)
, H2 (jω) =

10 (jω − 3)

(jω − p1) (jω − p∗1) (jω + 5)
.

Referring to Fig. 5.68 we can rewrite the frequency responses in the form

q1 10 10

FIGURE 5.68 Vectorial evaluation of frequency response.

H1 (jω) =
10u1

v1v2v3
, H2 (jω) =

10u2

v1v2v3
.

We note that

|H1 (jω)| = 10 |u1|
|v1| |v2| |v3|

=
10 |u2|

|v1| |v2| |v3|
= |H2 (jω)| .



System Modeling, Time and Frequency Response 281

The magnitude responses are therefore the same for both cases. Regarding the phase, how-
ever, we have

φ1=△ arg [H1 (jω)] = arg [u1]− arg [v1v2v3] = θ1 − arg [v1v2v3]

φ2=△ arg [H2 (jω)] = arg [u2]− arg [v1v2v3] = θ2 − arg [v1v2v3]

where θ1 and θ2 are the angles of the vectors u1 and u2 as shown in the figure.

We note that for ω > 0 the phase angle θ1 of H1 (jω) is smaller in value than the angle
θ2 of H2 (jω). A zero in the left half of the s plane thus contributes a lesser phase angle to
the phase spectrum than does its reflection into the jω axis. The same applies to complex
zeros. If the input to the system is a sinusoid of frequency β rad/sec, the system output,
as we have seen, is the same sinusoid amplified by |H (jω)|ω=β = |H(jβ)| and delayed by
arg {H (jω)}|ω=β = arg {H (jβ)}.

The phase lag, hence the delay, of the system output increases with the increase of the
phase arg {H (jω)} of the frequency response. Since a zero in the left half plane contributes
less phase to the value of the phase spectrum arg {H (jω)} at any frequency ω than does
a zero in the right half of the s plane, it causes less phases lag in the system response. It
is for this reason that a causal system of which all zeros are located in the left half of the
s plane is referred to as a “minimum phase” system in addition to being stable. We note,
moreover, that the inverse 1/H (s) of the system function H (s) is also causal, stable and
minimum phase. If, on the other hand, a zero of H (s) exists in the right half of the s plane,
the inverse 1/H (s) would have a pole at that location, and is therefore an unstable system.

5.30 General Order All-Pass Systems

FIGURE 5.69 Vectors from allpass system poles and zeros to a frequency point.

Consider a transfer function

H (s) = K

∏

i

(s− zi)

∏

i

(s− pi)
(5.199)
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having the pole-zero pattern in the s plane shown in Fig. 5.69. Each pole pi has an image
in the form of a zero zi by reflection into the jω axis. The magnitude spectrum of such a
system can be written in the form

|H (jω)| =
K

5∏

i=1

|ui|

5∏

i=1

|vi|
. (5.200)

Referring to the figure we notice that

|ui| = |vi| , i = 1, 2, . . . , 5. (5.201)

We deduce that

|H (jω)| = K. (5.202)

Since the magnitude spectrum is a constant for all frequencies this is called an allpass
system. An allpass system, therefore, has poles in the left half of the s plane only, and zeros
in the right half which are reflections thereof into the s = jω axis. The transfer function is
denoted Hap (s). We note that an allpass system, having its zeros in the right half s-plane,
is not minimum phase. Any causal and stable system can be realized as a cascade of an
allpass system and a minimum phase system

H (s) = Hmin (s)Hap (s) . (5.203)

The allpass system’s transfer function Hap (s) has the right half s plane zeros of H (s) and
has, in the left half of the s plane, their reflections into the jω axis as poles. The transfer
function Hmin (s) has poles and zeros only in the left half of the s plane. The poles are the
same as those of H (s). The zeros are the same as the left half plane zeros of H (s) plus
additional zeros that are at the same positions of the poles of Hap (s). These additional
zeros are there so as to cancel the new poles of Hap (s) in the product Hmin (s)Hap (s).

Example 5.9 Decompose the transfer function H (s) shown in Fig. 5.70 into an allpass
and minimum phase functions.

FIGURE 5.70 Transfer function decomposition into allpass and minimum phase factors.

The required allpass and minimum phase functions are shown in the figure.

Example 5.10 Given the transfer function H (s) shown in Fig. 5.71 derive the transfer
functions Hap (s) and Hmin (s) of which H (s) is the product.

The required allpass and minimum phase transfer functions are shown in the figure.
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FIGURE 5.71 Decomposition into allpass and minimum phase system.

5.31 Signal Generation

As we have seen, dynamic linear systems may be modeled by linear constant-coefficient
differential equations. Conversely, it is always possible to construct, using among others
integrators, a physical system of which the behavior mirrors a model given in the form
of differential equations. This concept can be extended as a means of constructing signal
generators. A linear system can be constructed using integrators, adders, constant multi-
pliers,... effectively simulating any system described by a particular differential equation.
By choosing a differential equation of which the solution is a sinusoid, an exponential or a
damped sinusoid, for example, such a system can be constructed ensuring that its output
is the desired signal to be generated. The following example illustrates the approach.

Example 5.11 Show a block diagram using integrators, adders, ... of a signal generator
producing the function

y (t) = Ae−αt sinβt u (t) .

Set the integrators’ initial conditions to ensure generating the required signal.

To generate the function y(t) consider the second order system transfer function

H (s) =
ω2

0

s2 + 2ζω0s+ ω2
0

.

Assuming zero input, i.e.
ÿ + 2ζω0ẏ + ω2

0y = 0
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s2Y (s)− s y
(
0+
)
− ẏ

(
0+
)

+ 2ζω0

{
s Y (s)− y

(
0+
)}

+ ω2
0Y (s) = 0

i.e.

Y (s) =
s y (0+) + ẏ (0+) + 2ζω0y (0+)

s2 + 2ζω0s+ ω2
0

.

Now
y
(
0+
)

= 0

and
ẏ
(
0+
)

=
[
Ae−αtβ cosβt−Aαe−αt sinβt

]
t=0

= Aβ

wherefrom

Y (s) =
Aβ

s2 + 2ζω0s+ ω2
0

= Aβ

[
C1

s− p1
+

C∗1
s− p∗1

]

p1 = −ζω0 + jω0

√
1− ζ2 = −ζω0 + jωp

y (t) = 2Aβ |C1| e−ζω0t cos (ωpt+ arg[C1])

|C1| =
1

2ωp
, arg[C1] = −90o

y (t) =
Aβ

ωp
e−ζω0t sinωpt

β/ωp = 1 i.e. ω0

√
1− ζ2 = β, ζω0 = α, ω2

0 = α2 + β2, and ζ = α/ω0

ÿ = −2ζω0ẏ − ω2
0y = −2αẏ −

(
α2 + β2

)
y.

See Fig. 5.72. Note that if we set α = 0 we would obtain an oscillator generating a pure
sinusoid.

-2a

y y y

-( + )a b2 2

+

y(0 )
+

y(0 )
+

FIGURE 5.72 Sinusoid generator.

5.32 Application of Laplace Transform to Differential Equations

We have seen several examples of the solution of differential equations using the Laplace
transform. This subject is of great importance and constitutes one of the main applica-
tions of the Laplace transform. In what follows we review the basic properties of linear
constant coefficient differential equations with boundary and initial conditions followed by
their solutions and those of partial differential equations using Laplace transform.
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5.32.1 Linear Differential Equations with Constant Coefficients

We shall review basic linear differential equations and general forms of their solutions.
Subsequently, we study the application of Laplace and Fourier transform to the solution of
these equations. Partial differential equations and their solutions using transforms extend
the scope of the applications to a larger class of models of physical systems.

5.32.2 Linear First Order Differential Equation

Consider the linear first order differential equation

y′ + P (t)y = Q(t). (5.204)

The solution of this equation employs the integrating factor f(t) = e
´

P (t)dt. Multiplying
both sides of the differential equation by the integrating factor we have

y′e
´

P (t)dt + P (t)ye
´

P (t)dt = Q(t)e
´

P (t)dt (5.205)

which may be rewritten in the form

d

dt

{
ye
´

P (t)dt
}

= Q(t)e
´

P (t)dt. (5.206)

Hence

ye
´

P (t)dt =

ˆ

Q(t)e
´

P (t)dtdt+ C. (5.207)

where C is a constant. We deduce that

y(t) = e−
´

P (t)dt

ˆ

Q(t)e
´

P (t)dtdt+ Ce−
´

P (t)dt. (5.208)

Example 5.12 Solve the equation

y′ − 2ty = t.

We have P (t) = −2t, Q(t) = t. The integrating factor is f(t) = e
´

−2tdt = e−t2

e−t2y′ − 2te−t2y = te−t2

d

dt

(
ye−t2

)
= te−t2

ye−t2 =

ˆ

te−t2dt+ C

y = et2
(−1

2

)
e−t2 + Cet2 = Cet2 − 1/2.

Example 5.13 Given

f(t) =

ˆ ∞

0

e−we−t/w

√
w

dw.

Evaluate f ′(t) and relate it to f(t). Write a differential equation in f and f ′ and solve it
to evaluate f(t).

We have

f ′(t) =

ˆ ∞

0

e−we−t/w

√
w

(−1

w

)
dw = −

ˆ ∞

0

e−we−t/w

w3/2
dw.
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Let
t

w
= u, w =

t

u
, dw = − t

u2
du

f ′(t) =

ˆ 0

∞

e−t/ue−u

(t/u)3/2

t

u2
du = −

ˆ ∞

0

e−ue−t/u

√
t
√
u

du = − 1√
t
f(t)

f ′(t) +
1√
t
f(t) = 0

which has the form
f ′(t) + P (t)f(t) = 0.

The integrating factor is

I = e
´

P (t)dt = e
´

1√
t
dt

= e2
√

t.

Multiplying the differential equation by I

e2
√

tf ′(t) +
1√
t
e2
√

tf(t) = 0

d

dt

[
e2
√

tf(t)
]

= 0.

Integrating we have

e2
√

tf(t) = C

f(t) = Ce−2
√

t.

To evaluate the constant C we use the initial condition

f(0) = C =

ˆ ∞

0

e−w

√
w
dw

C =

ˆ ∞

0

e−ww−1/2dw = Γ(1/2) =
√
π.

We conclude that

f(t) =

ˆ ∞

0

e−we−t/w

√
w

dw =
√
πe−2

√
t.

5.32.3 General Order Differential Equations with Constant Coefficients

An nth order linear differential equation with constant coefficients has the form

a0y
(n) + a1y

(n−1) + . . .+ any = f(t) (5.209)

where y(k) =
dk

dtk
y(t). The equation

a0y
(n) + a1y

(n−1) + . . .+ any = 0 (5.210)

is called the corresponding homogeneous equation, while the first equation is the nonhomo-
geneous equation and the function f(t) is called the forcing function or the nonhomogeneous
term. The solution of the homogeneous equation may be denoted yh(t). The solution of the
nonhomogeneous equation is the particular solution denoted yp(t). The general solution of
the nonhomogeneous equation with general nonzero initial conditions is given by

y(t) = yh(t) + yp(t). (5.211)
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5.32.4 Homogeneous Linear Differential Equations

From the above the nth order homogeneous linear differential equation with constant coef-
ficients may be written in the form

y(n) + a1y
(n−1) + . . .+ any = 0 (5.212)

where the coefficients a1, a2, . . . , an are constants. The solution of the homogeneous
equation is obtained by first writing the corresponding characteristic equation, namely

λn + a1λ
n−1 + . . .+ an−1λ+ an = 0 (5.213)

which is formed by replacing each derivative y(i) by λi in the equation.
Let the roots of the characteristic equation be λ1, λ2, . . . , λn. If the roots are distinct

the solution of the homogeneous equation has the form

y = C1e
λ1t + C2e

λ2t + . . .+ Cne
λnt. (5.214)

If some roots are complex the solution may be rewritten using sine and cosine terms. For
example, if λ2 = λ∗1, let λ1 = α+ jβ, λ2 = α− jβ, the solution includes the terms

C1e
λ1t + C2e

λ∗
1t = C1e

(α1+jβ1)t + C∗1 e
(α1−jβ1)t. (5.215)

Writing C1 = A1e
jθ1 , the terms may be rewritten as

A1e
jθ1e(α1+jβ1)t +A1e

−jθ1e(α1−jβ1)t = 2A1e
α1t cos(β1t+ θ1) (5.216)

which may be rewritten in the form

K1e
α1t cosβ1t+K2e

α1t sinβ1t. (5.217)

Similarly, if two roots, such as λ1 and λ2, are real and λ2 = −λ1 then the contribution to
the solution may be written in the form

C1e
λ1t + C2e

−λ1t = C1 (coshλ1t− sinhλ1t) + C2 (coshλ1t− sinhλ1t)
= (C1 + C2) coshλ1t+ (C1 − C2) sinhλ1t = K1 coshλ1t+K2 sinhλ1t.

If one of the roots is repeated, i.e. a multiple zero, the characteristic equation has the factor
(λ− λi)

m
. The corresponding terms in the solution are

K0e
λit +K1te

λit +K2t
2eλit + . . .+Km−1t

m−1eλit. (5.218)

Example 5.14 Evaluate the solution of the homogeneous equation

y(6) − 13y(4) + 54y(3) + 198y(2) − 216y(1) − 648y = 0.

The characteristic equation is

λ6 − 13λ4 + 54λ3 + 198λ2 − 216λ− 648 = 0.

Its roots are

λ1 = 2, λ2 = −2, λ3 = −3, λ4 = −3, λ5 = 3 + j3, λ6 = 3− j3.

y(t) = K1 cosh 2t+K2 sinh 2t+K3e
−3t +K4te

−3t +K5e
3t cos 3t+K6e

3t sin 3t.
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5.32.5 The General Solution of a Linear Differential Equation

As stated above, given an nth order linear differential equation of constant coefficient

y(n) + a1y
(n−1) + . . .+ any = f(t) (5.219)

the solution is the sum of the solution yh(t) of the homogeneous equation

y(n) + a1y
(n−1) + . . .+ any = 0 (5.220)

and the particular solution yp(t), i.e.

y(t) = yh(t) + yp(t). (5.221)

In what follows, we study the evaluation of the particular solution yp(t) from the form of the
homogeneous solution yh(t). As we shall see, the solution yp(t) is in general a sum of terms
of the form C1e

αt, C2te
αt, C3t

2eαt, . . . or these terms multiplied by sines and cosines.
The constants C1, C2, C3, . . . are found by substituting the solution into the differential

equation and equating the coefficients of like powers of t. Once the general solution y(t) is
determined the unknown constants of the homogeneous solution are determined by making
use of the given initial conditions. The approach is called the method of undetermined
coefficients. The form of the particular solution is deduced from the nonhomogeneous term
f(t). Let Pm(t) represent an mth order polynomial in powers of t.

1. If f(t) = Pm(t) then yp(t) = Amt
m + Am−1t

m−1 + . . .+ A0, where the coefficients
A0, A1, . . . , Am are constants to be determined.

2. If f(t) = eαtPm(t) then yp(t) = eαt
(
Amt

m +Am−1t
m−1 + . . .+A0

)
.

3. If f(t) = eαtPm(t) sinβt or f(t) = eαtPm(t) cosβt then

yp(t) = eαt sinβt
(
Amt

m +Am−1t
m−1 + . . .+A0

)

+ eαt cosβt
(
Bmt

m +Bm−1t
m−1 + . . .+B0

)
.

(5.222)

A special condition may arise necessitating multiplying the polynomial in yp(t) by a
power of t. This condition occurs if any term of the assumed solution yp(t) (apart
from the multiplication constant) is the same as a term in the homogeneous solution
yh(t). In this case the assumed solution yp(t) should be multiplied by tk where k is
the least positive power needed to eliminate such common factors between yp(t) and
yh(t).

Example 5.15 Solve the differential equation

y′′ + 2y′ − 3y = 7t2.

The homogeneous equation y′′+2y′−3y = 0 has the characteristic equation (λ− 1) (λ+ 3) =
0 and the solution yh = C1e

−3t + C2e
t.

The nonhomogeneous term f(t) = 7t2 is a polynomial of order 2. We therefore assume
a particular solution of the form yp(t) = A2t

2 +A1t+A0

yp
′ = 2A2t+A1, yp

′′ = 2A2.

Substituting in the differential equation

2A2 + 4A2t+ 2A1 − 3A2t
2 − 3A1t− 3A0 = 7t2.
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Equating the coefficients of equal powers of t we obtain

A2 = −7/3, A1 = −28/9, A0 = −98/27

so that
yp(t) = −(7/3)t2 − (28/9)t− 98/27

and
y(t) = C1e

−3t + C2e
t − (7/3)t2 − (28/9)t− (98/27).

Example 5.16 Solve the equation

y′ − 3y = t(cos 2t+ sin 2t)− 2(cos 2t− sin 2t).

We have
y′ − 3y = (t− 2) cos 2t+ (t+ 2) sin 2t.

The solution of the homogeneous equation is yh = C1e
3t. The assumed particular solution

is yp = (K1t+K0) cos 2t+ (L1t+ L0) sin 2t.

yp
′ = (K1t+K0) (−2 sin 2t) +K1 cos 2t+ (L1t+ L0) (2 cos 2t) + L1 sin 2t
= (L1 − 2K1t− 2K0) sin 2t+ (K1 + 2L1t+ 2L0) cos 2t.

Substituting into the differential equation

(L1 − 2K0 − 2K1t) sin 2t+ (K1 + 2L0 + 2L1t) cos 2t− (3L1t+ 3L0) sin 2t
− (3K1t+ 3K0) cos 2t = (t− 2) cos 2t+ (t+ 2) sin 2t.

Equating the coefficients of same terms

2L1 − 3K1 = 1

K1 + 2L0 − 3K0 = −2

−2K1 − 3L1 = 1

L1 − 2K0 − 3L0 = 2.

Solving we obtain

K1 = −5/13, L1 = −1/13, K0 = 9/169, L0 = −123/169.

We deduce that

y = yh + yp = C1e
3t +

(−5

13
t+

9

169

)
cos 2t+

(
− 1

13
t− 123

169

)
sin 2t.

Example 5.17 Solve the differential equation y′′ = 4t2−3t+1, with the initial conditions
y(0) = 1 and y′(0) = −1.

We first note that the homogeneous equation y′′ = 0 implies the characteristic equation
λ2 = 0 i.e. λ1, λ2 = 0, 0; hence the homogeneous solution

yh (t) = C1te
λ1t + C2e

λ1t = C1t+ C2.

The assumed particular solution is yp(t) = A2t
2 + A1t+ A0. We note however that apart

from the multiplying constants the last two terms are the same as those of the homogeneous
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solution yh(t). We therefore multiply the assumed particular solution by t2 obtaining yp(t) =
A2t

4 +A1t
3 +A0t

2. Now
yp
′(t) = 4A2t

3 + 3A1t
2 + 2A0t

yp
′′(t) = 12A2t

2 + 6A1t+ 2A6.

Substituting in the differential equation we have

12A2t
2 + 6A1t+ 2A0 = 4t2 − 3t+ 1.

Equating the coefficients of equal powers of t we have 12A2 = 4, i.e. A2 = 1/3,; 6A1 =
−3, A1 = 0.5; 2A0 = 1, A0 = 0.5. so that

yp(t) = (1/3)t4 − (1/2)t3 + (1/2)t2.

The general solution is therefore

y(t) = C1t+ C2 + (1/3)t4 − (1/2)t3 + (1/2)t2.

Applying the initial conditions we have y(0) = 1 = C2, y′(t) = C1 + 4
3 t

3 − 3
2 t

2 + t,
y′(0) = C1 = −1, i.e.

y(t) = −t+ 1 + (1/3)t4 − (1/2)t3 + (1/2)t2.

Example 5.18 Newton’s law of cooling states that the rate of cooling of an object is propor-
tional to the difference between its tempretature and that of its surroundings. Let T denote
the object’s temperature and Ts that of its surroundings. The cooling process, with the time
t in minutes, is described by the differential equation

dT

dt
= k(T − Ts).

An object in a surrounding temperature of 20oC cools from 100oC to 50oC in 30 minutes.
(a) How long would it take to cool to 30oC? (b) What is its temperature 10 minutes after it
started cooling?

We have Ts = 20o,
dT

dt
− kT = −20k.

The integrating factor is f = e−
´

kdt = e−kt. Multiplying both sides by the integrating factor
we obtain

d

dt
{Te−kt} = −20ke−kt

Te−kt = −20k

ˆ

e−ktdt = 20e−kt + C

T = 20 + Cekt

T (0) = 100 implies that 100 = 20 + C, i.e. C = 80. Moreover, T (30) = 50 = 20 + 80e30k,
so that ek = (3/8)1/30 and

T = 20 + 80(3/8)t/30.

(a) To find the value t so that T = 30oC we write 30 = 20 + 80(3/8)t/30. Solving we have

t = 30 ln(1/8)/ ln(3/8) = 30(−2.0794)/(−0.9808) = 63.60 minutes.
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(b) Putting t = 10 we find T = 77.69oC. Alternatively. we may apply the unilateral Laplace
transform to the differential equation obtaining, with T (0+) = 100,

sT (s)− T (0+)− kT (s) = −20k/s

T (s) =
100

s− k −
20k

s(s− k) =
20

s
+

80

s− k
T (t) = (20 + 80ekt)u(t)

as obtained above.

5.32.6 Partial Differential Equations

We have seen methods for solving ordinary linear differential equations with constant co-
efficients using the method of undetermined coefficients and using in particular Laplace
transform. Models of dynamic physical systems are sometimes known in the form of par-
tial differential equations. In this section a brief summary is given on the solution of such
equations using Laplace and Fourier transform. The equation

∂2y(x, t)

∂t2
− 2

∂2y(x, t)

∂x2
= 0 (5.223)

is a partial differential equation since the unknown variable y is a function of two variables;
x and t. In general if the unknown function y in the differential equation is a function of
more than one variable then the equation is a partial differential equation.

Consider a semiinfinite thin rod extending from x = 0 to x = ∞. The problem
of evaluating the potential v(x, t) of any point x at any instant t, assuming zero voltage
leakage and zero inductance, is described by the partial differential equation

∂2v

∂x2
= a2 ∂v

∂t
(5.224)

with a2 = RC, that is, the product of the rod resistance per unit length R and the
capacitance to the ground per unit length C. This same partial differential equation is also
referred to as the one dimensional heat equation, in which case v(x, t) is the heat of point
x at instant t of a thin insulated rod. The following example can therefore be seen as either
an electric potential or heat conduction problem

Example 5.19 Solve the differential equation

∂2v

∂x2
= a2 ∂v

∂t
, 0 < x <∞, t > 0

with the initial condition
v(x, 0) = 0, 0 < x <∞

and the boundary conditions v(0, t) = f(t), lim
x−→∞

|v(x, t)| <∞, t > 0. Find next the value

v(x, t) if f(t) = u(t).
The Laplace transform of ∂v/∂t is given by

L
[
∂

∂t
v(x, t)

]
= sV (x, s)− v(x, 0).

The transform of ∂2v/∂x2 is found by writing

L
[
∂

∂x
v(x, t)

]
=

d

dx
L [v(x, t)] =

d

dx
V (x, s)
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L
[
∂2

∂x2
v(x, t)

]
=

d

dx

{
d

dx
L[v(x, t)]

}
=

d2

dx2
V (x, s).

The Laplace transform of the partial differential equation is therefore

d2

dx2
V (x, s) = a2sV (x, s)− a2v(x, 0).

Substituting with the initial condition v(x, 0) = 0 we have

d2

dx2
V (x, s) = a2sV (x, s).

We have thus obtained an ordinary differential equation that can be readily solved for V (x, s).
The equation has the form

V ′′ − a2sV = 0.

The solution has the form, with s > 0,

V (x, s) = C1(s)e
a
√

sx + C2(s)e
−a
√

sx.

Laplace transforming the boundary conditions we have

V (0, s) = F (s), lim
x−→∞

|V (x, s)| <∞.

The second condition implies that C1 = 0, so that

V (0, s) = C2(s) = F (s)

and
V (x, s) = F (s)e−a

√
sx.

The inverse Laplace transform of this equation is written

v(x, t) = f(t) ∗ L−1
[
e−a
√

sx
]
.

Let b = ax. From the table of Laplace transform of causal functions

be−b2/(4t)

2
√
πt3/2

←→ e−b
√

s.

We can therefore write

v(x, t) = f (t) ∗ be
−b2/(4t)

2
√
πt3/2

=
ax

2
√
π

ˆ t

0

e−a2x2/(4τ)

τ3/2
f (t− τ) dτ

since f(t) is causal. If f(t) = u(t) we have

v(x, t) =
ax

2
√
π

ˆ t

0

e−a2x2/(4τ)

τ3/2
dτ.

Let
a2x2

4τ
= u2, dτ = −a

2x2

2u3
du

v(x, t) =
ax

2
√
π

ˆ ax/(2
√

t)

∞

e−u2

8u3

a3x3

(
−a

2x2

2u3

)
du =

−ax
2
√
π

ˆ ax/(2
√

t)

∞

4e−u2

ax
du

=
2√
π

ˆ ∞

ax/(2
√

t)
e−u2

du =
2√
π

{
ˆ ∞

0

e−u2

du−
ˆ ax/(2

√
t)

0

e−u2

du

}

=△ I1 + I2.
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Let, in I1, u2 = y, 2u du = dy, du =
dy

2u
=

dy

2
√
y

I1 =
2√
π

{
ˆ ∞

0

e−y

2
√
y
dy

}
=

1√
π

ˆ ∞

0

e−yy1/2−1dy =
1√
π

Γ

(
1

2

)
= 1

v(x, t) = 1− erf
(
ax

2
√
t

)

where

erfz =
2√
π

ˆ z

0

e−t2dt.

5.33 Transformation of Partial Differential Equations

In the following we study the solution of partial differential equations using Laplace and
Fourier transform.

∂v

∂t
− ∂2v

∂x2
= 1, 0 < x < 1, t > 0. (5.225)

Boundary conditions v(0, t) = v(1, t) = 0. Initial conditions v(x, 0) = 0

L [vt(x, t)] ≡ L
[
∂v

∂t

]
= sV (x, s)− v(x, 0) (5.226)

L [vx(x, t)]△L
[
∂v

∂x

]
=

d

dx
V (x, s) (5.227)

L [vxx(x, t)] ≡ L
[
∂2v

∂x2

]
=

d2

dx2
L[v] =

d2

dx2
V (x, s) (5.228)

sV (x, s)− v(x, 0)− d2

dx2
V (x, s) =

1

s
(5.229)

d2

dx2
V (x, s)− sV (x, s) = −1

s
. (5.230)

Boundary condition V (0, s) = V (1, s) = 0

λ2 − s = 0, λ = ±√s. (5.231)

Solution of homogeneous equation
d2

dx2
V (x, s)− sV (x, s) = 0 is

Vh = k1 cosh
√
sx+ k2 sinh

√
sx. (5.232)

The forcing function, the nonhomogeneous term, is φ(x) = 1, a polynomial of order zero.
Vp = A0 (Vp is the particular solution). To evaluate A0 we substitute into the differential
equation

−sVp(x, s) = −1

s
, −A0s = −1

s
, A0 =

1

s2
(5.233)

V (x, s) = Vh (x, s) + Vp (x, s) = k1 cosh
√
sx+ k2 sinh

√
sx+

1

s2
. (5.234)
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Substituting with the boundary conditions v(0, t) = v(1, t) = 0, i.e. V (0, s) = V (1, s) = 0

k1 +
1

s2
= 0, k1 = − 1

s2
(5.235)

k1 cosh
√
s+ k2 sinh

√
s+

1

s2
= 0 (5.236)

− 1

s2
cosh

√
s+ k2 sinh

√
s+

1

s2
= 0 (5.237)

k2 sinh
√
s− 1

s2
(
cosh

√
s− 1

)
= 0 (5.238)

k2 =
cosh

√
s− 1

s2 sinh
√
s

(5.239)

V (x, s) = − 1

s2
cosh

√
sx+

(cosh
√
s− 1) sinh

√
sx

s2 sinh
√
s

+
1

s2

=
1− cosh

√
sx

s2
+

(cosh
√
s− 1) sinh

√
sx

s2 sinh
√
s

.
(5.240)

The singularity points are found by writing

s2 sinh
√
s = 0 (5.241)

sinh
√
s =

(
e
√

s − e−
√

s
)
/2 = 0 (5.242)

e
√

s = e−
√

s (5.243)

e2
√

s = 1 = ej2πk, k = 0, 1, 2, . . . (5.244)

2
√
s = j2πk,

√
s = jπk (5.245)

s = −π2k2, k = 0, 1, 2, . . . . (5.246)

The function V (x, s) can be factored into the form

V (x, s) =
1− cosh [0.5

√
s (2x− 1)] / cosh (

√
s/2)

s2
(5.247)

i.e.

V (x, s) =
1

s2



1− e

√
s

2 (2x−1) + e−
√

s
2 (2x−1)

e
√

s/2 + e−
√

s/2



 (5.248)

and it is assumed that
lim
|s|−→∞

V (x, s) = 0, 0 < x < 1. (5.249)

Referring to Fig. 5.73 we note that the inverse transform is given by

v (x, t) =
1

2πj

ˆ c+j∞

c−j∞
V (x, s) estds (5.250)

where c is such that V (x, s) converges along the contour of integration. To use the theory
of residues, we rewrite the equation in the form

v (x, t) =
1

2πj

{
‰

V (x, s) estds−
ˆ

D

V (x, s) estds

}
(5.251)
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which is true if and only if
ˆ

D

V (x, s) estds = 0 (5.252)

i.e. we have to show that with

s = c+Rejθ,
−π
2

< θ <
π

2
(5.253)

lim
R−→∞

ˆ

D

V (x, s) estds = 0. (5.254)

S

R e jq

D

s

q

C

C - j R

w

C + j R

FIGURE 5.73 Integration on a closed contour.

For the case Re [
√
s] < 0. Multiplying by e

√
s/2 the numerator and denominator of V (x, s)

we have

V (x, s) =

{
1− ex

√
s + e(1−x)

√
s

e
√

s + 1

}
/s2 (5.255)

which tends to zero as |s| −→ ∞. For the case Re [
√
s] > 0 we multiply the numerator

and denominator by e−
√

s/2 obtaining

V (x, s) =

{
1− e

√
s(x−1) + e−x

√
s

1 + e−
√

s

}
/s2 (5.256)

which also tends to zero as |s| −→ ∞. We conclude that the integral along the section D
vanishes as R −→∞ and we may write

v (x, t) =
1

2πj

‰

V (x, s) estds. (5.257)

Using Cauchy’s residue theorem we have

v (x, t) =
∑

residues of V (x, s) est at the poles. (5.258)



296 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

Writing

V (x, s) =

∞∑

k=0

ri
s+ π2k2

=
r0
s

+

∞∑

k=1

ri
s+ π2k2

(5.259)

v (x, t) =

{
r0 +

∞∑

k=1

rie
−π2k2t

}
u (t) . (5.260)

We find the residues r0, r1, . . . by evaluating

lim
s−→−k2π2

{(
s+ k2π2

) 1− cosh [0.5
√
s (2x− 1)] / cosh (

√
s)

s2

}
. (5.261)

We obtain (using Mathematicar) r0 = − (x− 1)x/2 = x (1− x) /2, r1 = −(4/π3) sin (πx),
r2, r4, r6, . . . = 0, r3 = −[4/(27π3)] sin(3πx), r5 = −[4/(125π3)] sin(5πx)

v (x, t) = x (1− x) /2 +

∞∑

k=1,3,5,...

4

π3

sin kπx

k3
e−π2k2t. (5.262)

Example 5.20 Solve the heat equation

∂v (x, t)

∂t
= a2 ∂

2v (x, t)

∂x2
, −∞ < x <∞, t > 0

with the initial condition

v (x, 0) = Ae−γ2x2

and the boundary conditions v (x, t) −→ 0, ∂v (x, t) /∂x −→ 0 as |x| −→ ∞. The Fourier
transform of v (x, t) from the domain of the distance x to the frequency Ω is by definition

V (jΩ, t) = F [v (x, t)] =

ˆ ∞

−∞
v (x, t) e−jΩxdx.

Fourier transforming the heat equation we have, taking into consideration the boundary
condition

F
[
∂v (x, t)

∂t

]
= a2F

[
∂2v (x, t)

∂x2

]

d

dt
F [v (x, t)] = −a2Ω2F [v (x, t)]

d

dt
V (jΩ, t) = −a2Ω2V (jΩ, t)

dV

dt
+ a2Ω2V = 0.

The characteristic equation is

λ+ a2Ω2 = 0.

The solution is

V (jΩ, t) = Ce−a2Ω2t.

From the initial condition we may write

V (jΩ, 0) = C = F
[
Ae−γ2x2

.
]
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The Fourier transform of the Gaussian function is

e−x2/(2σ2) ←→ σ
√

2π e−σ2Ω2/2.

Letting 1/
(
2σ2
)

= γ2 we have

C = A

√
π

γ
e−Ω2/(4γ2)

V (jΩ, t) = A

√
π

γ
e−Ω2{1/(4γ2)+a2t}.

Using the same transform of the Gaussian function with
{
1/
(
4γ2
)

+ a2t
}

= σ2/2

we obtain
e−x2/(1/γ2+4a2t) ←→ 2

√
π
√

1/ (4γ2) + a2t e−Ω2{1/(4γ2)+a2t}
1√

1 + 4γ2a2t
e−x2/(1/γ2+4a2t) ←→

(√
π/γ

)
e−Ω2{1/(4γ2)+a2t}

v (x, t) =
A√

1 + 4γ2a2t
e−γ2x2/(1+4γ2a2t).

Note that the boundary condition has been employed implicitly in evaluating

F
[
∂2v (x, t) /∂x2

]
.

In fact letting

I = F
[
∂2v (x, t)

∂x2

]
=

ˆ ∞

−∞

∂2v

∂x2
e−jΩxdx

and integrating by parts with u = e−jΩx and w′ = ∂2v/∂x2 we have

I =

ˆ

uw′ = uw −
ˆ

u′w =
∂v

∂x
e−jΩx|∞−∞ + jΩ

ˆ

e−jΩx ∂v

∂x
dx

=
∂v

∂x
e−jΩx|∞−∞ + jΩ

{
e−jΩx|∞−∞ + jΩ

ˆ ∞

−∞
ve−jΩxdx

}

=

(
∂v

∂x
+ jΩv

)
e−jΩx

∣∣∣∣
∞

−∞
− Ω2

ˆ ∞

−∞
ve−jΩxdx.

Using the boundary condition v (x, t) −→ 0 and ∂v (x, t) /∂x −→ 0 as |x| −→ ∞

I = F
[
∂2v (x, t)

∂x2

]
= −Ω2F [v (x, t)]

which is the usual Fourier transform property of differentiation twice in the “time” domain.

5.34 Problems

Problem 5.1 Consider a stable system of transfer function

H (s) =
ω2

0

s2 + 2ζω0s+ ω2
0
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where ζ < 1. The input to the system, with zero initial conditions, is the signal

x (t) = sinω1t.

a) Draw the poles and zeros of the output Y (s) in the complex s plane.
b) Evaluate graphically the residues and deduce y(t).
c) What is the steady state output of the system under these conditions? What is the

transient response ytr(t)?
d) Evaluate graphically the frequency response of the system at the frequency ω0.

Problem 5.2 Consider the system having the transfer function

H (s) =
1

(s− p1) (s2 + 2ζω0s+ ω2
0)

with ζ = 0.707 and p1 real.
a) Show the effect of moving the pole p1 along the real axis on the system step response.

Show the effective order of the system for the three cases

i) p1 = −0.01ζω0, ii) p1 = −ζω0, iii) p1 = −10ζω0.

b) Show that if a zero z1 is very close to the pole p1 the effect is a virtual cancellation of
the pole.

Problem 5.3 Evaluate the impulse response of the system represented by its poles and zeros
as shown in Fig. 5.74, assuming a gain of unity.

FIGURE 5.74 Pole-zero plot in s plane.

Problem 5.4 Consider the system having a transfer function

H (s) =
64

s3 + 8s2 + 32s+ 64
.

a) Evaluate the transfer function poles.
b) Find the system unit step response by evaluating the residues graphically.

Problem 5.5 A system has the transfer function

H (s) =
10 (s+ 2ζω0)

s2 + 2ζω0s+ ω2
0
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where ζ = 0.5, ω0 = 2 rad/sec. Using a graphic evaluation of residues evaluate the system

output y (t) in response to the input x (t) = sinβtu (t), where β = ω0

√
1− ζ2 assuming zero

initial conditions.

Problem 5.6 Consider the unit step response of the second order system

H (s) = ω2
0/
(
s2 + 2ζω0s+ ω2

0

)
.

a) Determine the value of ζ which leads to a minimal 2% response time. If ω0 = 10
rad/sec, what is that minimal response time? and what is the time of the overshoot peak?

b) For the series R–L–C circuit shown in Fig. 5.75, evaluate the value of the resistor R
which produces a 2% minimum unit step response time. What is the minimum time thus
obtained?

Problem 5.7 Consider the series R–L–C circuit shown in Fig. 5.75.

C ( )y t( )x t

R L

FIGURE 5.75 R-L-C circuit.

a) Evaluate the circuit transfer function in the form

H (s) = ω2
0/
(
s2 + 2ζω0s+ ω2

0

)
.

b) Evaluate the values of ζ and ω0 so that the overshoot of the unit step response is 40%,
and the 5% response time is ts = 0.01 sec.

c) If C = 1 µF evaluate R and L so that ζ and ω0 have the values thus obtained.

Problem 5.8 Evaluate the transfer function H (s) of the positive feedback system described
by the block diagram shown in Fig. 5.76.

x yG s)=1(
K

s s
3 2
+10 +s+5

G s)=2(
1

s

-

+

FIGURE 5.76 System block diagram.

Problem 5.9 For the system having the transfer function

H (s) =
50 (s+ 4)

s3 + 4s2 + 29s
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a) Evaluate the amplitude and phase of the steady state response to the input

x (t) = sin 5t

b) For the second order subsystem, evaluate the peak in dB and its frequency.
c) Show as a bode diagram the system frequency response.

Problem 5.10 Assuming that the capacitor in the electric circuit shown in Fig.5.77 is
vc (0) = v0 evaluate the circuit response to the input

e (t) =

∞∑

n=0

e0 (t− 4n)

where
e0 = u (t)− u (t− 1) .

1F

( )v t( )e t 1W

FIGURE 5.77 R-C electric circuit.

Identify the transient and steady-state components of the response. Choose the value v0
which would annul the transient component. Show that the steady-state response is then
periodic.

Problem 5.11 Given the system with the transfer function

H (s) =
s2 + 4s+ 5

s2 + 4s+ 8
.

a) Evaluate the system response y1 (t) to the input

x (t) = e−3tu (t) .

b) Deduce the system response y2 (t) to the input

v (t) = e−3t+5u (t− 2) .

Problem 5.12 Consider the electric circuit shown in Fig. 5.78.
a) State whether this circuit is a lowpass or highpass filter by describing its behavior as a

function of frequency.
b) Evaluate the circuit transfer function H (s), its impulse response h (t) and its frequency

response in modulus and argument. Plot the frequency response.
c) Deduce the unit step response of the circuit and its response to the input

x (t) = e−7(t/2−3)u (t− 5) .

d) Evaluate the response of the circuit to the causal impulse train

x (t) =
∞∑

t=0

δ (t− n) .
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( )v t( )e t L = 2 H

R=1 ?

FIGURE 5.78 R-L electric circuit.

Problem 5.13 The signal

x (t) = cos (4t− π/3)u (t)

is applied to a system of which the transfer function has the form

H (s) =
ω2

0s

s2 + 2ζω0s+ ω2
0

and of which the poles and zeros are shown in Fig. 5.79.

jw

?

j4

-j4

-3

FIGURE 5.79 Pole-zero diagram in Laplace plane.

a) Evaluate the response y (t) of the system to the input x (t).
b) Evaluate the system response y (t) if the system is cascaded with a system of transfer

function

G (s) = e−3s.

Problem 5.14 A system has a unit gain, a zero at s = 0 and the poles s = −2± j2.
a) Evaluate the system steady-state response y1 (t) if the input is

x (t) = sin (2t− π/3)u (t− 2) .

b) The system is cascaded with a system of impulse response δ (t− 3). For the same input
x (t) to the first system, what is the overall system output?

Problem 5.15 Sketch the response of a filter of which the transfer function is given by

H (s) =
1− e−Ts

s
, T > 0

to the inputs a) x (t) =
3∑

n=0

n δ (t− nT ), b) v (t) =
3∑

n=0

n δ (t− nT/2) .
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Problem 5.16 A system is constructed as a cascade of two systems of impulse responses
h1 (t) and h2 (t), where

h1 (t) = A1e
−αtu (t)

h2 (t) = A2e
−β(t−1)u (t− 1) .

Evaluate the response of the system to the inputs : a) δ (t), b) δ (t− 2) .

Problem 5.17 The impulse response of a system is h (t) = R1 (t). Using the convolution
integral evaluate the response of the system to the input x (t) = t u (t). Verify your answer
using Laplace transform.

Problem 5.18 A system is constructed as a cascade of two systems with transfer functions

H1 (s) =
s+ 2

s2 + 2s+ 2

and

H2 (s) =
1

s+ 1
.

Evaluate the system response y (t) to the input 10δ (t− 2) .

Problem 5.19 The causal impulse train

e (t) =

∞∑

n=0

δ (t− nT )

is applied as the input to the electric circuit shown in Fig. 5.80. Assuming zero initial
conditions, evaluate the transient and steady-state components of the circuit output v (t).

FIGURE 5.80 R-C circuit.

Problem 5.20 a) Identify the transfer function H (s) of a system of which the frequency
response has the bode plot shown in Fig. 5.81.

b) Show a block diagram of a filter structure which is a model for such a system.

Problem 5.21 For the second order system, of transfer function H (s),

H (s) =
ω2

0

s2 + 2ζω0s+ ω2
0

with ζ = 0.707
a) Evaluate the response y1 (t) of the system to the input

x (t) = e−αt cosω1t u (t)
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FIGURE 5.81 Bode plot.

α = ζω0/2

ω1 = ω0

√
1− ζ2.

and zero initial conditions.
b) Evaluate the system output for zero-input assuming the initial conditions y (0) = y0

and y′ (0) = y′0.

Problem 5.22 For the DC current motor shown in Fig. 5.82 assuming a constant voltage
Ee in the inductor circuit, a negligible inductance of the induit circuit and negligible load
Ci (t) ∼= 0.

FIGURE 5.82 DC motor.

a) Draw an equivalent electric circuit of the system.
b) Show that the transfer function H (s) from Ei (t) to the angular rotation speed Ω (t)

has the form
H (s) = b0/ (s+ a0) .

c) Let b0 = a0 = 1. Evaluate the response of the motor to the input

x (t) =

∞∑

n=0

δ (t− nT )
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with T = 1 sec. Sketch the periodic component of the response.

Problem 5.23 A system has the impulse response

h (t) = e−αt sinβt u (t) .

a) Write the transfer function H (s) of the system in the normalized form

H (s) = Kω2
0/
(
s2 + 2ζω0s+ ω2

0

)

giving the values of ω0, ζ and K as functions of α and β.
b) Evaluate the resonance frequency ωr of the amplitude spectrum |H (jω)| of the frequency

response. Plot the amplitude and phase spectra of the system frequency response.
c) The system is followed, in cascade, by a filter of frequency response

G (jω) = ⊓ωr (ω) = u (ω + ωr)− u (ω − ωr) .

Plot the amplitude spectrum at the system output if the input is the Dirac-delta impulse
δ (t).

Problem 5.24 A system for setting the tension T in a string, by adjusting the angle θ in
the rotary potentiometer at the input, is shown in Fig. 5.83. The voltage difference (e1 − e2)
is the input of the amplifier of gain A. The amplifier output is connected to the DC motor
inductor that, as shown in the figure, is assumed to have a resistance R ohm and inductance
L henry, respectively. As shown in the figure, the motor armature has a constant current
I0 (supplied by a current source). The current in the inductor is denoted i(t) and produces
a magnetic field B(t) that is proportional to it, i.e. B(t) = k1i(t), so that the motor torque
C is also proportional to it, i.e. C = k2i.

FIGURE 5.83 Tension regulation system.

The motor applied the torque to a rotating wheel which turns by an angle γ, resulting in
an increase in its tension T . The small pulley, shown in the figure, is thus pulled upward a
distance x against the stiffness k of a spring.

The voltage e2 is seen in the figure to be proportional to the displacement x. The maximum
value of x is the length xm of the potentiometer. It may be assumed that x = γr/2, where r
is the radius of the wheel. When the tension T is zero, the angle γ and the displacement
x are both zero. Assuming that the small pulley and the spring have negligible inertia, while
the wheel has inertia J and rotates against viscous friction of coefficient b.
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a) Write the differential equations that may lead to finding the output tension T as a
function of the input θ. Assume constants of proportionality k1, k2, . . . if needed.

b) If θ is a constant, θ = θ0, what is the steady state value of T?

Problem 5.25 The support of the mechanical system shown in Fig. 5.84 is displaced up-
ward by a distance x (t) and speed ẋ (t).

a) Show that the equation of movement ẏ (t) of the mass M can be put in the form

a1v̇ + a0v = a2 (e− v) + a3

ˆ

(e− v) dt

where
v (t) = ẏ (t) and e (t) = ẋ (t) .

FIGURE 5.84 Mechanical system with springs.

b) Show the homolog electric circuit equivalent of the system.
The coefficient of viscous friction b1 and b2 and the spring stiffness k are shown in the
figure.

Problem 5.26 A system has the impulse response

h (t) =






2t/T, 0 6 t 6 T/2
2− 2t/T, T/2 6 t 6 T
0, otherwise.

Evaluate the step response.

Problem 5.27 For the R–L–C electric circuit shown in Fig. 5.85 assuming L = 1 H and
C = 1 F.

a) Show the trajectory of the poles of the circuit transfer function as R varies
b) Evaluate the resistance R so that the overshoot of the step response be 10%. Sketch the

resulting poles in the s plane.

Problem 5.28 Given the transfer function

H (s) =
50 (s+ 4)

s (s2 + 4s+ 100)
.

Decomposing the system function into a cascade of a simple pole, a zero and a second order
transfer function

a) Show the Bode plot of each component transfer function drawing the asymptotes thereof.
For the second order system function evaluate and show on the bode plot the peak value and
peak frequency ωr.

b) Show the Bode plot and asymptotes of the overall system frequency response.
c) If the input is sin 5t evaluate the system response.
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FIGURE 5.85 R–L–C circuit.

Problem 5.29 Consider the speed-regulation system shown in Fig. 5.86. The DC motor,
on the right in the figure, has a constant magnetic field. The motor speed is controlled by
the voltage output of the amplifier (of gain A) which is applied to its armature. The motor
armature is assumed to have a resistance Rm ohms and a negligible inductance. The motor
drives a load of inertia J against viscous friction of coefficient b and the load couple C.
The same motor axle that rotates the load also rotates the axle of the tachometer, a voltage
generator which converts positive rotation speed ω into a corresponding voltage eT = kTω
with the polarity shown in the figure. The armature of the tachometer has resistance and
inductance Rg ohm and Lg henry, respectively, as shown in the figure. The potentiometer
on the left is of length l and resistance Rp. The amplifier can be assumed to have infinite
input impedance.

FIGURE 5.86 Speed regulation system.

a) Explain in a few words how the feedback in the system tends to stabilize the output
rotational speed.

b) Write the differential equations describing the dynamics of the system between its input
x and output ω.

c) Show that if R >> Rp the system transfer function can be evaluated using Laplace
transform.

d) Draw a block diagram representing the system.

e) Show the input–output steady-state relation and the role the amplifier gain A plays in
speed regulation.

Problem 5.30 In the mechanical system shown in Fig. 5.87, the upper support is displaced
upwards a distance x. The mass m is thus pulled up a distance y measured from its position
of static equilibrium whereat x = 0. In the figure each spring has stiffness k/2, and b1 and
b2 are coefficients of viscous friction.

a) Write the differential equations describing the dynamics of the system between its input
x (t) and output y (t).
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b) Let m = 1 Kg, b1 = 0.7 n/(m/sec),

b2 = 1.5 n/(m/sec)

k = 15 n/m, y (0) = 1 m

and x (t) = e−3t cos (4t+ π/3)u (t) .
Evaluate and plot the response y (t) of the system.

FIGURE 5.87 Suspended mechanical system.

Problem 5.31 The electromechanical system shown in Fig. 5.88 has an input voltage e (t)
and an output voltage v (t). The armature of the electric motor is fed a current i, which is
the output of a current amplifier of gain K, so that the current i is equal to K times the
voltage vc1 at the amplifier input, as shown in the figure. The amplifier may be assumed to
have infinite input impedance. The magnetic field φ of the motor is constant, so that the
motor couple C applied to the load is proportional to the current i. The generator (dynamo)
is on the same axle as the load and produces the output signal v (t) which is proportional to
Ω, the speed of rotation of the load. The load has an inertia J and its rotation is opposed
by viscous friction of coefficient b.

FIGURE 5.88 Speed control system.

a) Write the differential equations describing the system, assuming constants of propor-
tionality k1, k2, . . . , if needed.

b) Evaluate the system transfer function between the input and output.
c) Let km be the constant of proportionality relating C and i, that is, C = kmi. Evaluate

the unit step response of the system assuming

km = 0.5 Nm/A, K = 10, q = 1
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b = 1 Nm/(rad/sec), J = 1 kg m2

R = 10 kΩ, C1 = 50 µF.

d) Evaluate the 5% setting time ts of the unit step response.
e) Evaluate the system response if the input is given by

e (t) =

∞∑

n=0

Eδ (t− n)

and zero initial conditions.

Problem 5.32 Evaluate the Fourier transforms and the cross-correlation rvf (t) of the two
functions

v (t) = u (t− 3T/2)− u (t− 7T/2)

f (t) = RT (t) = u (t)− u (t− T ) .

Evaluate the Fourier transform Rvf (jω) of the cross-correlation rvf (t) using the transforms
V (jω) and F (jω).

Problem 5.33 Given a general periodic signal v(t) of period T , show that by cross-correlating
the signal with a sinusoid of a given frequency it is possible to reveal the amplitude and phase
of the signal component of that frequency. To this end evaluate the cross correlation rvf (t)
of the signal v(t) with the sinusoid f (t) = cos kω0t, where k is an integer and ω0 = 2π/T ,
and the function v (t) which is periodic with period T .

Problem 5.34 Consider the two signals

v (t) = t2Π1 (t) = t2 [u (t+ 1)− u (t− 1)]

x (t) = e−|t|Π1 (t) .

a) Evaluate the Fourier transforms V (jω) and X (jω) of v (t) and x (t) respectively.
b) Evaluate the Fourier transform of the cross-correlation rvx (t) of the two signals.

Problem 5.35 Consider the system described by the block diagram shown in Fig. 5.89.
This system receives the input

x (t) = e−γ|t|, γ > 0.

a) Evaluate the transfer function H(s) and the impulse response h(t) of the system as-
suming that h (t) = 0 for t < 0.

b) Assuming α = 0.5 and γ = 0.2 evaluate the system output y(t) using the convolution
integral. Verify the result using the Laplace transform.

Problem 5.36 The suspended mass in Fig. 5.90 weighs M = 10 kg. It moves downward a
distance x (t) by its own weight w = Mg, where g = 9.8 m/sec2 is the gravity acceleration,
and its movement induces an opposing force kx in each of the springs of stiffness k = 500
Newton/m and a viscous friction bẋ in the shown damper of coefficient of viscous friction
b = 150 Newton sec/m. Let x = 0 be the position of the mass at rest with no tension or
compression in the spring. Evaluate and sketch the displacement x (t) of the mass assuming
it is released to move under its own weight at t = 0 with ẋ (0) = −5 cm/sec. Evaluate
the natural frequency ωn and damping coefficient ζ of the system. Evaluate lim

t−→∞
x (t). Let

x = 0 be the position of the mass at rest with no tension or compression in the spring.
Evaluate and sketch the displacement x (t) of the mass assuming it is released to move under
its own weight at t = 0 with x(0) = −10 cm and ẋ(0) = −5 cm/sec. Evaluate the natural
frequency ωn and damping coefficient ζ of the system. Evaluate lim

t−→∞
x (t).
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FIGURE 5.89 Block diagram with integrator.

FIGURE 5.90 Suspended mechanical system.

Problem 5.37 Given the system transfer function

H (s) =
A (s+ s0)

s (s2 + 2ζω0s+ ω2
0)

where A = 10, s0 = 1.5, ω0 = 100, ζ = 0.1. Plot the bode diagram of the different
system components and deduce that of the overall bode diagram of the system.

Problem 5.38 Plot the bode diagram of the different components and the overall response
of the following system transfer functions:

a) H (s) =
sτ1 + 1

sτ2 + 1
, where τ1 = 0.01, τ2 = 0.2.

b) H (s) =
A

(s+ α) (s2 + 2ζω0s+ ω2
0)
, where α = 0.5, ζ = 0.05, ω0 = 30.

Evaluate A so that the system gain at zero frequency is 0 dB. Evaluate the peak at reso-
nance and the approximate resonance frequency.

Problem 5.39 A linear system has the impulse response

h(t) =
[
α+ e−t − eβt

]
u(t)

where α and β are real values.
a) Evaluate H(s), the system transfer function. Assumig α 6= 0, specify the ROC.
b) For which values of α and β is the system stable?
c) For which values of α and β is the system physically realizable?

Problem 5.40 A signal x(t) is the periodic repetition of rectangles of width T/10 seconds,

x (t) = 3.2
∞∑

n=−∞
ΠT/10 (t− nT )
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where T = 0.015 seconds.
The signal is applied to the input of a filter of frequency response H (jω) and output y(t).
a) What conditions should H (jω) satisfy so that the filter output y(t) be a DC voltage

equal to 2 volts ?
b) What conditions should H (jω) satisfy so that the filter output y(t) be a sinusoid of

frequency 200 Hz and amplitude 0.6 volt?
c) What conditions should H (jω) satisfy so that the filter output y(t) be a sinusoid of

frequency 1 kHz and amplitude 0.2 volt?

Problem 5.41 A signal x(t) is applied to the input of two filters connected in parallel
having the impulse responses h1 (t) = 8u (t− 0.02) and h2 (t) = −8u (t− 0.06).

The sum of the filters’ outputs is the system output y(t).
a) Sketch the impulse response h (t) of the overall system, having an input x(t) and output

y(t).
b) Evaluate the frequency response of the system.
The signal x(t) = 2 cos (40πt+ 2π/5) is applied to the system input. Evaluate the system

output y(t) and the delay of the sinusoid caused by passage through the system.

Problem 5.42 A linear system has the impulse response g (t) = u (t− T ) − u (t− 2T )
where T is a positive real constant.

a) Evaluate the system frequency response G (jω).
b) Evaluate the system output signal y (t) if the input is x (t) = δ (t− T ).
c) Evaluate the system output if the input is x (t) = K.
d) Evaluate the output if x (t) = sin (2πt/T ).
e) Evaluate the output if x (t) = cos (πt/T ).

Problem 5.43 Let h (t) = e−10t cos (2πt)u (t) be the impulse response of a linear system.
A signal x(t) of average value 5 volts is applied to the input of the system. What is the
average value of the signal at the system output?

Problem 5.44 The impulse response of a linear system is given by

h (t) = [h1 (t)− h1 (t) h2 (t)] ∗ h3 (t) ∗ h4 (t)

where h1 (t) = d [ωcSa(ωct) /2π]/dt, h2(t) is a function of which the Fourier transform is
given by H2 (jω) = e−j2πω/ωc , h3 (t) = 3ωcSa (3ωct) /π and h4 (t) = u (t).

a) Evaluate the frequency response of the system.
b) The signal x (t) = sin (2ωct) + cos (ωct/2) is applied to the linear system input.

Evaluate the system output signal y(t).

Problem 5.45 Referring to Fig. 5.48 showing the relations among the different frequencies
leading to the resonance frequency of a second order system, show that the value of |F (jω)|
is a maximum when u1 and u2 are at right angles; hence meeting on the circle joining the
poles.

Problem 5.46 A linear system is described by the block diagram shown in Fig. 5.91. The
integrator output v(t) is the integral of its input y(t), that is, v(t) =

´ t

−∞ y(τ)dτ . Evaluate
the system impulse response and frequency response.

Problem 5.47 The system shown in Fig. 5.92 is used to produce an echo sound.
a) Evaluate and sketch its impulse response h(t).
b) Describe the form, frequency and amplitude of the output signal y (t) when the input

x (t)is a pure sinusoid of frequency 440 Hz and amplitude 1V.
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FIGURE 5.91 System block diagram.

FIGURE 5.92 System block diagram.

Problem 5.48 To eliminate some frequency components, a system that receives an input
x (t) uses a delay element of delay T . The system output is y (t) = x (t) + x (t− T ).
Evaluate the delay T required to eliminate any component of frequency 60 Hz. Which other
components will also be eliminated by the system?

Problem 5.49 A periodic signal x (t) of period T = 2× 10−3 sec is defined by

x (t) =

{
1− t/T , 0 < t < T/2
t/T − 3/2 , T/2 < t < T

The signal is applied as input to a filter of frequency response

H (jω) =






5, 0 < ω < 2π × 103

−5(ω−3π×103)
π×103 , 2π × 103 < ω < 3π × 103

0 ω > 3π × 103

and H(−jω) = H∗ (jω) . Evaluate the system output y (t)expressed using trigonometric
functions.

Problem 5.50 Sketch the frequency response of a system that receives an input x (t) and
generates an output y(t) = x (t)− x1 (t)

where
X1 (jω) = F [x1 (t)] = X (jω)H0 (jω) .

a) H0 (jω) = Πωc (ω)

b) H0 (jω) =

{
1 , ω1 < |ω| < ω2

0 , otherwise

Problem 5.51 Given v (t) = 1 + 3 sin (800πt), X(jω) = V (jω)H(jω), where

|H (jω)| =
{

1 , 500π < |ω| < 1000π
0 , otherwise.

arg [H(jω)] = −10−3ω

y (t) = 2v(t) cos (1000πt)

z (t) = 5v (t) cos(1000πt+ π/4).

a) Evaluate x (t).
b) Evaluate or sketch Y (jω).
c) Evaluate the exponential Fourier series coefficients Zn of z (t) with an analysis interval

of 0.02 sec.
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Problem 5.52 A sinusoidal signal x (t) = cos 700t in the system shown in Fig. 5.93 is
applied to a delay element which effects a phase delay of 45̊ before being added to the signals
y (t) = 2 and z (t) = sin 500t to produce the system output v (t).

FIGURE 5.93 System including a delay element.

a) Sketch the Fourier transform V (jω) of v (t).
b) What is the fundamental frequency of v (t). The signal v (t) is applied to the input of

a system of frequency response H (jω) and output y (t), where

|H (jω)| =
{

0.01 |ω| , 0 ≤ |ω| ≤ 103

10, |ω| ≥ 103

arg [H (jω)] =

{
(π/1600)ω, |ω| ≤ 400
π/4, |ω| ≥ 400.

c) Evaluate y (t) the system output.

Problem 5.53 A train of square pulses

x (t) =

∞∑

n=−∞
x0 (t− nT )

where T = 1/220 sec and x0 (t) = RT/6 (t) is applied as the input to a filter of frequency
response H (jω) and output y (t). The objective is that the signal y (t) is made to resemble
the 440−Hz musical note “A” (La), which has the amplitude spectrum shown in Fig. 5.94,
i.e.

|Z (jω)| = {δ (ω − β) + δ (ω + β)}+ {δ (ω − 2β) + δ (ω + 2β)}
+ 0.1 {δ (ω − 3β) + δ (ω + 3β)}+ 0.18 {δ (ω − 4β)
+ δ (ω + 4β)}+ 0.14 {δ (ω − 5β) + δ (ω + 5β)}

where β = 2π × 440 rad/sec.
a) Evaluate |X (jω)| the amplitude spectrum of x (t).
b) Is it possible to obtain an amplitude spectrum |Y (jω)| which is identical to |Z (jω)|?

If yes, specify the filter frequency response H (jω). If not show how to ensure that |Y (jω)|
approximate at best the spectrum |Z (jω)|.

FIGURE 5.94 Signal impulsive amplitude spectrum.
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Problem 5.54 Given the system transfer function

H (s) =
3s2 + 12s+ 48

s3 + 3s2 + 4s+ 12
, −3 < ℜ [s] < 0.

a) Evaluate the impulse response h (t).

b) Evaluate the frequency response H (jω) if it exists.

c) Is this system physically realizable? Justify your answer.

d) The system is followed by a differentiator, a system that receiving a signal x (t) pro-
duces an output dx/dt. Evaluate the frequency response G (jω) of the overall cascade of the
two systems and its impulse response g (t), stating whether this overall system is physically
realizable.

Problem 5.55 In an amphitheater sound system a microphone is placed relative to a
speaker on stage as shown in Fig. 5.95. The speaker’s audio signal x(t) reaches the mi-
crophone directly as well as indirectly by reflection from the stage floor. The signal received
by the microphone may be modeled in the form

y(t) = αx(t− ta) + βx(t − tb)

where ta is the propagation delay along the direct path and tb is that along the indirect one.

a) Given that the speed of sound is 343 m/s, determine the transfer function H(s) from the
input x(t) to the output y(t).

b) Sketch the system magnitude squared frequency response |H(jω)|2.
c) Repeat the above for the case shown in Fig 5.96. Considering that the speech signal
frequency band extends to about 5kHz, which setup of microphone placement among these
two produces less sound interference? Explain why?

Microphone

2 m1 m

2 m

2 m
a

b

c

FIGURE 5.95 Signal with interference caption.
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Microphone

3/101 m
300/101 m

2 m

0.02 m

FIGURE 5.96 Signal with interference alternative approach.

5.35 Answers to Selected Problems

Problem 5.1 a) See Fig. 5.97.
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FIGURE 5.97 Figure for Problem 5.1.

ωp = ω0

√
1− ζ2.

b)

y (t) = 2 |C1| cos
(
ω1t+ C1

)
u (t) + 2 |C2| e−ζω0t cos

(
ωpt+ C2

)
u (t)

|C1| =
ω2

1ω
2
0

2ω1

√
(ζω0)

2
+ (ω1 + ωp)

2
√

(ζω0)
2

+ (ωp − ω1)
2

C1 = −
{
π/2 + tan−1 ω1 + ωp

ζω0
− tan−1 ωp − ω1

ζω0

}
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|C2| =
ω2

1ω
2
0

2ωp

√
(ζω0)

2
+ (ωp − ω1)

2
√

(ζω0)
2

+ (ωp + ω1)
2

C2 = −
{(

π − tan−1 ωp − ω1

ζω0

)
+

(
π − tan−1 ωp + ω1

ζω0

)
+ π/2

}

c)
yss (t) = 2 |C1| cos

(
ω1t+ C1

)
u (t)

ytr, I.C.0 = 2 |C2| e−ζω0t cos
(
ωpt+ C2

)
u (t)

d) |H (jω0)| = 1/(2 ζ), H (jω0) = −π/2.

Problem 5.2

Y (s) =
K0

s
+

K1

s− p1
+

K2

s− p2
+

K∗2
s− p∗2

See Fig. 5.98.

FIGURE 5.98 Figure for Problem 5.2.

case (i)

y (t) ∼= K0u (t) +K1e
p1tu (t) =

141

ω3
0

(
1− e−0.01 ζω0t

)
u (t)

case (ii)

y (t) = K0u (t) +K1e
−ζω0tu (t) + 2 |K2| e−ζω0t cos

(
ωpt+ K2

)
u (t)

=
1

ω3
0

{
1.41− 2.83 e−ζω0t + 2e−ζω0t cos (0.7 ω0t+ 45o)

}
u (t)

case (iii)

y (t) ≃ 1

ω3
0

{
0.14 + 0.22 e−ζω0t cos (0.7 ω0t− 231o)

}
u (t)

b) See Fig. 5.99.
For an arbitrary position of pole p1:K0

∼= ℓ2
ℓ2ℓ21

= 1
ℓ21

, K1
∼= 0
−ℓ2ℓ23

∼= 0, K2
∼= ℓ3

ℓ3ℓ1×2ℓ4
=

1
2ℓ1ℓ4

; the same residue values had the pole p1 been absent.
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FIGURE 5.99 Figure for Problem 5.2b).

Problem 5.3 See Fig. 5.100.

FIGURE 5.100 Figure for Problem 5.3.

h (t) =
σ1

σ ω2
0

− σ1 − σ
σ b2

e−σt

+ 2
b1

2ω0ωbb
e−σbt cos (ωbt+ β1 − β0 − β − 90o)

Problem 5.4 See Fig. 5.101.

y (t) =
(
1− e−4t − 1.16 e−2t sin 3.46 t

)
u (t)

jw

j 3.46

44

60
oq2

-2 s

-j 3.46

-4

q1

FIGURE 5.101 Figure for Problem 5.4.
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Problem 5.5 y (t) =
[
2.165e−2t cos (1.73t+ 60o) + 3.3 cos (1.73t− 109.1o)

]
u (t) .

Problem 5.6 ω0ts = 3.5793 and ts = 0.35793 sec. Overshoot peak time tp = 0.5060.
b) R = 1.56 Ω

Problem 5.7 c) R = 520 Ω.
Problem 5.8 H = Ks/(s4 + 10s3 + s2 + 5s−K).
Problem 5.9 y (t) = 3.14 sin (5t− 117.35o) .

b) ωp = ω0

√
1− 2 ζ2 = 5.39

√
1− 2 (0.37)2 = 4.59. The peak value at ωp is P =

1/(2 ζ
√

1− ζ2) = 3.25 db.
Problem 5.10
vp (t) is the periodic repetition of the function φ (t) shown in Fig. 5.102, with a period of

4 sec.

f( )t

t

FIGURE 5.102 Figure for Problem 5.10.

Problem 5.11
a) y1 (t) = 0.4 e−3tu (t) + 0.671 e−2t cos (2t+ 0.4636)u (t)
b) y2 (t) = e−1y1 (t− 2)

= 0.4 e−1e−3(t−2)u (t− 2)

+ 0.671 e−1e−2(t−2) cos (2t− 1.536)u (t− 2)

Problem 5.12
φ (t) = δ (t)− 0.5 e−0.5 tu (t)− 0.77 e−0.5 tu (t)

+ 0.77 e−(t−1)/2u (t− 1)

which is the periodic steady-state component of the response.
Problem 5.13 a) y (t) = 3.901 cos (4t− 0.6884)u (t).

b) y (t) = 3.901 cos (4t− 0.1221)u (t− 3)
Problem 5.14 a) y1 (t) = 0.2236 sin (2t− 3.8846)u (t− 2).

b) y2 (t) = 0.2236 sin [2 (t− 3)− 3.8846]u (t− 5).
Problem 5.19

φ (t) = 0.5 δ (t) + 0.25 e−0.5 tu (t)

+ 0.38 e−0.5 tu (t)− 0.38 e−0.5(t−1)u (t− 1)

= 0.5 δ (t) + 0.63 e−0.5 tu (t)− 0.38 e−0.5(t−1)u (t− 1)

The steady-state response yss(t) is the periodic repetition of φ (t).

ytr(t) = −0.38 e−0.5 tu (t)

Problem 5.20 a)

H (s) =
100

s2 + 11s+ 10
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FIGURE 5.103 Figure for Problem 5.20.

b) See Fig. 5.103

Problem 5.22
a) See Fig. 5.104.

(b)

1
b

J

ik

(a)

R

( )iE t

i

1ce k= W

+

-

1

R
k ,J b

1k

1H

2H

1E
+

-

i ik
W

ce

W

FIGURE 5.104 Figure for Problem 5.22.

b)

H(s) =
k/RJ

s+ (b/J + k1k/RJ)
=

b0
s+ a0

c)
ytr (t) = C1e

−t = −0.5 e−t

yss is the periodic repetition of φ (t), where

φ (t) = 1.58 e−tu (t)− 0.58 e−(t−1)u (t− 1)

Problem 5.31

H (s) =
Kkmq

RC1J
(
s+ 1

RC1

) (
s+ b

J

)

b)
y (t) =

(
5− 10e−t + 5e−2t

)
u (t)

c) ts = 3.676.
d)

φ (t) = 10E
(
e−t − e−2t

)
u (t)

+5.82E
[
e−tu (t)− e−(t−1)u (t− 1)

]
− 1.57E

[
e−2tu (t)− e−2(t−1)u (t− 1)

]
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y (t) = −5.82E e−tu (t) + 1.57E e−2tu (t) +

∞∑

n=0

φ (t− n)

Problem 5.33
rvf (t) = |V (jkω0)| cos {kω0t+ arg [V (jkω0)]}

Problem 5.34

V (jω) = 2Sa (ω)− 4
Sa (ω)

ω2
+

4 cosω

ω2

X (jω) = 2
1− e−1 cosω + e−1ω sinω

1 + ω2

Rvx (jω) = V (jω)X∗ (jω)

Problem 5.35 See Fig. 5.105.

FIGURE 5.105 Figure for Problem 5.35.

y (t) = 1.4e2tu (−t) +
{
1.067e−0.5t + 0.333e−2t

}
u (t)

Problem 5.36

x1 (t) = 0.098
{
1− 1.5119e−7.5t sin (6.6144t+ 0.7227)

}
u (t)

x2 (t) = 0.1569e−7.5t cos (6.6144t− 0.934)u (t)

x (t) = x1 (t)− x2 (t)

lim
t→∞

x (t) = 0.098 m = 9.8 cm

Problem 5.39

a) H(s) = α
s + 1

s+1 − 1
s−β , ROC :

{
ℜ[s] > β, β ≥ 0
ℜ[s] > 0, β ≤ 0

b) α =0 and β <0 ; so that the j ω axis is in the ROC of H(s).
c) ∀α, β (since h(t) =0, t <0, for all values of α and β).

Problem 5.40

a) H(jω) =

{
0 for ω = 2πn/0.015, where |n| ≥ 1 and n not multiple of 5

2/0.64 = 3.125 for ω = 0
.

b) H(jω) =

{
0 for ω = 2πn/0.015, for all n other than n = ±3 and n multiple of 5

0.6/ [2× 0.64Sa (3π/5)] = 0.929 for ω = ±400π
.

c) It is not possible to satisfy the requirement.
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Problem 5.41
b) H(jω) = (8e−j0.02ω − 8e−j0.06ω)/(jω) = 0.32Sa (0.02ω) e−j0.04ω

c) y(t) = 0.15 cos
(
40πt+ 2π

5 − 8π
5

)
= 0.15 cos

(
40πt− 6π

5

)
. Delay: 0.04 seconds.

Problem 5.42 c) y (t) = KT .
d) y (t) = 0
e) y (t) = (2T/π) cos (πt/T − 3π/2)

Problem 5.43 Output’s average = 0.358.

Problem 5.44
H (jω) =

[
1− e−j2πω/ωc

]
Πωc (ω) /2

b) y(t) = cos (ωct/2).

Problem 5.45
Referring to Fig. 5.106, we differentiate the product u2v2 and find the value of x for

which the derivative is zero. The result is found to be xmin = −1 ± √1− k2 = −1 ± ξ as
required.

FIGURE 5.106 Figure for Problem 5.45.

Problem 5.46 H (jω) = TSa (ωT/2) e−jωT/2

Problem 5.47

a) h(t) =
∞∑

n=0
Anδ(t− nτ).

b) H (jω) = 1
1−Ae−jωτ . Output: sinusoid, 440Hz, |H (jω)|ω=880π = 1.67 volts.

Problem 5.48 H (j2π × 60) = 1 + e−j120πT = 0 for T = n/120, n odd. H (jω) = 1 +
e−jωn/120, n odd. Suppresses all odd harmonics of frequencies 60/n Hz.

Problem 5.49

y (t) = (15/π) sin(2πt/T ) + (10/π2) cos(2πt/T ) = 4.88 cos(2πt/T − 1.36).

Problem 5.50 See Fig. 5.107.

Problem 5.51
a) H (j800π) = e−j0.001ω

x(t) = 3 sin
[
800π

(
t− 10−3

)]
or x(t) = 3 sin (800πt− 0.8π).
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H j( )w
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H j( )w
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FIGURE 5.107 Figure for Problem 5.50.

b) Let y (t) = v (t)w (t) , where w (t) = 2 cos 1000πt. Y (jω) = [1/(2π)] V (jω) ∗W (jω).
See Fig. 5.108.

200p w

Y j( )w

2p

1000p
1800p

j3p

-j3p-j3p

2p

-1800p -200p-1000p

j3p

200p w

V j( )w

2p

800p

-j3p

j3p

-800p w

W j( )w

2p

1000p

2p

-1000p

FIGURE 5.108 Figure for Problem 5.51

c) z (t) =
∞∑

n=−∞
Zne

j2πnt/T , where T = 0.02,

Zn =





1, n = 0
∓3j/2, n = ±8

5/2e±jπ/4, n = ±10

Zn =





1, n = 0
∓3j/2, n = ±8
5/2e±jπ/4, n = ±10

Problem 5.52
a) X1 (jω) = (1/2)

{
e−jπ/42πδ (ω) + ejπ/42πδ (ω)

}
= π

{
e−jπ/4δ (ω − 700) + ejπ/4δ (ω + 700)

}

V (jω) = 4πδ (ω)− jπ {δ (ω − 500)− δ (ω + 500)}+ π
{
e−jπ/4δ (ω − 700) + ejπ/4δ (ω + 700)

}
.

See Fig. 5.109.
b) ω0 = 100 r/s and f0 = 50/πHz
c) y(t) = 5 cos(500t− π/4) + 7 cos 700t.
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FIGURE 5.109 Figure for Problem 5.52.

Problem 5.53

|X (jω)| = (π/3)

∞∑

n=−∞
|Sa (nπ/6)| δ (ω − nω0)

We should have|H (0)| = 0, |H (jβ)| = 1.15, |H (j2β)| = 2.31, |H (j4β)| = 0.831,
|H (j5β)| = 0.808, |H (jω)| = 0, ω = kω0; k = 1, 3, 5, 7, 9 and k > 10.

Problem 5.54
a)

h (t) = 3e−3tu (t)− 6 sin 2t u (−t)
b)

H (jω) =
3

jω + 3
− j3

{ −1

j (ω + 2)
+ π δ (ω + 2) +

1

j (ω − 2)
− π δ (ω − 2)

}

c) The system is not physically realizable, being noncausal.
d)

G (jω) = 3− 9

jω + 3
− 6

{ −1

j (ω + 2)
+ π δ (ω + 2)− 1

j (ω − 2)
+ π δ (ω − 2)

}

g (t) being noncausal the system is not physically realizable.

Problem 5.55
a) ta = 10.512× 10−3

b) tb = 19.557× 10−3, |H(jω)|2 = 1.04 + 0.4 cos(9.0456× 10−3ω)
c) ta = 10.480× 10−3, tb = 10.544× 10−3, |H(jω)|2 = 1.04 + 0.4 cos(64.69× 10−3ω)
d) The second setup is preferable, causing less interference in the audio range extending

to 10000π r/s
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Discrete-Time Signals and Systems

6.1 Introduction

As we have seen in Chapter 1, a discrete-time signal is a sequence v[n] which is defined for
every integer value n. A discrete-time signal has the general appearance of the sequence
v [n] shown in Fig. 6.1.

FIGURE 6.1 Discrete time signal.

A sequence x[n] may be obtained by sampling a continuous-time signal xc(t). The process
may be represented as shown in Fig. 6.2, where the switch is closed periodically every T
seconds producing at the output a discrete-time signal, namely, the sequence

x[n] = xc(t)|t=nT = xc(nT ) (6.1)

and the sampling frequency is fs = 1/T .

T
x tc( ) x n[ ]

FIGURE 6.2 Sampling of a continuous-time signal.

If the input is a sinusoid such as xc(t) = sin(βt) the resulting sequence is x[n] =
sin(βnT )=△ sin(γt). In other words, a continuous-time signal of frequency β results in a
sequence of frequency γ = βT . This relation is an important one. If the frequency in the
continuous-time domain is denoted by ω and that in the discrete-time domain is denoted Ω
then the relation between the frequencies in the two domains is

Ω = ωT. (6.2)

323
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Example 6.1 Evaluate the frequency of the sequence that is the discrete-time sampling
of the continuous-time signal xc(t) = cos(1000πt + 0.1π), with a sampling frequency of
fs = 2000 Hz.

Let the frequency of xc(t) be denoted β rad/sec or fc = β/(2π) Hz. We have β = 1000π
rad/sec and fc = 500 Hz. The sampling period is T = 1/fs = 0.0005 sec. The corresponding
discrete time sequence is x[n] = xc(nT ) = cos(1000πn0.0005 + 0.1π) = cos(0.5πn+ 0.1π),
of frequency γ = 0.5π, which is simply γ = βT .

A discrete signal v[n] can be written as the sum of delayed impulses

v [n] = . . .+ v [−2] δ [n+ 2] + v [−1] δ [n+ 1] + v [0] δ [n] + v [1] δ [n− 1] + . . . (6.3)

v[n] =

∞∑

k=−∞
v[k]δ[n− k]. (6.4)

6.2 Linear Time-Invariant Systems

Let y1 [n] be the response of a discrete-time system to an input v1 [n] and y2 [n] be its
response to an input v2 [n]. The system is linear if its response to αv1 [n] + βv2 [n] is
αy1 [n] +βy2 [n]; α and β being constant values. The system is linear time-invariant (LTI),
shift invariant or stationary, if its response to v1 [n− k] is y1 [n− k].

Let h[n] be the impulse response of an LTI system, that is, its response to an impulse
δ [n]. Being stationary, its response to a delayed impulse δ [n− k] is h [n− k] and to the
delayed impulse v [k] δ [n− k] is v [k]h [n− k], and from (6.4) if v [n] is the input to the
system then, by superposition, its output is

y [n] =

∞∑

k=−∞
v [k]h [n− k] = v[n] ∗ h[n]. (6.5)

The system response is therefore, as expected, the discrete convolution of the input with
the impulse response.

6.3 Linear Constant-Coefficient Difference Equations

LTI discrete-time systems are characterized by linear constant-coefficient difference equa-
tions of the form

N∑

k=0

dky[n− k] =

M∑

k=0

ckv[n− k] (6.6)

where v [n] is the system input and y [n] its response. We can write

y[n] = −
N∑

k=1

(dk/d0) y[n− k] +
M∑

k=0

(ck/d0) v[n− k]

= −
N∑

k=1

aky[n− k] +

M∑

k=0

bkv[n− k]
(6.7)
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where ak = dk/d0 and bk = ck/d0.

Example 6.2 Assuming zero initial condition, evaluate the impulse response of the system
defined by the linear constant-coefficients difference equation

y[n] = 2a cos b y[n− 1]− a2y[n− 2] + v[n]− a cos b v[n− 1].

To evaluate the impulse response h[n] we assume an input v[n] = δ[n] and, with zero
initial conditions, y[n] = 0 for n < 0. Substituting for n the values 0, 1, 2, . . . we obtain
y[0] = 1, y [1] = a cos b, y[2] = 2a2 cos2 b− a2 = a2 cos 2b, etc., and, in general, we have

y[n] =

{
an cos b n, n ≥ 0
0, n < 0

wherefrom h[n] = an cos bn u[n].

We shall subsequently see how the z-transform simplifies the evaluation of the impulse
response as well as the solution of difference equations.

6.4 The z-Transform

The bilateral or two-sided z-transform of a sequence v[n] is defined by

V (z) =

∞∑

n=−∞
v [n] z−n (6.8)

where z is a complex variable and v[n] is assumed to be a general two-sided sequence, that
is, a sequence defined over the entire interval −∞ < n < ∞. The bilateral z-transform of
a sequence v[n] will be denoted V (z). It will alternatively be denoted VII(z) to put into
evidence the fact that it is the two-sided transform.

For the bilateral transform we may write

VII (z) = Z (v [n]) (6.9)

and
v [n]

Z←→ VII (z) (6.10)

meaning that VII (z) is the z-transform of v[n].
As we shall see shortly, similarly to Laplace transform a unilateral or one-sided z-

transform also exists and is particularly useful for the solution of linear constant-coefficient
difference equations with initial conditions. The following remarks parallel those made in
the context of Laplace transform.

We shall see below that the bilateral z-transform is in principle applicable to general two-
sided sequences, that is, sequences defined for −∞ < n <∞. In the current literature the
transform of a two-sided sequence is expressed as the sum of the transform of the right-sided
part of the sequence and that of its left-sided part. However, this approach fails to transform
the most basic of two-sided sequences, such as 1, sinn, cosn, an, n and nan, among others.

According to the current literature such basic two-sided sequences have no z-transform. In
fact the bilateral z-transform, according to the present literature, exists only for right-sided
sequences or else left-sided sequences and if a true two-sided sequence, such as 1, sinn or
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en is expressed as the sum of a causal and anticausal part then their respective transforms
are mutually exclusive and cannot be added to produce the overall transform.

In recent papers [21] [23] [27], it has been pointed out that the fact that basic two-sided
sequences such as 1, sinn and cosn have a Fourier transform but no z-transform, that the
more general z-transform, of which Fourier is but a special case, does not exist while Fourier
does, may be viewed as a mathematical anomaly.

The key to resolving the anomaly and extending the domain of existence of z-transform to
cover these and a much larger class of sequences that have heretofore had no transform, be it
Fourier, Laplace or z-transform, is in a generalization of the Dirac-delta impulse introduced
in [21] and [23]. The result is a significant expansion of the domains of existence of Laplace
and z-transform and other related ones such as Hilbert, Hartley and Mellin transforms,
extending considerably the domains of their applications. In the present chapter, however,
to familiarize the student with basic bilateral and unilateral z-transform we follow the
same approach commonly used in the current literature. The new extended transforms are
deferred to Chapter 18.

Using polar coordinates we can write

z = rejΩ (6.11)

where z is viewed as a vector of length r and angle Ω in the complex z-plane. The z-transform
is thus written

V
(
rejΩ

)
=

∞∑

n=−∞
v[n]r−ne−jΩn. (6.12)

We note that if r = r0, a constant, we have z = r0e
jΩ which by varying Ω defines a circle

of radius r0 in the z plane as shown in Fig. 6.3.

1

r0

z plane

W

FIGURE 6.3 Unit circle and a larger circle in z-plane.

If r = 1, the circle of unit radius shown in the figure is called the “unit circle.” The
z-transform on the unit circle is given by

V
(
ejΩ
)

=
∞∑

n=−∞
v[n]e−jΩn (6.13)

and is in fact, by definition the Fourier transform of the sequence v[n]. It is referred to
as the discrete-time Fourier transform (DTFT). This is the discrete-time counter part of
the continuous-time property stating that the Fourier transform is but a special case of the
Laplace transform, being the value of the Laplace transform on the s = jω axis in the
complex s plane. We also note in passing from (6.12) that the z-transform of a sequence
v[n] can be viewed as the Fourier transform of a weighted sequence, namely, the sequence
v[n] multiplied by r−n.
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6.5 Convergence of the z-Transform

The Fourier transform V
(
ejΩ
)

is given by an infinite sum of a power series. This series
converges uniformly if the sequence is absolutely summable. Similarly, the z-transform in
polar form is given by an infinite sum that is absolutely convergent if the sequence v[n]r−n

is absolutely summable, i.e.,
∞∑

n=−∞

∣∣v[n]r−n
∣∣ <∞. (6.14)

In general, this condition is satisfied in an annular region in the z-plane, referred to as the
region of convergence (ROC), namely, the region:

r1 < |z| < r2. (6.15)

The radii r1 and r2 are functions of the sequence v[n] and may thus be also denoted rv1

and rv2 . In particular, we have the following four cases.

Case 1: Finite Duration Sequence
For a sequence v[n] of finite duration [n1, n2] and nil elsewhere which is of finite value

over the interval, i.e., |v[n]| <∞ for n1 ≤ n ≤ n2. We have

V (z) =

n2∑

n=n1

v [n] z−n = v [n1] z
−n1 + v [n1 + 1] z−n1−1 + . . .+ v [n2] z

−n2 . (6.16)

The ROC is therefore the whole z-plane, except z = ∞ if n1 < 0 and except z = 0 if
n2 > 0, so that, the ROC is 0 < z <∞ and may include z = 0 or z =∞. The sequence
and its ROC are shown in Fig. 6.4.

FIGURE 6.4 Finite duration sequence and its ROC.

Case 2: Right-Sided Sequence
A right-sided sequence v[n] is one that extends to the right on the n axis as n −→ ∞,

starting from a finite value n1. In other words it is nil for n < n1. In this case we have

V (z) =

∞∑

n=n1

v [n] z−n = v[n1]z
−n1 + v[n1 + 1]z−(n1+1) + v[n1 + 2]z−(n1+2) + . . . . (6.17)

The ROC is the exterior of a circle, i.e. |z| > r1, except z =∞ if n1 < 0; see Fig. 6.5.
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FIGURE 6.5 Right-sided sequence and its ROC.

If the sequence is causal, n1 ≥ 0, the ROC includes z =∞.

Case 3: Left-Sided Sequence
A left-sided sequence v[n] is one that extends to the left on the n axis as n −→ −∞,

starting from a finite value n2. In other words it is nil for n > n2. We have

V (z) =

n2∑

n=−∞
v [n] z−n =

∞∑

m=−n2

v [−m] zm

= v[n2]z
−n2 + v[n2 − 1]z−(n2−1) + v[n2 − 2]z−(n2−2) + . . .

which is the same as the expression of V (z) in the previous case except for the replacement
of n by −n and z by z−1. The ROC is therefore |z| < r2, except z = 0 if n2 > 0; see Fig.
6.6.

FIGURE 6.6 Left-sided sequence and its ROC.

We note that the z-transform of an anticausal sequence, a sequence that is nil for n > 0,
converges for z = 0.

Case 4: General Two-Sided Sequence
Given a general two-sided sequence v[n] we have

V (z) =

∞∑

n=−∞
v [n] z−n =

∞∑

n=0

v [n] z−n+

−1∑

n=−∞
v [n] z−n. (6.18)

The first term converges for |z| > r1, the second term for |z| < r2, wherefrom there is
convergence if and only if r1 < r2 and the ROC is the annular region

r1 < |z| < r2. (6.19)

Example 6.3 Evaluate the z-transform and the Fourier transform of the sequence

v (n) = eαnu [n] + eβnu [−1− n]
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we have

V (z) =

∞∑

n=0

eαnz−n+

−1∑

n=−∞
eβnz−n

=
1

1− eαz−1
+

∞∑

m=1

e−βmzm, |z| > eα

=
1

1− eαz−1
+ e−βz

1

1− e−βz
, eα < |z| < eβ .

We note that the sequence has two poles z = eα and z = eβ. The ROC is a ring bounded
by the two poles as shown in Fig. 6.7.

n0

ea eb

FIGURE 6.7 Two-sided sequence and its ROC.

The Fourier transform exists if the unit circle is in the ROC, i.e. if and only if eα < 1 < eβ

in which case it is given by

V
(
ejΩ
)

=
1

1− eαe−jΩ
+

e−βejΩ

1− e−βejΩ
.

Example 6.4 Evaluate the z-transform of v[n] = an sin bn u[n], where a and b are real.

We have

V (z) =

∞∑

n=0

an sin bn z−n =
1

2j

∞∑

n=0

(
anejbnz−n − ane−jbnz−n

)

=
1

2j

[ ∞∑

n=0

(
aejbz−1

)n−
∞∑

n=0

(
ae−jbz−1

)n
]

=
−j/2

1− aejbz−1
− −j/2

1− ae−jbz−1
.

The ROC is given by
∣∣ae±jbz−1

∣∣ < 1, i.e. |z| > |a|. The expression can be rewritten in the
form

V (z) =
a sin b z−1

1− 2a cos b z−1 + a2z−2
, |z| > |a| .

The poles of V (z) and its ROC are shown in Fig. 6.8.
Similarly, we can show that

anu[n]
z←→ 1

1− az−1
, |z| > |a|

an cos bn u[n]
z←→ 1− a cos b z−1

1− 2a cos b z−1 + a2z−2
, |z| > |a|
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anu [−n]
z←→

0∑

n=−∞
anz−n =

∞∑

m=0

a−mzm =
1

1− a−1z
, |z| < |a| .

FIGURE 6.8 ROC of a right-sided sequence.

We note that the transform of a real exponential eαnu [n] has the pole in the z plane at
z = eα on the real axis. The transform of the sequence anu[n], where a is generally complex,
has a pole at z = a. The transform of the sequence eαn cosβn u[n] has two conjugate poles,
at z = eα+jβ and z = eα−jβ .

In all of these cases the domain of convergence is the region in the z-plane that is exterior
to the circle that passes through the pole or pair of conjugate poles. If a sequence is the
sum of two such right-sided sequences the ROC is the exterior of the “poles” circle of larger
radius. We recall similar rules associated with Laplace transform.

The same remarks apply to left-sided sequences. The z-transform of the sum of left-sided
sequences has a ROC that is the interior of the circle that passes through the pole(s) of
least radius.

For illustration purposes some basic one-sided sequences are shown together with their
ROC in the Laplace s plane and in the z-plane in Fig. 6.9. Two-sided sequences are similarly
shown with their regions of convergence in the s and z-plane, in Fig. 6.10.

6.6 Inverse z-Transform

The inverse z-transform can be derived as follows. We have by definition

V (z) =

∞∑

n=−∞
v[n]z−n. (6.20)

Multiplying both sides by zk−1 and integrating we have

‰

V (z) zk−1dz =

‰ ∞∑

n=−∞
v[n]z−n+k−1dz (6.21)

where the integration sign denotes a counterclockwise circular contour centered at the origin.
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FIGURE 6.9 Right- and left-sided sequences and ROC.

Assuming uniform convergence, the order of summation and integration can be reversed,
wherefrom

‰

V (z)zk−1dz =

∞∑

n=−∞

‰

v[n]z−n+k−1dz. (6.22)

Now, according to Cauchy’s integration theorem
‰

C

zk−1dz =

{
2πj, k = 0
0, k 6= 0

(6.23)

where C is a counterclockwise circular contour that is centered at the origin, wherefrom
‰

C

V (z) zk−1dz = 2πj v[k] (6.24)

and replacing k by n

v[n] =
1

2πj

‰

C

V (z) zn−1dz (6.25)
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where the contour C is in the ROC of V (z) and encircles the origin. This is the inverse
z-transform. Replacing z by ejΩ we obtain the inverse Fourier transform

v [n] =
1

2π

ˆ π

−π

V
(
ejΩ
)
ejΩndΩ. (6.26)
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FIGURE 6.10 Two-sided sequences and ROC.

If V (z) is rational, the ratio of two polynomials, the residue theorem may be applied to
evaluate Equation (6.25). We can write

v [n] =
∑[

residues of V (z) zn−1 at its poles inside C
]
. (6.27)

If V (z) zn−1 is a rational function in z and has a pole of order m at z = z0 we can write

V (z) zn−1 =
F (z)

(z − z0)m (6.28)
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where F (z) has no poles at z = z0. The residue of V (z) zn−1 at z = z0 is given by

Res
[
V (z) zn−1 at z = z0

]
=

1

(m− 1)!

[
dm−1F (z)

dzm−1

]

z=z0

. (6.29)

In particular, for the case of a simple pole (m = 1)

Res
[
V (z) zn−1 at z = z0

]
= F (z0) . (6.30)

Example 6.5 Let

V (z) =
2− 1.25z−1

1− 1.25z−1 + 0.375z−2
, |z| > 0.75.

Evaluate the inverse transform of V (z).
We have

V (z) =
2− 1.25z−1

(1− 0.5z−1) (1− 0.75z−1)
, |z| > 0.75

v [n] =
1

2πj

‰

C

(
2− 1.25z−1

)
zn−1dz

(1− 0.5z−1) (1− 0.75z−1)
=

1

2πj

‰

C

(2z − 1.25) zndz

(z − 0.5) (z − 0.75)
.

The ROC implies a right-sided sequence. Moreover, V (z)|z=∞ = 2 wherefrom the sequence
is causal, i.e., v [n] = 0 for n < 0. With n ≥ 0 the circle C contains two poles as seen in
Fig. 6.11. Therefore

v[n] =

[
Res of

(2z − 1.25) zn

(z − 0.5) (z − 0.75)
at z = 0.5 + Res of

(2z − 1.25) zn

(z − 0.5) (z − 0.75)
at z = 0.75

]

=

{
(2× 0.5− 1.25) (0.5)n

0.5− 0.75
+

(2× 0.75− 1.25) (0.75)n

0.75− 0.5

}
u[n] = {(0.5)n + (0.75)n}u[n].

FIGURE 6.11 Contour of integration in ROC.

Example 6.6 Let

V (z) =
−1.5z

z2 − 2.5z + 1
, 0.5 < |z| < 2.

The ROC implies a two-sided sequence. The poles are shown in Fig. 6.12.
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FIGURE 6.12 Annular ROC.
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FIGURE 6.13 Contour of integration in ROC (a) with n ≥ 0; (b) with n < 0.

We have

v [n] =
1

2πj

‰ −1.5zn

(z − 2) (z − 0.5)
dz.

For n ≥ 0 the circle C encloses the pole z = 0.5, as shown in Fig. 6.13(a).

v[n] = Res

[ −1.5zn

(z − 2) (z − 0.5)
at z = 0.5

]
=
−1.5 (0.5)n

0.5− 2
= (0.5)n .

For n < 0 the circle C encloses a simple pole at z = 0.5 and a pole of order n at z = 0,
as shown in Fig. 6.13(b). Writing m = −n we have

v[n] = Res

[ −1.5

(z − 2) (z − 0.5) zm
at z = 0.5

]
+Res

[ −1.5

(z − 2) (z − 0.5) zm
at z = 0

]

= (0.5)−m +
1

(m− 1)!

[
dm−1

dzm−1

−1.5

(z − 2) (z − 0.5)

]

z=0

=△ (0.5)n + v2[n].

Now if m = 1, i.e. n = −1,

v2[n] =
−1.5

−2 (−0.5)
= −1.5

and
v[n] = (0.5)

−1 − 1.5 = 0.5.

For m = 2, i.e. n = −2

v2[n] = −1.5
d

dz

1

z2 − 2.5z + 1

∣∣∣∣
z=0

=
1.5 (2z − 2.5)

(z2 − 2.5z + 1)2

∣∣∣∣∣
z=0
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v[n] = (0.5)−2 − 1.5× 2.5 = 2−2.

For m = 3 we obtain

v2[n] =
−1.5

2
× d2

dz2

1

z2 − 2.5z + 1
=
−1.5

2
×
{(
z2 − 2.5z + 1

)2
[− (2)] + (2z − 2.5)

× 2
(
z2 − 2.5z + 1

)
(2z − 2.5)

}
/
{(
z2 − 2.5z + 1

)4}∣∣∣
z=0

= −63/8

v[n] = (0.5)
−3 − 63/8 = 8− 63/8 = 2−3.

Repeating we deduce that for n < 0, v[n] = 2n so that

v[n] =

{
2−n, n ≥ 0
2n, n < 0.

The successive differentiation is needed due to the multiple pole at z = 0. We can avoid
such complication by using the substitution

z = 1/x

in

v[n] =
1

2πj

‰

C

V (z) zn−1dz

obtaining

v[n] =
−1

2πj

fi

C2

V

(
1

x

)
x−n−1dx

where the contour of integration C2 is now clockwise. Reversing the contour direction we
have

v[n] =
1

2πj

‰

C2

V

(
1

x

)
x−n−1dx

where the direction of integration is now counterclockwise. We note that if the circle C is
of radius r, the circle C2 is of radius 1/r. Moreover the poles of V (z) that are inside C are
moved by this transformation to outside the new contour.

Example 6.7 Evaluate the inverse transform of the last example for n < 0 using the
transformation z = 1/x.

We write

v[n] =
1

2πj

‰

C2

−1.5x−1x−n−1

(x−1 − 2) (x−1 − 0.5)
dx =

−1

2πj

‰

1.5x−n

(x− 0.5) (x− 2)
dx.

v[n] = Res

[ −1.5x−n

(x− 0.5) (x− 2)
at x = 0.5

]
=
−1.5 (0.5)−n

−1.5
= 2n, n ≤ 0.

The contour C2 is shown in Fig. 6.14. The contour encloses a pole at x = 0.5 for n ≤ 0.

Example 6.8 Given

X(z) =
z2

(z − a)2(1− az)2 , a < |z| < a−1

where a is real and 0 < a < 1, show that X(ejΩ) is real implying that x[n] is even-symmetric,
and evaluate x[n].
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0.5

C2

FIGURE 6.14 Circular contour in z plane.

We may write

X(ejΩ) =
ej2Ω

(ejΩ − a)2(1− aejΩ)2
=

1

(1− 2a cosΩ + a2)2

which is real. Hence x[−n] = x[n].

x[n] =
1

2πj

‰

C

zn+1

(z − a)2(1 − az)2dz

With n ≧ 0 the contour C encloses a pole at z = a.

x[n] = [residue at z = a] =
d

dz

zn+1

a2(z − a−1)2

∣∣∣
z=a

=
(1− a2)(n+ 1)an + 2an+2

(1 − a2)3
, n ≥ 0.

6.7 Inverse z-Transform by Partial Fraction Expansion

Given a z-transform X(z) which is a rational function of z.

X(z) =

M∑

k=0

bkz
−k

1 +

N∑

k=0

akz
−k

= K

M∏

k=1

(1 − zkz
−1)

N∏

k=1

(1− pkz
−1)

(6.31)

a common way to evaluate the inverse transform x[n] is to effect a partial fraction expansion.
In the case N > M and simple poles pk, we obtain the expansion

X(z) =

N∑

k=1

Ak

1− pkz−1
(6.32)

where
Ak =

[
(1− pkz

−1)X(z)
]
z=pk

(6.33)

If N ≤M , we may perform a long division so that the expansion will include a polynomial
of order M − N in z−1. For the case of multiple order poles a differentiation is called for.
For example if X(z) has a double pole at z = pk the expansion will include the two terms

B1

1− pkz−1
+

B2

(1 − pkz−1)2
(6.34)
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B1 = pk

[
d

dz
(1− pkz

−1)2X(z)

]

z=pk

, B2 =
[
(1− pkz

−1)2X(z)
]
z=pk

.

Example 6.9 Evaluate the sequence x[n] given that its z-transform is

X(z) =
1− (9/4)z−1 − (3/2)z−2

1− (5/4)z−1 + (3/8)z−2
.

Effecting a long division

X(z) = 4− 3− (11/4)z−1

1− (5/4)z−1 + (3/8)z−2
= 4−

[
A

1− (3/4)z−1
+

B

1− (1/2)z−1

]

A =
3− 11/3

1− (1/2)(4/3)
= −2, B =

3− 11/2

1− (3/4)(2)
= 5

X(z) = 4 +
2

1− 3
4z
−1
− 5

1− 1
2z
−1

x[n] = 4δ[n] + [2× (3/4)n − 5× (1/2)n]u[n].

6.8 Inversion by Long Division

Another approach to evaluate the inverse z-transform is the use of a long division.

Example 6.10 Evaluate the inverse transform of

V (z) =
az−1

1− a−1z
, |z| < |a| .

The ROC implies a left-sided sequence. The result of the division should reflect this fact
as having increasing powers of z. We write

az−1 + 1 + a−1z + a−2z2 . . .
1− a−1z az−1

az−1 − 1
1
1− a−1z

a−1z
a−1z − a−2z2

. . .

wherefrom

V (z) = az−1 + 1 + a−1z + a−2z2 + . . . =

1∑

n=−∞
anz−n

v[n] = anu[1− n].
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6.9 Inversion by a Power Series Expansion

If V (z) can be expressed as a power series in powers of z−1 we would be able to identify
the sequence v[n].

Example 6.11 Using a power series expansion, evaluate the inverse z-transform of

V (z) =
1

(1 + az−1)2
.

We have the expansion

(1 + x)
−2

= 1− 2x+ 3x2 − 4x3 + 5x4 − . . . , −1 < x < 1.

We can therefore write

V (z) =
(
1 + az−1

)−2
=

∞∑

n=0

(−1)
n

(n+ 1)anz−n, |z| > |a| .

By definition

V (z) =

∞∑

n=−∞
v[n]z−n

wherefrom v[n] is the sequence

v[n] = (−1)n (n+ 1)anu[n].

Example 6.12 Using a power series expansion evaluate the inverse z-transform of

X (z) = log
(
1 + az−1

)
, |z| > |a| .

Using the power series expansion of the log function we can write

X (z) =
∞∑

n=1

(−1)
n+1

anz−n

n

x[n] = (−1)
n+1 a

n

n
u[n− 1].

The sequence is shown in Fig. 6.15.

Example 6.13 Evaluate the inverse transform of

V (z) =
1

2
ln

(
1 + az−1

1− az−1

)
, |z| > |a| .

We have

1

2
ln

(
1 + az−1

1− az−1

)
= az−1 +

a3z−3

3
+
a5z−5

5
+
a7z−7

7
+ . . . =

∞∑

n=1, 3, 5, ...

an

n
z−n, |z| > |a|

wherefrom

v[n] =

{
an/n, n = 1, 3, 5, . . .
0, otherwise.

The sequence v[n] is shown in Fig. 6.16.
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FIGURE 6.15 Inverse transform of a logarithmic transform.
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FIGURE 6.16 Inverse transform of a logarithmic V (z).

6.10 Inversion by Geometric Series Summation

Recalling the geometric series summation

n2∑

n=n1

xn = xn1
1− xn2−n1+1

1− x , |x| < 1 (6.35)

if we can express the given transform V (z) in the form of the right-hand side of this equation
we can deduce the sequence v[n] using the left-hand side.

Example 6.14 Find the inverse transform of

V (z) =
e2αz3

z − e−α
+

e3βz−3

1− e−βz
, e−α < |z| < eβ .
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We may write

V (z) = e2αz2 1

1− e−αz−1
+ e3βz−3 1

1− e−βz
=

∞∑

n=−2

(
e−αz−1

)n
+

∞∑

n=−3

(
e−βz

)n

V (z) =

∞∑

n=−2

e−αnz−n +

3∑

m=−∞

(
e−βz

)−m
, e−α < |z| < eβ

v[n] = e−αnu[n+ 2] + eβnu[3− n].

6.11 Table of Basic z-Transforms

Table 6.1 lists z-transforms of some basic sequences.

6.12 Properties of the z-Transform

Table 6.2 lists basic properties of z-transform. In the following, some of these properties are
proved.

6.12.1 Linearity

The z-transform is linear, that is, if a1 and a2 are constants then

a1v1[n] + a2v2[n]←→ a1V1 (z) + a2V2 (z) (6.36)

6.12.2 Time Shift

v[n−m]←→ z−mV (z) . (6.37)

Proof
∞∑

n=−∞
v[n−m]z−n =

∞∑

k=−∞
v[k]z−(m+k) = z−mV (z) (6.38)

having let n−m = k.

6.12.3 Conjugate Sequence

v∗[n]
z←→ V ∗ (z∗) . (6.39)

Proof

Z (v∗[n]) =
∑

v∗[n]z−n =
{∑

v[n][z∗]−n
}∗

= V ∗ (z∗) . (6.40)
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TABLE 6.1 Transforms of basic sequences

Sequence Transform R.O.C.

δ[n] 1 All z

u[n] 1
1−z−1 |z| > 1

u[n−m] z−m

1−z−1 |z| > 1

u[−n− 1] −1
1−z−1 |z| < 1

δ[n−m] z−m All z-plane except
z = 0 (if m > 0) or
z =∞ (if m < 0)

αnu[n] 1
1−αz−1 |z| > |α|

−αnu[−n− 1] 1
1−αz−1 |z| < |α|

n αnu[n] αz−1

(1−αz−1)2
|z| > |α|

n2u[n] z2+z
(z−1)3

|z| > 1

−n αnu[−n− 1] αz−1

(1−αz−1)2
|z| < |α|

[cosΩ0n]u[n] 1−[cosΩ0]z−1

1−[2 cosΩ0]z−1+z−2 |z| > 1

[sin Ω0n]u[n] [sin Ω0]z−1

1−[2 cosΩ0]z−1+z−2 |z| > 1

[rn cosΩ0n]u [n] 1−[r cosΩ0]z−1

1−[2r cosΩ0]z−1+r2z−2 |z| > r

[rn sin Ω0n]u [n] [r sin Ω0]z−1

1−[2r cosΩ0]z−1+r2z−2 |z| > r

cosh (nα)u[n] z[z−cosh(α)]
z2−2z cosh(α)+1

sinh (nα) u[n] z sinh(α)
z2−2z cosh(α)+1

n an−1u[n] z
(z−a)2

n(n−1)...(n−m+1)
m! an−mu[n] z

(z−a)m+1

6.12.4 Initial Value

Let v[n] be a causal sequence. We have

V (z) =

∞∑

n=0

v[n]z−n (6.41)

V (z) = v[0] + v[1]z−1 + v[2]z−2 + . . . . (6.42)
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TABLE 6.2 Basic properties of z-transform

a v[n] + b x (n) aV (z) + bX (z)

v[n− n0] z−n0V (z)

n∑

m=0

v[m]x[n−m] V (z)X (z)

v[n]x[n]
1

2πj

‰

C

V (y)X (z/y)y−1dy

n v[n] −z dV (z)

dz

v∗[n] V ∗ (z∗)

anv[n] V
(
a−1z

)

lim
n−→∞

v[n] lim
z−→1

(1− 1/z)V (z)

ℜ{v[n]} 1

2
[V (z) + V ∗ (z∗)]

ℑ{v[n]} 1

2j
[V (z)− V ∗ (z∗)]

v[−n] V (1/z)

n∑

k=−∞
v[k]

1

1− z−1
V (z)

v [0] lim
z−→∞

V (z) , v [n] = 0, n < 0

∞∑

n=−∞
v1[n]v∗2 [n]

1

2πj

‰

C

V1(y)V
∗
2 (1/y∗)y−1dy

We note that

v[0] = V (∞) . (6.43)

Right-Sided Sequence

Let v[n] be a right-sided sequence that is non-nil for n ≥ N , where N is a positive or
negative integer and nil for n < N , as shown in Fig. 6.17.

We can write

V (z) = v[N ]z−N + v[N + 1]z−(N+1) + . . . (6.44)

zkV (z) = v[N ]z−N+k + v[N + 1]z−(N+1)zk + . . . (6.45)



Discrete-Time Signals and Systems 343

obtaining

lim
z−→∞

zkV (z) =





0, k < N
v [N ] , k = N
∞, k > N.

(6.46)

nN

FIGURE 6.17 Right-sided sequence.

We conclude that for a right-sided sequence that is non-nil for n ≥ N the limit lim
z−→∞

zkV (z)

is equal to the initial value v[N ] if k = N ; is zero if k < N ; and is infinite if k > N . By
evaluating this limit we may determine the sequence’s initial value

lim
z−→∞

zNV (z) = v[N ]. (6.47)

Left-Sided Sequence
For a left-sided sequence that is non-nil for n ≤ N and nil for n > N , as the sequence

shows in Fig. 6.18, we write

zkV (z) = v[N ]z−Nzk + v[N − 1]z−(N−1)zk + . . . (6.48)

obtaining

lim
z−→0

zkV (z) =





0, k > N
v [N ] , k = N
∞, k < N.

(6.49)

nN

FIGURE 6.18 Left-sided sequence.

We conclude that for a left-sided sequence that is non-nil for n ≤ N the limit lim
z−→0

zkV (z)

is equal to v[N ] if k = N , is zero if k > N and is infinite if k < N . By evaluating the
limit we may thus deduce the sequence’s right-most value

lim
z−→0

zNV (z) = v[N ]. (6.50)
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Example 6.15 Evaluate the initial value of

V (z) =
az−5

1− a−1z
, |z| < |a| .

We note that
lim

z−→0
z5V (z) = a

lim
z−→0

zkV (z) =

{
0, k > 5
∞, k < 5

wherefrom v[5] = a and v[n] = 0 for n > 5. This result can be easily verified by evaluating
v[n]. We obtain

v[n] = an−4u[5− n].

6.12.5 Convolution in Time

The convolution in time property states that if v1[n] ←→ V1 (z) , a1 < |z| < b1, and
v2[n]←→ V2 (z) , a2 < |z| < b2, then the convolution

v1[n] ∗ v2[n] =

∞∑

k=−∞
v1[k]v2[n− k] =

∞∑

k=−∞
v1[n− k]v2[k]. (6.51)

has the transform

v1[n] ∗ v2[n]←→ V1 (z)V2 (z) , max (a1, a2) < |z| < min (b1, b2) (6.52)

Proof Let w[n] = v1[n] ∗ v2[n]. We have

W (z) =

∞∑

n=−∞

∞∑

k=−∞
v1[k]v2[n− k]z−n. (6.53)

Interchanging the order of summations we have

W (z) =

∞∑

k=−∞
v1[k]

∞∑

n=−∞
v2[n− k]z−n. (6.54)

Writing n− k = m we have

W (z) =
∞∑

k=−∞
v1[k]z

−k
∞∑

m=−∞
v2[m]z−m = V1 (z)V2 (z) (6.55)

and the ROC includes the intersection of the ROC’s of V1(z) and V2(z). If a pole is the
border of the ROC of one of the two z-transforms and is canceled by a zero of the other
transform then the ROC of the product W (z) may extend farther in the plane.

6.12.6 Convolution in Frequency

We show that if x[n]←→ X (z) and v[n]←→ V (z) then

x[n]v[n]←→ 1

2πj

‰

C1

X

(
z

y

)
V (y) y−1dy (6.56)
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where C1 is a contour in the common ROC of X (z/y) and V (y), that is, multiplication in
the time domain corresponds to convolution in the z domain.

Proof Let w[n] = x[n]v[n]. We have

W (z) =

∞∑

n=−∞
x[n]v[n]z−n =

∞∑

n=−∞
x[n]

1

2πj

‰

C1

V (y) yn−1dy z−n (6.57)

where C1 is in the ROC of V (y).

W (z) =
1

2πj

∞∑

n=−∞
x[n]

‰

C1

V (y)

(
z

y

)−n

y−1dy. (6.58)

Interchanging the order of summation and integration

W (z) =
1

2πj

‰

C1

∞∑

n=−∞
x[n]

(
z

y

)−n

V (y) y−1dy =
1

2πj

‰

C1

X

(
z

y

)
V (y) y−1dy (6.59)

as stated. The transforms X (z/y) and V (y) have, respectively, the regions of convergence

rx1 <

∣∣∣∣
z

y

∣∣∣∣ < rx2 and rv1 < |y| < rv2 (6.60)

wherefrom W (z) has the ROC

rx1rv1 < |z| < rx2rv2 . (6.61)

Equivalently,

W (z) =
1

2πj

‰

C1

X (y)V

(
z

y

)
y−1dy (6.62)

with ROCs

rx1 < |y| < rx2 and rv1 <

∣∣∣∣
z

y

∣∣∣∣ < rv2 (6.63)

and W (z) has the same above stated ROC. Using polar representation we write

z = rejΩ, y = ρejφ (6.64)

W
(
rejΩ

)
=

1

2π

ˆ π

−π

X
(
ρejφ

)
V

{
r

ρ
ej(Ω−φ)

}
dφ. (6.65)

The right-hand side shows the convolution of two spectra. If r and ρ are constants these
spectra are z-transforms evaluated on two circles in the z-plane, of radii ρ and r/ρ respec-
tively. For the particular case r = 1 we have the Fourier transform

W
(
ejΩ
)

=
1

2π

ˆ π

−π

X
(
ρejφ

)
V

[
1

ρ
ej(Ω−φ)

]
dφ (6.66)

wherein if ρ is constant the convolution is that of two z spectra, namely, those evaluated on
a circle of radius ρ and another of radius 1/ρ, respectively. If ρ = 1 we have the z-transform.

W
(
rejΩ

)
=

1

2π

ˆ π

−π

X
(
ejφ
)
V
[
rej(Ω−φ)

]
dφ (6.67)
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and the Fourier transform

W
(
ejΩ
)

=
1

2π

ˆ π

−π

X
(
ejφ
)
V
[
ej(Ω−φ)

]
dφ (6.68)

which is simply the convolution of the two Fourier transforms X
(
ejΩ
)

and V
(
jΩ
)

on the
unit circle.

Example 6.16 Given v1[n] = n u[n], v2[n] = anu[n], evaluate the z-transform of v[n] =
v1[n]v2[n].

We have

V1 (z) =

∞∑

n=0

nz−n.

To evaluate this sum we note that

∞∑

n=0

z−n =
1

1− z−1
, |z| > 1.

Differentiating we have

∞∑

n=0

(−n)z−n−1 =
−z−2

(1− z−1)
2 , |z| > 1

wherefrom

V1 (z) =
∞∑

n=0

nz−n =
z−1

(1− z−1)2
, |z| > 1.

Since

V2 (z) =
1

1− az−1
, |z| > |a|

we have

V (z) =
1

2πj

‰

V1

(
z

y

)
V2 (y) y−1dy =

1

2πj

‰

z−1y

(1− z−1y)
2

y−1

1− ay−1
dy

=
1

2πj

‰

C

zy

(y − z)2 (y − a)
dy.

The contour of integration C must be in the ROC common to V1 (z/y) and V2 (y), that is,

∣∣∣∣
z

y

∣∣∣∣ > 1 and |y| > |a| , |a| < |y| < |z| .

The integrand has two poles in the y plane, namely, a double pole at y = z, z being a
constant through the integration, and a simple one at y = a. The contour of integration is
a circle which lies in the region between these two poles, thus enclosing the poles y = a, as
shown in Fig. 6.19.

We deduce that

V (z) =

[
Res of

zy

(y − z)2(y − a) at y = a

]
=

za

(z − a)2 =
az−1

(1− az−1)2
, |z| > |a| .
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y z=

y planeC

a

FIGURE 6.19 Contour of integration.

6.12.7 Parseval’s Relation

Parseval’s relation states that

∞∑

n=−∞
v[n]x∗[n] =

1

2πj

‰

V (z)X∗ (1/z∗) z−1dz (6.69)

the contour of integration being in the ROC common to V (z) and X∗ (1/z∗).

Proof Let
w[n] = v[n]x∗[n]. (6.70)

Using the complex convolution theorem we have

W (z) =
∞∑

n=−∞
w[n]z−n =

1

2πj

‰

V (y)X∗
(
z∗

y∗

)
y−1dy. (6.71)

Now ∞∑

n=−∞
w[n] = W (z)|z=1 . (6.72)

Hence ∞∑

n=−∞
v[n]x∗[n] =

1

2πj

‰

V (y)X∗ (1/y∗) y−1dy. (6.73)

Replacing y by z completes the proof. We note that if the unit circle is in the ROC common
to V (z) and X (z) the Fourier transforms V

(
ejΩ
)

and X
(
ejΩ
)

exist. Parseval’s relation
with z = ejΩ takes the forms

∞∑

n=−∞
v[n]x∗[n] =

1

2π

ˆ π

−π

V
(
ejΩ
)
X∗
(
ejΩ
)
dΩ (6.74)

∞∑

n=−∞
|v[n]|2 =

1

2π

ˆ π

−π

|V
(
ejΩ
)
|2dΩ. (6.75)

6.12.8 Final Value Theorem

The final value theorem for a right-sided sequence states that

lim
n−→∞

v[n] = lim
z−→1

(
1− z−1

)
V (z) . (6.76)
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Proof Let v[n] be a right-sided sequence that extends from n = M to ∞ and is nil
otherwise and let

x[n] = v[n]− v[n− 1]. (6.77)

We have
X (z) =

(
1− z−1

)
V (z) (6.78)

X (z) =

∞∑

n=M

x[n]z−n = lim
N−→∞

N∑

n=M

{v[n]− v[n− 1]}z−n (6.79)

lim
z−→1

X (z) = lim
N−→∞

N∑

n=M

{v[n]− v[n− 1]}

= lim
N−→∞

[{v[M ]− v[M − 1]}+ . . .+ {v[0]− v[−1]}+ {v[1]− v[0]}
+ {v[2]− v[1]}+ . . .+ {v[N ]− v[N − 1]}] = lim

N−→∞
v [N ] = v[∞]

(6.80)

Example 6.17 Evaluate the z-transform of

v[n] = {n0.5n + 2− 4 (0.3)
n} u[n]

and verify the result by evaluating its initial and final values. Using Table 6.1 we can write
the z-transform of v[n]

V (z) =
0.5z−1

(1− 0.5z−1)
2 +

2

1− z−1
− 4

1− 0.3z−1
, |z| > 1.

Applying the initial value theorem we have

v[0] = lim
z−→∞

V (z) = −2.

Applying the final value theorem we have

v[∞] = lim
z−→1

(
1− z−1

)
V (z) = lim

z−→1

{
0.5z−1

(
1− z−1

)

(1− 0.5z−1)2
+ 2− 4

(
1− z−1

)

1− 0.3z−1

}
= 2

as can be verified by direct evaluation of the sequence limits.

6.12.9 Multiplication by an Exponential

The multiplication by an exponential property states that

anv[n]←→ V
(
a−1z

)
. (6.81)

In fact

Z [anv[n]] =

∞∑

n=0

anv[n]z−n =

∞∑

n=0

v[n]
{
a−1z

}−n
= V

(
a−1z

)
. (6.82)

6.12.10 Frequency Translation

As a special case of the multiplication by an exponential property we have the frequency
translation property, namely,

v[n]ejβn ←→ V
(
e−jβz

)
. (6.83)

This property is also called the modulation by a complex exponential property.
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6.12.11 Reflection Property

Let
v[n]←→ V (z) , ROC : rv1 < |z| < rv2. (6.84)

The reflection property states that

v[−n]←→ V

(
1

z

)
, ROC : 1/rv2 < |z| < 1/rv1. (6.85)

Indeed

Z [v[−n]] =
0∑

n=−∞
v[−n]z−n =

∞∑

m=0

v[m]zm = V
(
z−1
)
. (6.86)

6.12.12 Multiplication by n

This property states that

n v[n]←→ −z dV (z)

dz
. (6.87)

Since

V (z) =

∞∑

n=−∞
v[n]z−n (6.88)

we have
dV (z)

dz
=

∞∑

n=−∞
v[n] (−n) z−n−1 (6.89)

−z dV (z)

dz
=

∞∑

n=−∞
n v[n]z−n = Z [n v[n]] . (6.90)

6.13 Geometric Evaluation of Frequency Response

The general form of the system function H (z) of a linear time-invariant (LTI) system may
be written as

H (z) =
Y (z)

X (z)
=

N∑

k=0

bkz
−k

M∑

k=0

akz−k

=

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz−k

. (6.91)

where a0 = 1. We have

Y (z) +

N∑

k=1

akz
−kY (z) =

M∑

k=0

bkz
−kX (z) . (6.92)

Inverse transforming both sides we have the corresponding constant-coefficients linear dif-
ference equation

y [n] +

N∑

k=1

aky [n− k] =

M∑

k=0

bkx [n− k] . (6.93)
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By factoring the numerator and denominator polynomials of the system function H (z)
we may write

H (z) = K

M∏

k=1

(
1− zkz

−1
)

N∏

k=1

(
1− pkz

−1
)
. (6.94)

A factor of the numerator can be written

1− zkz
−1 =

z − zk

z
(6.95)

contributing to H (z) a zero at z = zk and a pole at z = 0. A factor in the denominator
is similarly given by

1− pkz
−1 =

z − pk

z
. (6.96)

The frequency response H
(
ejΩ
)

of the system is the Fourier transform of its impulse
response. Putting z = ejΩ in H (z) we have

H
(
ejΩ
)

=

N∑

k=0

bke
−jΩk

1 +

M∑

k=1

ake−jΩk

= K

M∏

k=1

(
1− zke

−jΩ
)

N∏

k=1

(
1− pke

−jΩ
)
. (6.97)

If the impulse response is real we have

H
(
e−jΩ

)
= H∗

(
ejΩ
)
. (6.98)

More generally
H (z∗) = H∗ (z) . (6.99)

Each complex pole is accompanied by its complex conjugate. Similarly, zeros of H (z) occur
in complex conjugate pairs.

Similarly to continuous-time systems, the frequency response at any frequency Ω may be
evaluated as the gain factor K times the product of vectors extending from the zeros to the
point z = ejΩ on the unit circle divided by the product of the vectors extending from the
poles to the same point.

Example 6.18 The transfer function H(z) of an LTI system has two zeros at z = ±j and
poles at z = 0.5e±jπ/2 and z = 0.5e±j3π/4. Evaluate the gain factor b0 so that the system
frequency response at Ω = 0 be equal to 10.

Let u1 and u∗1 be the vectors from the zeros to the point z = 1 on the unit circle, and let
v1, v

∗
1 , v2, and v∗2 be the vectors extending from the poles to the same point z = 1, as shown

in Fig. 6.20. We have

H(ej0) = b0
u1u

∗
1

v1v∗1v2v
∗
2

= b0
|u1|2

|v1|2|v2|2
=

b0(
√

2)2

1.25[(1 + 0.5√
2
)2 + ( 0.5√

2
)2]

= 0.8175b0

b0 = 10/0.8175 = 12.2324



Discrete-Time Signals and Systems 351

u1

v1v2

0.5 1

FIGURE 6.20 Geometric evaluation of frequency response.

6.14 Comb Filters

In general a comb filter adds to a signal a delayed replica thereof, leading to constructive
and destructive interference. The resulting filter frequency response has in general uniformly
spaced spikes; hence the name comb filter. Comb filters are used in anti-aliasing for inter-
polation and decimation sampling operations, 2-D and 3-D NTSC television decoders, and
audio signal processing such as echo, flanging, and digital wave guide synthesis. Comb filters
are either of the feedforward or feedback type and can be either analog or digital.

x n[ ]

z
K-

y n[ ]

+

+

a

x n[ ]

z
K-

y n[ ]

+

+

a

(a) (b)

FIGURE 6.21 Comb filter model, (a) feedforward, (b) feedback.

In the feedforward form, the comb filter has the form shown in Fig. 6.21(a). We note that
a delay of K samples is applied to the input sequence x[n], followed by a weighting by a
factor α. The output is given by

y[n] = x[n] + αx[n −K] (6.100)

Y (z) = X(z) + αz−KX(z) (6.101)

H(z) =
Y (z)

X(z)
= 1 + αz−K =

zK + α

zK
(6.102)

The transfer function H(z) has therefore a pole of order K at the origin and zeros given by

zK = −α = ejπej2mπα (6.103)

z = α1/Kej(2m+1)π/K , m = 0, 1, ... ,K − 1 (6.104)

The pole-zero pattern is shown in Fig. 6.22(a) for the case K = 8, where the zeros can
be seen to be uniformly spaced around a circle of radius r = α1/K .
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( )K
a1/K

( )K
a1/K

(a) (b)

FIGURE 6.22 The pole-zero pattern of a comb filter, (a) feedforward, (b) feedback.

The magnitude and phase of the frequency response

H(ejΩ) = 1 + αe−jKΩ (6.105)

of such a comb filter, with K = 8 and α = 0.9 can be seen in Fig. 6.23(a).
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FIGURE 6.23 Magnitude and phase response of a comb filter, (a) feedforward, (b) feed-
back.

The feedback form of the comb filter is shown in Fig. 6.21(b). We may write

y[n] = x[n] + αy[n−K] (6.106)

Y (z) = X(z) + αz−KY (z) (6.107)

H(z) =
Y (z)

X(z)
=

1

1− αz−K
=

zK

zK − α (6.108)

In this case the transfer function has a zero of order K at the origin and K poles uniformly
spaced around the unit circle. The poles are deduced from

zK = αej2mπ (6.109)

z = α1/Kej2mπ/K , m = 0, 1, ... ,K − 1 (6.110)
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as seen in Fig. 6.22(b) for the case K = 8. The magnitude and phase of the frequency
response

H(ejΩ) =
1

1− αe−jKΩ
(6.111)

are shown in Fig. 6.23(b).

6.15 Causality and Stability

Similarly to continuous-time systems a discrete-time system is causal if its impulse response
h [n] is zero for n < 0. It is stable if and only if

∞∑

n=−∞
|h [n]| <∞. (6.112)

It is therefore stable if and only if

∞∑

n=−∞

∣∣h [n] z−n
∣∣ <∞ (6.113)

and |z| = 1. In other words a system is stable if the Fourier transform, H
(
ejΩ
)

of its
impulse response, that is, its frequency response, exists. If the system impulse response
h [n] is causal the Fourier transform H

(
ejΩ
)

exists, and the system is therefore stable, if
and only if all the poles are inside the unit circle.

Example 6.19 For the system described by the linear difference equation

y [n]− 0.7y [n− 1] + 2.25y [n− 2]− 1.575y [n− 3] = x [n]

evaluate the system function H (z) and its conditions for causality and stability.

Transforming both sides we have

H (z) =
Y (z)

X (z)
=

1

1− 0.7z−1 + 2.25z−2 − 1.575z−3
=

z3

(z2 + 2.25) (z − 0.7)
.

The zeros and poles are shown in Fig. 6.24. We note that neither the difference equation
nor the system function H (z) implies a particular ROC, and thence whether or not the
system is causal or stable. In fact there are three distinct possibilities for the ROC, namely,
|z| < 0.7, 0.7 < |z| < 1.5 and |z| > 1.5.

These correspond respectively to a left-sided, two-sided and right-sided impulse response.
Since the system is stable if and only if the Fourier transform H

(
ejΩ
)

exists, only the
second possibility, namely, the ROC 0.7 < |z| < 1.5 corresponds to a stable system. In this
case the system is stable but not causal. Note that the third possibility, |z| > 1.5, corresponds
to a causal but unstable system.
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FIGURE 6.24 Poles and zeros in z-plane.

6.16 Delayed Response and Group Delay

An ideal lowpass filter has a frequency response H
(
ejΩ
)

defined by

H
(
ejΩ
)

=

{
1, |Ω| < Ωc

0, Ωc < |Ω| ≤ π (6.114)

and has zero phase

arg
[
H
(
ejΩ
)]

= 0. (6.115)

The impulse response of this ideal filter is given by

h [n] =
1

2π

ˆ π

−π

H
(
ejΩ
)
ejΩndΩ =

1

2π

ˆ Ωc

−Ωc

ejΩndΩ =
sin (nΩc)

πn
=

Ωc

π
Sa(Ωcn). (6.116)

The ideal lowpass filter is not realizable since the impulse response h [n] is not causal. To
obtain a realizable filter we can apply an approximation. If we shift the impulse response h [n]
to the right by M samples obtaining the impulse response h [n−M ], and if M is sufficiently
large, most of the impulse response will be causal, and will be a close approximation of h [n]
except for the added delay.

An ideal filter with added delay M has the frequency response shown in Fig. 6.25.

FIGURE 6.25 Ideal lowpass filter with linear phase.
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Its frequency response H
(
ejΩ
)

is defined by

H
(
ejΩ
)

=

{
e−jMΩ, |Ω| < Ωc

0, Ωc < |Ω| ≤ π (6.117)

that is,
∣∣H
(
ejΩ
)∣∣ =

{
1, |Ω| < Ωc

0, Ωc < |Ω| ≤ π (6.118)

arg
[
H
(
ejΩ
)]

= −MΩ, |Ω| < π (6.119)

and its impulse response is

h [n] =
sin [(n−M)Ωc]

π (n−M)
. (6.120)

As shown in the figure, the resulting filter has a linear phase (−MΩ) corresponding to
the pure delay by M samples. Such a delay does not cause distortion to the signal and
constitutes a practical solution to the question of causality and realizability of ideal filters.

Phase linearity is a quality that is often sought in the realization of continuous-time as
well as digital filters. A measure of phase linearity is obtained by differentiating it, leading
to a constant equal to the delay if the phase is truly linear. The measure is called the group
delay and is defined as

τ (Ω) = − d

dΩ

[
arg
[
H
(
ejΩ
)]]

. (6.121)

Before differentiating the phase any discontinuities are eliminated first by adding integer
multiples of π, thus leading to a phase arg

[
H
(
ejΩ
)]

that is continuous without the discon-
tinuities caused by crossing the boundary points ±π on the unit circle.

Example 6.20 For the first-order system of transfer function

H (z) =
1

1− az−1

where a is real, evaluate the group delay of its frequency response.
We have

H
(
ejΩ
)

=
1

1− ae−jΩ
=

1− aejΩ

1− 2a cosΩ + a2

arg
[
H
(
ejΩ
)]

= tan−1 −a sinΩ

1− a cosΩ

τ (Ω) = − d

dΩ

[
tan−1 −a sinΩ

1− a cosΩ

]

=
1

1 +

{
a sin Ω

1− a cosΩ

}2

a
[
(1− a cosΩ) cosΩ− a sin2 Ω

]

(1− a cosΩ)
2 =

a cosΩ− a2

1− 2a cosΩ + a2
.

6.17 Discrete-Time Convolution and Correlation

As seen above, the discrete convolution of two sequences v[n] and x[n] is given by

y [n] =
∞∑

m=−∞
v [m]x [n−m] . (6.122)
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The discrete correlation rvx[n] is given by

rvx[n] =

∞∑

m=−∞
v[n+m]x[m]. (6.123)

The same analytic and graphic approaches used in the convolution and correlation of
continuous-time systems can be used in evaluating discrete convolutions and correlations.
The approach is best illustrated by examples.

Example 6.21 Let h[n] = e−0.1nu[n], x[n] = 0.1n RN [n], where RN [n] = u[n]−u[n−N ].
Evaluate the convolution y [n] = h[n] ∗ x [n] .

Analytic solution

y [n] =
∞∑

k=−∞
x [k]h [n− k]

=
∞∑

k=−∞
0.1k {u [k]− u [k −N ]}e−0.1(n−k)u [n− k]

=

{
n∑

k=0

0.1ke−0.1(n−k)

}
u [n]−

{
n∑

k=N

0.1ke−0.1(n−k)

}
u [n−N ]

i.e.

y[n] =

{
0.1e−0.1n

n∑

k=0

ke0.1k

}
u[n]−

{
0.1e−0.1n

n∑

k=N

ke0.1k

}
u[n−N ].

Letting a = e0.1 and using the Weighted Geometric Series (WGS) Sum S(a, n1, n2) as
evaluated in the Appendix we may write

y[n] =
{
0.1a−nS(a, 0, n)

}
u[n]−

{
0.1a−nS(a,N, n)

}
u[n−N ].

This expression can be simplified manually, using Mathematicar or MATLABr.

In particular, the sum of a weighted geometric series can be coded as a the following
MATLAB function:

function [summ] = wtdsum(a,n1,n2)

sum=0;

for k=n1:n2

sum=sum+k .* aˆk;

end

summ=sum;

The sequences h[n], x[n], h[n −m] for 0 ≤ n ≤ N − 1, h[n −m] for 0 ≤ n ≤ N − 1,
h[n−m] for n ≥ N and y[n], respectively, are shown in Fig. 6.26 for the case N = 50.

Graphic Approach

For n < 0, y[n] = 0. For 0 ≤ n ≤ N − 1, y[n] =
n∑

m=0
0.1me−0.1(n−m).

For n ≥ N , y[n] =
N−1∑
m=0

0.1me−0.1(n−m).
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x n[ ]h n[ ]

0

(a)

n

h n m[ - ] h n m[ - ]

y n[ ]

0 N-1

(b)

n

(e)

(d)(c)

0 0n nN-1 N-1m m

FIGURE 6.26 Convolution of two sequences.

6.18 Discrete-Time Correlation in One Dimension

The following example illustrates discrete correlation for one-dimensional signals followed
by a faster approach to its analytic evaluation.

Example 6.22 Evaluate the cross-correlation rxh[n] of the two sequences x [n] = u [n] −
u [n−N ] and h [n] = e−αnu [n].

We start with the usual analytic approach. We have

rxh [n] =
∞∑

m=−∞
{u [n+m]− u [n+m−N ]} e−αmu[m]

u [m]u [n+m] 6= 0 iff m ≥ 0 and m ≥ −n
i.e. m ≥ 0 if 0 ≥ −n or n ≥ 0

m ≥ −n if n ≤ 0

u [n+m−N ]u [m] 6= 0 iff m ≥ 0 and m ≥ N − n
i.e. m ≥ 0 if 0 ≥ N − n or n ≥ N

m ≥ N − n if N − n ≥ 0 or n ≤ N
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rxh [n] =

{ ∞∑

m=0

e−αm

}
u [n] +

{ ∞∑

m=−n

e−αm

}
u [−n− 1]

−
{ ∞∑

m=0

e−αm

}
u [n−N ]−

{ ∞∑

m=N−n

e−αm

}
u [N − 1− n] .

The graphic approach proceeds with reference to Fig. 6.27(a-d):
For −n+N − 1 < 0 i.e. n > N − 1, rxh [n] = 0.
For −n+N − 1 ≥ 0 and −n ≤ 0 i.e. 0 ≤ n ≤ N − 1

rxh [n] =

−n+N−1∑

m=0

e−αm =
1− e−α(N−n)

1− e−α
.

For −n ≥ 0 i.e. n ≤ 0, rxh [n] =
−n+N−1∑

m=−n
e−αm = eαn 1−e−αN

1−e−α ..

The sequence rxh[n] is shown in Fig. 6.27(e) for the case N = 50.

FIGURE 6.27 Cross-correlation of two sequences.

A Shortcut Analytic Approach
To avoid the decomposition of the correlation expression into four sums as just seen, a sim-
pler shortcut approach consists of referring to the rectangular sequence x[n] by the rectangle
symbol R rather than decomposing it into the sum of two step functions.
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To this end we define a mobile rectangular window Rn0,N [n], which starts at n = n0

and is of duration N

Rn0,N [n] = u [n− n0]− u [n− (n0 +N)] .

Using this window we can write

rxh [n] =

∞∑

m=−∞
e−αmu [m] {u [n+m]− u [n+m−N ]}

=

∞∑

m=−∞
e−αmu [m]R−n,N [m] =△

∞∑

m=−∞
e−αmp.

Referring to Fig. 6.27 we draw the following conclusions.
If −n+N − 1 < 0, rxh [n] = 0.
If −n ≤ 0 and −n +N − 1 ≥ 0 i.e. 0 ≤ n ≤ N − 1, the product p 6= 0 iff 0 ≤ m ≤
−n+N − 1.
If −n ≥ 0 i.e. n ≤ 0 then p 6= 0 iff −n ≤ m ≤ −n+N − 1.

rxh [n] =

{−n+N−1∑

m=0

e−αm

}
{u [n]− u [n−N ]}+

{−n+N−1∑

m=−n

e−αm

}
u [−n− 1] .

Example 6.23 Evaluate the cross-correlation rxv[n] of the two sequences x[n] =
βn {u[n]− u[n−N ]} and v[n] = e−αnu[n].

The sequences are shown in Fig. 6.28(a) and (b), respectively.

rxv (n) =
∞∑

m=−∞
β[n+m] {u[n+m]− u[n+m−N ]} e−αmu[m].

Referring to Fig. 6.28(c) and (d) we may write
For −n+N − 1 < 0 i.e. n > N − 1, rxv(n) = 0.
For 0 ≤ −n+N − 1 ≤ N − 1 i.e. 0 ≤ n ≤ N − 1

rxv [n] =

N−n−1∑

m=0

e−αmβ (n+m) .

For −n ≥ 0 i.e. n ≤ 0

rxv [n] =

N−n−1∑

m=−n

e−αmβ (n+m) .

Letting a = e−α we can write this result using the WGS Sum S(a, n1, n2) evaluated in
the Appendix. We obtain for 0 ≤ n ≤ N − 1

rxv [n] = βn

{
N−n−1∑

m=0

e−αm

}
+ β

{
N−n−1∑

m=0

me−αm

}

= βn
(
1− e−α(N−n)

)
/ (1− e−α) + βS (a, 0, N − n− 1)

and for n ≤ 0

rxv [n] = βn

{
N−n−1∑

m=−n

e−αm

}
+ β

{
N−n−1∑

m=−n

me−αm

}

= βneαn
(
1− e−αN

)
/ (1− e−α) + βS (a, −n, N − n− 1) .

The cross-correlation sequence rxv [n] is shown in Fig. 6.28(e). The result can be confirmed
using the cross-correlation MATLAB command xcorr(x,v).
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v  n[ ] x n[ ]

0 n
(a) (b)

N-1 n0

x n m[ + ] x n m[ + ]

r nxv[ ]

n

(e)

0

(c) (d)

- -1n+N- -1n+N mm -n-n 00

FIGURE 6.28 Discrete cross-correlation.

6.19 Convolution and Correlation as Multiplications

Given a finite duration sequence its z-transform is a polynomial in z−1. The convolution in
time of two finite duration sequences corresponds to multiplication of the two polynomials
in the z-domain. As the following examples illustrate it is possible to use this property to
evaluate convolutions and correlations as simple spatial multiplications.

Example 6.24 Evaluate the convolution z[n] of the two sequences defined by: x[n] =
{2, 3, 4} and y[n] = {1, 2, 3}, for n = 0, 1, 2 and zero elsewhere.

The following multiplication structure evaluates the convolution, where xk stands for x[k]
and yk stands for y[k]. As in hand multiplication, each value z[k] is deduced by adding the
elements above it. The result is z[n] = 2, 7, 16, 17, 12, for n = 0, 1, 2, 3, 4, respectively.

x [2] x [1] x [0]
y [2] y [1] y [0]

y0x2 y0x1 y0x0

y1x2 y1x1 y1x0

y2x2 y2x1 y2x0

z [4] z [3] z [2] z [1] z [0]

Example 6.25 Evaluate the correlation rvx[n] of the two sequences defined by: v[n] =
{1, 2, 3} and x[n] = {2, 3, 4}, for n = 0, 1, 2 and zero elsewhere.
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The following multiplication structure evaluates the correlation, where again vk stands
for v[k] and xk stands for x[k].

x [2] x [1] x [0]
v [0] v [1] v [2]

v2x2 v2x1 v2x0

v1x2 v1x1 v1x0

v0x2 v0x1 v0x0

rvx [−2] rvx [−1] rvx [0] rvx [1] rvx [2]

The result is rvx[n] = 4, 11, 20, 13, 6, for n = −2, −1, 0, 1, 2, respectively.

6.20 Response of a Linear System to a Sinusoid

As with continuous-time systems if the input to a discrete-time linear system of transfer
function H(z) is

x [n] = A sin (βn+ θ) (6.124)

then the system output can be shown to be given by

y [n] = A
∣∣H
(
ejβ
)∣∣ sin

(
βn+ θ + arg

[
H
(
ejβ
)])

(6.125)

6.21 Notes on the Cross-Correlation of Sequences

Given two real energy sequences x[n] and y[n], that is, sequences of finite energy, the cross-
correlation of x and y may be written in the form

rxy[k] =

∞∑

n=−∞
x[n+ k]y[n], k = 0, ±1, ±2, . . . (6.126)

The symbol rxy[k] stands for the cross-correlation of x with y at a ‘lag’ k, and the lag
or shift k is an integer which has values extending from −∞ to ∞. The autocorrelation
rxx[k] has the same expression as rxy[k] with y replaced by x. Similarly to continuous-time
signals, it is easy to show that

ryx[k] = rxy[−k] (6.127)

and that the correlation may be written as a convolution :

rxy[k] = x[k] ∗ y[−k] (6.128)

Moreover, for power sequences of infinite energy but finite power, the cross-correlation is
written

rxy[k] = lim
M−→∞

1

2M + 1

M∑

n=−M

x[n+ k]y[n] (6.129)

and the autocorrelation rxx[k] is this same expression with y replaced by x.
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6.22 LTI System Input/Output Correlation Sequences

Consider the relation between the input and output correlations of an LTI system receiving
an input sequence x[n] and producing a response y[n], as shown in Fig. 6.29.

x n[ ] y n[ ]LTI
System

FIGURE 6.29 Input and output of an LTI system.

We have

y[n] = h[n] ∗ x[n] =

∞∑

m=-∞
h[m]x[n−m] (6.130)

ryx[k] = y[k] ∗ x[-k] = h[k] ∗ x[k] ∗ x[-k] = h[k] ∗ rxx[k] (6.131)

This relation may be represented as shown in Fig. 6.30. where the input is rxx[k], the
LTI system unit pulse response is h[k] and the system produces the input–output cross-
correlation ryx[k]. The index k can also be replaced by n, the usual time sequence index.

r kxx[ ] LTI
System

h k[ ]

r kyx[ ]

FIGURE 6.30 Correlations at input and output of an LTI system.

Moreover, if we replace k by -k in Equation (6.131) we obtain, using Equation (6.127)

rxy[k] = h[-k] ∗ rxx[k]. (6.132)

The autocorrelation of the output is similarly found by replacing x by y. We have

ryy[k] = y[k] ∗ y[-k] = h[k] ∗ x[k] ∗ h[-k] ∗ x[-k] = rhh[k] ∗ rxx[k] =

∞∑

m=-∞
rhh[m]rxx[k −m].

The energy of the output sequence is given by

∞∑

n=−∞
y[n]2 = ryy[0] =

∞∑

m=-∞
rhh[m]rxx[m] (6.133)

wherein the autocorrelation rhh[k] of the unit step response exists if and only if the system
is stable.
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6.23 Energy and Power Spectral Density

The energy of a sequence x[n], if finite, is given by

Ex =

∞∑

n=−∞
|x[n]|2 . (6.134)

We may write

Ex =

∞∑

n=−∞
x[n]x∗[n] =

∞∑

n=−∞
x[n]

1

2π

ˆ π

−π

X∗(ejΩ)e−jΩndΩ (6.135)

=
1

2π

ˆ π

−π

X∗(ejΩ)

∞∑

n=−∞
x[n]e−jΩndΩ =

1

2π

ˆ π

−π

∣∣X(ejΩ)
∣∣2 dΩ (6.136)

Similarly to the case of continuous-time signals the “energy spectral density” is by definition

Sxx(Ω) =
∣∣X(ejΩ)

∣∣2 (6.137)

so that the energy is given by

Ex =
1

2π

ˆ π

−π

Sxx(Ω)dΩ . (6.138)

A periodic sequence x[n] of period N has infinite energy. Its average power is by definition

Px =
1

N

N−1∑

n=0

|x[n]|2 . (6.139)

We may write

Px =
1

N

N−1∑

n=0

x[n]
1

N

N−1∑

k=0

X∗[k]e
−j2πk

N =
1

N2

N−1∑

k=0

X∗[k]
N−1∑

n=0

x[n]e
−j2πk

N =
1

N2

N−1∑

k=0

|X [k]|2

and the energy of x[n] over one period is E = NPx. The “power spectral density” of the
sequence x[n] may be defined as

Pxx[k] = |X [k]|2 . (6.140)

6.24 Two-Dimensional Signals

Let x [n1, n2] be a two-dimensional sequence representing an image, two-dimensional data
or any other signal. The z-transform of the sequence is given by

X (z1, z2) =

∞∑

n1=−∞

∞∑

n2=−∞
x [n1, n2] z

−n1
1 z−n2

2 . (6.141)
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In polar notation z1 = r1e
jΩ1 , z2 = r2e

jΩ2 ,

X
(
r1e

jΩ1 , r2e
jΩ2
)

=
∞∑

n1=−∞

∞∑

n2=−∞
x [n1, n2] r

−n1
1 r−n2

2 e−jΩ1n1e−jΩ2n2 . (6.142)

If r1 = r2 = 1 we have the two-dimensional Fourier transform

X
(
ejΩ1 , ejΩ2

)
=

∞∑

n1=−∞

∞∑

n2=−∞
x [n1, n2] e

−jΩ1n1e−jΩ2n2 . (6.143)

Convergence:
The z-transform converges if

∞∑

n1=−∞

∞∑

n2=−∞

∣∣x [n1, n2] z
−n1

1 z−n2

2

∣∣ <∞. (6.144)

The inverse transform is given by

x [n1, n2] =

(
1

2πj

)2 ‰

C1

‰

C2

X (z1, z2) z
n1−1
1 zn2−1

2 d z1d z2 (6.145)

where the contours C1 and C2 are closed contours encircling the origin and lie in the ROC
of the integrands. The inverse Fourier transform is written

x [n1, n2] =

(
1

2π

)2 ˆ π

−π

ˆ π

−π

X
(
ejΩ1 , ejΩ2

)
ejΩ1n1ejΩ2n2dΩ1dΩ2. (6.146)

If a sequence is separable, i.e.

x [n1, n2] = x1 [n1]x2 [n2] (6.147)

then
X (z1, z2) = X1 (z1)X2 (z2) (6.148)

since

X (z1, z2) =
∑

n1

∑

n2

x1 [n1]x2 [n2] z
−n1
1 z−n2

2 =
∑

n1

x1 [n1] z
−n1
1

∑

n2

x2 [n2] z
−n2
2 . (6.149)

Properties
If

x [n1, n2]←→ X (z1, z2) (6.150)

then
x [n1 +m, n2 + k]←→ zm

1 z
k
2X (z1, z2) (6.151)

an1bn2x [n1, n2]←→ X
(
a−1z1, b

−1z2
)

(6.152)

n1n2x [n1, n2]←→
d2X (z1, z2)

dz1dz2
(6.153)

x∗ [n1, n2]←→ X∗ (z∗1 , z
∗
2) (6.154)
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x [−n1, −n2]←→ X
(
z−1
1 , z−1

2

)
(6.155)

x [n1, n2] ∗ y [n1, n2]←→ X (z1, z2)Y (z1, z2) (6.156)

x [n1, n2] y [n1, n2]←→
(

1

2πj

)2 ‰

C1

‰

C2

X

(
z1
w1
,
z2
w2

)
Y (w1)w

−1
1 w−1

2 dw1dw2. (6.157)

A two-dimensional system having input x [n1, n2] and output y [n1, n2] may be described
by a difference equation of the general form

M∑

k=0

N∑

m=0

akmy [n1 − k, n2 −m] =

P∑

k=0

Q∑

m=0

bkmx [n1 − k, n2 −m] . (6.158)

The system function H(z) may be evaluated by applying the z-transform, obtaining

M∑

k=0

N∑

m=0

akmz
−k
1 z−m

2 Y (z1, z2) =
P∑

k=0

Q∑

m=0

bkmz
−k
1 z−m

2 X (z1, z2) (6.159)

wherefrom

H (z1, z2) =
Y (z1, z2)

X (z1, z2)
=

P∑

k=0

Q∑

m=0

bkmz
−k
1 z−m

2

M∑

k=0

N∑

m=0

akmz
−k
1 z−m

2

. (6.160)

Examples of basic two-dimensional sequences follow.

Impulse
The 2-D impulse is defined by

δ [n1, n2] =

{
1, n1 = n2 = 0
0, otherwise.

(6.161)

The impulse is represented graphically in Fig. 6.31(a).

FIGURE 6.31 (a) Two-dimensional impulse, (b) representation of unit step 2-D sequence.

Unit Step 2-D Sequence

u [n1, n2] =

{
1, n1, n2 ≥ 0
0, otherwise.

(6.162)



366 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

In what follows, the area in the n1−n2 plane wherein a sequence is non-nil will be hatched.
The unit step function is non-nil, equal to 1 in the first quarter of the plane. Its support
being the first quarter plane, we may represent it graphically, as depicted in Fig. 6.31(b).

Causal Exponential

x [n1, n2] =

{
an1
1 an2

2 , n1, n2 ≥ 0
0, otherwise.

(6.163)

Complex Exponential

x [n1, n2] = ej(Ω1n1+Ω2n2), −∞ ≤ n1 ≤ ∞, −∞ ≤ n2 ≤ ∞. (6.164)

Sinusoid
x [n1, n2] = sin (Ω1 n1 + Ω2 n2) . (6.165)

6.25 Linear Systems, Convolution and Correlation

Similarly to one-dimensional systems the system impulse response h[n1, n2] is the inverse z-
transform of the system transfer function H(z1, z2). The system response is the convolution
of the input x [n1, n2] with the impulse response.

y [n1, n2] = x [n1, n2] ∗ h [n1, n2] =

∞∑

m1=−∞

∞∑

m2=−∞
h [m1, m2]x [n1 −m1, n2 −m2] .

The correlation of two 2-D sequences x[n1, n2] and y[n1, n2] is defined by

rxy[n1, n2] = x [n1, n2] ⋆ y [n1, n2] =

∞∑

m1=−∞

∞∑

m2=−∞
x [n1 +m1, n2 +m2] y [m1, m2] .

The convolution and correlation of images and in general two-dimensional sequences are
best illustrated by examples.

Example 6.26 Evaluate the convolution z[n1, n2] of the two sequences

x [n1, n2] = e−α(n1+n2)u [n1, n2]

y [n1, n2] = e−β(n1+n2)u [n1, n2] .

The sequences x [n1, n2] and y [n1, n2] are represented graphically by hatching the region
in the n1 − n2 plane wherein they are non-nil. The two sequences are thus represented by
the hatched regions in Fig. 6.32(a) and (b).
Let

p[m1, m2] = e−α(m1+m2)e−β(n1−m1+n2−m2).

We have

z [n1, n2] =

∞∑

m1=−∞

∞∑

m2=−∞
p [m1, m2]u [m1, m2]u [n1 −m1, n2 −m2] .
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FIGURE 6.32 Convolution of 2-D sequences.

The analytic solution is obtained by noticing that the product of the step functions is non-nil
if and only if

m1 ≥ 0, m2 ≥ 0, m1 ≤ n1, m2 ≤ n2, i.e. n1 ≥ 0, n2 ≥ 0

wherefrom

z [n1, n2] =

n1∑

m1=0

n2∑

m2=0

p[m1, m2]u [n1, n2] .

Simplifying we obtain

z[n1, n2] =

{
e−β(n1+n2)

n1∑

m1=0

e(β−α)m1

n2∑

m2=0

e(β−α)m2

}
u[n1, n2]

= e−β(n1+n2)

{
1− e−(α−β)(n1+1)

}{
1− e−(α−β)(n2+1)

}
{
1− e−(α−β)

}2 u[n1, n2].

The graphic solution is obtained by referring to Fig. 6.32(c) and (d). Similarly to the one-
dimensional sequences case, the sequence x [m1, m2] is shown occupying the first quarter of
the m1−m2 plane, while the sequence y [n1 −m1, n2 −m2] is a folding around the point of
origin of the sequence y [m1, m2] followed by a displacement of the point of origin, referred
to as the ‘mobile axis’, shown in the figure as an enlarged dot, to the point n1, n2 in the
m1−m2 plane. The figure shows that if n1 < 0 or n2 < 0 then z [n1, n2] = 0. If n1 ≥ 0
and n2 ≥ 0 then

z [n1, n2] =

n1∑

m1=0

n2∑

m2=0

p[m1, m2]

in agreement with the results obtained analytically.

Example 6.27 Let a system impulse response be the causal exponential

h [n1, n2] = e−α(n1+n2)u [n1, n2]

and the input be an L-shaped image of width N , namely,

x [n1, n2] =△LN [n1, n2] =△u [n1, n2]− u [n1 −N, n2 −N ] .

Evaluate the system output y [n1, n2].
The non-nil regions of the sequences, respectively, are shown in Fig. 6.33(a) and (b). In
what follows, for simplifying the expressions, we shall write

p ≡ p[m1, m2] = e−α(m1+m2)
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where we use alternatively the symbols p or p[m1, m2]. We have

y[n1, n2] =

∞∑

m1=−∞

∞∑

m2=−∞
pu[m1,m2] {u[n1 −m1, n2 −m2] −u [n1 −m1 −N,n2 −m2 −N ]} .

FIGURE 6.33 Two 2-D sequences.

Analytic approach:
The analytic approach, redefining the limits of summation based on the range of variable
values for which the products of step functions are non-nil, shows that

y [n1, n2] =

{
n1∑

m1=0

n2∑

m2=0

p u [n1, n2]

}
−
{

n1−N∑

m1=0

n2−N∑

m2=0

p u [n1 −N, n2 −N ]

}

= S1u [n1, n2]− S2u [n1 −N, n2 −N ]

where

S1 =

(
1− e−α(n1+1)

) (
1− e−α(n2+1)

)

(1− e−α)
2 , S2 =

{
1− e−α(n1−N+1)

}{
1− e−α(n2−N+1)

}

(1− e−α)
2 .

Graphic approach:
As mentioned above, in the graphic approach the sequence x [n1, n2] is folded about the point
of origin and the point of origin becomes a mobile axis that has the coordinates (n1, n2),
dragging the folded quarter-plane to the point (n1, n2) in the m1 −m2 plane.

Referring to Fig. 6.34(a-c) we have
For n1 < 0 or n2 < 0, y [n1, n2] = 0.

The Region of Validity, n1 < 0 and n2 < 0, of this result will be denoted as the area
A, covering all quarters except the first of the n1 − n2 plane, as shown in Fig. 6.35(a).

Referring again to Fig. 6.34(a-c) we deduce the following:
For {n1 ≥ 0 and 0 ≤ n2 ≤ N − 1} or {n2 ≥ 0 and 0 ≤ n1 ≤ N − 1} we have

y [n1, n2] =

n1∑

m1=0

n2∑

m2=0

p [m1, m2] =

(
1− e−α(n1+1)

) (
1− e−α(n2+1)

)

(1− e−α)
2 .

The region of validity of this result, namely, {n1 ≥ 0 and 0 ≤ n2 ≤ N − 1} or {n2 ≥ 0
and 0 ≤ n1 ≤ N − 1}, is shown as the area B in Fig. 6.35(b).
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FIGURE 6.34 Convolution of two 2-D sequences.

FIGURE 6.35 Regions of validity A,B,C of convolution expressions.

For the case n1 ≥ N and n2 ≥ N , shown as the area C in Fig. 6.35(c) we have

y [n1, n2] =

n1∑

m1=n1−N+1

n2∑

m2=n2−N+1

p+

n1∑

m1=n1−N+1

n2−N∑

m2=0

p+

n2∑

m2=n2−N+1

n1−N∑

m1=0

p

or, equivalently,

y [n1, n2] =

n1∑

m1=0

n2∑

m2=0

p[m1, m2]−
n1−N∑

m1=0

n2−N∑

m2=0

p[m1, m2].

The region of validity of this result, namely, n1 ≥ N and n2 ≥ N , is shown as the Area
C in Fig. 6.35(c). Combining these results we may write, corresponding to the region of
validity B

yB [n1, n2] =

n1∑

m1=0

n2∑

m2=0

p[m1, m2] {u[n1, n2]− u[n1 −N, n2 −N ]}

and for the region of validity C

yC [n1, n2] =

{
n1∑

m1=0

n2∑

m2=0

p−
n1−N∑

m1=0

n2−N∑

m2=0

p

}
u [n1 −N, n2 −N ]

so that the overall result may be written in the form

y [n1, n2] = yB [n1, n2] + yC [n1, n2] .
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6.26 Correlation of Two-Dimensional Signals

The cross-correlation of two continuous-domain images is written

rxy (s, t) =

ˆ ∞

−∞

ˆ ∞

−∞
x (s+ σ, t+ τ ) y (σ, τ )dσ dτ. (6.166)

The cross-correlation of two discrete-domain 2-D sequences is written

rxy [n1, n2] =

∞∑

m1=−∞

∞∑

m2=−∞
x [n1 +m1, n2 +m2] y [m1, m2] . (6.167)

Example 6.28 Evaluate the cross-correlation rxh [n1, n2] of the L-shaped sequence

x [n1, n2] = LN [n1, n2] =△u [n1, n2]− u [n1 −N, n2 −N ]

and
h [n1, n2] = e−α(n1+n2)u [n1, n2] .

FIGURE 6.36 Two 2-D sequences.

The regions of nonzero values of the two sequences, respectively, are shown in Fig. 6.36. We
may write

p ≡ p[m1, m2] = e−α(m1+m2).

rxh [n1, n2] =
∞∑

m1=−∞

∞∑

m2=−∞
p u [m1, m2] {u [n1 +m1, n2 +m2]

− u [n1 +m1 −N, n2 +m2 −N ]} .
The graphic approach to the evaluation of the cross-correlation sequence is written with
reference to Fig. 6.37(a-f).

In these figures the mobile axis is shown as the enlarged dot at (−n1, −n2) in the m1−m2

plane. The inner corner of the L-section has the coordinates (−n1 +N − 1, −n2 +N − 1).
Referring to Fig. 6.37(a) we can write:

For −n1 +N − 1 < 0 and −n2 +N − 1 < 0, i.e. n1 ≥ N and n2 ≥ N , the region of
validity A shown in Fig. 6.37(d), denoting the cross-correlation by rxh,1 [n1, n2] we have

rxh,1 [n1, n2] = 0.
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FIGURE 6.37 Cross-correlation of two 2-D sequences.

Referring to Fig. 6.37(b) we can write:
For 0 ≤ −n2 +N − 1 ≤ N − 1 and −n1 +N − 1 < 0, i.e. 0 ≤ n2 ≤ N − 1 and n1 ≥ N ,
the region of validity B as in Fig. 6.37(e), we have

rxh [n1, n2] =

∞∑

m1=0

−n2+N−1∑

m2=0

p[m1, m1].

Given the region of validity of this expression we can rewrite it in the form

rxh,2 [n1, n2] =

∞∑

m1=0

−n2+N−1∑

m2=0

p[m1, m1] {u [n1 −N, n2]− u [n1 −N, n2 −N ]} .

Referring to Fig. 6.37(c) we can write:
For 0 ≤ −n1 +N − 1 ≤ N − 1 and 0 ≤ −n2 +N − 1 ≤ N − 1, i.e. 0 ≤ n1 ≤ N − 1 and
0 ≤ n2 ≤ N − 1, the region of validity C, Fig. 6.37(f), we have

rxh [n1, n2] =

∞∑

m1=0

−n2+N−1∑

m2=0

p[m1, m2] +

−n1+N−1∑

m1=0

∞∑

m2=−n2+N

p[m1, m2]

or equivalently

rxh [n1, n2] =

∞∑

m1=0

∞∑

m2=0

p[m1, m2] +

∞∑

m1=−n1+N

∞∑

m2=−n2+N

p[m1, m2]

and given the region of validity of this expression we can rewrite it in the form

rxh,3 [n1, n2] =

{ ∞∑

m1=0

∞∑

m2=0

p+

∞∑

m1=−n1+N

∞∑

m2=−n2+N

p

}

· {u [n1, n2]u [−n1 +N − 1, −n2 +N − 1]}

wherein the product of step functions defines the region of validity as the area C in the
n1 − n2 plane as required. Two subsequent steps are shown in Fig. 6.38(a-d).
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FIGURE 6.38 Correlation steps and corresponding regions of validity.

Referring to Fig. 6.38(a) we can write:
For −n1 > 0 and 0 ≤ −n2 +N − 1 ≤ N − 1, i.e. n1 ≤ −1 and 0 ≤ n2 ≤ N − 1, the
region of validity D, Fig. 6.38(b), we have

rxh,4 [n1, n2] =

{ ∞∑

m1=−n1

−n2+N−1∑

m2=0

p+

−n1+N−1∑

m1=−n1

∞∑

m2=−n2+N

p

}

· {u [−1− n1, n2]− u [−1− n1, n2 −N ]} .
Referring to Fig. 6.38(c) we can write:
For −n2 > 0 and −n1 +N − 1 < 0, i.e. n1 ≥ N and n2 ≤ −1, the region of validity E
shown in Fig. 6.38(d), we have

rxh,5 [n1, n2] =

{ ∞∑

m1=0

−n2+N−1∑

m2=−n2

p [m1, m2]

}
u [n1 −N, −1− n2] .

FIGURE 6.39 Correlation steps and corresponding regions of validity.

Referring to Fig. 6.39(a) we may write for the region of validity F shown in Fig. 6.39(b):

rxh,6 [n1, n2] =

{ ∞∑

m1=0

−n2+N−1∑

m2=−n2

p+

−n1+N−1∑

m1=0

∞∑

m2=−n2+N

p

}

· {u [n1, −1− n2]− u [n1 −N, −1− n2]} .
Similarly, referring to Fig. 6.39(c) we may write

rxh,7 [n1, n2] =

{ ∞∑

m1=−n1

∞∑

m2=−n2

p−
∞∑

m1=−n1+N

∞∑

m2=−n2+N

p

}

· u [−1− n1, −1− n2] .
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which has the region of validity G shown in Fig. 6.39(d).

FIGURE 6.40 Correlation steps and regions of validity.

Referring to Fig. 6.40(a-d) we have

For the region of validity H shown in Fig. 6.40(b):

rxh,8 [n1, n2] =

{−n1+N−1∑

m1=−n1

∞∑

m2=0

p[m1, m2]

}
u [−1− n1, n2 −N ]

and over region I shown in Fig. 6.40(d)

rxh,9 [n1, n2] =

{−n1+N−1∑

m1=0

∞∑

m2=0

p[m1, m2]

}
· {u [n1, n2 −N ]− u [n1 −N, n2 −N ]}

and the cross-correlation over the entire n1 − n2 plane is given by

rxh[n1, n2] =

9∑

i=1

rxh,i[n1, n2].

The regions of validity A, B, . . . , I, over the entire plane, of the cross-correlations

rxh,1 [n1, n2] , rxh,2 [n1, n2] , . . . , rxh,9 [n1, n2], are shown in Fig. 6.41.

FIGURE 6.41 Correlation regions of validity.
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6.27 IIR and FIR Digital Filters

A digital filter may be described by a difference equation of the form

N∑

k=0

aky[n− k] =

M∑

k=0

bkv[n− k] (6.168)

where a0 = 1, v [n] is its input and y [n] is its response. We can rewrite this equation in
the form

y[n] = −
N∑

k=1

aky[n− k] +

M∑

k=0

bkv[n− k]. (6.169)

Applying the z-transform to the two sides of this equation we have

Y (z) = −
N∑

k=1

akz
−kY (z) +

M∑

k=0

bkz
−kV (z). (6.170)

The filter transfer function is therefore given by

H(z) =
Y (z)

V (z)
=

M∑

k=0

bkz
−k

1 +
N∑

k=1

akz−k

=
b0 + b1z

−1 + b2z
−2 + . . .+ bMz−M

1 + a1z−1 + a2z−2 + . . .+ aNz−N
. (6.171)

The impulse response h[n] is the inverse z-transform of the the rational transfer function
H(z) and is therefore in general a sum of infinite-duration exponentials or time-weighted
exponentials. It is for this reason that such filters are referred to as infinite impulse response
(IIR) filters.

A finite impulse response (FIR) filter is a filter the impulse response of which is of finite
duration. Such a filter is also called non-recursive as well as an all-zero filter. Since the
impulse response h [n] is of finite duration the transfer function H (z) of an FIR filter has
no poles, other than a multiple pole at the origin. The impulse response is often a truncation,
or a windowed finite duration section, of an infinite impulse response h∞ [n]. In such a case
it is an approximation of an IIR filter. Let the input to the filter be x[n] and its output be
y[n]. We can write

H (z) =

N−1∑

n=0

h [n]z−n (6.172)

Y (z) = H(z)X(z) =

N−1∑

k=0

h [k]z−kX (z) (6.173)

y [n] =
N−1∑

k=0

h [k]x [n− k] . (6.174)

In Chapter 11 we study different structures for the implementation of IIR and FIR filters.
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6.28 Discrete-Time All-Pass Systems

As with continuous-time systems an allpass system has a magnitude spectrum that is con-
stant for all frequencies. To be causal and stable the system’s poles should be inside the
unit circle. Similarly to continuous-time systems every pole has an “image” which in the
present case is reflected into the unit circle producing a zero outside the unit circle. In fact
a pole z = p1 and its conjugate z = p∗1 are accompanied by their reflections, the zeros
z1 = 1/p∗1 and z∗1 = 1/p1, respectively. A pole z = p0 where p0 is real is accompanied by
its reciprocal, the zero z = 1/p0.

Such relations are illustrated for the case of a third order system with two complex
conjugate poles and a real one in Fig. 6.42, where the poles p1, p2 and p3 are seen to be
accompanied by the three zeros z1, z2 and z3. To illustrate the evaluation of the system
frequency response, the figure also shows vectors u1, u2 and u3, extending from the zeros to
an arbitrary point z = ejΩ on the z-plane unit circle and vectors v1, v2 and v3, extending
from the poles to the same point.

1

z = /p1 1 1*

z = /p3 1 3

z=e
jW

z2=z = /p11 1*

p2 1= *p

p1

p3

u1

u3

v1

v3

v2
u2

z =e
-1 -jW

v1*

FIGURE 6.42 Vectors from poles and zeros to a point on unit circle.

The transfer function of a first order allpass system, having a single generally complex pole
z = p, has the form

H (z) =
z−1 − p∗
1− pz−1

. (6.175)

An allpass system of a higher order is a cascade of such first order systems. The transfer
function of the third order system shown in the figure is given by

H (z) =
z−1 − p∗1
1− p1z−1

z−1 − p∗2
1− p2z−1

z−1 − p∗3
1− p3z−1

(6.176)

where p2 = p∗1 and p∗3 = p3. To show that the system is in fact allpass with
∣∣H
(
ejΩ
)∣∣ = 1

consider a single component, the ith component, in the cascade. We may write

Hi (z) =
z−1 − p∗i
1− piz−1

=
1− p∗i z
z − pi

(6.177)
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Note that the vectors vi, i = 1, 2, 3 in the figure are given by vi = ejΩ − pi. We may
therefore write

Hi

(
ejΩ
)

=
e−jΩ − p∗i
1− pie−jΩ

= ejΩ v
∗
i

vi
(6.178)

wherefrom ∣∣Hi

(
ejΩ
)∣∣ = 1. (6.179)

The general expression of H(z) may be written in the form

H (z) =
n∏

i=1

z−1 − p∗i
1− piz−1

(6.180)

It is interesting to note that the transfer function of an allpass filter may be written in
the form

H(z) =
B (z)

A (z)
=
z−KA

(
z−1

)

A (z)
. (6.181)

Indeed, for a real pole the filter component has the form

H (z) =
z−1 − p
1− pz−1 =△

B(z)

A(z)

B (z) = z−1 − p = z−1 (1− pz) = z−1A
(
z−1
)
.

For two conjugate complex poles p1 and p2 = p∗1 we have

H (z) =
z−1 − p1

1− p1z−1

z−1 − p2

1− p2z−1
=
B (z)

A (z)

A (z) =
(
1− p1z

−1
) (

1− p2z
−1
)

B (z) =
(
z−1 − p1

) (
z−1 − p2

)
= z−2 (1− p1z) (1− p2z) = z−2A

(
z−1

)
.

For a system of general order K, we have

H (z) =

K∏

i=1

z−1 − pi

1− piz−1
=
B (z)

A (z)
(6.182)

A (z) =

K∏

i=1

(
1− piz

−1
)

(6.183)

B (z) =

K∏

i=1

(
z−1 − pi

)
= z−K

K∏

i=1

(1− piz) = z−KA
(
z−1

)
(6.184)

H (z) =
z−KA

(
z−1
)

A (z)
. (6.185)

The allpass filter transfer function may thus be written in the form

H (z) =

n1∏

i=1

z−1 − pi

1− piz−1

n2∏

i=1

bi + aiz
−1 + z−2

1 + aiz−1 + biz−2
(6.186)

where the first product covers the real poles and the second covers the complex conjugate
ones. Equivalently the transfer function may be written in the form

H (z) =
an + an−1z

−1 + . . . + a2z
−(n−2) + a1z

−(n−1) + z−n

1 + a1z−1 + a2z−2 + . . . + an−1z−(n−1) + anz−n
. (6.187)
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Example 6.29 The transfer function of a system is given by

H(z) =
1− 0.3z−1

1− 0.7z−1
.

We need to obtain a cascade of the system with an allpass one, resulting in a transfer func-
tion G(z) = H(z)Hap(z) of a stable system. Evaluate Hap(z) and G(z)).

Since G(z) should be the transfer function of a stable system, the pole z = 0.7 should be
be maintained. The allpass filter transfer function is given by

Hap(z) =
z−1 − 0.3

1− 0.3z−1

and

G(z) = H(z)Hap(z) =
z−1 − 0.3

1− 0.7z−1
.

Since |Hap(e
jΩ)| = 1, we have |G(ejΩ)| = |H(ejΩ)|. The poles and zeros of the three transfer

functions are shown in Fig. 6.43(a-c), respectively.

0.7

(b)

0.3

(a)

H z( )

0.7 0.3

(c)

3.33 3.33

G z( ) H zap( )

FIGURE 6.43 Poles and zeros of (a) H(z), (b) G(z) and (c) Hap(z).

Example 6.30 Evaluate the transfer function of an allpass filter given that its denominator
polynomial is

A (z) = 1− 0.75z−1 + 0.25z−2 − 0.1875z−3.

The transfer function of the allpass filter is H (z) = B (z) /A (z) where

B (z) = z−3A
(
z−1

)
.

Hence

H (z) =
−0.1875 + 0.25z−1 − 0.75z−2 + z−3

1− 0.75z−1 + 0.25z−2 − 0.1875z−3
.

Consider a first order component of an allpass filter

H(z) =
z−1 − p∗
1− pz−1

(6.188)

With p = rejθ the group delay of each such component is given by

τ(Ω) =
1− r2

|1− rejθe−jΩ|2
> 0 (6.189)
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The group delay of a general order allpass filter is the sum of such expressions and is thus
non-negative. Allpass filters are often employed for group delay equalization to counter
phase nonlinearities. Cascading a filter with an allpass filter keeps the magnitude response
unchanged. If the allpass filter has a pole that coincides with the filter’s zero, the zero is
canceled and the overall result is a flipping of the zero to its image at the conjugate location
in the z-plane. As we shall see, such an approach is employed in designing minimum-phase
systems.

6.29 Minimum-Phase and Inverse System

A system transfer function may be expressed in the form

H (z) =

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz
−k

= K

M∏

k=1

(
1− zkz

−1
)

N∏

k=1

(
1− pkz

−1
)

(6.190)

where zk and pk are the zeros and poles, respectively. A causal stable LTI system has all
its poles pk inside the unit circle. The zeros zk may be inside or outside the unit circle.
As with continuous-time systems, to be minimum phase the system function zeros must be
inside the unit circle. A stable causal minimum phase system has a causal and stable inverse
G (z) = 1/H (z) since its poles and zeros also lie inside the unit circle. If the system is not
minimum phase, that is, if it has zeros outside the unit circle, then the inverse system has
poles outside the unit circle and is therefore not stable.

A causal stable LTI discrete-time system can always be expressed as the cascade of a
minimum-phase system and an allpass system

H (z) = Hmin (z)Hap (z) . (6.191)

To perform such factorization we start by defining Hap(z) as the transfer function which
has each “offending” zero of H(z), that is, each zero outside the unit circle, coupled with a
pole at the reciprocal conjugate location. Each such zero zk is thus combined with a pole
pk, with zk = 1/p∗k, producing the factor

z−1 − p∗k
1− pkz−1

(6.192)

The allpass Hap(z) is a product of such factors. The minimum phase transfer function
Hmin(z) has all its poles and zeros inside the unit circle and can be deduced as Hmin(z) =
H(z)/Hap(z). The approach is analogous to that studied in the context of continuous-time
systems, as the following example illustrates.

Example 6.31 Given the system function H(z) depicted in Fig. 6.44 evaluate and sketch
the poles and zeros in the z-plane of the corresponding system functions Hmin (z) and
Hap (z).
The cascade system components Hap (z) and Hmin (z) are shown in Fig. 6.45. The figure
shows that the zeros z1 and z∗1 of Hap (z) are made equal to those of H (z), and the poles
q1 and q∗1 of Hap (z) are deduced as the reflections of those zeros. Hmin (z) has the two
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p
1

p
1*

z
1

z
1*

H z( )

FIGURE 6.44 System’s poles and zeros.

poles p1 and p∗1 of H(z). The zeros ζ1 and its conjugate ζ∗1 of Hmin (z) are then made to
coincide in position with q1 and q∗1 so that in the product Hap (z)Hmin (z) the poles of
Hap (z) cancel out with the zeros of Hmin (z), ensuring that Hap (z)Hmin (z) = H (z). The
resulting system function Hmin (z) is a minimum phase function, having its poles and zeros
inside the unit the unit circle, as desired.

FIGURE 6.45 Allpass and minimum-phase components of a transfer function.

We can write

H (z) =
(z − z1) (z − z∗1)

(z − p1) (z − p∗1)

Hap (z) =

(
z−1 − q∗1

) (
z−1 − q1

)

(1− q1z−1) (1− q∗1z−1)

where q1 = 1/z∗1, q∗1 = 1/z1 as shown in the figure.

Hmin (z) = K
(z − ζ1) (z − ζ∗1 )

(z − p1) (z − p∗1)

where ζ1 = 1/z∗1 , ζ∗1 = 1/z1. Multiplying Hmin (z) by Hap (z) and equating the product to
H (z) we obtain K = |z2

1 |.

Given a desired magnitude response
∣∣H
(
ejΩ
)∣∣ it is always possible to evaluate the corre-

sponding minimum phase system function H (z). We may write

H (z)H
(
z−1
)

= H
(
ejΩ
)
H
(
e−jΩ

)∣∣
ejΩ−→z

=
∣∣H
(
ejΩ
)∣∣2
∣∣∣

ejΩ−→z

. (6.193)



380 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

By replacing ejΩ by z in the magnitude squared response
∣∣H
(
ejΩ
)∣∣2 we thus obtain the

function F (z) = H (z)H
(
z−1
)
. The required system function H (z) is deduced by simply

selecting thereof the poles and zeros which lie inside the unit circle. To thus factor the
function F (z) = H (z)H

(
z−1

)
into its two components H (z) and H

(
z−1

)
it would help

to express it in the form

F (z) = H (z)H
(
z−1

)
= K2

M∏

k=1

(
1− zkz

−1
)
(1− zkz)

N∏

k=1

(
1− pkz

−1
)
(1− pkz)

. (6.194)

Example 6.32 Given the magnitude squared spectrum

∣∣H
(
ejΩ
)∣∣2 =

1.25− cosΩ

1.5625− 1.5 cosΩ

evaluate the corresponding minimum phase transfer function H (z).

We can write

∣∣H
(
ejΩ
)∣∣2 = H

(
ejΩ
)
H
(
e−jΩ

)
=

1.25−
(
ejΩ + e−jΩ

)
/2

1.5625− 1.5 (ejΩ + e−jΩ) /2

F (z) = H (z)H
(
z−1

)
= H

(
ejΩ
)
H
(
e−jΩ

)∣∣
ejΩ−→z

=
1.25− 0.5

(
z + z−1

)

1.5625− 0.75 (z + z−1)
.

To identify the poles and zeros we note that the function F (z) may be written in the form

F (z) = K2

(
1− az−1

)
(1− az)

(1− bz−1) (1− bz) = K2 1− a
(
z + z−1

)
+ a2

1− b (z + z−1) + b2

so that here a is a zero and b is a pole of F (z). We deduce that a = 0.5, b = 0.75, K = 1
and the transfer function of the minimum phase system is given by

H (z) =
1− 0.5z−1

1− 0.75z−1

having a pole and a zero inside the unit circle.

Example 6.33 Let
H(z) = (1 − 0.4z−1)(1 − 1.25z−1)

Evaluate Hap(z) and Hmin(z) so that

H(z) = Hmin(z)Hap(z), Hap =
z−1 − 0.8

(1 − 0.8z−1)

Hmin(z) =
H(z)

Hap(z)
=

(1− 0.4z−1)(1 − 1.25z−1)(1 − 0.8z−1)

(z−1 − 0.8)
= 1.25(1− 0.4z−1)(1 − 0.8z−1)

as can be seen in Fig. 6.46. We note that the impulse response h[n] of this filter is of a finite
length; hence the name finite impulse response or FIR filter.
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1.25

(a)

H z( )

0.4 1.25

(b)

H zap( )

0.8

(c)

H zmin( )

0.80.4

FIGURE 6.46 Zeros and poles of (a) H(z), (b) Hap(z) and (c) Hmin(z).

Example 6.34 Given

H(z) =
(1 − 2ej0.25πz−1)(1 − 2e−j0.25πz−1)

(1− 0.3z−1)(1− 0.9z−1)

Evaluate Hap(z) and Hmin(z).

The transfer function H(z) is represented graphically in Fig. 6.47(a). We construct
Hap(z) as in Fig. 6.47(b) by reflecting the offending zeros of H(z). We may write

Hap(z) =
(z−1 − 0.5e−j0.25π)(z−1 − 0.5ej0.25π)

(1− 0.5ej0.25πz−1)(1− 0.5e−j0.25πz−1)

2

(b)

H zap( )

2

(a)

H z( )

0.90.3

(c)

H zmin( )

0.9

p/4

0.3

0.50.5

FIGURE 6.47 Zeros and poles of (a) H(z), (b) Hap(z) and (c) Hmin(z).

Hmin(z) =
H(z)

Hap(z)
=

(2− ej0.25πz−1)(2− e−j0.25πz−1)

(1− 0.3z−1)(1− 0.9z−1)

as can be seen in Fig. 6.47(c).

6.30 Unilateral z-Transform

The unilateral z-transform is a special form of the z-transform that is an important tool
for the solution of linear difference equations with nonzero initial conditions. It is applied
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in the analysis of dynamic discrete-time linear systems in the same way that the unilateral
Laplace transform is used in the analysis of continuous-time dynamic LTI systems. Similarly
to the unilateral Laplace transform, the unilateral z-transform of a sequence x[n] is the z-
transform of the causal part of the sequence. It disregards any value of the sequence for
n < 0. Denoting by XI(z) the unilateral z-transform of a general sequence x[n] we have

XI [z] =

∞∑

n=0

x[n]z−n = ZI [x[n]] (6.195)

and we may write x[n] = Z−1
I [XI [z]], and x[n]

ZI←→ XI [z]. We note that if the sequence
x[n] is causal, its unilateral transform XI(z) is identical to its bilateral z-transform X(z).

Example 6.35 Compare the unilateral and bilateral z-transforms of the sequences
a) v[n] = δ[n] + nanu[n]
b) x[n] = anu[n− 2]
c) y[n] = anu[n+ 5]
The sequences are shown in Fig. 6.48, assuming a value a = 0.9 as an illustration.

FIGURE 6.48 Three sequences of example.

a) We have

VI [z] = ZI [[v[n]] =
∞∑

n=0

{δ[n] + nanu[n]}z−n

= VII [z] = 1 +
az−1

(1− az−1)2
, |z| > |a|.

The unilateral transform VI(z) is equal to the bilateral transform VII(z); the sequence v[n]
being causal.

b) The sequence x[n] is causal. Its unilateral transform XI(z) is therefore equal to the
bilateral transform XII(z). Writing

x[n] = a2an−2u[n− 2]

XI [z] = XII [z] = a2z−2Z [anu[n]] = a2 z−2

1− az−1
, |z| > |a|.

c) The sequence y[n] = anu[n+ 5] is not causal. Its bilateral transform YII(z) is given
by

YII(z) =
∞∑

n=−∞
anu[n+ 5]z−n =

∞∑

n=−5

anz−n

=
a−5z5

1− az−1
, |z| > |a|
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whereas its unilateral transform is equal to

YI(z) =

∞∑

n=0

anz−n =
1

1− az−1
, |z| > |a|.

6.30.1 Time Shift Property of Unilateral z-Transform

The unilateral z-transform has almost identical properties to those of the bilateral z-transform.
An important distinction exists, however, between the time-shift properties of the two trans-
forms. We have seen that the time shift property of the bilateral z-transform is simply given
by

x[n− n0]
ZII←→ z−n0XII(z). (6.196)

We now view the same property as it applies to the unilateral transform XI(z). Consider
the three sequences x[n], v[n] and y[n] shown in Fig. 6.49.

n

x n[ ]

n

v n[ ]

n

y n[ ]

-5 15-13-3 0 0 0

FIGURE 6.49 A sequence shifted right and left.

The first, x[n], extends from n = −3 to n = 3. The sequence v[n] is a right shift of x[n]
by two points and y[n] is a left shift by two points, i.e. v[n] = x[n− 2] and y[n] = x[n+ 2].
We may write

VI [z] = x[−2] + x[−1]z−1 + x[0]z−2 + x[1]z−3 + x[2]z−4 + x[3]z−5

= x[−2] + x[−1]z−1 + z−2XI [z]
(6.197)

YI [z] = x[2] + x[3]z−1 = z2
[
XI [z]− x[0]− z−1x[1]

]
. (6.198)

More generally, if n0 > 0 then

x[n− n0]
ZI←→ z−n0

[
n0∑

k=1

x[−k]zk +XI [z]

]
(6.199)

and

x[n+ n0]
ZI←→ zn0

[
XI [z]−

n0−1∑

k=0

z−kx[k]

]
. (6.200)

In particular

x[n− 1]
ZI←→ z−1 [x[−1]z +XI [z]] = x[−1] + z−1XI [z] (6.201)

x[n+ 1]
ZI←→ z [XI [z]− x[0]] (6.202)

x[n− 2]
ZI←→ z−2

[
x[−1]z + x[−2]z2 +XI [z]

]
(6.203)

x[n+ 2]
ZI←→ z2

[
XI [z]− x[0]− z−1x[1]

]
. (6.204)
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Example 6.36 Evaluate the response y[n] of the system described by the difference equation

y[n]− 3

4
y[n− 1] +

1

8
y[n− 2] = x[n]

if the input is a unit pulse δ[n] and the initial conditions are y[−1] = −1 and y[−2] = 2.
Since x[n] = δ(n) we have XI(z) = 1. Applying the unilateral z-transform to both sides
of the difference equation we have

YI [z]−
3

4
z−1 [y[−1]z + YI [z]] +

1

8
z−2

[
y[−1]z + y[−2]z2 + YI [z]

]
= 1

YI [z]

z
=

[
1 +

3

4
y[−1]− 1

8
y[−2]

]
z − 1

8
y[−1]

(z − 1/4)(z − 1/2)
=

1/8

(z − 1/4)(z − 1/2)
.

Using a partial fraction expansion we obtain

YI [z] =
1

2

[
1

(1− (1/2)z−1)
− 1

(1− (1/4)z−1)

]

y[n] =
1

2
[(0.5)n − (0.25)n]u[n].

6.31 Problems

Problem 6.1 A system has an impulse response

h [n] = 3−n cos (πn/8) u [n]

receives the input
x [n] = 10δ [n− 5] .

Evaluate the system output y [n]. Verify the result using the z-transform.

Problem 6.2 In the sampling system shown in Fig. 6.50 the continuous-time signal xc (t)
is sampled by an analog to digital (A/D) converter with a sampling frequency of 48 kHz.
The resulting discrete-time signal x [n] = xc (nT ), where T is the sampling interval, is
applied to a filter of transfer function H (z) the output of which, y[n], is then converted to
a continuous time signal y(t) using a digital to analog (D/A) converter, as shown in the
figure. The filter amplitude spectrum

∣∣H
(
ejΩ
)∣∣ is given by

∣∣H(ejΩ)
∣∣ =






3 |Ω| /π, |Ω| ≤ π/3
−3 (|Ω| − π) /π, 2π/3 ≤ |Ω| ≤ π
1, π/3 ≤ |Ω| ≤ 2π/3
0, otherwise.

a) Given that the input signal xc (t) is a sinusoid of frequency 6 kHz and amplitude 1
volt, describe the output signal y (t) in form, amplitude and frequency content.

b) If x (t) is a sinusoid of frequency 28 kHz, what is the frequency of the output signal
y (t)?
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x n[ ]
ADC DACH z( )

x tc( ) y n[ ] y tc( )

FIGURE 6.50 Signal sampling, digital filtering and reconstruction.

Problem 6.3 For the two sequences x [n] and y [n] given in the following tables

n ≤ −2 -1 0 1 2 3 4 ≥ 5
x[n] 0 2 1 0 -1 -2 -1 0

n ≤ 87 88 98 90 ≥ 91
y[n] 0 1 1 1 0

a) Evaluate the convolution z [n] = x [n] ∗ y [n].
b) Evaluate the cross-correlation ryx[n].

Problem 6.4 Evaluate the z-transform of

x [n] = 100.05nn u [n+ 15] .

Problem 6.5 Evaluate the transfer function H (z) of a system that has the impulse re-
sponse

h [n] = (n+ 1) 3−(n+1)/3u [n] .

Problem 6.6 Consider the system shown in Fig.6.51, where a continuous-time signal x (t)
is applied to a system of impulse response h (t) and to the input of an analog to digital A/D
converter. The converter’s output x [n] is applied to a discrete-time linear system of impulse
response g [n] and output v [n].

The sampling frequency of the A/D converter is 10 Hz and sampling starts at t = 0. The
signal x (t) and the impulse responses h (t) and g [n] are given by

x (t) =






3, 0.05 < t < 0.25
7, 0.25 < t < 0.45
0, otherwise

h (t) =





5, 0 < t < 0.2
3, 0.2 < t < 0.4
0, otherwise

g [n] =






4, 0 ≤ n ≤ 1
4, 4 ≤ n ≤ 5
0, otherwise

a) Evaluate y (t) using the convolution integral.
b) Evaluate v [n] by effecting a discrete-time convolution.
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A/D

y t( )

g n[ ]

v n[ ]

h t( )

x t( )

FIGURE 6.51 System block diagram.

Problem 6.7 For each of the following sequences sketch the ROC in the z-plane with the
unit circle shown as a circle of reference.

a) s [n] = αnu [n] , |α| < 1
b) v [n] = αnu [n] + βnu [n] , |α| < 1 and |β| > 1
c) w [n] = αnu [n− 3] , |α| < 1
d) x [n] = αnu [−n] , |α| < 1
e) y [n] = αnu [−n] + βnu [n] , |α| < 1 and |β| > 1
f) z [n] = αnu [n] + βnu [−n] , |α| < 1 and |β| > 1

Problem 6.8 A signal xc (t) = cos (375πt− π/3) is converted to a sequence x [n] by an
A/D converter at a rate of 1000 samples/sec. The sequence x [n] is fed to an FIR digital
filter of impulse response

h [n] = anRN [n] = an {u [n]− u [n−N ]} .

The filter output y [n] is then converted back to a continuous-time signal yc (t).
a) Write the difference equation describing the filter.
b) Let a = 0.9, N = 16. Evaluate the system output yc (t).

Problem 6.9 Evaluate the impulse response of the system of transfer function

H (z) =
4z − 12

z2 − 8z + 12
, 2 < |z| < 6.

Problem 6.10 The sequence x [n] = anRN [n] is applied to the input of a system of
transfer function

H (z) =
1

1− b−1z−1
− z−N b−N

1− b−1z−1

and output y [n].
a) Evaluate the z-transform Y (z) of the system output.
b) Evaluate the inverse transform of Y (z) to obtain the system response y [n].
c) Rewrite the system response using the sequences RN [n] , RN [n−N ] , . . . .
d) Evaluate the system impulse response h [n].
e) Evaluate the convolution w [n] = x [n] ∗ h [n]. Compare the result with y [n].

Problem 6.11 Let

S1 (r, n1, n2) =

n2∑

n=n1

rn

and

S2 (r, n1, n2) =

n2∑

n=n1

nrn.
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a) Evaluate S1 (r, n1, n2) and S2 (r, n1, n2).
b) Evaluate the cross-correlation rvx [n] of the two sequences

v [n] = nRN [n]

x [n] = e−nu [n]

expressing the result in terms of S1 and S2.

Problem 6.12 A system is described by the difference equation

y [n] = 0.75y [n− 1]− 0.125y [n− 2] + 2x [n− 1] + 2x [n− 2] .

a) Evaluate the system impulse response
b) Evaluate the system response if the input is the ramp

x [n] = n u [n] .

Problem 6.13 Given two sequences x−2, x−1, x0, x1, x2, x3 and v−2, v−1, v0, v1, v2, v3,
where xn denotes x[n] and vn denotes v[n].

a) Show the structure of a multiplication that would produce the convolution z[n] of the two
sequences. Show the order of the values of the convolution sequence z[n] in the multiplication
result.

b) Show the structure of a multiplication that would produce the cross-correlation rvx[n]
of the two sequences. Show the order of the values of the correlation sequence rvx[n] in the
multiplication result. Using the z-transform show that the structure of the multiplier does
produce the exected cross-correlation rvx[n].

Problem 6.14 Evaluate the transfer function H (z) of a system that has an impulse re-
sponse h [n] defined by

h [n] =
∞∑

m=−2

{
2−8m+1δ [n− 8m]− 2−8mδ [n− 8m− 1]

}
.

Problem 6.15 The impulse response of a discrete-time linear system is given by

h[n] = αnu[n] + λβnu[−n] + ρ cos (πn/8)u[n]

where α, β, λ and ρ are real constants.
a) For which values of α, λ, β and ρ is the system stable? State the ROC of the system

transfer function H(z) in the z-plane.
b) For which values of α, λ, β and ρ is the system physically realizable? State the ROC

of the system transfer function H(z) in the z-plane.
c) For which values of α, λ, β and ρ is the system stable and physically realizable?

Problem 6.16 A digital filter is described by the difference equation

v[n] = x[n]− x[n− 1] + 5v[n− 1]

where x[n] is the filter input and v[n] its output. The filter output is applied to a second
filter described by the difference equation

y[n] = v[n] + 3v[n− 1]
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where y[n] is its output.
a) Evaluate the transfer function H(z) of the overall system, between the input x[n] and

the output y[n]. Specify its ROC.
b) Assuming the filter to be a causal system, state whether or not it is stable, explaining

the reason justifying your conclusion. Evaluate the filter impulse response h[n].

Problem 6.17 Design a digital oscillator using the a discrete-time system which generates
a sinusoid upon receiving the impulse δ [n]. The oscillator should employ a D/A converter
with a frequency of 10,000 samples per second, to generate a sinusoid y(t) of frequency 440
Hz. Evaluate the difference equation describing the system. Specify the filter employed by
the D/A converter to generate the continuous-time signal y(t).

Problem 6.18 A sequence x[n] is applied to the input of a filter which is composed of two
linear systems connected in parallel, the outputs of which are added up producing the filter
output y[n].

a) Evaluate the difference equation describing this filter given that the two constituent
systems’ transfer functions are physically realizable and are given by

H(z) = z−2/(5− z−1), G(z) = 4/
(
2 + z−1

)
.

b) Evaluate the filter output y[n] if the input sequence is x[n] = 5.

Problem 6.19 Let
v [n] = n RN [n] ,

N > 0 and
x [n] = e−αnRN [n]

Let

y [n] =

∞∑

m=−∞
v [m]x [n+m]

a) Evaluate the sum

S (n1, n2) =
n2∑

n=n1

n an

b) Evaluate y [n]. Express the result in terms of S (n1, n2)
c) Evaluate the transform Y (z) of y [n].

Problem 6.20 Consider a general sequence x [n] defined over −∞ < n < ∞ with z-
transform X(z) and a sequence y[n] of z-transform Y (z). Assuming that

Y (z) = X(zM ), M integer

a) Evaluate y[n] as a function of x[n].
b) If

x[n] = anu[n+K]

evaluate y[n].

Problem 6.21 A system has an input v [n], an output x [n] and the frequency response

H
(
ejΩ
)

= 1− 0.7e−j8Ω.

a) Evaluate the system impulse response h [n].
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b) A system having a frequency response G
(
ejΩ
)

receives the sequence x [n] and produces
a sequence y [n] which should equal the original sequence v [n], i.e. y [n] = v [n].

Evaluate G
(
ejΩ
)
.

Evaluate and sketch the poles and zeros of the system transfer function G (z).
c) For every possible ROC of G (z) state whether or not the system is stable.
d) Let g [n] be the sequence defined by the convolution

y [n] = g [n] ∗ x [n] .

Evaluate the sequence g [n].

Problem 6.22 Consider the sequence

x [n] = 4−|n|.

Evaluate the z-transform X(z), and the Fourier transform X
(
ejΩ
)

of the sequence x[n].

Problem 6.23 a) Evaluate the cross-correlation rvx (n) of the two sequences

v[n] = e−n−3u[n− 4]

x[n] = e2−nu[n+ 3].

b) Evaluate the convolution and the correlation rvx (n) of the two causal sequences

v[n] = {5, 3, 1, −2, −3, 1} ; 0 ≤ n ≤ 5

x[n] = {2, 3, −1, −5, 1, 4} ; 0 ≤ n ≤ 5.

Problem 6.24 A system transfer function has poles at z = 0.5e±jπ/2 and z = e±jπ/2, and
two zeros at z = e±jπ/4. Determine the gain factor K so that the frequency response at
Ω = 0 be equal to 10.

Problem 6.25 The denominator polynomial of the system function of an allpass filter is

A(z) = 1 + a1z
−1 + a2z

−2 + . . . + anz
−n.

Show that its numerator polynomial is given by

B(z) = an + an−1z
−1 + an−2z

−2 + . . . + a1z
−(n−1) + z−n.

Problem 6.26 Given

H(z) = (1 − 0.7ej0.2πz−1)(1− 0.7e−j0.2πz−1)(1 − 2ej0.4πz−1)(1− 2e−j0.4πz−1).

Evaluate Hap(z) and Hmin(z) in the decomposition H(z) = Hap(z)Hmin(z).

Problem 6.27 Evaluate the unilateral z-transforms of the sequences (a) x[n] = 0.5n+2u[n+
5], (b) x[n] = 0.7n−3u[n− 3], (c) x[n] = δ[n] + δ[n+ 3] + 3δ[n− 3]− 2n−2u[1− n].

Problem 6.28 Solve the difference equation

y[n] = 0.75y[n− 2] + x[n]

where x[n] = δ[n− 1], given the initial conditions y[−1] = y[−2] = 1.

Problem 6.29 A system has the transfer function

H(z) =
Y (z)

X(z)
=

1

1/(9/16)z−2
.

What initial conditions of y[n] for n < 0 would produce a system output y[n] of zero for
n ≥ 0?
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6.32 Answers to Selected Problems

Problem 6.1 y [n] = 10 3−(n−5) cos {π (n− 5) /8}u [n− 5].
Problem 6.2 See Fig. 6.52

FIGURE 6.52 Figure for Problem 6.2.

a) f = 48 × 103, T = 1/f = 10−3

48 , ω = 2π × 6000 r/s, Ω = ωT = π/4,∣∣H
(
ejΩ
)∣∣

Ω=π/4
= 3/4. The output y (t) is a sinusoid of frequency 6 kHz and amplitude

3/4 volt.
b) Aliasing has the effect that the output is a sinusoid of frequency 20 kHz .

Problem 6.3 a) The values of z[n] are listed in the following table

n < 87 87 88 89 90 91 92 93 94 ≥ 95
z[n] 0 2 3 3 0 -3 -4 -3 -1 0

b) The values of rxy[n] are listed in the following table

n ≤ 83 84 85 86 87 88 89 90 91 ≥ 92
rxy[n] 0 -1 -3 -4 -3 0 3 3 2 0

Problem 6.4

X (z) = z15 V (z) = 10−0.75

{
a z14

(1− a z−1)
2 −

15 z15

1− a z−1

}
, 1.122 < |z| <∞

Problem 6.5

H (z) = z
3−1/3z−1

(
1− 3−1/3z−1

)2 =
3−1/3

(
1− 3−1/3z−1

)2 , |z| > 3−1/3 = 0.69

See Fig. 6.53.
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n1 2 3 4 5

1

h n[ ]

FIGURE 6.53 Figure for Problem 6.5.

Problem 6.6 a) See Fig. 6.54 and Fig. 6.55.

0.05 0.25 0.45

3

7
x t( )

t

5

3

0.1 0.2 0.3 0.4 t

h t( )

4

1 2 3 4 n

g n[ ]

5

3

1 2 3 4 n

x n[ ]

5

7

(a) (b)

(c) (d)

FIGURE 6.54 Figure for Problem 6.6.

b) We effect the discrete convolution in the form of a multiplication as shown in the table
below.

See Fig. 6.56.

Problem 6.7

a) |z| > |α| , |α| < 1

b) |z| > |β| > 1

c) |z| > |α| same as a)

d) |z| < |α| < 1

e) No convergence

f) |α| < |z| < |β|
Problem 6.8

y [n]− a y [n− 1] = x [n]− aNx [n−N ]

b)

yc (t) = 0.7694 cos(375πt− 1.9503)

Problem 6.9

h [n] = 2n−1u [n− 1]− 0.56nu [−n]
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0.05 0.25 0.45 0.85
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t
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7

0.1 0.2 0.3 0.4 t

x( )t

3

5

t-0.4 tt-0.2

3

5

t-0.4 tt-0.2

3

5
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28

(a)

(c) (d)

(e) (f)

(b)

4.2

0.65

t t

t

h t( - )t h t( - )t

h t( - )t

FIGURE 6.55 Figure for Problem 6.6.

FIGURE 6.56 Figure for Problem 6.6.

Problem 6.10

c) y [n] =
{(
b−n − ban+1

)
/ (1− ab)

}
RN [n]+

{(
an−N+1b−N+1 − aNbN−n

)
/ (1− ab)

}
RN [n−N ] .

d) h[n] = b−nRN [n].
e) w[n] = y [n] .

Problem 6.11
Let r = e−1

S1 (r, n1, n2) =

n2∑

n=n1

rn = rn1
1− rn2−n1+1

1− r

S2 =
n1r

n1 + (1− n1) r
n1+1 − (n2 + 1) rn2+1 + n2rn2 + 2

(1− r)2

For 0 ≤ n ≤ N − 1, with r = e−1

rvx [n] = n

−n+N−1∑

m=0

e−m +

−n+N−1∑

m=0

me−m = n S1 (r, 0,−n+N − 1) + S2 (r, 0,−n+N − 1)

For n ≤ 0, rvx [n] = n S1 (r,−n,−n+N − 1) + S2 (r,−n,−n+N − 1) .
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Problem 6.12

a) h [n] = 2
{

6 (0.5)
n−1 − 5 (0.25)

n−1
}
u [n− 1] .

b) y [n] =
{

5.333− 8 (0.5)n−1 + 2.667 (0.25)−1
}
u [n− 1] .

Problem 6.13
a)

x3 x2 x1 x0 x−1 x−2

v3 v2 v1 v0 v−1 v−2

v−2x3 v−2x2 v−2x1 v−2x0 v−2x−1 v−2x−2

v−1x3 v−1x2 v−1x1 v−1x0 v−1x−1 v−1x−2

v0x3 v0x2 v0x1 v0x0 v0x−1 v0x−2

v1x3 v1x2 v1x1 v1x0 v1x−1 v1x−2

v2x3 v2x2 v2x1 v2x0 v2x−1 v2x−2

v3x3 v3x2 v3x1 v3x0 v3x−1 v3x−2

z[6] z[5] z[4] z[3] z[2] z[1] z[0] z[−1] z[−2] z[−3] z[−4]

b)

x3 x2 x1 x0 x−1 x−2

v−2 v−1 v0 v1 v2 v3
v3x3 v3x2 v3x1 v3x0 v3x−1 v3x−2

v2x3 v2x2 v2x1 v2x0 v2x−1 v2x−2

v1x3 v1x2 v1x1 v1x0 v1x−1 v1x−2

v0x3 v0x2 v0x1 v0x0 v0x−1 v0x−2

v−1x3 v−1x2 v−1x1 v−1x0 v−1x−1 v−1x−2

v−2x3 v−2x2 v−2x1 v−2x0 v−2x−1 v−2x−2

rvx[−5] rvx[−4] rvx[−3] rvx[−2] rvx[−1] rvx[0] rvx[1] rvx[2] rvx[3] rvx[4] rvx[5]

Problem 6.14 H(z) = 217z16
(
1− 2−1z−1

)
/1− 2−8z−8.

Problem 6.15 ROCs: |z| > |α|, |z| < |β| and |z| > 1.
a) 1. |α| < 1. 2. |β| > 1 if λ 6= 0 and 3. ρ =0 should be satisfied.
b) λ = 0.
c) λ = 0, |α| < 1, and ρ =0.

Problem 6.16

a) Filter 1 : 1−z−1

1−5z−1 , Filter 2 : 1 + 3z−1. Hence H(z) =
(1−z−1)(1+3z−1)

(1−5z−1) Two possible

ROCs |z| > 5 or |z| < 5, excluding z =0.
b) The system is unstable.

Problem 6.17 y[n] = sin (Ω0)x[n− 1] + 2 cos (Ω0) y[n− 1]− y[n− 2].

Problem 6.18 a) The output y[n] = 7.9 volts .

Problem 6.20 b) y [n] =

{
an/M , n = kM, k ≥ −K
0, otherwise

.

Problem 6.21 h [n] = 1
2δ [n− 1] + 1

2δ [n+ 1] + (−1)nn√
2π(n2−1/16)

.
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Problem 6.23

n 0 1 2 3 4 5 6 7 8 9 10
z[n] 10 21 6 -29 -23 13 29 16 -16 -11 4

Convolution

n -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
rvx[n] 20 17 -18 -27 -7 29 27 -6 -14 -3 2

Correlation

Problem 6.24
K = 42.677.

Problem 6.26

Hmin(z) = (2 − 1.4ej0.2πz−1)(2 − 1.4e−j0.2πz−1)(1− 0.5ej0.4πz−1)(1 − 0.5e−j0.4πz−1).

Hap(z) =
(z−1 − 0.5e−j0.4π)(z−1 − 0.5ej0.4π)

(1− 0.5ej0.4πz−1)(1 − 0.5e−j0.4πz−1)
.

Problem 6.27 (a) XI(z) = 0.25/(1− 0.25z−1), (b) XI(z) = z−3/(1− 0.7z−1),
(c) XI(z) = 0.75− 2−1z−1 + 3z−3.

Problem 6.28 y[n] = {1.3854× 0.866n − 0.6354(−0.866n)}u[n].

Problem 6.29 y[−1] = 0, y[−2] = −16/9.
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Discrete-Time Fourier Transform

The Fourier transform of a discrete signal, which is referred to as the discrete-time Fourier
transform (DTFT) is a special case of the z-transform in as much as the Fourier transform
of a continuous signal is a special case of the Laplace transform. In the present discrete-time
context we write for simplicity Fourier transform to mean the DTFT. We will, moreover,
see in this chapter that the discrete Fourier transform (DFT) is a sampled version of the
DTFT, in as much as the Fourier series is a sampled version of the Fourier transform of
a continuous signal. The chapter ends with a simplified presentation of the fast Fourier
transform (FFT), an efficient algorithm for evaluating the DFT.

7.1 Laplace, Fourier and z-Transform Relations

Let vc(t) be a continuous time function having a Laplace transform Vc(s) and a Fourier
transform Vc(jω). Let vs(t) be the corresponding ideally sampled function

vs(t) = vc(t)ρT (t) = vc(t)
∞∑

n=−∞
δ(t− nT ) =

∞∑

n=−∞
vc(nT )δ(t− nT ). (7.1)

Its Laplace transform Vs(s) is given by

Vs (s) = L [vs(t)] =

∞∑

n=−∞
vc (nT )e−nTs (7.2)

and its Fourier transform as already obtained in Chapter 4 is

Vs(jω) = {1/(2π)}Vc(jω) ∗ F [ρT (t)] =
1

T

∞∑

n=−∞
Vc

[
j

(
ω − n2π

T

)]
(7.3)

wherefrom the Laplace transform of vs(t) may be also written in the form

Vs(s) = Vs(jω)|ω=s/j =
1

T

∞∑

n=−∞
Vc

(
s− jn2π

T

)
. (7.4)

It is to be noted that such an extension of the transform from the jω axis to the s plane,
the common practice in the current literature, is not fully justified since it implies that the
the multiplication in the time domain vc(t)ρT (t) corresponds to a convolution of Vc(s) with
the Laplace transform of the two-sided impulse train ρT (t). Since the Laplace transform of
such an impulse train does not exist, according to the current literature, the last equation
is simply not justified. A rigorous justification based on a generalization of the Dirac-delta
impulse and the resulting extension of Laplace transform domain leads to a large class of

395
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new distributions that now have a Laplace transform. Among these is the transform of
the two sided impulse train, and is included in Chapter 18 dedicated to distributions. For
now therefore we accept such extension from the Fourier axis to the Laplace plane without
presenting a rigorous justification.

Now consider a sequence v[n] = vc (nT ) . We have

V (z) =

∞∑

n=−∞
v[n]z−n =

∞∑

n=−∞
vc(nT )z−n. (7.5)

Its Fourier transform DTFT is

V (ejΩ) =
∞∑

n=−∞
v[n]e−jΩn =

∞∑

n=−∞
vc(nT )e−jΩn (7.6)

and as we have seen, the inverse Fourier transform is

v[n] =
1

2π

ˆ π

−π

V
(
ejΩ
)
ejΩndΩ. (7.7)

Comparing V (z) with the Laplace transform Vs(s) we note that the two transforms are
related by a simple change of variables. In particular, letting

z = eTs (7.8)

we have

V (z)|z=eT s = V (eTs) =

∞∑

n=−∞
vc(nT )e−nTs = Vs(s) (7.9)

and conversely
Vs(s)|s=(1/T ) ln z = V (z). (7.10)

This is an important relation establishing the equivalence of the Laplace transform of an
ideally sampled continuous-time function vc(t) at intervals T and the z-transform of its
discrete-time sampling as a sequence, v[n].

We note that the substitution z = eTs transforms the axis s = jω into the unit circle

z = ejωT = ejΩ (7.11)

where
Ω=△ωT (7.12)

which is the relation between the discrete-time domain angular frequency Ω in radians
and the angular frequency of the continuous-time domain frequency ω in radians/sec. The
vertical line s = σ0 + jω in the s plane is transformed into a circle z = eσ0T ejTω of radius
eσ0T in the z-plane. In fact a pole at s = α+ jβ is transformed into a pole z = e(α+jβ)T

of radius r = eαT and angle Ω = βT in the z-plane.
We may also evaluate the Fourier transform V (ejΩ) as a function of Vc(jω). We have

V (ejΩ) =
∞∑

n=−∞
v[n]e−jΩn = Vs(jω)|ω=Ω/T =

1

T

∞∑

n=−∞
Vc

[
j

(
ω − n2π

T

)]∣∣∣∣
ω=Ω/T

V (ejΩ) =
1

T

∞∑

n=−∞
Vc

[
j

(
Ω− 2πn

T

)]
. (7.13)

The spectra in the continuous and discrete time domains are shown in Fig. 7.1 assuming
an abstract triangular shaped spectrum Vc(jω) and absence of aliasing.
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V jc( )w

1

wc-wc-p/T w ps= /T2- /T2p p/T w

V( )j We

1/T

Vs( )j w

1/T

wc-wc-p/T w ps= /T2- /T2p p/T w

Wp-p 2p-2p wcT-wcT

t

v ( )t
c

T

v ( )ts

t

v n[ ]

n-1 2 31

FIGURE 7.1 Spectra in continuous- and discrete-time domains.

Example 7.1 Let vc (t) = e−αtu(t). Compare the Laplace transform of its ideally sampled
form vs (t) and the z-transform of its sampling v[n] = vc (nT ) , n integer.

We have

vs(t) = vc(t)

∞∑

n=−∞
δ(t− nT ) =

∞∑

n=0

vc(nT )δ(t− nT ) =
1

2
δ(t) +

∞∑

n=1

e−αnT δ(t− nT )

where we have used the step function property that u(0) = 1/2. We may write

vs(t) =

∞∑

n=0

e−αnT δ(t− nT )− 1

2
δ(t)

Vs(s) =

∞∑

n=0

e−αnT e−snT − 1

2
=

1

1− e−(α+s)T
− 1

2
=

1 + e−(s+α)T

2[1− e−(s+α)T ]

= (1/2) coth[(s+ α)T/2],
∣∣∣e−(α+s)T

∣∣∣ < 1 i.e. eσT > e−αT , or σ > −α.

Let

v[n] = vc (nT ) = e−αnTu [n]− 1

2
δ[n]

V (z) =

∞∑

n=0

e−αnT z−n =
1

1− e−αT z−1
− 1

2
,
∣∣e−αT z−1

∣∣ < 1 i.e. |z| > e−αT .

We note that

V (z)|z=esT =
1

1− e−αT e−sT
− 1

2
= Vs(s).

From this example we can draw several conclusions. Let us write

Vc(s)=△L [vc(t)] =
1

s+ α
, Re (s) > −α. (7.14)
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We have

Vs(s) =
1

T

∞∑

n=−∞
Vc

(
s− jn2π

T

)
=

1

T

∞∑

n=−∞

1

s− j2πn/T + α
. (7.15)

Comparing these results, we have the relation

1

T

∞∑

n=−∞

1

s+ α− j2πn/T =
1

2
coth

[
(s+ α)

T

2

]
. (7.16)

It is interesting to note that the pole s = −α of Vc(s) in the s plane is mapped as the
pole z = e−αT of V (z) in the z-plane. Moreover, the expression of the Laplace transform
Vs(s) of the sampled function vs(t) shows that the transform has an infinite number of poles
on the line s = −α + j2πn/T , n = 0, ±1, ±2, . . . with a uniform spacing equal to the
sampling frequency ω0 = 2π/T , as shown in Fig. 7.2. Since the vertical line s = −α+ jω
is mapped onto the circle z = e−αT ejωT , of radius e−αT , all the poles s = −α+ jnω0 are
mapped onto the single point z = e−αT ejnω0T = e−αT .

FIGURE 7.2 Poles in s and z-planes.

We can obtain this last equation alternatively by performing a partial fraction expansion of
the transform Vs(s). Noticing that it has an infinite number of poles, we write the expansion
as an infinite sum of terms. Denoting by An the residue of the nth term, we write

Vs(s) =
1

2
coth

[
(s+ α)

T

2

]
=

1

2

∞∑

n=−∞

An

s+ α− j2πn/T (7.17)

the nth residue is given by

An = lim
s−→−α+j2πn/T

(s+ α− j2πn/T ) cosh
[
(s+ α) T

2

]

sinh
[
(s+ α) T

2

] . (7.18)

The substitution leads to an indeterminate quantity. Using L’Hopital’s rule we obtain

An = lim
s−→−α+j2πn/T

(s+ α− j2πn/T )(T/2) sinh [(s+ α) T/2] + cosh [(s+ α)T/2]

(T/2) cosh [(s+ α)T/2]
=

2

T

wherefrom

Vs(s) =
1

2
coth

[
(s+ α)

T

2

]
=

1

T

∞∑

n=−∞

1

s+ α− j2πn/T (7.19)
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as expected. We may also add that

V (z) = Vs(s)|s= 1
T ln z (7.20)

wherefrom
1

T

∞∑

n=−∞

1
1

T
ln z + α− j 2πn

T

=
1

1− e−αT z−1
− 1

2
. (7.21)

We notice further that by putting α = 0 we obtain the relation

∞∑

n=−∞

1

ln z − j2πn =
1

1− z−1
− 1

2
. (7.22)

We note that the evaluation of residues in the case of an infinite number of poles is an area
known as Mittag–Leffler expansions. Moreover, the sum

1

T

∞∑

n=−∞

1

s+ α− j2πn/T (7.23)

is divergent. It can be evaluated, however, using a Cauchy approach as the limit of the
sum of a finite number of terms with positive index n plus the same number of terms with
negative n. As a verification, therefore, we write

1

T

∞∑

n=−∞

1

s+ α− j2πn/T =
1

T

1

s+ α
+

1

T

[ −1∑

n=−∞

1

s+ α− j2πn/T +

∞∑

n=1

1

s+ α− j2πn/T

]

(7.24)

1

T

∞∑

n=−∞

1

s+ α− j2πn/T =
1

T

1

s+ α
+

1

T

∞∑

n=1

2(s+ α)

(s+ α)2 + 4π2n2/T 2
(7.25)

Using the expansion

coth z =
1

z
+

∞∑

n=1

2z

z2 + n2π2
(7.26)

with the substitution z = (s+ α)T/2, we obtain the same expression (7.16) found above.

Example 7.2 An ideal analog to digital (A/D) converter operating at a sampling frequency
of fs = 1 kHz receives a continuous-time signal xc(t) = cos 100πt and produces the
corresponding sequence x[n]. Evaluate the Fourier transform of the discrete-time signal at
the output of the A/D converter.

The sampling period is T = 1/fs = 0.001 sec, so that

x[n] = xc(nT ) = xc(0.001n) = cos 0.1πn

Xc (jω) = π [δ (ω − 100π) + δ (ω + 100π)]

X
(
ejΩ
)

=
1

T

∞∑

n=−∞
Xc

[
j

(
Ω− 2πn

T

)]

=
π

T

{ ∞∑

n=−∞
δ

(
Ω− 2πn

T
− 100π

)
+ δ

(
Ω− 2πn

T
+ 100π

)}

= π

∞∑

n=−∞
δ (Ω− π/10− 2πn) + δ (Ω + π/10− 2πn) .

Note that
X
(
ejΩ
)

= π [δ (Ω− π/10) + δ (Ω + π/10)] , −π < Ω < π.

The spectra are shown in Fig. 7.3.
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FIGURE 7.3 Spectra in continuous- and discrete-time domains.

7.2 Discrete-Time Processing of Continuous-Time Signals

As depicted in Fig. 7.4, a discrete-time signal processing system may be modeled in general
as a pre-filtering unit such as a lowpass filter for limiting the signal spectral bandwidth
in preparation for sampling, and ideal A/D converter also known as continuous-time to
discrete-time (C/D) converter, a digital signal processor such as a digital filter or a digital
spectrum analyzer, an ideal digital to analog (D/A) converter also known as discrete-time
to continuous-time (D/C) converter and a post-filtering unit for eliminating any residual
effects that may occur through aliasing. In what follows we shall study the relations between
the inputs and outputs of each block in the system, both in time and in frequency domain.

D.S.
Processor

y tc( )

Y jc( )w

x tc( )

X jc( )w X e( )j W

x n[ ]Pre-
Filtering

Post-
Filtering

Y( )e j W

y[ ]nv tc( )

V jc( )w

z tc( )

Z jc( )w
C/D D/C

FIGURE 7.4 Discrete-time processing using ideal A/D and D/A converters.

7.3 A/D Conversion

As seen in Fig. 7.5, a true A/D converter consists of a C/D converter followed by a quantizer
and an encoder.

The C/D converter samples the analog, continuous-time, signal xc(t) by a C/D converter,
producing the sequence x[n] = xc(nT ). The quantizer converts each value x[n], into one of
a set of permissible levels. The resulting value x̂[n] is then encoded it into a corresponding
binary representation. The binary coded output ξ[n] may be in sign and magnitude, 1’s
complement, 2’s complement or offset binary representation, among others. The process
that the C/D converter employs to generate x[n] may be viewed as shown in Fig. 7.6, where
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the continuous-time signal is ideally sampled by an impulse train ρT (t) and the result

xs(t) = xc(t)ρT (t) =

∞∑

n=−∞
xc(nT )δ(t− nT ) (7.27)

is converted to a sequence of samples. This conversion maps the successive impulses of
intensities xc(nT ) into the sequence x[n] = xc(nT ).

x tc( ) C/D
=1/T Hzfs

x n[ ]
Quantizer

ˆ[ ]x n
Encoder

x[ ]n

A/D

x tc( )
A/D

x[ ]n

FIGURE 7.5 A/D conversion.

x tc( ) Impulse to
sequence
conversion

rT( )t

x ts( ) x n x nT[ ] = ( )c

C/D

x n[ ]
C/D

x tc( )

T

FIGURE 7.6 Analog signal to sequence conversion.

The quantizer receives the sequence x[n] and produces a set of values x̂[n] = Q
[
x[n]

]
. It

employs M+1 decision levels l1, l2, . . . , lM+1 where M = 2b+1; (b+1) being the number of
bits of quantization plus the sign bit. The amplitude of x[n] is thus divided into M intervals,
as can be seen in Fig. 7.7 for the case M = 8, l1 = −∞, l9 =∞.

The interval
∆k = [lk+1 − lk] (7.28)

is the quantization step. In a uniform quantizer this is a constant ∆ = ∆k referred to as
the quantization step size or resolution. The range of such quantizer is

R = M∆ = 2b+1∆ (7.29)

and the maximum amplitude of x[n] should be limited to

xmax = 2b∆ (7.30)

otherwise clipping occurs.
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x̂2

x̂1

x̂3

x̂4

x̂5

x̂6

x̂7

x̂8

l2

l3

l4

l5

l6

l7

l8

l9 = ∞

l1 = -∞

FIGURE 7.7 Signal level quantization.

The quantization error is

e[n] = Q
[
x[n]

]
− x[n] (7.31)

and is bounded by
|e[n]| < ∆/2, (7.32)

apart from a high error that may result if clipping occurs.
The case of M = 4 bit uniform quantization, that is, the case of 3-bit magnitude plus a

sign bit, where the quantizer output is rounded to the nearest quantization level is shown
in Fig. 7.8.

ˆ[ ]x n

3D

2D

D

-D

-2D

-3D

-D-2D-3D D 2D 3D x n[ ]

011

010

001

000

111

110

101

100-4D

-4D

FIGURE 7.8 A/D quantization steps and their 2’s complement code.

The values of the output in the case of 2’s complement are shown in the figure.
As seen in Chapter 15, in fractional representation a number in 2’s complement which

has (b + 1) bits in the form x0, x1, x2, . . . , xb has the decimal value

−x0 + x12
−1 + x22

−2 + · · ·+ xb2
−b. (7.33)

For example, referring to the figure, the decimal value of 011 is 0 + 2−1 + 2−2 = 1/2+ /4 =
3/4 and that of 110 is −1 + 2−1 + 0 = −1 + 1/2 = −2/4. In integer number representation
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the same number is viewed as xb, xb−1, . . . , x1, x0 and has the decimal value

−xb2
b + xb−12

b−1 + · · ·+ x12
1 + x02

0 (7.34)

so that the decimal value of 011 is 0 + 2 + 20 = 3 and that of 110 is −22 + 2 + 0 = −2. In
other words the two numbers are seen as 3/4 and −2/4 in fractional representation, and as 3
and −2 in integer representation. These values are confirmed in the figure as corresponding
to the levels 3∆ and −2∆, respectively in either fractional or integer representation. In
general, a integer number of decimal value a represented by b + 1 bits is viewed as simply
the integer value a itself in integer representation, and as a/2b in fractional representation.
The two representations are different ways of describing the same values; the fractional
representation being more commonly used in signal processing literature.

7.4 Quantization Error

As we have seen, quantization is an approximation process of signal levels. The error of
quantization e[n] may be modeled as an additive noise such that

x̂[n] = x[n] + e[n] (7.35)

as shown in Fig. 7.9.

x n[ ] x̂[ ] = [ [ ]]n Q x n

e n[ ]
+

+

FIGURE 7.9 Additive quantization error.

Since the error is typically unknown it is defined in statistical terms. It is assumed to
be a stationary white noise sequence that is uniformly distributed over the range −∆/2 <
e[n] < ∆/2. The values e[n] and e[k], where k 6= n are therefore statistically uncorrelated.
Moreover, it is assumed that the error sequence e[n] is uncorrelated with the input sequence
x[n], which is assumed to be zero-mean and also stationary.

The signal to quantization noise ratio (SQNR) is defined as

SQNR = 10 log10

Px

Pe
= 10 log10

σ2
x

σ2
e

(7.36)

where Px is the signal power

Px = σ2
x = E

[
x2[n]

]
(7.37)

and Pe is the quantization power

Pe = σ2
e = E

[
e2[n]

]
. (7.38)

In the case where the quantization error is uniformly distributed with a probability density
p(e), as depicted in Fig. 7.10, we have

Pe = σ2
e =

ˆ ∆/2

−∆/2

p(e)e2de =
1

∆

ˆ ∆/2

−∆/2

e2de =
∆2

12
(7.39)
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Hence

SQNR = 10 log
σ2

x

σ2
e

= 20 log10

(√
12σx

∆

)
= 20 log10

(√
12σx2b+1

R

)

= 16.818 + 6.02b+ 20 log10

σx

R
dB.

The SQNR can thus be seen to increase by about 6 dB for every increase of 1 bit.

- /2D D/2 e

1/D

p e( )

FIGURE 7.10 Quantization error probability density.

7.5 D/A Conversion

In D/A conversion, as represented in Fig. 7.11, the sequence x[n] is converted to a succession
of impulses so that each value x[n] is converted to an impulse of intensity x[n]. The resulting
signal is the ideally sampled signal xs(t). This in turn is applied to the input of a recon-
struction ideal lowpass filter of frequency response Hr(jω) to produce the continuous-time
signal xc(t).

x n[ ] Sequence to
Impulse

conversion
H jr( )w

x ts( ) x tr( )

D/C

x n[ ]
D/C

x tr( )

H jr( )w

T

- /p T p/T w

T

FIGURE 7.11 D/C conversion.

We may write

xs(t) =
∞∑

n=−∞
x[n]δ(t− nT ) (7.40)



Discrete-Time Fourier Transform 405

Xs(jω) =

∞∑

n=−∞
x[n]e−jnTω = X(ejωT ) = X(ejΩ)|Ω=ωT (7.41)

The ideal lowpass reconstruction filter has the frequency response

Hr(jω) = TΠπ/T (ω) (7.42)

and its impulse response is
hr(t) = Sa(πt/T ) (7.43)

The continuous-time signal xc(t) is assumed to be bandlimited so that Xc(jω) = 0 for
|ω| > ωc = 2πfc and the sampling period T < π/ωc so that the sampling frequency
fs = 1/T > 2fc. Aliasing is therefore absent. The filter output is

xr(t) = xs(t) ∗ hr(t) =

∞∑

n=−∞
x[n]δ(t− nT ) ∗ hr(t) =

∞∑

n=−∞
x[n]Sa [(π/T )(t− nT )] (7.44)

which, as we have seen in Chapter 4, is the interpolation formula that reconstructs xc(t)
from its sampled version. The filter output is therefore xr(t) = xc(t) and the reconstruction
produces the original continuous-time signal.

In the frequency domain we have

Xr(jω) = Xs(jω)Hr(jω) = X(ejωT )Hr(jω) (7.45)

i.e.

Xr(jω) =

{
TX(ejωT ), |ω| < π/T

0, otherwise.
(7.46)

Since an ideal lowpass filter is not physically realizable, D/A converters use a zero-order
hold that converts the ideally sampled signal xs(t) to a naturally sampled signal xn(t). The
impulse response of the zero order hold is

hz(t) = RT (t) (7.47)

and its frequency response is

Hz(jω) = Te−jTω/2Sa(Tω/2). (7.48)

The result is a special case of natural sampling and produces a staircase-like signal as shown
in Fig. 7.12.

FIGURE 7.12 Natural sampling with zero-order hold.

As we have seen in Chapter 4 the reconstruction of such a signal may be effected using
an equalizer filter of frequency response

H(jω) =
ejTω/2

Sa(Tω/2)
Ππ/T (ω). (7.49)
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7.6 Continuous versus Discrete Signal Processing

In this section we consider two dual approaches to signal processing. In the first, depicted
in Fig. 7.13(a) a continuous-time signal xc(t) is sampled by a C/D converter producing the
sequence x[n]. The sequence is processed by a discrete-time system such as a digital filter
of transfer function H(z) and frequency response H(ejΩ).

x tc( )
C/D

x n[ ]
H z( ) D/C

y n[ ] y tc( )

T T

LTI System

(a)

x tc( )
D/C

x n[ ]
H sc( ) C/D

y n[ ]y tc( )

T T

LTI System

(b)

FIGURE 7.13 C/D and D/C signal processing: (a) discrete-time processing of analog
signal, (b) continuous-time processing of discrete-time signal.

The output y[n] is then converted back to the continuous-time domain as the signal yc(t).
In Fig. 7.13(b) a sequence x[n] is applied to a D/C converter producing a continuous-time
signal xc(t). This is applied to the input of a continuous-time system such as an analog filter
of transfer function H(s) and frequency response H(jω). The output yc(t) is then sampled
by a C/D converter, producing the sequence y[n]. We note that the overall system shown in
Fig. 7.13(a) acts as continuous-time system with input xc(t) and output yc(t), while that of
Fig. 7.13(b) acts as a discrete-time system with input x[n] and output y[n]. In what follows
we develop the relations between the successive signals and in these two systems. Referring
to Fig. 7.13(a) we may write

X(ejΩ) = F
[
x[n]

]
=

1

T

∞∑

n=−∞
Xc

(
j
Ω

T
− j 2πn

T

)
(7.50)

Y (ejΩ) = X(ejΩ)H(ejΩ) (7.51)

The D/C converter reconstructs the continuous-time signal corresponding to the sequence
y[n] using a lowpass filter of frequency response

Hr(jω) = TΠπ/T (ω) (7.52)

so that

yc(t) =
∞∑

n=−∞
y[n]hr(t− nT ) =

∞∑

n=−∞
y[n]Sa [(π/T )(t− nT )] (7.53)
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Yc(jω) = Hr(jω)Y (ejTω) = Hr(jω)X(ejTω)H(ejTω) (7.54)

= Hr(jω)H(ejTω)
1

T

∞∑

n=−∞
Xc

(
jω − j 2πn

T

)
. (7.55)

Since there is no aliasing we have

Yc(jω) = H(ejTω)Xc(jω)Ππ/T (ω) (7.56)

Yc(jω) =

{
H(ejωT )Xc(jω), |ω| ≤ π/T
0, otherwise.

(7.57)

The overall digital signal processing (DSP) system of Fig. 7.13(a) acts therefore as a
linear time invariant (LTI) continuous-time system of frequency response

Hc(jω) =

{
H(ejωT ), |ω| ≤ π/T
0, otherwise

(7.58)

Referring to Fig. 7.13(b) we may write in the absence of aliasing

xc(t) =

∞∑

n=−∞
x[n]Sa [(π/T )(t− nT )] (7.59)

Xc(jω) =

{
TX(ejωT ), |ω| ≤ π/T
0, otherwise

(7.60)

Yc(jω) =

{
Hc(jω)Xc(jω), |ω| ≤ π/T
0, otherwise

(7.61)

Y (ejΩ) =
∞∑

n=−∞
y[n]e−jnΩ =

∞∑

n=−∞
yc(nT )e−jnΩ =

1

T

∞∑

n=−∞
Yc

(
j
Ω

T
− j 2πn

T

)
(7.62)

Y (ejΩ) =
1

T
Yc

(
jΩ

T

)
=

1

T
Xc

(
j
Ω

T

)
Hc

(
j
Ω

T

)
, |Ω| < π (7.63)

and

H(ejΩ) = Hc

(
j
Ω

T

)
, |Ω| < π (7.64)

which is the equivalent overall system frequency response. The system output is

yc(t) =

∞∑

n=−∞
y[n]Sa [(π/T )(t− nT )] . (7.65)

7.7 Interlacing with Zeros

We have studied in Chapter 2 the case where the analysis interval of the Fourier series
expansion is a multiple m of the function period. We have concluded that the discrete
Fourier series spectrum is the same as that obtained if the analysis interval is equal to the
function period but with (m− 1) zeros inserted between the spectral lines.
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Thanks to duality between the Fourier series (discrete spectrum) of a continuous-time
function and the (continuous) Fourier transform of a discrete time function we have the
same phenomenon that can be observed in discrete-time signals. The following example
shows that by inserting (M − 1) zeros between time-sequence samples the spectrum around
the unit circle displays M repetitions of the signal spectrum.

Example 7.3 Let x [n] be a given sequence and x1 [n] be the sequence defined by

x1 [n] =

{
x [n/3] , n multiple of 3
0, otherwise.

Compare the spectra X
(
ejΩ
)

and X1

(
ejΩ
)
.

We can write

x1 [n] = . . . , x [−2] , 0, 0, x [−1] , 0, 0, x [0] , 0, 0, x [1] , 0, 0, x [2] , 0, 0, . . .

X1 (z) =

∞∑

n=−∞
x [n]z−3n = X(z3)

X1

(
ejΩ
)

=

∞∑

n=−∞
x [n]e−jΩ3n = X

(
ej3Ω

)
.

See Fig. 7.14.

W

X e( )
jW

p

W

X e1( )
jW

p

2p

2pp/3

0

0

1

1

FIGURE 7.14 Spectral compression.

The generalization of this example is that if a sequence x1 [n] is obtained from x [n] such
that

x1 [n] =

{
x [n/M ] , n = multiple of M
0, otherwise

(7.66)

by interlacing with M − 1 zeros, an operation referred to as upsampling by a factor M as
we shall see in the following section then

X1 (z) =

∞∑

n=−∞
x [n]z−Mn = X(zM)

X1

(
ejΩ
)

= X
(
ejMΩ

)
(7.67)
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and the spectrum along the unit circle displays M periods instead of one period of X
(
ejΩ
)
.

Here we have the duality to the case of Fourier series analysis with a multiple-period
analysis interval. In the present case, insertion of M − 1 zeros in the time domain between
the samples of x[n] produces in the frequency domain, in the interval (0, 2π), the spectrum
X1

(
ejΩ
)

which has M periods instead of the single period of the spectrum X(ejΩ) of x[n].
Downsampling is the case when a sequence y[n] is obtained from a sequence x[n] by

picking every M th sample.

Example 7.4 Evaluate the z-transform and the Fourier transform of the sequence down-
sampled sequence y[n] = x[Mn] as a function of those of x[n].

We have

Y (z) =

∞∑

n=−∞
y [n] z−n =

∞∑

n=−∞
x [Mn] z−n. (7.68)

Letting m = Mn we have

Y (z) =
∑

m=0, ±M, ±2M, ...

x [m] z−m/M . (7.69)

We note that

1

M

M−1∑

k=0

ej 2π
M km =

{
1, m = 0, ±M, ±2M, . . .
0, otherwise.

(7.70)

Y (z) =
∞∑

m=−∞
x [m] z−m/M 1

M

N−1∑

k=0

ej 2π
M km =

1

M

M−1∑

k=0

∞∑

m=−∞
x [m] z−m/Mej(2π/M)km

=
1

M

M−1∑

k=0

∞∑

m=−∞
x [m]

{
z1/Me−j2πk/M

}−m
=

1

M

M−1∑

k=0

X
{
z1/Me−j2πk/M

}
.

(7.71)
Substituting z = ejΩ we have the Fourier transform

Y
(
ejΩ
)

=
1

M

M−1∑

k=0

X
{
ejΩ/M e−j2πk/M

}
=

1

M

M−1∑

k=0

X
{
ej(Ω−2πk)/M

}
. (7.72)

Note that for |Ω| ≤ π
Y
(
ejΩ
)

=
1

M
X
(
ejΩ/M

)
. (7.73)

7.8 Sampling Rate Conversion

We often need to alter the sampling rate of a signal. For example we may need to convert
signals from digital audio tapes (DAT) which are sampled at 48 kHz rate to the CD sampling
rate of 44.1 kHz. Other applications include converting video signals between systems that
use different sampling rates. Sample rate conversion may be performed by reconstructing the
continuous-time domain signal followed by resampling at the desired rate. We consider here
the rate conversion when performed entirely in the discrete-time domain. In what follows,
we study rate reduction by an integer, rate increase by an integer and rate alteration by a
rational factor.
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7.8.1 Sampling Rate Reduction

In this section we study the problem of sample rate reduction by an integer factor. Let
xc (t) be a continuous-time signal and xs (t) be its ideally sampled version with a sampling
interval of T seconds, that is,

xs (t) = xc (t) ρT (t) = xc (t)

∞∑

n=−∞
δ (t− nT ) . (7.74)

Let x [n] be the corresponding discrete-time signal x [n] = xc (nT ). We consider the case
of reducing the sampling rate by increasing the sampling interval by an integer multiple
M , so that the sampling interval is τ = MT . This operation is called down-sampling. The
resulting ideally sampled signal and corresponding sequence will be denoted by xs,r (t) and
xr [n], respectively.

We have

xs,r (t) = xc (t)

∞∑

n=−∞
δ (t− nMT ) (7.75)

xr [n] = xc (nMT ) . (7.76)

Below, we evaluate the Fourier transform and the z-transform of these signals. The Fourier
spectra of xc (t) , xs (t) , x [n] , xs,r (t) and xr [n] are sketched in Fig. 7.15 assuming an
idealized trapezoidal shaped spectrum Xc(jω) representing that of a bandlimited signal.
The equations defining these spectra follow. For now, however, note that these spectra can
be drawn without recourse to equations. From our knowledge of ideal sampling we note that
the spectrum Xs(jω) is a periodic repetition of the trapeze, which may be referred to as the
basic “lobe,” Xc(jω), with a period of ωs = 2π/T and a gain factor of 1/T . The spectrum
X(ejΩ) versus Ω is identical to the spectrum Xs(jω) after the scale change Ω = ωT . The
spectrum Xs,r(jω) of the sequence xr[n] is a periodic repetition of Xc(jω) with a period of
ωs,2 = 2π/(MT ) and a gain factor of 1/(MT ). In the figure the value M is taken equal
to 3 for illustration, and the spectrum is drawn for the critical case where the successive
spectra barely touch; just prior to aliasing. Finally, the spectrum Xr(e

jΩ) is but a rescaling
of Xs,r(jω) with the substitution Ω = ωMT .

We note from Fig. 7.15 that by applying a sampling interval τ = MT instead of T ,
that is, by reducing the sampling frequency from 2π/T to 2π/ (MT ), aliasing may occur in
Xs,r(jω) and henceXr(e

jΩ) due to the fact that the lobe centered at the sampling frequency
ωs,2 = 2π/(MT ) is M times closer to the main lobe than in the case of ordinary sampling
leading to Xs(jω).
Assuming

Xc (jω) = 0, |ω| ≥ ωc (7.77)

to avoid aliasing, the sampling frequency should satisfy the condition

2π

MT
≥ 2ωc (7.78)

i.e.,

ωc ≤
π

MT
. (7.79)

Let Ωc = ωcT . For the normal rate of sampling producing x[n] the constraint on the
signal bandwidth to avoid aliasing is

X
(
ejΩ
)

= 0, Ωc ≤ |Ω| < π (7.80)
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whereas for the reduced sampling rate, producing xr [n], it is

X
(
ejΩ
)

= 0, MΩc ≤ |Ω| < π, i.e. Ωc < π/M. (7.81)

Therefore the bandwidth of the sequence x [n] has to be reduced by a factor M before
down-sampling in order to avoid aliasing due to the reduced sampling rate.

t

x ( )t
c

T

x ( )ts
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FIGURE 7.15 Sample rate reduction.

Down-sampling by a factor M is usually denoted by a down arrow and the letter M written
next to it, as can be seen in Fig. 7.16(a).

x nr [ ]x n[ ] Mx nr [ ]Mx n[ ]

(a) (b)

LP filter

H e( )jW

= ( )P Wp M/

FIGURE 7.16 Sample rate reduction: (a) down-sampling, (b) decimation.
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Aliasing can thus be avoided by passing the sequence through a prefiltering lowpass filter
of bandwidth equal to π/M and a gain of one, that is, of frequency response

H
(
ejΩ
)

= Ππ/M (Ω) = u [Ω + π/M ]− u [Ω− π/M ] , |Ω| < π (7.82)

prior to the sampling rate reduction, as seen in Fig. 7.16(b). Such prefiltering followed by
sample-rate reduction is referred to as decimation.

We proceed now to write the pertinent equations assuming that the reduced sampling
rate is adequate, producing no aliasing, as shown in the figure. From our knowledge of ideal
sampling, the Fourier spectrum Xs (jω) = F [xs(t)] is given by

Xs (jω) =
1

T

∞∑

m=−∞
Xc [j (ω −m2π/T )] . (7.83)

The spectrum of the sequence x[n] is given by

X
(
ejΩ
)

= Xs

(
j
Ω

T

)
=

1

T

∞∑

m=−∞
Xc

[
j

(
Ω

T
− m2π

T

)]
. (7.84)

With a sampling interval MT instead of T we have the spectrum Xs,r (jω) = F [xs,r(t)]
equal to

Xs,r (jω) =
1

MT

∞∑

m=−∞
Xc

[
j

(
ω − m2π

MT

)]
. (7.85)

The spectrum of xr [n] is given by

Xr(e
jΩ) = Xs,r (jω)|ω=Ω/(MT ) =

1

MT

∞∑

m=−∞
Xc

[
j

(
Ω− 2mπ

MT

)]
. (7.86)

An alternative form of the spectrum Xs,r (jω) may be written by noticing from Fig. 7.15
that it is a periodic repetition with period 2π/T of a set of lobes, namely those centered at

ω = 0, 2π/(MT ), 4π/(MT ), . . . , (M − 1)2π/(MT ).

In other words the spectrum is a repetition of the base period

Xs,r,0 (jω) =
1

MT

M−1∑

k=0

Xc

[
j

(
ω − k 2π

MT

)]
(7.87)

so that we can write

Xs,r (jω) =

∞∑

n=−∞
Xs,r,0

[
j

(
ω − 2πn

T

)]
. (7.88)

Xs,r (jω) =
1

MT

∞∑

n=−∞

M−1∑

k=0

Xc

[
j

(
ω − 2πk

MT
− 2πn

T

)]
. (7.89)

Note that this second form can be obtained from the first by the simple substitution m =
Mn+ k, where −∞ ≤ n ≤ ∞ and k = 0, 1, 2, . . . , M − 1. Using this second form we
can write a second form for Xr(e

jΩ), namely,

Xr(e
jΩ) = Xs,r

(
jΩ

MT

)
=

1

MT

∞∑

n=−∞

M−1∑

k=0

Xc

[
j

(
Ω− 2πk

MT
− 2πn

T

)]
(7.90)
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Xr(e
jΩ) =

1

M

M−1∑

k=0

1

T

∞∑

n=−∞
Xc

[
j

(
Ω− 2πk

MT
− 2πn

T

)]
(7.91)

Xr(e
jΩ) =

1

M

M−1∑

k=0

X
{
ej(Ω−2kπ)/M

}
. (7.92)

Note that

Xr

(
ejΩ
)

=
1

M
X
(
ejΩ/M

)
, |Ω| ≤ π. (7.93)

We may obtain the same result by noticing that

Xr (z) =
∞∑

n=−∞
xr [n] z−n =

∞∑

n=−∞
x [Mn] z−n (7.94)

and by proceeding as in Example 7.4, to arrive at the same result

Xr

(
ejΩ
)

=
1

M

M−1∑

k=0

X
{
ej(Ω−2πk)/M

}
. (7.95)

Example 7.5 A sequence x[n] is bandlimited such that

X(ejΩ) = 0, |Ω| < 0.23π.

A sequence y[n] is formed such that y[n] = x[Mn]. What is the maximum value M that
ensures that the sequence x[n] can be fully recovered from y[n]?

In Fig. 7.17 the spectrum X(ejΩ) is graphically sketched. The sequence x[n] may be viewed
as a sampling of a continuous time sequence xc(t) with a sampling interval T so that x[n] =
xc(nT ). The corresponding spectrum Xs(jω) of the corresponding ideally sampled sequence

xs(t) = xc(t)ρT (t) = xc(t)

∞∑

n=−∞
δ(t− nT )

is shown next in the figure, where the sampling frequency is written ωs0 = 2π/T . The
sequence y[n] corresponds to sampling the same continuous time sequence xc(t) but with
a sampling interval MT , so that y[n] = x[Mn] = xc(MTn). In this case the sampling
frequency is ωs = 2π/(MT ) = ωs0/M , and the corresponding ideally sampled signal is

ys(t) = xc(t)ρMT (t) = xc(t)

∞∑

n=−∞
δ(t− nMT )

The spectrum Ys(jω) is periodic and its period is ωs = ωs0/M . The spectrum Y (ejΩ) of
the sequence y[n] is also shown in the figure. We note that the maximum value of M can
have is M = 4, otherwise aliasing would occur. Alternatively, we note that bandwidth of
the signal is B = 0.23π/T so that the minimum sampling frequency that avoids aliasing is
ωs = 2B = 0.46π/T = 0.23ωs0, i.e. we should have ωs ≥ 0.23ωs0. Since ωs = ωs0/M , the
maximum allowable value of M is M = 4 as stated.
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FIGURE 7.17 Maximum rate reduction example.

7.8.2 Sampling Rate Increase: Interpolation

Let x [n] be the sampling of a continuous function xc (t) such that x [n] = xc (nT ). Consider
the effect of inserting L − 1 zeros between the successive samples of x [n] as shown in Fig.
7.18. We obtain the sequence xz [n] such that

xz [n] =

{
x [n/L] , n = mL, m integer
0, otherwise.

(7.96)

We have

Xz (z) =

∞∑

n=−∞
xz [nL] z−nL =

∞∑

n=−∞
x [n] z−nL = X

(
zL
)

(7.97)

and

Xz

(
ejΩ
)

= X
(
ejLΩ

)
. (7.98)

The spectrum Xz

(
ejΩ
)

is shown in Fig. 7.18, where L is taken equal to 3, together with

an assumed spectrum Xc (jω) and the corresponding transform X
(
ejΩ
)
. If a lowpass filter

having the frequency response H
(
ejΩ
)
, shown in the figure, with a gain of L and cut-off

frequency π/L, is applied to Xz

(
ejΩ
)

the result is the spectrum Xi

(
ejΩ
)
, also shown in the

figure. The resulting sequence xi [n], of which the Fourier transform is Xi

(
ejΩ
)

is in fact
an interpolation of x [n].
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FIGURE 7.18 Interpolation spectra.

Note that
xi [n] = xz [n] , n = 0, ±L, ±2L, . . . . (7.99)

The spectrum Xi

(
ejΩ
)

is, as desired, the spectrum that would be obtained if xc (t) were
sampled with a sampling period of T/L. The insertion of zeros followed by the lowpass
filtering thus leads to multiplying the sampling rate by a factor L or, equivalently, performing
an L-point interpolation between the samples of x [n] in the form of the sequence xi [n].

LP filter

H e( )jW
x n[ ] x ni [ ]x nz [ ]

L

x n[ ] x nz [ ]

L

(a) (b)

= ( )KP Wp K/

FIGURE 7.19 Sampling rate increase by a factor L: (a) upsampling, (b) interpolation.

As seen in Fig. 7.19(a) the upsampling operation by an integer factor L is denoted by an
up arrow with the letter L written next to it. It interlaces L-1 zeros between samples. The
interpolator, seen in Fig. 7.19(b), consists of the upsampling unit followed by the lowpass
filter of frequency response

H
(
ejΩ
)

= KΠπ/K(Ω) =, |Ω| < π. (7.100)

Example 7.6 A sequence x[n] is obtained by sampling the sinusoid cos(5000t) at a sampling
frequency of 20000 Hz. It is then applied to the input of a system which interlaces with zeros
by adding three zeros between each two consecutive samples. The sequence y[n] is applied to
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the input of a bandpass filter of unit gain and frequency response

H(ejΩ) =

{
1, π/4 < |Ω| < 3π/4
0, otherwise.

Evaluate the output v[n] of the bandpass filter.

The sequence y[n] is given by

y [n] =

{
x [n/4] , n multiple of 4
0, otherwise.

We have fs = 20 kHz. The sampling period is Ts = 1/fs,

xc(t) = cos(ω0t), ω0 = 5000π

f0 = 2500 Hz, Ω0 = ω0Ts = 5000π/20000 = π/4. Y (z) = X(z4), Y (ejΩ) = X(ej4Ω). The
system performs upsampling by a factor of 4 as seen in Fig. 7.20.

x n[ ] y n[ ]
4

FIGURE 7.20 Upsampling by a factor of 4.

The spectra Xs(jω), X(ejΩ), and Y (ejΩ) are depicted in in Fig. 7.21. The figure also
shows the filter frequency response H(ejΩ) and the spectrum V (ejΩ) at the filter output. In
evaluating Y (ejΩ) we use the impulse property

δ(ax) =
1

|a|δ(x).

From the value of V (ejΩ), as seen in the figure, we conclude that the filter output is

v[n] = 0.25[cos[(7π/16)n] + cos[(9π/16)n]].

Example 7.7 In the up-down rate conversion-filtering system shown in Fig. 7.22 the C/D
converter operates at a sampling frequency fs = 1/T , the output of the upsampler is applied
to the input of an LTI system of impulse response

h[n] = KSa[π(n−m)/M ]

where m is an integer.
Assuming that the input signal xc(t) is bandlimited so that Xc(jω) = 0 for |f | ≥ 1/(2T ).

Evaluate the system output z[n] in terms of its input xc(t).

We have

v [n] =

{
x [n/L] = xc(nT/L), n = kL, k integer
0, otherwise

(7.101)

H(ejΩ) = KLΠπ/L(Ω)e−jmΩ

w[n] = Kv[n−m] = Kxc[(n−m)T/L]

z[n] = w[Ln] = Kxc[(Ln−m)T/L]
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FIGURE 7.21 Spectra of an upsampling system.

LL

x tc( ) x n[ ]
C/D

v n[ ]
h n[ ]

w n[ ] z n[ ]

T

FIGURE 7.22 Rate conversion-filtering system.

7.8.3 Rational Factor Sample Rate Alteration

If the sampling rate of a sequence needs to be increased or decreased by a rational factor
F = K/M , the sample rate alteration can be effected by cascading an interpolator which
increases the sample rate by a factor L, followed by a decimator which reduces the resulting
rate by a factor M . Such sample-rate converter is shown in Fig. 7.23(a).

The sequence x [n] is applied to an interpolator followed by a decimator resulting in the
altered-rate sequence xc [n]. Note that the two cascaded lowpass filters of cut-off frequencies
π/L and π/M , respectively, can be combined into a single lowpass filter, as shown in Fig.
7.23(b), of cut-off frequency π/B, where B = max (M,L), and a gain of L.

Example 7.8 A sequence x[n] is obtained in a DAT recorder by sampling audio signals at
a frequency of 48 kHz. We need to convert the sampling rate to that of CD players, namely
44.1 kHz. Show how to perform the rate conversion.
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Low-Pass
Filter

H e1( )jW
x n[ ] x na [ ]L

Low-Pass
Filter

H e2( )jW
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Low-Pass
Filter

H e( )jW
x n[ ] x na [ ]L M

(a)

(b)

FIGURE 7.23 Sample rate rational factor alteration.

We may employ the rate conversion system shown in Fig. 7.24. We note that 48, 000 =
27 × 3× 53 and 48, 100 = 22 × 32 × 52 × 72. so that 48, 000/44, 100 = 25 × 3−1 × 5× /72 =
160/147.

Low-Pass
Filter

H e( )jW

x n[ ] Interpolation

L

Decimation

M

v n[ ] w[ ]n y[ ]n

FIGURE 7.24 Sample rate conversion by a rational factor.

Note that decomposition into prime numbers can be performed using the MATLABr func-
tion factor.

The system would therefore perform a sampling increase, interpolation, by the factor
L = 160, filtering, as shown in the figure, and then sampling rate reduction, decimation, by
a factor M = 147. The lowpass filter should have a cut frequency of π/160 and a gain of
L = 160.

MATLAB’s multirate processing function upfirdn may be called to change a signal sam-
pling rate from 44.1 kHz to 48 kHz using a filter of a finite impulse response (FIR), which
will be studied in detail in Chapter 11. We may write

g = gcd(48000,44100)

p = 48000/g

q = 44100/g

y = upfirdn(x,h,p,q)

We obtain p = 160, q = 147. The output result y is the response of the FIR filter, of impulse
response h, to the input x.

Other related MATLAB functions are decimate, interp and resample.
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7.9 Fourier Transform of a Periodic Sequence

Given a continuous-time periodic signal vc(t) and its discrete time sampling v[n] = vc(nT ),
we can evaluate its DTFT using the Fourier transform of its continuous-time counterpart.

V (ejΩ) =
1

T

∞∑

k=−∞
Vc

[
j

(
Ω− 2πk

T

)]
=

1

T

∞∑

k=−∞
Vc(jω)

∣∣∣∣∣
ω=Ω−2πk

T

(7.102)

where
V
(
ejΩ
)

= F [v [n]] and Vc (jω) = F [vc (t)] . (7.103)

Example 7.9 Let v[n] = 1. Evaluate V (ejΩ).
With vc(t) = 1 we have Vc(jω) = 2πδ(ω), wherefrom

V
(
ejΩ
)

=
1

T

∞∑

k=−∞
2πδ

(
Ω− 2πk

T

)
=

∞∑

k=−∞
2πδ (Ω− 2πk) .

Example 7.10 Let vc(t) = cos(βt+ θ). Evaluate Vc(jω) and V (ejΩ) for v[n] = vc(nT ).
We may write

Vc(jω) = π
{
ejθδ (ω − β) + e−jθδ (ω + β)

}

v [n] = vc (nT ) = cos (βnT + θ) = cos (γn+ θ) , γ = βT

V
(
ejΩ
)

=
1

T

∞∑

k=−∞
Vc

[
j

(
Ω− 2πk

T

)]

=
1

T

∞∑

k=−∞
π

{
ejθδ

(
Ω− 2kπ

T
− β

)
+ e−jθδ

(
Ω− 2πk

T
+ β

)}

=

∞∑

k=−∞
π
{
ejθδ (Ω− 2πk − βT ) + e−jθδ (Ω− 2πk + βT )

}
.

We have established the transformation:

cos (γn+ θ)
F←→

∞∑

k=−∞
π
{
ejθδ (Ω− 2πk − γ) + e−jθδ (Ω− 2πk + γ)

}
.

The spectrum appears as two impulses on the unit circle as represented in 3-D in Fig. 7.25.

z plane

pe
jq

g

gpe
-jq

FIGURE 7.25 Impulses on unit circle.
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7.10 Table of Discrete-Time Fourier Transforms

Table 7.1 lists discrete-time Fourier transforms of basic discrete-time functions.

TABLE 7.1 Discrete-time Fourier transforms of basic sequences

Sequence x[n] Fourier Transform X
(
ejΩ
)

δ[n] 1

δ[n− k] e−jkΩ

1

∞∑

k=−∞
2πδ (Ω + 2kπ)

u[n]
1

1− e−jΩ
+

∞∑

k=−∞
πδ (Ω + 2kπ)

anu[n], |a| < 1
1

1− ae−jΩ

(n+ 1) anu[n], |a| < 1
1

(1− ae−jΩ)
2

RN [n] = u [n]− u [n−N ] e−j(N−1)Ω/2SdN (Ω/2)

sinBn

πn
ΠB (Ω) , −π ≤ Ω ≤ π

ejbn 2π

∞∑

k=−∞
δ (Ω− b+ 2kπ)

cos(bn+ φ) π
∞∑

k=−∞
ejφδ(Ω− b+ 2kπ) + e−jφδ(Ω + b+ 2kπ)

∞∑

k=−∞
δ [n− kN ]

2π

N

∞∑

k=−∞
δ

(
Ω− 2πk

N

)

(n+ r − 1)!

n! (r − 1)!
anu [n] , |a| < 1

1

(1− ae−jΩ)
r

nu [n]
e−jΩ

(1− e−jΩ)
2 + jπ

∞∑

k=−∞
δ′ (Ω + 2kπ)
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Example 7.11 Given vc (t) = cos (2π × 1000t) . Let T = 1/1500 sec be the sampling
period of vc (t) producing the discrete-time sampling v [n] = vc (nT ). Evaluate V

(
ejΩ
)
.

v[n] = vc(nT ) = cos

(
2π × 1000× 1

1500
n

)
= cos

(
4π

3
n

)
=△ cos γn, γ =

4π

3

V (ejΩ) =

∞∑

k=−∞
π

{
δ

(
Ω− 2kπ − 4π

3

)
+ δ

(
Ω− 2kπ +

4π

3

)}
.

The spectrum consists of two impulses within the interval −π to π, shown as a function of
the frequency Ω, and around the unit circle in Fig. 7.26. The impulses are located at angles
Ω = 4π/3 and Ω = −4π/3, respectively, i.e. at Ω = 2π/3 and Ω = −2π/3. Under-sampling
has caused a folding of the frequency around the point Ω = π. The sinusoid appears as being
equal to cos(2πn/3) which corresponds to a continuous-time signal of vc(t) = cos(1000πt),
rather than the original vc(t) = cos(2000πt). This is not surprising, for we note that

cos(4πn/3) = cos(4πn/3− 2πn) = cos(2πn/3).

FIGURE 7.26 Impulses versus frequency and as seen on unit circle.

Example 7.12 A periodic signal vc (t) is applied to the input of an A/D converter of a
sampling frequency of fs = 10000 samples per second. The converter produces the output
v [n] = vc (nT ) where T = 1/fs. Given that

vc (t) = 4 + 2 cos (4000πt) + cos (12000πt+ π/4) .

Evaluate and sketch Vc (jω) and V
(
ejΩ
)
, the Fourier transforms of vc (t) and v [n], respec-

tively.

Vc (jω) = 8π δ (ω) + 2π {δ (ω − 4000π) + δ (ω + 4000π)}
+ π

{
ejπ/4δ (ω − 12000π) + e−jπ/4δ (ω + 12000π)

}

See Fig. 7.27(a).
We have Ω = ωT . For ω = 4000π, 12000π, Ω = 0.4π, 1.2π, respectively.
The frequency Ω = 1.2π folds back to

Ω = 2π − 1.2π− = 0.8π
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as shown in Fig. 7.27(b).

V
(
ejΩ
)

= (1/T )

∞∑

k=−∞
Vc

[
j

{
Ω− 2kπ

T

}]

=

∞∑

n=−∞
8π δ (Ω− 2kπ) + 2π {δ (Ω− 0.4π − 2kπ) + δ (Ω + 0.4π − 2kπ)}

+ π
{
ejπ/4δ (Ω− 1.2π − 2kπ) + e−jπ/4δ (Ω + 1.2π − 2kπ)

}

V
(
ejΩ
)

= 8π δ (Ω) + 2π {δ (Ω− 0.4π) + δ (Ω + 0.4π)}
+ π

{
ejπ/4δ (Ω + 0.8π) + e−jπ/4δ (Ω− 0.8π)

}
, −π 6 Ω 6 π

FIGURE 7.27 Fourier transform in continuous- and discrete-time domains.

Example 7.13 Given
x[n] = cosβn =

(
ejαn + e−jβn

)
/2

we have

X
(
ejΩ
)

= π

[ ∞∑

k=−∞
δ (Ω− β − 2kπ) + δ (Ω + β − 2kπ)

]

π

∞∑

k=−∞
δ (t− β − 2kπ) + δ (t+ β − 2kπ)

F.S.C.←→ cosβn

i.e. in terms of the base period we have

π {δ(t− β) + δ(t+ β)} ,−π < t < π
FSC←→ cosβn

π

{ ∞∑

k=−∞
δ (t− β − 2kπ) + δ (t+ β − 2kπ)

}
F←→ 2π

∞∑

n=−∞
cosβnδ (ω − n) .

Example 7.14 An A/D converter receives a continuous-time signal xc (t), samples it at a
frequency of 1 kHz converting it into a sequence x [n] = xc (nT ).

a) Evaluate the Fourier transform X
(
ejΩ
)

of the sequence x [n] if

xc (t) = 3 cos 300πt+ 5 cos 700πt+ 2 cos 900πt.

b) A sequence y [n] is obtained from x [n] such that y [n] = x [2n]. Evaluate or sketch the
Fourier transform Y

(
ejΩ
)

of y [n].
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c) A sequence v [n] is obtained by sampling the sequence x [n] such that

v [n] =

{
x [n] , n even
0, n odd.

Evaluate or sketch the Fourier transform V
(
ejΩ
)

of v [n].
a)

Xc (jω) = 3π {δ (ω − 300π) + δ (ω + 300π)}+ 5π {δ (ω − 700π) + δ (ω + 700π)}
+ 2π {δ (ω − 900π) + δ (ω + 900π)}

Ω = ωT = 10−3ω.

The frequencies ω = 300π, 700π, 900π correspond to Ω = 0.3π, 0.7π, 0.9π.

x [n] = 3 cos 0.3πn+ 5 cos 0.7πn+ 2 cos 0.9πn

X
(
ejΩ
)

= (1/T )

∞∑

k=−∞
Xc (jω)|ω=(Ω−2πk)/T

X
(
ejΩ
)

=
∞∑

k=−∞
3π [δ (Ω− 0.3π − 2πk) + δ (Ω + 0.3π − 2πk)]

+ 5π [δ (Ω− 0.7π − 2πk) + δ (Ω + 0.7π − 2πk)]
+ 2π [δ (Ω− 0.9π − 2πk) + δ (Ω + 0.9π − 2πk)] .

The spectrum X
(
ejΩ
)

is shown in Fig. 7.28.

FIGURE 7.28 Spectra in discrete-time domain.

b) The sequence y [n] is equivalent to sampling xc (t) with double the sampling period (half
the original sampling frequency) i.e. with T = 2× 10−3 sec.

Y
(
ejΩ
)

= 1/T

∞∑

k=−∞
Xc (jω)|ω=(Ω−2πk)/T , T = 2× 10−3

=

∞∑

k=−∞
3π [δ (Ω− 0.6π − 2πk) + δ (Ω + 0.6π − 2πk)]

+ 5π [δ (Ω− 1.4π − 2πk) + δ (Ω + 1.4π − 2πk)]
+ 2π [δ (Ω− 1.8π − 2πk) + δ (Ω + 1.8π − 2πk)] .
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The frequency 1.4π folds back to the frequency (1− 0.4)π = 0.6π. The frequency 1.8π folds
back to the frequency (1− 0.8)π = 0.2π. The spectrum Y

(
ejΩ
)

is shown in the figure.
As a confirmation of these results note that we can write

y[n] = x[2n] = 3 cos 0.6πn+ 5 cos 1.4πn+ 2 cos 1.8πn

i.e.

y[n] = 3 cos 0.6πn+ 5 cos[(2π − 0.6π)n] + 2 cos[(2π − 0.2π)n]

or

y[n] = 8 cos 0.6πn+ 2 cos 0.2πn

as found.
c)

V (z) =

∞∑

n=−∞
v [n] z−n =

∑

n even

v [n] z−n =
∑

n even

x [n] z−n.

We can write

V (z) =
1

2

∞∑

n=−∞
x [n] {1 + (−1)

n} z−n =
1

2
{X (z) +X (−z)}

V
(
ejΩ
)

=
1

2

{
X
(
ejΩ
)

+X
(
−ejΩ

)}
=

1

2

{
X
(
ejΩ
)

+X
[
ej(Ω+π)

]}
.

The spectrum V
(
ejΩ
)

is shown in Fig. 7.28. Alternatively, we can write

V (z) = x [0] + x [2] z−2 + x [4] z−4 + . . .+ x [−2] z2 + . . . =

∞∑

n=−∞
x [2n] z−2n

V
(
ejΩ
)

=
∞∑

n=−∞
y [n] e−jΩ2n = Y

(
ej2Ω

)

confirming the obtained results.

7.11 Reconstruction of the Continuous-Time Signal

Let vc(t) be a band-limited signal having a spectrum Vc(jω) which is nil for |ω| ≥ ωc. Let
vs(t) be the ideal sampling of vc(t) with a sampling interval T and

v [n] = vc (nT ) . (7.104)

Assuming no aliasing, the sampling frequency ωs satisfies

ωs = 2π/T > 2ωc. (7.105)

We have seen that the continuous signal vc(t) can be recovered from the ideally sampled
signal using a lowpass filter. It is interesting to view the mathematical operation needed to
recover vc(t) from v[n]. We can recover the spectrum Vc(jω) from V (ejωT ) = V (ejΩ) if we
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multiply V (ejωT ) by a rectangular gate function of width (−π/T, π/T ), that is by passing
the sequence v[n] through an ideal lowpass filter of a cut-off frequency π/T :

Vc (jω) = T V
(
ejωT

)
Ππ/T (ω) . (7.106)

We can therefore write

vc(t) =
1

2π

ˆ ∞

−∞
Vc(jω)ejtωdω =

1

2π

ˆ π/T

−π/T

Vc (jω) ejtωdω

=
T

2π

ˆ π/T

−π/T

V
(
ejωT

)
ejtωdω =

T

2π

ˆ π/T

−π/T

∞∑

n=−∞
v [n] e−jnTωejtωdω

=
T

2π

∞∑

n=−∞
v [n]

ˆ π/T

−π/T

ej(t−nT )ωdω =

∞∑

n=−∞
v [n]

sin (t− nT )πT

(t− nT )π/T

(7.107)

vc (t) =

∞∑

n=−∞
v [n]Sa {(t/T − n)π} . (7.108)

This is the same relation obtained above through analysis confined to the continuous-time
domain. We have thus obtained an “interpolation formula” that reconstructs vc(t) given the
discrete time version v [n]. It has the form of a convolution. It is, however, part continuous,
part discrete, type of a convolution.

7.12 Stability of a Linear System

Similarly to continuous-time systems, a discrete-time linear system is stable if its frequency
response H(ejΩ), the Fourier transform of its impulse response h[n], exists. For a causal
system this implies that its transfer function H(z) has no poles outside the unit circle. If
the poles are on the unit circle the system is called “critically stable.” An anticausal system,
of which h[n] is nil for n > 0 is stable if H(z) has no pole inside the unit circle.

7.13 Table of Discrete-Time Fourier Transform Properties

Table 7.2 lists discrete-time Fourier transform (DTFT) properties.

7.14 Parseval’s Theorem

Parseval’s theorem states that

∞∑

π=−∞
|x [n]|2 =

1

2π

ˆ π

−π

∣∣X
(
ejΩ
)∣∣2 dΩ (7.109)
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TABLE 7.2 Discrete-time Fourier transform properties

Sequence Fourier Transform

ax [n] + by [n] aX
(
ejΩ
)

+ bY
(
ejΩ
)

x [n− n0] e−jΩn0X
(
ejΩ
)

ejΩ0nx [n] X
(
ej(Ω−Ω0)

)

x [−n]
X
(
e−jΩ

)
, x [n] real

X∗(ejΩ)

x∗ [n] X∗
(
e−jΩ

)

x∗ [−n] X∗
(
ejΩ
)

nx [n] j
dX

(
ejΩ
)

dΩ

x [n] ∗ y [n] X
(
ejΩ
)
Y
(
ejΩ
)

x [n] y [n]
1

2π

ˆ π

−π

X
(
ejθ
)
Y
(
ej(Ω−θ)

)
dθ

rvx [n] = v [n] ∗ x [−n] Svx (Ω) = V
(
ejΩ
)
X∗
(
ejΩ
)

x [n] cosΩ0n (1/2)
{
X
(
ej(Ω+Ω0)

)
+X

(
ej(Ω−Ω0)

)}

∞∑

π=−∞
x [n] y∗ [n] =

1

2π

ˆ π

−π

X
(
ejΩ
)
Y ∗
(
ejΩ
)
dΩ. (7.110)

7.15 Fourier Series and Transform Duality

Below, we study the duality property relating Fourier series and transform in the contin-
uous time domain to the Fourier transform in the discrete-time domain. Consider an even
sequence x [n] and suppose we know its Fourier transform X

(
ejΩ
)
, i.e.

X
(
ejΩ
)

=

∞∑

n=−∞
x[n]e−jΩn (7.111)

x[n] =
1

2π

ˆ

2π

X
(
ejΩ
)
ejΩndΩ. (7.112)

The spectrum X
(
ejΩ
)

is periodic with period 2π. We now show that if a continuous-time

periodic function xc (t) has the same form as X
(
ejΩ
)
, i.e. the same function but with Ω

replaced by t,
xc (t) = X

(
ejt
)

(7.113)
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then its Fourier series coefficients Xn are a simple reflection of the sequence x [n],

Xn = x[−n]. (7.114)

To show that such a duality property holds consider the Fourier series expansion of the
periodic function xc (t) = X

(
ejt
)
. The expansion takes the form

X
(
ejt
)

=

∞∑

n=−∞
Xne

jnω0t =

∞∑

n=−∞
Xne

jnt (7.115)

where we have noted that ω0 = 1. Comparing this equation with Equation (7.111) we have

Xn = x[−n] (7.116)

as asserted. We also note that knowing the Fourier series coefficients Xn of the periodic
function xc (t) = X

(
ejt
)

we also have the Fourier transform as

Xc (jω) = 2π

∞∑

n=−∞
x [−n] δ (ω − n) . (7.117)

Summarizing, we have the duality property:

If x [n]
F←→ X

(
ejΩ
)

then xc (t) = X
(
ejt
) FSC←→ Xn = x [−n] and

xc (t)
F←→ 2π

∞∑

n=−∞
Xnδ (ω − n) = 2π

∞∑

n=−∞
x [−n] δ (ω − n) . (7.118)

Note that the Fourier series coefficients refer to the Fourier series expansion over one period
of the periodic function xc (t) = X

(
ejt
)
, namely, −π ≤ t ≤ π.

The converse of this property holds as well. In this case the property takes the form:
If a function xc (t) is periodic with period 2π and its Fourier series coefficients Xn or equiv-
alently its Fourier transform X (jω) is known then the Fourier transform of the sequence
x [n] = X−n is simply equal to xc (t) with t replaced by Ω. In other words:

If xc (t)
FSC←→ Xn then x [n] = X−n

F←→ X
(
ejΩ
)

= xc (Ω).
The following examples illustrate the application of this property.

Example 7.15 Evaluate the Fourier transform X
(
ejΩ
)

of the sequence

x[n] = u[n+N ]− u[n− (N + 1)].

Use the duality property to evaluate the Fourier transform of the continuous-time function
xc(t) = X

(
ejt
)
.

We have

X(z) =
N∑

n=−N

z−n = zN 1− z−(2N+1)

1− z−1

X
(
ejΩ
)

= ejNΩ 1− e−jΩ(2N+1)

1− e−jΩ
=

sin [(2N + 1)Ω/2]

sin (Ω/2)
.

The sequence x[n] and its Fourier transform X
(
ejΩ
)

are shown in Fig. 7.29.
Using duality we may write

xc (t) =
sin [(2N + 1) t/2]

sin (t/2)

FSC←→ Xn = x[−n] =

{
1, −N ≤ n ≤ N
0, otherwise
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and

xc (t)
F←→ 2π

∞∑

n=−∞
Xnδ (ω − n) = 2π

N∑

n=−N

δ (ω − n) .

The function vc(t) and its Fourier series coefficients are shown in the figure.

FIGURE 7.29 Duality between Fourier series and DFT.

Example 7.16 Let
x[n] = a−|n|.

We have

X(z) = Z
[
a−nu[n] + anu[−n]− δ[n]

]
=

1

1− a−1z−1
+

1

1− a−1z
− 1

X
(
ejΩ
)

=
1

1− a−1e−jΩ
+

1

1− a−1ejΩ
− 1 =

1− a−2

1− 2a−1 cosΩ + a−2
.

Using the duality property, we may write

X
(
ejt
)

=
1− a−2

1− 2a−1 cos t+ a−2

FSC←→ a−|n|.

Example 7.17 Let
f0 (t) = Πτ (t)

and with T > 2τ

fc (t) =
∞∑

n=−∞
f0 (t− nT ) .
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We have

F0 (jω) = 2τSa (τω)

Fn = (1/T )F0 (jnω0) = (2τ/T )Sa (2nπτ/T ) .

With T = 2π and τ = B we may write

f [n] = F−n = (B/π)Sa (nB)
F←→

∞∑

n=−∞
ΠB (Ω− 2nπ)

i.e. F
(
ejΩ
)

= F [f [n]] is periodic with period 2π and its base period is given by

ΠB (Ω) = u (Ω +B)− u (Ω−B) , −π ≤ Ω ≤ π.

Example 7.18 Let x[n] = 1. We have

X(ejΩ) =

∞∑

n=−∞
e−jΩn = 2π

∞∑

k=−∞
δ (Ω− 2kπ) .

From the duality property we may write

2π

∞∑

n=−∞
δ(t− 2nπ)

F.S.C.←→ 1

∞∑

n=−∞
δ(t− 2nπ)

F.S.C.←→ 1/ (2π)

which are the expected Fourier series coefficients of the impulse train.

7.16 Discrete Fourier Transform

Let x[n] be an N -point finite sequence that is generally non-nil for 0 ≤ n ≤ N − 1 and nil
otherwise. The z-transform of x[n] is given by

X(z) =

N−1∑

n=0

x[n]z−n. (7.119)

Its Fourier transform is given by

X
(
ejΩ
)

=
N−1∑

n=0

x [n]e−jΩn. (7.120)

We note that being the z-transform evaluated on the unit circle, X(ejΩ) is periodic in Ω
with period 2π. In fact, for k integer

X
(
ej(Ω+2kπ)

)
=

N−1∑

n=0

x [n]e−j(Ω+2kπ)n =

N−1∑

n=0

x [n]e−jΩn = X
(
ejΩ
)
. (7.121)
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Similarly to the analysis of finite duration or periodic signals by Fourier series, the analysis
of finite duration or periodic sequences is the role of the DFT. Moreover, in the same way
that for continuous time signals the Fourier series is a sampling of the Fourier transform,
for discrete-time signals the DFT is a sampling of their Fourier transform. In particular,
for an N -point finite duration sequence or a sequence that is periodic with a period N ,
the DFT is in fact a uniform sampling of the Fourier transform such that the unit circle
is sampled into N points with an angular spacing of 2π/N , as shown in Fig. 7.30 for the
case N = 16. The continuous angular frequency Ω is replaced by the discrete N values
Ωk = 2πk/N, k = 0, 1, . . . , N − 1. Denoting the DFT by the symbol X [k] we have its
definition in the form

FIGURE 7.30 Unit circle divided into 16 points.

X [k] = X
(
ej2πk/N

)
=

N−1∑

n=0

x[n]e−j2πnk/N , k = 0, 1, 2, . . . , N − 1 (7.122)

Note that if Ts is the sampling period, the discrete domain frequency Ω, that is, the angle
around the unit circle, is related to the continuous domain frequency ω by the equation

Ω = ωTs. (7.123)

and vice versa
ω = Ω/Ts = Ωfs (7.124)

The fundamental frequency is the first sample of X [k] on the unit circle. It appears at an
angle Ω = 2π/N. If 0 ≤ k ≤ N/2, the kth sample on the unit circle is the kth harmonic of
x[n] and lies at an angle

Ω = k
2π

N
. (7.125)

It corresponds to a continuous-time domain frequency

ω = Ωfs = k
2π

N
fs r/s (7.126)

that is

f =
k

N
fs Hz. (7.127)

If k > N/2 then the true frequency is fs minus the frequency f thus evaluated, i.e.

ftrue = fs −
k

N
fs = (N − k)fs

N
Hz. (7.128)
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In other words, the index k is replaced by N − k to produce the true frequency.

Example 7.19 Given that the sampling frequency is fs = 10 kHz and an N = 500-point
DFT, evaluate the continuous-time domain frequency corrresponding to the kth sample on
the unit circle, with (a) k = 83 and (b) k=310. (c) To what continuous-time domain fre-
quency corresponds the interval between samples on the unit circle.

(a) f = (83/500)fs = (83/500)10000 = 1660 Hz.
(b) f = (500− 310/500)fs = (190/500)10000 = 3800 Hz.
(c) The frequency interval ∆f corresponds to a spacing of k = 1, i.e. ∆f = (1/500)fs =
10000/500 = 20 Hz.

We also note that the DFT is periodic in k with period N . This is the case since it’s a
sampling of the Fourier transform around the unit circle and

ej2π(k+mN)/N = ej2πk/N . (7.129)

The periodic sequence that is the periodic repetition of the DFT

X [k], k = 0, 1, 2, . . . (7.130)

is called the Discrete Fourier Series (DFS) and may be denoted by the symbol X̃[k]. The
DFT is therefore only one period of the DFS as obtained by setting k = 0, 1, . . . , N − 1.

From the definition of the DFT:

X [k] =

N−1∑

n=0

x[n]e−j2πnk/N , k = 0, 1, . . . , N − 1 (7.131)

the inverse transform can be evaluated by multiplying both sides of the equation by ej2πr/N .
We obtain

X [k]ej2πkr/N =

N−1∑

n=0

x[n]e−j2πk(n−r)/N . (7.132)

Effecting the sum of both sides with respect to k

N−1∑

k=0

X [k]ej2πkr/N =
N−1∑

k=0

N−1∑

n=0

x[n]e−j2πk(n−r)/N =
N−1∑

n=0

x[n]
N−1∑

k=0

e−j2πk(n−r)/N . (7.133)

For integer m we have

N−1∑

k=0

e−j2πkm/N =

{
N, for m = pN, p integer
0, otherwise

(7.134)

whence
N−1∑

k=0

e−j2πk(n−r)/N =

{
N, for n = r + pN, p integer
0, otherwise

(7.135)

i.e.
N−1∑

k=0

X [k]ej2πkr/N = Nx[r]. (7.136)

Replacing r by n we have the inverse transform

x[n] =
1

N

N−1∑

k=0

X [k]ej2πnk/N . (7.137)
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Example 7.20 Evaluate the DTFT and the DFT of the sequence

x[n] = cosBn RN (n)

The z-transform is given by

X (z) =

N−1∑

n=0

cosnBz−n =
1

2

N−1∑

n=0

(
ejBn + e−jBn

)
z−n.

Let a = ejB

X (z) =

N−1∑

n=0

(
anz−n + a∗nz−n

)
=

1

2

(
1− aNz−N

1− az−1
+

1− a∗Nz−N

1− a∗z−1

)
.

The transform X(z) can be rewritten

X (z) =
1− cosB z−1 − cosNB z−N + cos [(N − 1)B] z−(N+1)

1− 2 cosB z−1 + z−2
.

The Fourier transform is written

X
(
ejΩ
)

=
1

2

[
1− aNe−jNΩ

1− ae−jΩ
+

1− a∗Ne−jNΩ

1− a∗e−jΩ

]
.

The student can verify that X
(
ejΩ
)

can be written in the form

X
(
ejΩ
)

= 0.5
{
e−j(B−Ω)(N−1)/2SdN [(B − Ω) /2] + e−j(B+Ω)(N−1)/2SdN [(B + Ω)/2]

}

or, alternatively,

X
(
ejΩ
)

=
N

2
{Φ (Ω−B) + Φ (Ω +B)}

where

Φ (Ω) =
sin (NΩ/2)

N sin (Ω/2)
e−j(N−1)Ω/2.

FIGURE 7.31 The SdN function and transform.

The absolute value and phase angle of the function Φ (Ω) are shown in Fig. 7.31 for
N = 8.
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We note that the Fourier transform X
(
ejΩ
)

closely resembles the transform of a contin-
uous time truncated sinusoid. The DFT is given by

X [k] = X
(
ej2πk/N

)
=
N

2

{
Φ

(
2π

N
k −B

)
+ Φ

(
2π

N
k +B

)}
.

For the special case where the interval N contains an integer number of cycles we have

B =
2π

N
m, m = 0, 1, 2, . . .

X [k] = (N/2)

[
Φ

{
2π

N
(k −m)

}
+ Φ

{
2π

N
(k +m)

}]
=

{
N/2, k = m and k = N −m
0, otherwise.

The DFT is thus composed of two discrete impulses, one at k = m, the other at k = N−m.
Note that in the “well behaved” case B = 2πm/N we can evaluate the DFT directly by
writing

cos(Bn) =
1

2

{
ej 2π

N mn + e−j 2π
N mn

}
=

1

N

N−1∑

k=0

X [k]ej 2π
N nk, n = 0, 1, . . . , N − 1..

Equating the coefficients of the exponentials we have

X [k] =

{
N/2, k = m, k = N −m
0, otherwise.

We recall from Chapter 2 that the Fourier series of a truncated continuous-time sinusoid
contains in general two discrete sampling functions and that when the analysis interval
is equal to the period of the sinusoid or to a multiple thereof the discrete Fourier series
spectrum contains only two impulses. We see the close relation between the Fourier series
of continuous-time signals and the DFT of discrete-time signals.

7.17 Discrete Fourier Series

We shall use the notation x̃ [n] to denote a periodic sequence of period N , i.e.

x̃ [n] = x̃ [n+ kN ] , k integer. (7.138)

We shall write X̃ [k] = DFS [x̃ [n]] meaning x̃ [n]
DFS←→ X̃ [k]. Let x [n] be an aperiodic

sequence. A periodic sequence x̃ [n] may be formed thereof in the form

x̃ [n] = x [n] ∗
∞∑

k=−∞
δ [n+ kN ] =

∞∑

k=−∞
x [n+ kN ] , k integer. (7.139)

If x [n] is of finite duration 0 ≤ n ≤ N − 1, i.e. a sequence of length N the added shifted
versions thereof, forming x̃ [n], do not overlap, and we have

x̃ [n] = x [n mod N ] (7.140)
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where n mod N means n modulo N ; meaning the remainder of the integer division n÷N .
For example, 70 mod 32 = 6. In what follows, we shall use the shorthand notation

x̃[n] = x [[n]]N . (7.141)

If the sequence x [n] is of length L < N , again no overlapping occurs and in the range
0 ≤ n ≤ N − 1 the value of x̃ [n] is the same as x [n] followed by (N − L) zeros. If on the
other hand the length of the sequence x [n] is L > N , overlap occurs leading to superposition
(“aliasing”) and we cannot write x̃ [n] = x [n mod N ] .

7.18 DFT of a Sinusoidal Signal

Given a finite-duration sinusoidal signal xc(t) = sin(βt+θ)RT (t) of frequency β and duration
T , sampled with a sampling interval Ts and sampling frequency fs = 1/Ts Hz, i.e. ωs =
2π/Ts r/s and the signal period is τ = 2π/β. For simplicity of presentation we let θ = 0, the
more general case of θ 6= 0 being similarly developed. We presently consider the particular
case where the window duration T is a multiple m of the signal period τ i.e. T = mτ , as
can be seen in Fig. 7.32 for the case m = 3.

t
T

N-1

t  n,

x t x n( ), [ ]

Ts

0
4 128 2016

FIGURE 7.32 Sinusoid with three cycles during analysis window.

The discrete-time signal is given by x[n] = xc(nTs) = sin(Bn)RN [n], where B = βTs. We
also note that the N -point DFT analysis corresponds to the signal window duration

T = mτ = NTs. (7.142)

We may write

B = βTs =
2π

τ
Ts =

2π

N
m. (7.143)

sin(Bn) =
1

2j

{
ej 2π

N mn − e−j 2π
N mn

}
=

1

N

N−1∑

k=0

X [k]ej2πnk/N , n = 0, 1, . . . , N − 1.

Hence

X [k] =

{
∓jN/2, k = m, k = N −m
0, otherwise.
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We note that the fundamental frequency of analysis in the continuous-time domain, which
may be denoted by ω0 is given by ω0 = 2π/T . The sinusoidal signal frequency β is a multiple
m of the fundamental frequency ω0. In particular β = 2π/τ = mω0 and B = βTs = 2πm/N .
The unit circle is divided into N samples denoted k = 0, 1, 2, . . . , N − 1 corresponding to
the frequencies Ω = 0, 2π/N, 4π/N, . . . , (N − 1)π/N . The k = 1 point is the fundamental
frequency Ω0 = 2π/N . Since B = m2π/N it falls on the mth point of the circle as the mth

harmonic. Its conjugate falls on the point k = N − m. The following example illustrates
these observations.

Example 7.21 Given the signal xc(t) = sinβtRT (t), where β = 250π r/s and T = 24 ms.
A C/D converter samples this signal at a frequency of 1000 Hz. At what values of k does
the DFT X [k] display its spectral peaks?

The signal period is τ = 2π/β = 8 ms. The rectangular window of duration T contains
m = T/τ = 24/8 = 3 cycles of the signal as can be seen in Fig. 7.32. The sampling period is
Ts = 1 ms. The sampled signal is the sequence x[n] = sinBnRN [n], where B = βTs = π/4
and N = T/Ts = 24. The fundamental frequency of analysis is ω0 = 2π/T , and the signal
frequency is β = 2π/τ = (T/τ)ω0 = mω0. In the discrete-time domain

B = βTs =
2π

τ
Ts =

2π

T/m
Ts =

2π

N
m = mΩ0.

The spectral peak occurs at k = m = 3 and at k = N −m = 24− 3 = 21, which are the pole
positions of the corresponding infinite duration signal, as can be seen in Fig. 7.33.

6

12 0, , 2w ps

N = 24

23

18

b w=3 ,0 B

w W0 0,

FIGURE 7.33 Unit circle divided into 24 points.

Example 7.22 Let
v (t) = cos (25πt)RT (t)

Assuming a sampling frequency fs of 100 samples per second, evaluate the DFT if T = 1.28
sec.

Let Ts be the sampling interval. fs = 100 Hz, Ts = 1
fs

= 0.01 sec, N = T
Ts

= 1.28
0.01 = 128.

v [n] = cos (25π × nTs)RN (n) = cos (0.25πn)RN (n)=△ cos (Bn)RN (n) .

Writing B = 0.25π = (2π/N)m, we have m = 16. The DFT X [k] has a peak on the unit
circle at k = 16 and k = 128− 16 = 112.

V [k] =

{
N/2 = 64, k = 16, k = 112
0, otherwise.
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as seen in Fig. 7.34

FIGURE 7.34 DFT of a sequence.

7.19 Deducing the z-Transform from the DFT

Consider a finite duration sequence x [n] that is in general non-nil for 0 ≤ n ≤ N − 1 and
nil otherwise, and its periodic extension x̃ [n] with a period of repetition N

x̃ [n] =

∞∑

k=−∞
x [n+ kN ] . (7.144)

Since x [n] is of length N its periodic repetition with period N produces no overlap; hence
x̃ [n] = x [n] , 0 ≤ n ≤ N − 1. The z-transform of the sequence x [n] is given by

X (z) =

N−1∑

n=0

x [n] z−n (7.145)

and its DFS is given by

X̃ [k] =

N−1∑

n=0

x̃ [n] e−j2πkn/N
=△

N−1∑

n=0

x [n]W kn
N (7.146)

where WN = e−j2π/N is the N th root of unity. The inverse DFS is

x [n] = x̃ [n] =
1

N

N−1∑

k=0

X̃ [k] ej2πkn/N
=△

1

N

N−1∑

k=0

X̃ [k]W−kn
N , 0 ≤ n ≤ N − 1 (7.147)

and the z-transform may thus be deduced from the DFS and hence from the DFT. We have

X (z) =

N−1∑

n=0

x [n] z−n =

N−1∑

n=0

1

N

N−1∑

k=0

X̃ [k]W−kn
N z−n

=
1

N

N−1∑

k=0

X̃ [k]

N−1∑

n=0

W−kn
N z−n =

1− z−N

N

N−1∑

k=0

X̃ [k]

1−W−k
N z−1

=
1− z−N

N

N−1∑

k=0

X [k]

1−W−k
N z−1

(7.148)
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which is an interpolation formula reconstructing the z-transform from the N -point DFT on
the z-plane unit circle. We can similarly obtain an interpolation formula reconstructing the
transform X

(
ejΩ
)

from the DFT. To this end we replace z by ejΩ in the above obtaining

X
(
ejΩ
)

=
1

N

N−1∑

k=0

X̃ [k]
1−W−kN

N e−jΩN

1−W−k
N e−jΩ

=
1

N

N−1∑

k=0

X̃ [k]
1− ej(2π/N)kNe−jΩN

1−W−k
N e−jΩ

=
1

N

N−1∑

k=0

X̃ [k]e−j(Ω−2πk/N )(N−1)/2 sin {(Ω− 2πk/N)N/2}
sin {(Ω− 2πk/N) /2}

=
1

N

N−1∑

k=0

X̃ [k]e−j(Ω−2πk/N )(N−1)/2SdN [(Ω− 2πk/N) /2]

(7.149)

The function SdN (Ω/2) = sin (NΩ/2) / sin (Ω/2) is depicted in Fig. 7.35 for the case
N = 8. Note that over one period the function has zeros at values of Ω which are multiples
of 2π/N = 2π/8. In fact

SdN (rπ/N ) =
sin (rπ)

sin (rπ/N)
=

{
N, r = 0
0, r = 1, 2, . . . , N − 1.

(7.150)

Hence

X(ejΩ)|Ω=2πm/N =
1

N

N−1∑

k=0

X̃ [k]e−j(2π/N)(m−k)(N−1)/2

· SdN [π (m− k) /N ] = X̃ [m]

(7.151)

confirming that the Fourier transform X
(
ejΩ
)

curve passes through the N points of the
DFT.

p ppp W

N W

FIGURE 7.35 The function SdN (Ω/2).
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7.20 DFT versus DFS

The DFS is but a periodic repetition of the DFT. Consider a finite duration sequence x [n]
of length N , i.e. a sequence that is nil except in the interval 0 ≤ n ≤ N−1, we may extend
it periodically with period N , obtaining the sequence

x̃ [n] =
∞∑

k=−∞
x [n+ kN ] . (7.152)

The DFS of x̃ [n] is X̃ [k] and the DFT is simply

X [k] = X̃ [k] , 0 ≤ k ≤ N − 1. (7.153)

In other words the DFT is but the base period of the DFS. We may write the DFT in the
form

X [k] =

N−1∑

n=0

x̃ [n] e−j 2π
N nk =

N−1∑

n=0

x [n] e−j 2π
N nk, 0 ≤ k ≤ N − 1. (7.154)

The inverse DFT is

x [n] =
1

N

N−1∑

n=0

X [k] ej 2π
N nk, n = 0, 1, . . . , N − 1. (7.155)

In summary, as we have seen in Chapter 2, here again in evaluating the DFT of a sequence
x [n] we automatically perform a periodic extension of x [n] obtaining the sequence x̃ [n].
This in effect produces the sequence “seen” by the DFS. We then evaluate the DFS and
deduce the DFT by extracting the DFS coefficients in the base interval 0 ≤ k ≤ N − 1. It
is common in the literature to emphasize the fact that

X [k] = X̃ [k]RN [k] (7.156)

where RN [k] is the N -point rectangle RN [k] = u [k]−u [k −N ], that is, the DFT X [k] is an
N -point rectangular window truncation of the periodic DFS X̃ [k]. The result is an emphasis
on the fact that X [k] is nil for values of k other than 0 ≤ k ≤ N − 1. Such distinction,
however, adds no new information than that provided by the DFS, and is therefore of little
significance. In deducing and applying properties of the DFT a judicious approach is to
perform a periodic extension, evaluate the DFS and finally deduce the DFT as its base
period.

Example 7.23 Let x [n] be the rectangle x [n] = R4 [n]. Evaluate the Fourier transform,
the 8-point DFS and 8-point DFT of the sequence and its periodic repetition.

Referring to Fig. 7.36 we have

X
(
ejΩ
)

=
3∑

n=0

e−jΩn =
1− e−j4Ω

1− e−jΩ
=

e−j2Ω

e−jΩ/2

sin (4Ω/2)

sin Ω/2
= e−j3Ω/2Sd4 (Ω/2)

The DFS, with N = 8, of the periodic sequence x̃ [n] =
∞∑

k=−∞
x [n+ 8k] is

X̃ [k] = X
(
ejΩ
)∣∣

Ω=(2π/N)k
=

3∑

n=0

e−j 2π
N kn = e−j3(π/8)kSd4 (πk/8) .
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FIGURE 7.36 Rectangular sequence and periodic repetition.

The magnitude spectrum is

∣∣∣X̃ [k]
∣∣∣ =






4, k = 0
2.613, k = 1, 7
0, k = 2, 4, 6
1.082, k = 3, 5

which is plotted in Fig. 7.37. The DFT is the base period of the DFS, i.e.

X [k] = X̃ [k]RN [k] = e−j3πk/8Sd4 (πk/8) , k = 0, 1, . . . , 7.

4

0 1 2 3 4 5 6 7 8 9 10 k

| |X k[ ]
~

15-15

FIGURE 7.37 Periodic discrete amplitude spectrum.

7.21 Properties of DFS and DFT

The following are basic properties of DFS.
Linearity The linearity property states that if x̃1 [n] and x̃2 [n] are periodic sequences of
period N each then

x̃1 [n] + x̃2 [n]
DFS←→ X̃1 [k] + X̃2 [k] . (7.157)

Shift in Time The shift in time property states that

x̃ [n−m]
DFS←→ W km

N X̃ [k] . (7.158)

Shift in Frequency The dual of the shift in time property states that

x̃ [n]W−nm
N

DFS←→ X̃ [n−m] . (7.159)
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Duality From the definition of the DFS and its inverse we may write

x̃ [−n] =
1

N

N−1∑

k=0

X̃ [k]Wnk
N . (7.160)

Replacing n by k and vice versa we have

x̃ [−k] =
1

N

N−1∑

n=0

X̃ [n]Wnk
N =

1

N
DFS

[
X̃ [n]

]
. (7.161)

In other words if x̃ [n]
DFS←→ X̃ [k] then X̃ [n]

DFS←→ Nx̃ [−k] . This same property applies
to the DFT where, as always, operations such as reflection are performed on the periodic
extensions of the time and frequency sequences. The DFT is then simply the base period
of the periodic sequence, extending from index 0 to index N − 1.

Example 7.24 We have evaluated the DFT X [k] and DFS X̃ [k] of the rectangular se-
quence x[n] of Example 7.23 and its periodic extension x̃ [n] with a period N = 8,
respectively, shown in Fig. 7.36. From the duality property we deduce that given a sequence

y[n] = X [n] = X̃ [n]RN [n] = e−j3πn/8Sd4 (πn/8)RN [n]

i.e.
y[n] = e−j3πn/8Sd4 (πn/8) , n = 0, 1, . . . , 7

and its periodic repetition ỹ [n], the DFS of the latter is Ỹ [k] = Nx̃ [−k] and the DFT of
y[n] is

Y [k] = Nx̃ [−k]RN [k].

To visualize these sequences note that the complex periodic sequence

ỹ [n] = X̃ [n] = e−j3πn/8Sd4 (πn/8) ,

of which the absolute value is | ỹ [n] |=| X̃ [n] |, has the same absolute value as the spectrum
shown in Fig. 7.37 with the index k replaced by n. The sequence y[n] has an absolute value
which is the base N = 8-point period of this sequence and is shown in Fig. 7.38

0 1 2 3 4 5 6 7 n

y n X n[ ] = [ ]| | | |

4

FIGURE 7.38 Base-period |y[n]| of periodic absolute value sequence ỹ [n]

The transform Ỹ [k] = Nx̃ [−k] is visualized by reflecting the sequence x̃ [n] of Fig. 7.36
about the vertical axis and replacing the index n by k. The transform Y [k] is simply the
N -point base period of Ỹ [k], as shown in Fig. 7.39
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1 2 3 4 5 6 7 k

8

8 9 10 11

~
Y N X -k[k]= [ ]
~

-1-2-3

1 2 3 4 5 6 7 k

Y [k]

8

0

FIGURE 7.39 Reflection of a periodic sequence and base-period extraction.

7.21.1 Periodic Convolution

Given two periodic sequences x̃ [n] and ṽ [n] of period N each, multiplication of their DFS
X̃ [k] and Ṽ [k] corresponds to periodic convolution of x̃ [n] and ṽ [n]. Let w [n] denote the
periodic convolution, written in the form

w̃ [n] = x̃ [n] ⊛ ṽ [n] =

N−1∑

m=0

x̃ [m] ṽ [n−m] . (7.162)

The DFS of w̃ [n] is given by

W̃ [k] =

N−1∑

n=0

{
N−1∑

m=0

x̃ [m] ṽ [n−m]

}
e−j(2π/N)nk =

N−1∑

m=0

x̃ [m]

N−1∑

n=0

ṽ [n−m] e−j(2π/N)nk.

(7.163)
Let n−m = r

W̃ [k] =

N−1∑

m=0

x̃ [m]

−m+N−1∑

r=−m

ṽ [r] e−j(2π/N)(r+m)k

=
N−1∑

m=0

x̃ [m] e−j(2π/N)mk
N−1∑

r=0

ṽ [r] e−j(2π/N)rk = X̃ [k] Ṽ [k] .

(7.164)

In other words
x̃ [n] ⊛ ṽ [n]

DFS←→ X̃ [k] Ṽ [k] . (7.165)

The dual of this property states that

x̃ [n] ṽ [n]
DFS←→ (1/N) X̃ [k] ⊛ Ṽ [k] . (7.166)

Example 7.25 Evaluate the periodic convolution z̃ [n] = x̃ [n]⊛ ṽ [n] for the two sequences
x̃ [n] and ṽ [n] shown in Fig.7.40

Proceeding graphically as shown in the figure we fold the sequence ṽ [n] about its axis and
slide the resulting sequence ṽ [n−m] to the point m = n along the m axis evaluating
successively the sum of the product x̃ [m] ṽ [n−m] for each value of n. We obtain the value
of z̃ [n], of which the base period has the form shown in the following table.

n 0 1 2 3 4 5 6 7
z̃ [n] 16 12 7 3 6 10 13 17

The periodic sequence z̃ [n] is depicted in Fig. 7.41



442 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 7.40 Example of periodic convolution.

FIGURE 7.41 Circular convolution result.
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7.22 Circular Convolution

Circular convolution of two finite duration sequences, each N points long, is simply periodic
convolution followed by retaining only the base period. Symbolically we may write for N -
point circular convolution

x [n] N©v [n] = {x̃ [n] ⊛ ṽ [n]}RN [n] . (7.167)

x [n] N©v [n]
DFT←→ X [k]V [k] (7.168)

x [n] v [n]
DFT←→ (1/N)X [k] N©V [k] . (7.169)

The practical approach is therefore to simply perform periodic convolution then extract the
base period, obtaining the circular convolution.

In other words, circular convolution is given by

x [n] N©v [n] =

[
N−1∑

m=0

x̃ [m] ṽ [n−m]

]
RN [n] =

[
N−1∑

m=0

ṽ [m] x̃ [n−m]

]
RN [n] (7.170)

For the case of the two sequences defined in the last example, circular convolution would
be evaluated identically as periodic convolution z̃ [n], followed by retaining only its base
period, i.e.

x [n] N©v [n] = z̃ [n]RN [n]

x [n] N©v [n] = {16, 12, 7, 3, 6, 10, 13, 17}, for {n = 0, 1, 2, 3, 4, 5, 6, 7.}

Circular convolution can be related to the usual linear convolution. Let y [n] be the N -
point linear convolution of two finite length sequences x [n] and v [n]

y [n] = x [n] ∗ v [n] . (7.171)

Circular convolution is given by

z[n] = x [n] N©v [n] =

{ ∞∑

k=−∞
y [n+ kN ]

}
RN [n] . (7.172)

which can be written in the matrix form




z[0]
z[1]
...

z[N − 2]
z[N − 1]




=




x[0] x[N − 1] x[N − 2] . . . x[1]
x[1] x[0] x[N − 1] . . . x[2]

...
x[N − 2] x[N − 3] x[N − 4] . . . x[N − 1]
x[N − 1] x[N − 2] x[N − 3] . . . x[0]







v[0]
v[1]
...

v[N − 2]
v[N − 1]




(7.173)
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to be compared with linear convolution which with N = 6 for example, for better visibility,
can be written in the form



y[0]
y[1]
y[2]
y[3]
y[4]

y[N − 1]
y[N ]

y[N + 1]
y[N + 2]
y[N + 3]
y[2N − 2]




=




x[0]
x[1] x[0]
x[2] x[1] x[0]
x[3] x[2] x[1] x[0]
x[4] x[3] x[2] x[1] x[0]

x[N − 1] x[4] x[3] x[2] x[1] x[0]
x[N − 1] x[4] x[3] x[2] x[1]

x[N − 1] x[4] x[3] x[2]
x[N − 1] x[4] x[3]

x[N − 1] x[4]
x[N − 1]







v[0]
v[1]
v[2]
v[3]
v[4]

v[N − 1]



.

(7.174)
We note that in the linear convolution matrix of Equation (7.174) if the lower triangle,
starting at the N + 1st row (giving the value of y[n]) is moved up to cover the space of the
upper vacant triangle we would obtain the same matrix of the circular convolution matrix
(7.173). We may therefore write




z[0]
z[1]
...

z[N − 2]
z[N − 1]




=




y[0] + y[N ]
y[1] + y[N + 1]

...
y[N − 2] + y[2N − 2]

y[N − 1]




(7.175)

Circular convolution is therefore an aliasing of the linear convolution sequence y [n]. We also
note that if the sequences x [n] and v [n] are of lengths N1 and N2, the linear convolution
sequence y [n] is of length N1 + N2 − 1. If an N -point circular convolution is effected the
result would be the same as linear convolution if and only if N ≥ N1 +N2 − 1.

Example 7.26 Evaluate the linear convolution y [n] = x [n] ∗ v [n] of the sequences x [n]
and v [n] which are the base periods of x̃ [n] and ṽ [n] of the last example. Deduce the value
of circular convolution z [n] from y [n].

Proceeding similarly, as shown in Fig. 7.42, we obtain the linear convolution y [n] which
may be listed in the form of the following table.

n 0 1 2 3 4 5 6 7 8 9 10
y [n] 0 0 1 3 6 10 13 17 16 12 6

The sequence y [n] is depicted in Fig. 7.43.
To deduce the value of circular convolution z [n] from the linear convolution y [n] we con-
struct the following table, where z[n] = y[n] + y[n + 8], obtaining the circular convolution
z [n] as found above.

y [n] 0 0 1 3 6 10 13 17 16 12 6 0 0 0
y [n+ 8] 16 12 6 0 0 0 0 0 0 0 0 0 0 0
z [n] 16 12 7 3 6 10 13 17 0 0 0 0 0 0
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FIGURE 7.42 Linear convolution of two sequences.

n

16

12

8

4

1 2 83 4 5 6 7 9 10

y n[ ]

FIGURE 7.43 Linear convolution results.

7.23 Circular Convolution Using the DFT

The following example illustrates circular convolution using the DFT.

Example 7.27 Consider the circular convolution of the two sequences x̃ [n] and ṽ [n] of
the last example. We evaluate X̃ [k], Ṽ [k] and their product and verify that the circular
convolution z̃ [n] = x̃ [n] N©ṽ [n] has the DFS X̃ [k] = X̃ [k] Ṽ [k]. By extracting the N -
point base period we conclude that the DFT relation Z [k] = X [k]V [k] also holds.

The sequences x̃ [n] and ṽ [n] are periodic with period N = 8.
For 0 ≤ n ≤ 7 we have

x̃ [n] = δ [n] + δ [n− 1] + 2δ [n− 2] + 2δ [n− 3] + 3δ [n− 4] + 3δ [n− 5]

ṽ [n] = δ [n− 2] + 2 {δ [n− 3] + 2δ [n− 4] + 2δ [n− 5]}
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X̃ [k] =

N−1∑

n=0

x̃ [n] e−j(2π/N)nk

= 1 + e−j(2π/8)k + 2e−j(2π/8)2k + 2e−j(2π/8)3k + 3e−j(2π/8)4k + 3e−j(2π/8)5k

X [k] = X̃ [k]RN [k] = X̃ [k] , k = 0, 1, . . . , N − 1

Ṽ [k] = e−j(2π/8)2k + 2
{
e−j(2π/8)3k + e−j(2π/8)4k + e−j(2π/8)5k

}

V [k] = Ṽ [k]RN [k] = Ṽ [k] , k = 0, 1, . . . , N − 1.

Letting w = e−j(2π/8)k we have

X̃ [k] = 1 + w + 2w2 + 2w3 + 3w4 + 3w5

Ṽ [k] = w2 + 2w3 + 2w4 + 2w5.

Multiplying the two polynomials noticing that wk = wk mod 8, we have

Z̃ [k] = X̃ [k] Ṽ [k] = 16 + 12w + 7w2 + 3w3 + 6w4 + 10w5 + 13w6 + 17w7, 0 ≤ k ≤ N − 1

X [k]V [k] = Z̃ [k]RN [k] = Z̃ [k] , 0 ≤ k ≤ 7.

The inverse transform of Z̃ [k] is

z̃ [n] = 16δ [n] + 12δ [n− 1] + 7δ [n− 2] + 3δ [n− 3] + 6δ [n− 4]
+ 10δ [n− 5] + 13δ [n− 6] + 17δ [n− 7] , 0 ≤ n ≤ N − 1

and
z [n] = z̃ [n] , 0 ≤ n ≤ N − 1.

This is the same result obtained above by performing circular convolution directly in the
time domain. Similarly, the N -point Circular correlation of two sequences v[n] and x[n] may
be written

cvx[n] = v[n] N©x[−n]. (7.176)

and its DFT is
Cvx[k] = V [k]X∗[k]. (7.177)

7.24 Sampling the Spectrum

Let x [n] be an aperiodic sequence with z-transform X (z) and Fourier transform X
(
ejΩ
)
.

X (z) =

∞∑

n=−∞
x [n] z−n (7.178)

X
(
ejΩ
)

=

∞∑

n=−∞
x [n] e−jΩn. (7.179)

Sampling the z-transform on the unit circle uniformly into N points, that is at Ω =
[2π/N ] k, k = 0, 1, . . . , N − 1 we obtain the periodic DFS

X̃ [k] =
∞∑

n=−∞
x [n] e−j(2π/N)nk. (7.180)
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We recall, on the other hand, that the same DFS

X̃ [k] =

N−1∑

n=0

x̃ [n] e−j(2π/N)nk (7.181)

is the expansion of a periodic sequence x̃ [n] of period N . To show that x̃ [n] is but an
aliasing of the aperiodic sequence x [n] we use the inverse relation

x̃ [n] =
1

N

N−1∑

k=0

X̃ [k]ej(2π/N)nk =
1

N

N−1∑

k=0

∞∑

m=−∞
x [m]e−j(2π/N)mkej(2π/N)nk

=
1

N

∞∑

m=−∞
x [m]

N−1∑

k=0

ej(2π/N)(n−m)k.

(7.182)

Now

1

N

N−1∑

k=0

ej(2π/N)(n−m)k =

{
1, m− n = lN
0, otherwise

(7.183)

wherefrom

x̃ [n] =

∞∑

l=−∞
x [n+ lN ] (7.184)

confirming that sampling the Fourier transform of an aperiodic sequence x [n], leading to
the DFS, has for effect aliasing in time of the sequence x [n], which results in a periodic
sequence x̃ [n] that can be quite different from x [n]. If on the other hand x [n] is of length
N or less the resulting sequence x̃ [n] is a simple periodic extension of x [n]. Since the DFT
is but the base period of the DFS these same remarks apply directly to the DFT.

7.25 Table of Properties of DFS

Table 7.3 summarizes basic properties of the DFS expansion. Since the DFT of an N -point
sequence x [n] is but the base period of the DFS expansion of x̃ [n], the periodic extension
of x [n], the same properties apply to the DFT. We simply replace the sequence x [n] by
its periodic extension x̃ [n], apply the DFS property and extract the base period of the
resulting DFS. A table of DFT properties is included in Section 7.27. The following ex-
ample illustrates the approach in applying the shift in time property, which states that if
x̃ [n]←→ X̃ [k] then x̃ [n−m]←→ e−j(2π/N)kmX̃ [k].

Proof of Shift in Time Property Let ṽ [n] = x̃ [n−m]

Ṽ [k] =

N−1∑

n=0

x̃ [n−m] e−j(2π/N)km. (7.185)

Let n−m = r

Ṽ [k] =

−m+N−1∑

r=−m

x̃ [r] e−j(2π/N)k(r+m) = e−j(2π/N)km

N−1∑

r=0

x̃ [r] e−j(2π/N)kr = e−j(2π/N)kmX̃ [k]

as stated. Note that if the amount of shift m is greater than N the resulting shift is by m
mod N since the sequence x̃ [n] is periodic of period N .
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TABLE 7.3 DFS properties

Time n Frequency k

x̃ [n] X̃ [k]

x̃∗ [n] X̃∗ [−k]

x̃∗ [−n] X̃∗ [k]

x̃e [n] ℜ[X̃ [k]]

x̃o [n] jℑ[X̃ [k]]

x̃ [n−m] e−j(2π/N)kmX̃ [k]

ej(2π/N)mnx̃ [n] X̃ [k −m]

x̃ [n] ⊛ ṽ [n] X̃ [k] Ṽ [k]

x̃ [n] ṽ [n] (1/N) X̃ [k] ⊛ Ṽ [k]

7.26 Shift in Time and Circular Shift

Given a periodic sequence x̃ [n] of period N the name circular shift refers to shifting
the sequence by say, m samples followed by extracting the base period, that is, the pe-
riod 0 ≤ n ≤ N − 1. If we consider the result of the shift on the base period be-
fore and after the shift we deduce that the result is a rotation, a circular shift, of the
N samples. For example consider a periodic sequence x̃ [n] of period N = 8, which
has the values {. . . , 2, 9, 8, 7, 6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, . . .}. Its base period
x̃ [n] = 2, 9, 8, 7, 6, 5, 4, 3 for n = 0, 1, 2, . . . , 7, as shown in Fig. 7.44(a).

If the sequence is shifted one point to the right the resulting base period is x̃ [n− 1] =
3, 2, 9, 8, 7, 6, 5, 4 as shown in Fig. 7.44(b). If it is shifted instead by one point to the
left, the resulting sequence is x̃ [n+ 1] = 9, 8, 7, 6, 5, 4, 3, 2, as shown in Fig. 7.44(c).
We note that the effect is a simple rotation to the left by the number of shifts. If the
shift of x̃ [n] is to the right by three point the result is x̃ [n− 3] = 5, 4, 3, 2, 9, 8, 7, 6, as
shown in Fig. 7.44(d). The base period of x̃ [n] is given by x̃ [n]RN [n], that of x̃ [n−m]
is x̃ [n−m]RN [n] as shown in the figure. The arrow in the figure is the reference point.
Shifting the sequence x̃ [n] to the right by k points corresponds to the unit circle as a wheel
turning counterclockwise k steps and reading the values starting from the reference point
and vice versa.

Note: The properties listed are those of the DFS, but apply equally to the DFT with the
proper interpretation that x̃ [n] and X̃ [k] are periodic extensions of the N -point sequences
x [n] and X [k], that X [k] = X̃ [k]RN [k] and x [n] = x̃ [n]RN [n]. The shift in time
producing x̃ [n−m] is equivalent to circular shift and the periodic convolution x̃ [n] ⊛ ṽ [n]
is equivalent to cyclic convolution in the DFT domain.
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FIGURE 7.44 Circular shift operations.

7.27 Table of DFT Properties

TABLE 7.4 DFT properties

Time n Frequency k

x [n] X [k]

x∗ [n] X∗ [[−k]]N RN [k]

x∗ [[−n]]N RN [k] X∗ [k]

x [[n−m]]N RN [k] e−j(2π/N)kmX [k]

ej(2π/N)mnx [n] X [[k −m]]N RN [k]

x [n] N©v [n] X [k]V [k]

x [n] v [n] (1/N)X [k] N©V [k]

N−1∑

n=0

v[n]x∗[n]
1

N

N−1∑

k=0

V [k]X∗[k]

Properties of the DFT are listed in Table 7.4. As noted above, the properties are the



450 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

same as those of the DFS except for a truncation of a periodic sequence to extract its base
period.

7.28 Zero Padding

Consider a sequence of x [n] of length N defined over the interval 0 ≤ n ≤ N − 1 and zero
elsewhere, and its periodic repetition x̃ [n]. We study the effect on the DFT of annexing N
zeros, called padding with zeros leading to a sequence x2 [n] of length 2N . More generally,
we consider padding the sequence x [n] with zeros leading to a sequence x4 [n] say of length
4N , x8 [n] of length 8N and higher.

The addition of N zeros to the sequence implies that the new periodic sequence x̃2 [n]
is equivalent to a convolution of the original N -point sequence x [n] with an impulse train
of period 2N . The result is a sequence of a period double the original period N of the
sequence x̃ [n], which is but a convolution of the sequence x [n] with an impulse train of
period N . The effect of doubling the period is that in the frequency domain the DFS X̃2 [k]
and the DFT X2 [k] are but finer sampling of the unit circle; into 2N points rather than N
points. Similarly zero padding leading to a sequence x4 [n] of length 4N produces a DFT
X4 [k] that is a still finer sampling of the unit circle into 4N points, and so on. We conclude
that zero padding leads to finer sampling of the Fourier transform X

(
ejΩ
)
, that is, to an

interpolation between the samples of X [k].

The duality between time and frequency domains implies moreover that given a DFT
X [k] and DFS X̃ [k] of a sequence x [n], zero padding of the X [k] and, equivalently, X̃ [k],
leading to a DFT sequence X2 [k] corresponds to convolution in the frequency domain of
X [k] with an impulse train of period 2N . This implies multiplication in the time domain
of the sequence x [n] by an impulse train of double the frequency such that the resulting
sequence x2 [n] is a finer sampling, by a factor of two, of the original sequence x [n]. Similarly,
zero padding X [k] leading to a sequence X4 [k] of length 4N has for effect a finer sampling,
by a factor of 4, i.e. interpolation, of the original sequence x [n].

Example 7.28 Let x [n] = RN [n]

X
(
ejΩ
)

=

N−1∑

n=0

e−jΩn =
1− e−jΩN

1− e−jΩ
=
e−jΩN/2

e−jΩ/2

2j sin (ΩN/2)

2j sin (Ω/2)

= e−jΩ(N−1)/2 sin (NΩ/2)

sin (Ω/2)
= e−jΩ(N−1)/2SdN (Ω/2) .

We consider the case N = 4 so that x [n] = R4 [n] and then the case of padding x [n]
with zeros obtaining the 16 point sequence

y [n] =

{
x [n] , n = 0, 1, 2, 3
0, n = 4, 5, . . . , 15.

We have

X [k] =

3∑

n=0

e−j(2π/4)nk = X
(
ejΩ
)∣∣

Ω=(2π/4)k
= e−j(3/2)(π/2)kSd4 (kπ/4) =

{
N = 4, k = 0
0, k = 1, 2, 3
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Y [k] =

3∑

n=0

e−j(2π/16)nk =
1− e−j(2π/16)4k

1− e−j(2π/16)k

=
e−j(2π/16)2k

e−j(2π/16)k/2

sin [(2π/16) 2k]

sin [(2π/16) k/2]
= e−j(2π/16)(3k/2)Sd4 (kπ/16)

which is a four times finer sampling of X
(
ejΩ
)

than in the case of X [k].

Example 7.29 Consider a sinusoid xc(t) = sin(ω1t), where ω1 = 2πf1, sampled at a
frequency fs = 25600 Hz. The sinusoid is sampled for a duration of τ = 2.5 msec into N1

samples. The frequency f1 of xc(t) is such that in the time interval (0, τ) there are 8.5 cycles
of the sinusoid.

a) Evaluate the 64-point FFT of the sequence x[n] = xc(nTs), where Ts is the sampling
interval Ts = 1/fs.

b) Apply zero padding by annexing 192 zeros to the samples of the sequence x[n]. Evalu-
ate the 256-point FFT of the padded signal vector. Observe the interpolation and the higher
spectral peaks that appear thanks to zero padding.

The following MATLAB program evaluates the FFT of the signal x[n] and subsequently
that of the zero-padded vector xz[n].

% Zero padding example. Corinthios 2008
fs=25600 % sampling frequency
Ts=1/fs % sampling period Ts = 3.9063x10( − 5)
tau=0.0025 % duration of sinusoid
N1=0.0025/Ts % N1=64
t=(0:N1-1)*Ts % time in seconds
% tau contains 8.5 cycles of sinusoid and 64 samples.
tau1=tau/8.5 % tau1 is the period of the sinusoid.
% f1 is the frequency of the sinusoid in Hz.
f1=1/tau1
w1=2*pi*f1
x=sin(w1*t);
figure(1)
stem(t,x)
title(’x[n]’)
X=fft(x);
% N1=64 samples on unit circle cover the range 0 to fs Hz
freq=(0:63)*fs/64;
Xabs=abs(X);
figure(2)
stem(freq,Xabs)
title(’Xabs[k]’)
% Add 28 − 64 = 192 zeros.
N = 28

T = N ∗ Ts % Duration of zero-padded vector.
xz=[x zeros(1,192)]; % xz is x with zero padding
t = (0 : N − 1) ∗ Ts % t=(0:255)*Ts
figure(3)
stem(t,xz)
title(’Zero-padded vector xz[n]’)
Xz=fft(xz);
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Xzabs=abs(Xz);

freqf = (0 : 255) ∗ fs/256; % frequency finer-sampling vector

figure(4)

stem(freqf,Xzabs)

title(’Xzabs[k]’)

The signal x[n] is depicted in Fig. 7.45(a). The modulus |X [k]| of its DFT can be seen
in Fig. 7.45(b). We note that the signal frequency falls in the middle between two samples
on the unit circle. Hence the peak of the spectrum |X [k]| which should equal N1/2 = 32
falls between two samples and cannot be seen. The zero-padded signal xz [n] is shown in
Fig. 7.45(c). The modulus |Xz[k]| of the DFT of the zero padded signal can be seen in Fig.
7.45(d).
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FIGURE 7.45 Zero-padding: (a) A sinusoidal sequence, (b) 64-point DFT, (c) zero-padded
sequence to 256 points, (d) 256-point DFT of padded sequence.

We note that interpolation has been effected, revealing the spectral peak of N1/2 = 32,
which now falls on one of the N = 256 samples around the unit circle. By increasing the
sequence length through zero padding to N = 4N1 an interpolation of the DFT spectrum by
a factor of 4 has been achieved.
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7.29 Discrete z-Transform

A discrete z-transform (DZT) may be defined as the result of sampling a circle in the z-
plane centered about the origin. Note that the DFT is a special case of the DZT obtained
if the radius of the circle is unity. An approach to system identification pole-zero modeling
employing DZT evaluation and a weighting of z-transform spectra has been proposed as an
alternative to Prony’s approach. A system is given as a black box and the objective is to
evaluate its poles and zeros by applying a finite duration input sequence or an impulse and
observing its finite duration output. The approach is based on the fact that knowing only
a finite duration of the impulse response the evaluation of the DZT on a circle identifies
fairly accurately the frequency of the least damping poles.

FIGURE 7.46 3-D plot of weighted z-spectrum unmasking a pole pair.

However, identification of the components’ damping coefficients, i.e. the radius of the pole
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or pole-pair, cannot be deduced through radial z-transforms since spectra along a radial
contour passing through the pole-zero rises exponentially toward the origin of the z-plane
due to a multiple pole at the origin of the transform of such a finite duration sequence.
The proposed weighting of spectra unmasks the poles identifying their location in the z-
plane both in angle and radius as shown in Fig. 7.46 [26]. Once the pole locations and
their residues are found the zeros are deduced. The least damped poles are thus deleted
“deflating” the system, i.e. reducing its order. The process is repeated identifying the new
least damped poles and so on until all the poles and zeros have been identified. In [26] an
example is given showing the identification of a system of the 14th order.

Example 7.30 Given the sequence

x [n] = an {u [n]− u [n−N ]}

with a = 0.7 and N = 16.
a) Evaluate the z-transform X (z) of x [n], stating its region of convergence (ROC).
b) Evaluate and sketch the poles and zeros of X (z) in the z-plane.
c) Evaluate the z-transform on a circle of radius a in the z-plane.
d) Evaluate Xa [k], the DZT along the circle of radius a, by sampling the z-transform

along the circle at frequencies Ω = 0, 2π/N , 3π/N , . . ., (N − 1)π/N , similarly to the
sampling the DFT effects along the unit circle.

We have
x [n] = anRN [n]

a)

X (z) =

N−1∑

n=0

anz−n =
1− aNz−N

1− az−1
, z 6= 0

=
zN − aN

zN−1 (z − a) .

b) Zeros
aNz−N = 1 = e−j2πk

zN = aNej2πk

z = aej2πk/N = 0.7ej2πk/16

implying a coincidence pole-zero at z = a, pole of order N − 1 at z = 0. See Fig. 7.47.

FIGURE 7.47 Sampling a circle of general radius.

c)

X
(
aejΩ

)
=

1− e−jΩN

1− e−jΩ
= e−jΩ(N−1)/2 sin (NΩ/2)

sin (Ω/2)
= e−jΩ(N−1)/2SdN (Ω/2) .
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d)

Xa [k] =
1− e−j2πk

1− e−j2πk/N
=

{
N, k = 0
0, k = 1, 2, . . . , N − 1.

Example 7.31 Evaluate the Fourier transform of the sequence

x[n] =

{
1− |n|

N
, −N ≤ n ≤ N

0, otherwise

where N is odd. Using duality deduce the corresponding Fourier series expansion and Fourier
transform. Evaluate the Fourier transform of the sequence x1[n] = x[n−N ]. We may write

x[n] = v[n] ∗ v[n]

where
v[n] = Π(N−1)/2[n]

X
(
ejΩ
)

=
[
V
(
ejΩ
)]2

= Sd2
N (Ω/2) =

{
sin (NΩ/2)

sin (Ω/2)

}2

.

Using duality we have

Sd2
N (t/2)

FSC←→ Vn =

{
1− |n|

N
, −N ≤ n ≤ N

0, otherwise

and

Sd2
N (t/2)

F←→ V (jω) = 2π

N∑

n=−N

(1− |n| /N) δ (ω − n) .

X1

(
ejΩ
)

= e−jΩNSd2
N (Ω/2) .

7.30 Fast Fourier Transform

The FFT is an efficient algorithm that reduces the computations required for the evaluation
of the DFT. In what follows, the derivation of the FFT is developed starting with a simple
example of the DFT of N = 8 points. The DFT can be written in matrix form. This form
is chosen because it makes it easy to visualize the operations in the DFT and its conversion
to the FFT.

To express the DFT in matrix form we define an input data vector x of dimension N
the elements of which are the successive elements of the input sequence x[n]. Similarly we
define a vector X of which the elements are the coefficients X [k] of the DFT. The DFT

X [k] =

N−1∑

n=0

x [n]e−j2πnk/N (7.186)

can thus be written in the matrix form as X = FN x where FN is an N × N matrix of
which the elements are given by [FN ]rs = wrs and

w = e−j 2π
N . (7.187)
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The inverse relation is written

x =
1

N
F ∗NX. (7.188)

Note that premultiplication of a square matrix A by a diagonal matrix D producing the
matrix C = D A may be obtained by multiplying the successive elements of the diagonal
matrix D by the successive rows of A. Conversely, postmultiplication of a square matrix A
by a diagonal matrixD producing the matrix C = A D may be obtained by multiplying the
successive elements of the diagonal matrix D by the successive columns of A. The following
example shows the factorization of the matrix FN , which leads to the FFT.

Example 7.32 Let N = 8. The unit circle is divided as shown in Fig. 7.48. Since w4 =
−w0, w5 = −w1, w6 = −w2, and w7 = −w3, we have

X =




w0 w0 w0 w0 w0 w0 w0 w0

w0 w1 w2 w3 w4 w5 w6 w7

w0 w2 w4 w6 w0 w2 w4 w6

w0 w3 w6 w1 w4 w7 w2 w5

w0 w4 w0 w4 w0 w4 w0 w4

w0 w5 w2 w7 w4 w1 w6 w3

w0 w6 w4 w2 w0 w6 w4 w2

w0 w7 w6 w5 w4 w3 w2 w1







x0

x1

x2

x3

x4

x5

x6

x7




=




w0 w0 w0 w0 w0 w0 w0 w0

w0 w1 w2 w3 −w0 −w1 −w2 −w3

w0 w2 −w0 −w2 w0 w2 −w0 −w2

w0 w3 −w2 w1 −w0 −w3 w2 −w1

w0 −w0 w0 −w0 w0 −w0 w0 −w0

w0 −w1 w2 −w3 −w0 w1 −w2 w3

w0 −w2 −w0 w2 w0 −w2 −w0 w2

w0 −w3 −w2 −w1 −w0 w3 w2 w1







x0

x1

x2

x3

x4

x5

x6

x7




.

FIGURE 7.48 Unit circle divided into N = 8 points.



Discrete-Time Fourier Transform 457

We may rewrite this matrix relation as the set of equations

X0 = x0 + x1 + . . . x7

X1 = (x0 − x4)w
0 + (x1 − x5)w

1 + (x2 − x6)w
2 + (x3 − x7)w

3

X2 = (x0 + x4)w
0 + (x1 + x5)w

2 − (x2 + x6)w
0 − (x3 + x7)w

2

X3 = (x0 − x4)w
0 + (x1 − x5)w

3 − (x2 − x6)w
2 + (x3 − x7)w

1

X4 = (x0 + x4)w
0 − (x1 + x5)w

0 + (x2 + x6)w
0 − (x3 + x7)w

0

X5 = (x0 − x4)w
0 − (x1 − x5)w

1 + (x2 − x6)w
2 − (x3 − x7)w

3

X6 = (x0 + x4)w
0 − (x1 + x5)w

2 − (x2 + x6)w
0 + (x3 + x7)w

2

X7 = (x0 − x4)w
0 − (x1 − x5)w

3 − (x2 − x6)w
2 − (x3 − x7)w

1.

These operations can be expressed back in matrix form:

X =




w0 w0 w0 w0

w0 w1 w2 w3

w0 w2 −w0 −w2

w0 w3 −w2 w1

w0 −w0 w0 −w0

w0 −w1 w2 −w3

w0 −w2 −w0 w2

w0 −w3 −w2 −w1







x0 + x4

x1 + x5

x2 + x6

x3 + x7

x0 − x4

x1 − x5

x2 − x6

x3 − x7




︸ ︷︷ ︸
g

.

Calling the vector on the right g, we can rewrite this equation in the form:

X =




w0 w0 w0 w0

w0 w0 w0 w0

w0 w2 −w0 −w2

w0 w2 −w0 −w2

w0 −w0 w0 −w0

w0 −w0 w0 −w0

w0 −w2 −w0 w2

w0 −w2 −w0 w2




diag
(
w0, w0, w0, w0, w0, w1, w2, w3

)
g.

Let

h = diag
(
w0, w0, w0, w0, w0, w1, w2, w3

)
g.

A graphical representation of this last equation is shown on the left side of Fig. 7.49. We
can write

X0 = (h0 + h2)w
0 + (h1 + h3)w

0

X1 = (h4 + h6)w
0 + (h5 + h7)w

0

X2 = (h0 − h2)w
0 + (h1 − h3)w

2

X3 = (h4 − h6)w
0 + (h5 − h7)w

2

X4 = (h0 + h2)w
0 − (h1 + h3)w

0

X5 = (h4 + h6)w
0 − (h5 + h7)w

0

X6 = (h0 − h2)w
0 − (h1 − h3)w

2

X7 = (h4 − h6)w
0 − (h5 − h7)w

2
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which can be rewritten in the form

X =




w0 w0

w0 w0

w0 w2

w0 w2

w0 −w0

w0 −w0

w0 −w2

w0 −w2







h0 + h2

h1 + h3

h0 − h2

h1 − h3

h4 + h6

h5 + h7

h4 − h6

h5 − h7




︸ ︷︷ ︸
l

.

FIGURE 7.49 Steps in factorization of the DFT.

Denoting by l the vector on the right, the relation between the vectors h and l can be repre-
sented graphically as shown in the figure. We can write

X =




w0 w0

w0 w0

w0 w0

w0 w0

w0 −w0

w0 −w0

w0 −w0

w0 −w0




diag
(
w0, w0, w0, w2, w0, w0, w0, w2

)
l.

Let

v = diag
(
w0, w0, w0, w2, w0, w0, w0, w2

)
l.
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We have

X0 = (v0 + v1)
X1 = (v4 + v5)
X2 = (v2 + v3)
X3 = (v6 + v7)
X4 = (v0 − v1)
X5 = (v4 − v5)
X6 = (v2 − v3)
X7 = (v6 − v7) .

These relations are represented graphically in the figure. The overall factorization diagram
is shown in Fig. 7.50.

FIGURE 7.50 An FFT factorization of the DFT.

We note that the output of the diagram is not the vector X in normal order. The output
vector is in fact a vector X ′ which is the same as X but is in “reverse bit order.”

We now write this factorization more formally in order to obtain a factorization valid for
an input sequence of a general length of N elements. Let

T2 =

[
1 1
1 −1

]
. (7.189)

The Kronecker product A × B of two matrices A and B result in a matrix having the
elements bij of B replaced by the product Abij . For example, let

A =

[
a00 a01

a10 a11

]
(7.190)

and

B =

[
b00 b01
b10 b11

]
. (7.191)
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The Kronecker product A×B is given by:

A×B =

[
Ab00 Ab01
Ab10 Ab11

]
=




a00b00 a01b00 a00b01 a01b01

a10b00 a11b00 a10b01 a11b01

a00b10 a01b10 a00b11 a01b11

a10b10 a11b10 a10b11 a11b11




(7.192)

so that we may write, e.g.,

I4 × T2 =




1 1
1 1

1 1
1 1

1 −1
1 −1

1 −1
1 −1




. (7.193)

Let

D2 = diag(w0, w0) = diag(1, 1) (7.194)

D4 = diag(w0, w0, w0, w2) (7.195)

D8 = diag(w0, w0, w0, w0, w0, w1, w2, w3). (7.196)

Using these definitions we can write the matrix relations using the Kronecker product. We
have

g = (I4 × T2)x (7.197)

h = D8 g (7.198)

l = (I2 × T2 × I2)h (7.199)

v = (D4 × I2)l (7.200)

X ′ = (T2 × I4)v = col [X0, , X4, , X2, , X6, , X1, , X5, , X3, , X7] (7.201)

where “col” denotes a column vector. The global factorization that produces the vector X ′

is written:

X ′=△F
′
8x = (T2 × I4)(D4 × I2)(I2 × T2 × I2)D8(I4 × T2)x. (7.202)

Represented graphically, this factorization produces identically the same diagram as the one
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shown in Fig. 7.50. The factorization of the matrix F8
′ is given by

F ′8 =




1 1
1 -1

1 1
1 -1

1 1
1 -1

1 1
1 -1







1
1
w0

w2

1
1
w0

w2







1 1
1 1

1 -1
1 -1

1 1
1 1

1 -1
1 -1







1
1

1
1
w0

w1

w2

w3







1 1
1 1

1 1
1 1

1 -1
1 -1

1 -1
1 -1




(7.203)

and may be written in the closed form

F ′8 =

3∏

i=1

(D2i × I23−i) (I2i−1 × T2 × I23−i ). (7.204)

This form can be generalized. For N = 2n, writing [17]

K2i = diag(w0, w2i

, w2×2i

, w3×2i

, . . .) (7.205)

and
D2n−i = Quasidiag(I2n−i−1 , K2i). (7.206)

A matrix
X = Quasidiag(A, B, C, . . .) (7.207)

is one which has the matrices A, B, C, . . . along its diagonal and zero elements elsewhere.
We can write the factorization in the general form

F ′N =

n∏

i=1

(D2i × I2n−i) (I2i−1 × T2 × I2n−i) . (7.208)

As noted earlier from factorization diagram, Fig. 7.50, the coefficients X ′i of the transform
are in reverse bit order. For N = 8, the normal order (0, 1, 2, 3, 4, 5, 6, 7) in 3-bit binary
is written:

(000, 001, 010, 011, 100, 101, 110, 111) . (7.209)

The bit reverse order is written:

(000, 100, 010, 110, 001, 101, 011, 111) (7.210)

which is in decimal: (0, 4, 2, 6, 1, 5, 3, 7). The DFT coefficients X [k] in the diagram,
Fig. 7.50 can be seen to be in this reverse bit order.

We note that the DFT coefficients X [k] are evaluated in log2 8 = 3 iterations, each
iteration involving 4 operations (multiplications). For a general value N = 2n the FFT
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factorization includes log2N = n iterations, each containing N/2 operations for a total of
(N/2) log2N operations. This factorization is a base-2 factorization applicable if N = 2n,
as mentioned above. If the number of points N of the finite duration input sequence satisfies
that N = rn where r, called the radix or base, is an integer, then the FFT reduces the
number of complex multiplications needed to evaluate the DFT from N2 to (N/r) logr N .
For N = 1024 and r = 2, the number of complex multiplications is reduced from about
106 to about 500× 10 = 5000. With r = 4 this is further reduced to 256× 5 = 1280.

7.31 An Algorithm for a Wired-In Radix-2 Processor

The following is a summary description of an algorithm and a wired-in processor for radix-2
FFT implementation [17].

Consider the DFT F [k] of an N -point sequence f [k]

F [k] =

N−1∑

n=0

f [n] e−j2πnk/N . (7.211)

Writing fn ≡ f [n], Fk ≡ F [k] and constructing the vectors

f = col (f0, f1, . . . , fN−1) (7.212)

F = col (F0, F1, . . . , FN−1) . (7.213)

The TDF may be written in the matrix form

F = TNf. (7.214)

where the elements of the matrix TN are given by

(TN)nk = exp (−2πjnk/N) . (7.215)

Letting
w = e−j2π/N = cos (2π/N)− j sin (2π/N) (7.216)

(TN)nk = wnk (7.217)

TN =




w0 w0 w0 w0 . . . w0

w0 w1 w2 w3 . . . wN−1

w0 w2 w4 w6 . . . w2(N−1)

...
...

...
...

...
...

w0 wN−1 w2(N−1) w3(N−1) . . . w(N−1)2



. (7.218)

To reveal the symmetry in the matrix TN we rearrange its rows by writing

TN = PNP
−1
N TN = PNT

′
N (7.219)

where in general PK is the “perfect shuffle” permutation matrix which is defined by its
operation on a vector of dimension K by the relation

PK col (x0, x1, . . . , xK−1)
= col

(
x0, xK/2, x1, xK/2+1, x2, xK/2+2, . . . , xK−1

) (7.220)
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and therefore P−1
K is a permutation operator which applied on a vector of dimension K

would group the even and odd-ordered elements together, i.e.,

P−1
K · col (x0, x1, x2, . . . , xK−1) = col (x0, x2, x4, . . . , x1, x3, x5, . . .) (7.221)

and
T ′N = P−1

N TN . (7.222)

For example, for N = 8, T ′N can be written using the property of w

wk = wk mod N (7.223)

T ′N =




w0 w0 w0 w0 w0 w0 w0 w0

w0 w2 w4 w6 w0 w2 w4 w6

w0 w4 w0 w4 w0 w4 w0 w4

w0 w6 w4 w2 w0 w6 w4 w2

w0 w1 w2 w3 w4 w5 w6 w7

w0 w3 w6 w1 w4 w7 w2 w5

w0 w5 w2 w7 w4 w1 w6 w3

w0 w7 w6 w5 w4 w3 w2 w1




. (7.224)

The matrix T ′N can be factored in the form

T ′N =

[
YN/2 YN/2

YN/2K1 −YN/2K1

]
(7.225)

TN = PN ·
[
YN/2 φ
φ YN/2

] [
IN/2 IN/2

K1 −K1

]

= PN ·
[
YN/2 φ
φ YN/2

] [
IN/2 φ
φ K1

] [
IN/2 IN/2

IN/2 −IN/2

] (7.226)

where, K1 = diag
(
w0, w1, w2, w3

)
and φ indicates the null matrix of appropriate dimen-

sion.
This process can be repeated, partitioning and factoring the matrix YN/2. Carrying the

process to completion yields the FFT. This process can be described algebraically as follows.
We rewrite the last factored matrix equation in the form

TN = PN

(
YN/2 × I2

)
DN

(
IN/2 × T2

)
(7.227)

where DN is an N × N diagonal matrix, Quasidiag
(
IN/2, K1

)
, and in general Ik is the

identity matrix of dimension k. The “core matrix” T2 is given by

T2 =

[
1 1
1 -1

]
. (7.228)

If we continue this process further we can factor the N/2×N/2 matrix YN/2 in the form

YN/2 = PN/2

(
YN/4 × I2

)
DN/2

(
IN/4 × T2

)
(7.229)

where DN/2 = Quasidiag
(
IN/4, K2

)
and K2 = diag

(
w0, w2, w4, w6, . . .

)
.

In general, if we write k = 2i, i = 0, 1, 2, 3, . . . then

YN/k = PN/k

(
YN/2k × I2

)
DN/k

(
IN/2k × T2

)
(7.230)
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where
DN/k = Quasidiag

(
IN/2k, Kk

)
(7.231)

and
Kk = diag (0, k, 2k, 3k, . . .) . (7.232)

Carrying this iterative procedure to the end and substituting into the original factored form
of TN we obtain the complete factorization

TN = PN

[{
PN/2

[{
. . . PN/k [{. . . [{P4 (T2 × I2)D4 (I2 × T2)} × I2

]
. . .}

×I2]DN/k

(
IN/2k × T2

)
. . .} ×I2]DN/2

(
IN/4 × T2

)}
×I2]DN

(
IN/2 × T2

)
.

(7.233)

7.31.1 Post-Permutation Algorithm

A useful relation between the Kronecker product and matrix multiplication is the transfor-
mation of a set A, B, C, . . . of dimensionally equal square matrices, described by

(ABC . . .)× I = (A× I) (B × I) (C × I) . . . . (7.234)

Applying this property we obtain

TN = PN

(
PN/2 × I2

)
. . .
(
PN/k × Ik

)
. . .
(
P4 × IN/4

)
·
(
T2 × IN/2

) (
D4 × IN/4

)
(
I2 × T2 × IN/4

)
. . . ·

(
DN/k × Ik

) (
IN/2k × T2 × Ik

)
. . .

·
(
DN/2 × I2

) (
IN/4 × T2 × I2

)
DN

(
IN/2 × T2

)
.

(7.235)

The product of the permutation matrices in this factorization is a reverse-bit ordering
permutation matrix. The rest of the right-hand side is the computational part.

In building a serial machine (serial-word, parallel-bit), it is advantageous to implement a
design that allows dynamic storage of the data in long dynamic shift registers, and which
does not call for accessing data except at the input or output of these registers. To achieve
this goal, a transformation should be employed that expresses the different factors of the
computation part of the factorization in terms of the first operator applied to the data, i.e.,(
IN/2 × T2

)
, since this operator adds and subtracts data that are N/2 points apart, the

longest possible distance. This form thus allows storage of data into two serially accessed
long streams.

The transformation utilizes the perfect shuffle permutation matrix P = PN having the
property

P−1
(
IN/2 × T2

)
P = IN/4 × T2 × I2, (7.236)

P−2
(
IN/2 × T2

)
P 2 = IN/8 × T2 × I4. (7.237)

and similar expressions for higher powers of P . If we write

S =
(
IN/2 × T2

)
(7.238)

then in general
P−iSP i = IN/2i+1 × T2 × I2i . (7.239)

Substituting we obtain

TN = Q1Q2 . . . Qn−1P
−(n−1)SP (n−1)M2P

−(n−2)SP (n−2) . . . · P−2SP 2Mn−1P
−1SPMnS

where
Qi = PN/2i−1 × I2i−1 (7.240)
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Mi = DN/2n−i × I2n−i . (7.241)

Note that Pn = IN so that Pn−i = P−i and P−(n−1) = P . Letting

µi = Pn−iMiP
−(n−i) = I2n−i ×D2i (7.242)

µ1 = M1 = IN , µn = Mn = DN . (7.243)

We have

TN = Q1Q2 . . .Qn−1PSPµ2SPµ3S . . . Pµn−2SPµn−1SPµnS =

n−1∏

i=1

(Qi)

n∏

m=1

(PµmS)

(7.244)

7.31.2 Ordered Input/Ordered Output (OIOO) Algorithm

The permutation operations can be merged into the iterative steps if we use the property

Pk

(
Ak/2 × I2

)
P−1

k = I2 ×Ak/2 (7.245)

and

Pk (ABC . . .)P−1
k =

(
PkAP

−1
k

) (
PkBP

−1
k

) (
PkCP

−1
k

)
. . . (7.246)

where the matrices A, B, C, . . . are of the same dimension as Pk. Applying these transfor-
mations we obtain

TN = [I2 × {I2× { . . . I2× {. . . I2× {I2× {(I2 × T2)P4D4 (I2 × T2)}
. . .}PN/kDN/k

(
IN/(2k) × T2

)
. . .PN/2DN/2

(
IN/4 × T2

)}]
· PNDN

(
IN/2 × T2

)

=
(
IN/k × T2

) (
IN/4 × P4

) (
IN/4 ×D4

) (
IN/2 × T2

)
. . .
(
Ik × PN/k

) (
Ik ×DN/k

)
(
IN/2 × T2

)
. . .
(
I2 × PN/2

) (
I2 ×DN/2

) (
IN/2 × T2

)
PNDN

(
IN/2 × T2

)
.

(7.247)
which can be rewritten in the form

TN = Sp2µ2Sp3µ3 . . . Spn−1µn−1SpnµnS =

n∏

m=1

(pmµmS) (7.248)

where

pi = I2n−i × P2i (7.249)

p1 = IN and µi is as given above.

Example 7.33 For N = 8

F = S p2 µ2 S p3 µ3 S f
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F =




1 1
1 1

1 1
1 1

1 -1
1 -1

1 -1
1 -1







1
1

1
1

1
1

1
1







1
1

1
1
w0

w0

w2

w2







1 1
1 1

1 1
1 1

1 -1
1 -1

1 -1
1 -1







1
1

1
1

1
1

1
1







1
1

1
1
w0

w1

w2

w3







1 1
1 1

1 1
1 1

1 -1
1 -1

1 -1
1 -1







f0
f1
f2
f3
f4
f5
f6
f7




.

The post-permutation algorithm and the OIOO machine-oriented algorithm lead to opti-
mal wired-in architecture where no addressing is required and where data are to be operated
upon are optimally spaced. We shall see later in this chapter that by slightly relaxing the
condition on wired-in architecture we can eliminate the the feedback permutation phase,
attaining higher processing speeds. For now, however, we consider the possibility of reducing
the number of iterations, through parallelism, by employing a higher radix FFT factoriza-
tion. The resulting processor architectures, both for radix 2 and for higher radices FFT
factorizations will be discussed in Chapter 15.

7.32 Factorization of the FFT to a Higher Radix

Factorizations to higher radices r = 4, 8, 16, . . . reduce the number of operations to
(N/r) logr(N), N = rn. References [20] [22] [24] [28] [41] proposed parallel higher radix
OIOO factorizations of the FFT. They employ a general radix perfect shuffle matrix intro-
duced in [24] and has applications that go beyond the FFT [69]. These factorizations are
optimal, leading to parallel wired-in processors eliminating the need for addressing, mini-
mizing the number of required memory partitions and produce coefficients in the normal
ascending order. A summary presentation of the higher radix matrix factorization follows.
As stated above the DFT X [k] of an N -point sequence x [n] may be written in the matrix
form X = TNx and TN the N × N DFT matrix. To obtain higher radix versions of the
FFT, we first illustrate the approach on a radix-4 FFT. Consider the DFT matrix with
N = 16. The DFT matrix is

T16 =




w0 w0 w0 . . . w0

w0 w1 w2 . . . w15

w0 w2 w4 . . . w14

...
...

...
...

...
w0 w15 w14 . . . w1




(7.250)
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where w = e−j2π/N . We start, similarly to the radix-2 case seen above, by applying the
base-4 perfect shuffle permutation matrix of a 16-point vector, PN with N = 16 defined
by

P16 {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}
= {x0, x4, x8, x12, x1, x5, x9, x13, x2, x6, x10, x14, x3, x7, x11, x15} . (7.251)

and its inverse P ′16=
△P−1

16 = P16. Writing T16 = P16T
′
16, i.e. T ′16 = P−1

16 T16 = P16T16 we
obtain

T ′16 =




w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0

w0 w4 w8 w12 w0 w4 w8 w12 w0 w4 w8 w12 w0 w4 w8 w12

w0 w8 w0 w8 w0 w8 w0 w8 w0 w8 w0 w8 w0 w8 w0 w8

w0 w12 w8 w4 w0 w12 w8 w4 w0 w12 w8 w4 w0 w12 w8 w4

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

w0 w5 w10 w15 w4 w9 w14 w3 w8 w13 w2 w7 w12 w1 w6 w11

w0 w9 w2 w11 w4 w13 w6 w15 w8 w1 w10 w3 w12 w5 w14 w7

w0 w13 w10 w7 w4 w1 w14 w11 w8 w5 w2 w15 w12 w9 w6 w3

w0 w2 w4 w6 w8 w10 w12 w14 w0 w2 w4 w6 w8 w10 w12 w14

w0 w6 w12 w2 w8 w14 w4 w10 w0 w6 w12 w2 w8 w14 w4 w10

w0 w10 w4 w14 w8 w2 w12 w6 w0 w10 w4 w14 w8 w2 w12 w6

w0 w14 w12 w10 w8 w6 w4 w2 w0 w14 w12 w10 w8 w6 w4 w2

w0 w3 w6 w9 w12 w15 w2 w5 w8 w11 w14 w1 w4 w7 w10 w13

w0 w7 w14 w5 w12 w3 w10 w1 w8 w15 w6 w13 w4 w11 w2 w9

w0 w11 w6 w1 w12 w7 w2 w13 w8 w3 w14 w9 w4 w15 w10 w5

w0 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1




=




YN/4 YN/4 YN/4 YN/4

YN/4K1 −jYN/4K1 −YN/4K1 jYN/4K1

YN/4K2 −YN/4K2 YN/4K2 −YN/4K2

YN/4K3 jYN/4K3 −YN/4K3 −jYN/4K3




where

K1 = diag
(
w0, w1, w2, w3

)
, K2 = diag

(
w0, w2, w4, w6

)
, K3 = diag

(
w0, w3, w6, w9

)

T16 = P16




YN/4

YN/4

YN/4

YN/4







I4 I4 I4 I4
K1 −jK1 −K1 jK1

K2 −K2 K2 −K2

K3 jK3 −K3 −jK3




= P16




YN/4

YN/4

YN/4

YN/4







I4
K1

K2

K3







I4 I4 I4 I4
I4 −jI4 −I4 jI4
I4 −I4 I4 −I4
I4 jI4 −I4 −jI4




T4 =




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j


 (7.252)

is the radix-4 core matrix. We may therefore write

TN = PN

(
YN/4 × I4

)
DN (I4 × T4) . (7.253)
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More generally, with a general radix r and N = rn the factorization takes the form

TN = PN

(
YN/r × Ir

)
DN (Ir × Tr) (7.254)

where the base-r perfect shuffle permutation matrix is written PN ≡ P
(r)
N . Operating

on a column vector x of dimension K, the base-p perfect shuffle permutation matrix of
dimension K ×K divides the vector into p consecutive subvectors, K/p elements each and
selects successively one element of each subvector so that

P
(p)
K x =

[
x0, xK/p, x2K/p, . . . , x(p−1)K/p, x1, xK/p+1, . . . , x2, xK/p+2, . . . , xK−1

]
.

(7.255)
Following similar steps to the radix-2 we obtain a post-permutation factorization and in
particular OIOO factorization [24].

Asymmetric Algorithms
For the case N = rn, where n is integer, we can write

TN = P
(r)
N T ′N (7.256)

where,

T ′N = P
′(r)
N TN (7.257)

and
PN

(r)′ = PN
(r)−1

(7.258)

YN/k = P
(r)
N/k

(
YN/rk × Ir

)
D

(r)
N/k

(
IN/rk × Tr

)
(7.259)

where
D

(r)
N/k = quasi− diag(IN/rk , Kk, K2k, K3k, . . . , K(r−1)k) (7.260)

Km = diag {0, m, 2m, 3m, . . . , (N/rk − 1)m} . (7.261)

for any integer m,

Tr =




w0 w0 w0 w0 . . . w0

w0 wN/r w2N/r w3N/r . . . w(r−1)N/r

w0 w2N/r w4N/r w6N/r . . . w2(r−1)N/r

...
...

...
...

...
...

w0 w(r−1)N/r . . . . . . . . . w(r−1)2N/r




(7.262)

and Ik is the unit matrix of dimension k.
By starting with the matrix TN and replacing in turn every matrix YN/k by its value in

terms of YN/rk according to the recursive relation described by Equation (7.259), we arrive
at the complete factorization. If we then apply the relation between the Kronecker product
and matrix multiplication, namely,

(ABC . . .)× I = (A× I)(B × I)(C × I) . . . . (7.263)

where A, B, C, . . ., I are all square matrices of the same dimension, we arrive at the general
radix-r FFT

TN = P
(r)
N (P

(r)
N/r × Ir) . . . (P

(r)
N/r × Ik) . . . (P

(r)
r2 × IN/r2)

·(Tr × IN/r)(Dr2 × IN/r2)(Ir × Tr × IN/r2) . . .

·(D(r)
N/r × Ir)(IN/rk × Tr × Ik) . . .

·(D(r)
N/r × Ir)(IN/r2 × Tr × Ik)D

(r)
N (IN/r × Tr)

(7.264)
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To obtain algorithms that allow wired-in design we express each of the factors in the compu-
tation part of this equation (that is, those factors not including the permutation matrices)
in terms of the least factor. If we denote this factor by

S(r) =
(
IN/r × Tr

)
(7.265)

and utilize the property of the powers of shuffle operators, namely,

{
P

(r)
N

}−i

S
(r)
N

{
P

(r)
N

}i

= IN/ri+1 × Tr × Iri . (7.266)

We obtain the post-permutation machine-oriented FFT algorithm;

TN =

n−1∏

i=1

Q
(r)
i

n∏

m=1

(
P (r)µ(r)

m S(r)
)

(7.267)

where
Qi = P

(r)
N/ri−1 × Iri−1 (7.268)

µ
(r)
i = Irn−i ×D(r)

ri (7.269)

and P (r) denotes the permutation matrix P
(r)
N .

The algorithm described by Equation (7.267) is suitable for the applications which do
not call for ordered coefficients. In these applications, only the computation matrix

Tc =
n∏

m=1

(
P (r)µ(r)

m S(r)
)

(7.270)

is performed.

7.32.1 Ordered Input/Ordered Output General Radix FFT Algorithm

We can eliminate the post-permutation iterations [the operators Q
(r)
i ] if we merge the

permutation operators into the computation ones. An ordered set of coefficients would thus
be obtained at the output. We thus use the transformations

P
(r)
k (Ak/r × Ir)

{
P

(r)
k

}−1

= Ir ×Ak/r. (7.271)

and hence

P
(r)
k (AB . . .)

{
P

(r)
k

}−1

=

[
P

(r)
k A

{
P

(r)
k

}−1
] [
P

(r)
k B

{
P

(r)
k

}−1
]
. . . . (7.272)

where A, B, . . . are of the same dimension as Pk. In steps similar to those followed in the
case of the radix-2 case we arrive at the OIOO algorithm:

TN =
n∏

m=1

(
P (r)

m µ(r)
m S(r)

)
(7.273)

where
P

(r)
i = Irn−i × P (r)

ri (7.274)

and
P1 = µ1 = IN . (7.275)
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The other matrices have been previously defined. As an illustration, the 16-point radix 4
FFT factorization for parallel wired-in architecture takes the form

F =




1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 -j -1 j
1 -j -1 j

1 -j -1 j
1 -j -1 j

1 -1 1 -1
1 -1 1 -1

1 -1 1 -1
1 -1 1 -1

1 j -1 -j
1 j -1 -j

1 j -1 -j
1 j -1 -j







1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1




(7.276)




1
1

1
1
ω0

ω1

ω2

ω3

ω0

ω2

ω4

ω6

ω0

ω3

ω6

ω9







1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 -j -1 j
1 -j -1 j

1 -j -1 j
1 -j -1 j

1 -1 1 -1
1 -1 1 -1

1 -1 1 -1
1 -1 1 -1

1 j -1 -j
1 j -1 -j

1 j -1 -j
1 j -1 -j







f0
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15




. (7.277)

Symmetric algorithms lead to symmetric processors so that a radix-4 processor em-
ploys four complex multipliers operating in parallel instead of three. Such algorithms and
the corresponding processor architectures can be seen in [24] [28].

7.33 Feedback Elimination for High-Speed Signal Processing

We have seen factorizations of the DFT leading to fully wired-in processors. In these parallel
general radix processors, after each iteration data are fed back from the output memory
to the input memory, the following iteration is performed. In this section we explore the
possibility of eliminating the feedback cycle after following each iteration. We therefore need
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to eliminate the permutation cycle that follows each iteration. In what follows we see that
this is possible if we relax slightly the condition that the processor should be fully wired
in. The approach is illustrated with reference to the OIOO algorithm. The modification is
simply performed as follows [22].

We have
TN = S(r)P

(r)
2 µ

(r)
2 S(r) . . . P

(r)
n−1µ

(r)
n−1S

(r)P (r)
n µ(r)

n S(r). (7.278)

which can be rewritten as

TN = S
(r)
1 µ

(r)
2 S

(r)
2 µ

(r)
3 . . . S

(r)
n−2µ

(r)
n−1S

(r)
n−1µ

(r)
n S(r)

n (7.279)

that is,

TN =

n∏

m=1

(
µ(r)

m S(r)
m

)
(7.280)

where

S
(r)
m−1 = S(r)P (r)

m , m = 2, 3, . . . , n, S(r)
n = S(r), µ1 = IN . (7.281)

We now show that the pre-weighting operator S
(r)
m calls always for combining data that are

at least N/r2 words apart. We have for m not equal to 1

Sm−1 = SPm =
(
IN/r × Tr

)
Pm = PmP

−1
m

(
IN/r × Tr

)
Pm. (7.282)

and we can easily show that

P−1
m

(
IN/r × Tr

)
Pm =

(
IN/r2 × Tr × Ir

)
. (7.283)

and therefore
Sm−1 = Pm

(
IN/r2 × Tr × Ir

)
. (7.284)

Thus we can see that the matrix IN/r2 in the second factor causes the operator Sm−1

to operate on data that are always N/r2 words apart. In the first iteration, however, the
operator Sn operates on data which are N/r words apart. The permutation operators have
thus been absorbed in the operator S with the result that they are effected as part of the
new operators Si, thus eliminating the separate permutation operations.

As an illustration, the radix-2 FFT factorization for OIOO high speed processing is
represented graphically in Fig. 7.51 for the case N = 8.
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FIGURE 7.51 Radix-2 FFT factorization for high speed processing.

We shall see the resulting processor architecture, where feedback is eliminated, in Chapter
15.
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7.34 Problems

Problem 7.1 The A/D converter seen in Fig. 7.52 operates at a sampling frequency of
48,000 samples per second. The input signal m(t) is bandlimited to the frequency range 12
to 35 kHz, i.e. M(jω) = 0 for |ω| < 24000 r/s and |ω| > 70000 r/s.

m t( )
A/D

x tc( )

A/DLP Filter

m t( )
A/DLP Filter

m t( )

cos(24000 )pt

LP Filter A/D

(a) (b)

(c)

(d)

x

FIGURE 7.52 Alternative sampling systems.

Compare the performance of the systems shown in Fig. 7.52(a-d) in sampling the signal
m(t), given that the lowpass filter in Fig. 7.52(b) has a cut-off frequency of 60000π r/s,
while those of Fig. 7.52(c) and Fig. 7.52(d) have a cut-off frequency of 46000π. Specify in
each case which part of the signal is theoretically preserved through sampling.

Problem 7.2 In the DSP system shown in Fig. 7.13(a) we consider the case where the
C/D and D/C converters operate with sampling periods T1 and T2, respectively. The input
signal xc(t) has the spectrum Xc(jω) depicted in Fig. 7.53, where ωx = 20000π r/s, and the
LTI system is a filter of frequency response

H(ejΩ) = Π3π/4.

X j
c
( )w

1

wx-wx w

FIGURE 7.53 Spectrum of xc(t).
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Let f1 = 1/T1 and f2 = 1/T2. Sketch the spectra of x[n], y[n] and yc(t) and deduce the
resulting value of Yc(0) and the cut-off frequency fy in Hz of Yc(jω) for each of the following
cases: a) f1 = f2 = 20 kHz, b) f1 = 20 kHz, f2 = 40 kHz, c) f1 = 40 kHz, f2 = 20 kHz.

Problem 7.3 In the DSP system shown in Fig. 7.13(a) consider the case where the LTI
system is a finite impulse response (FIR) filter of impulse response

h[n] = 0.5nRN [n]

and N = 16. Assuming that the input signal xc(t) is bandlimited to the frequency ωc = π/T ,
evaluate the equivalent overall frequency response Hc(jω) of the system between its input
xc(t) and its output yc(t).

Problem 7.4 A signal xc(t) has the spectrum Xc(jω) depicted in Fig. 7.53. Let x[n] =
xc(nT ),

xM [n] = x[n]

∞∑

k=−∞
δ[n− kM ]

xr [n] = xM [Mn] = x[Mn].

Sketch the spectra X(ejΩ), XM (ejΩ) and Xr(e
jΩ) of x[n], xM [n] and xr[n], respectively,

given that M = 3, T = 1/1500 sec and ωx = 300π r/s. Repeat for the case ωx = 600π r/s.

Problem 7.5 A signal xc(t), of which the spectrum Xc(jω) is depicted in Fig. 7.53, where
ωx = 10000π r/s, is applied to the input of the system shown in Fig.7.54. In this system
the C/D and D/C converters operate at sampling frequencies f1 = 1/T1 and f2 = 1/T2,
respectively.

4
x tc( ) x n[ ]

C/D
y n[ ]

T1

D/C

T2

y tc( )

FIGURE 7.54 A down-sampling system.

a) Sketch the spectra of x[n] and y[n] when T1 has the maximum permissible value of to
ensure absence of aliasing. What is this maximum value?

b) Sketch Y (ejΩ) and Y c(jω) in the absence of aliasing and evaluate T1 and T2 so that
yc(t) = xc(t).

c) In the case T1 = T2 evaluate yc(t) as a function of xc(t).

Problem 7.6 A signal xc (t) is the sum of four continuous-time signals, namely, a constant
of 5 volts and three pure sinusoids of amplitudes 4, 6 and 10 volts , and frequencies 125,
375 and 437.5 Hz, respectively. The signal xc (t) is sampled at a rate of 1000 samples per
sec, for a total interval of 4.096 sec. An FFT algorithm is applied to the sequence x [n] thus
obtained in order to evaluate the DFT X [k] of the sequence x [n]. Evaluate |X [k]|.

Problem 7.7 In the wave synthesizer shown in Fig. 7.55, a 4096-point inverse FFT (IFFT)
is applied to an input sequence X [k]. The resulting sequence x [n] is repeated periodically
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and continuously applied to a D/A converter at a rate of 512 points per second to generate
the required continuous-time signal xc (t).

Assuming that the required continuous-time signal xc (t) is a sum of four sinusoids of
amplitudes 2, 1, 0.5 and 0.25 volts and frequencies 117, 118, 119 and 120 Hz, respectively,
specify the input sequence X [k] that would lead to such output.

x tc( )
IFFT D A/

x n[ ]X k[ ]

FIGURE 7.55 Inverse FFT followed by D/A conversion.

Problem 7.8 A periodic signal vc (t) is applied to the input of an A/D converter of a
sampling frequency of fs = 10000 samples per second. The converter produces the output
v [n] = vc (nT ) where T = 1/fs. Given that

vc (t) = 4 + 2 cos (4000πt) + cos (12000πt+ π/4) . (7.285)

Evaluate and sketch Vc (jω) and V
(
ejΩ
)
, the Fourier transforms of vc (t) and v [n], respec-

tively.

Problem 7.9 Given the sequence

x [n] = 6 + 0.5 sin (0.6πn− π/4) (7.286)

which is applied to the input of a discrete-time system of transfer function

H (z) =
2

4− 3z−1
. (7.287)

a) Evaluate the system output y [n].
b) A sequence v [n] is obtained from x [n] such that v [n] = x [n] for 0 6 n 6 99.

Evaluate the discrete Fourier transform V [k] of v [n].

Problem 7.10 Consider the sequence

x [n] = 3 cos (2πn/12) + 5 sin (2πn/6) . (7.288)

a) Evaluate the Fourier transform X
(
ejΩ
)

of x [n].
b) The 48-point sequence y [n] is given by y [n] = x [n], 0 6 n 6 47. Evaluate the discrete

Fourier transform Y [k] of y [n].

Problem 7.11 Given the sequence

x [n] = an {u [n]− u [n−N ]} (7.289)

with a = 0.7 and N = 16.
a) Evaluate the z-transform X (z) of x [n], stating its ROC.
b) Evaluate and sketch the poles and zeros of X (z) in the z plane.
c) Evaluate the z-transform on a circle of radius a in the z-plane.
d) Evaluate Xa [k], the DZT along the circle of radius a, by sampling the z-transform

along the circle at frequencies Ω = 0, 2π/N, 3π/N, . . . , (N − 1)π/N , similarly to the
sampling the DFT effects along the unit circle.
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Problem 7.12 The continuous-time signal

xc (t) = cosβ1t+ sinβ2t+ cosβ3t (7.290)

where β1 = 3000π, β2 = 6000π and β3 = 7000π r/s is sampled using an A/D converter
operating at a sampling frequency fs = 5 kHz, producing the output x [n] = xc (n/fs).

a) Evaluate x [n].
b) Evaluate and sketch the spectrum X

(
ejΩ
)

of the sequence x [n].
c) The sequence x [n] is fed to a filter of frequency response

H
(
ejΩ
)

=

{
1, 7π/10 < |Ω| < π
0, 0 < |Ω| < 7π/10.

(7.291)

Evaluate the filter output y [n].

Problem 7.13 A sequence x [n] is composed of 8192 samples obtained from a continuous-
time signal xa(t) band limited to 4 kHz by sampling it at a rate of 8000 samples/second.

x [n] = xa (n/8000) , 0 ≤ n ≤ 8191. (7.292)

An 8192-point FFT of the sequence x [n] is evaluated and its absolute value is shown in
Fig. 7.56.

FIGURE 7.56 DFT coefficients.

Deduce from the figure an approximate value of the amplitude in volts and the frequency
in Hz of the dominant component of the signal xa(t).

Problem 7.14 Let

T3 =




w0 w0 w0

w0 w1 w2

w0 w2 w1



 (7.293)

where w = e−j2π/3, and T9 = T3 × T3 (Kronecker product of T3 with itself).
Show that T9 can be factored into a simple product of matrices expressed uniquely in

terms of T3 and I3. Show how to subsequently obtain a factorization in terms of uniquely
C9 = I3×T3 and the perfect shuffle matrix P9 to result in an algorithm leading to hard-wired
architecture using the minimum of memory partitions.
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Problem 7.15 Evaluate the impulse response h [n] of a filter which should have the fre-
quency response H

(
ejΩ
)

= cosΩ + j sin (Ω/4).

Problem 7.16 Given the sequence

x [n] =





±j, n = 2, 14
2, n = 4, 12
1, n = 7, 9

(7.294)

evaluate the DFT X [k] of x [n] with N = 16.

Problem 7.17 a) Evaluate the impulse response h [n] of a filter knowing that its 16-point
DFT H [k] is given by

H [k] = j2 sin (πk/4) + 4 cos (πk/2) + 2 cos (7πk/8) . (7.295)

b) Evaluate the impulse response h [n] if its 16-point DFT H [k] is given by

H [k] =

{
cos (kπ/7) , 2 ≤ k ≤ 9
0, k = 0, 1, 10, 11, . . . , 15.

(7.296)

Problem 7.18 Given the 16-point DFT X [k] of a sequence x [n], namely,

X [k] = (k − 8)
2
, k = 0, 1, . . . , 15 (7.297)

evaluate the sequence x [n].

Problem 7.19 Given the sequence

x [n] = 3 + 5 sin

(
6π

N
n

)
+ 10 sin2

(
2π

N
n

)
, n = 0, 1, . . . , N − 1 (7.298)

evaluate its N -point DFT X [k] for k = 0, 1, . . . , N − 1.

Problem 7.20 Given the sequence

x[n] = δ[n+K] + δ[n−K], K integer. (7.299)

Evaluate its Fourier transform X(ejΩ). Apply the duality property to deduce the Fourier
series expansion and the Fourier transform of the function vc(t) = X(ejt).

Problem 7.21 Evaluate the periodic function v (t) of period 2π which has the Fourier series
coefficients

Vn = ΠN [n] = u[n+N ]− u[n−N ]. (7.300)

Using duality, deduce F [ΠN [n]].

Problem 7.22 In a sampling system signals are sampled by an A/D converter at a fre-
quency of 5 kHz and transmitted over a communication channel. At the receiving end the
signal is reconstructed. Assuming the input signal is given by

xc (t) = 10 + 10 cos (3000πt) + 15 sin (6000πt) .

Is the reconstructed signal yc (t) at the receiving end equal to xc (t)? If not what is its value?
Justify your answer in the time domain and by evaluating and sketching the corresponding
spectra Xc (jω) and X

(
ejΩ
)
.
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Problem 7.23 Given the sequence x[n] = RN [n], where N is even.
a) Sketch the sequences

v[n] =

{
x[n/2], n, even, 0 ≤ n ≤ 2N − 1

0, n, odd, 0 ≤ n ≤ 2N − 1

w[n] = x[N − 1− n]

y[n] = (−1)nx[n]

b) Evaluate, as a function of X
(
ej 2π

N k
)
, the 2N point DFT of v[n], and the N-point

DFTs of y[n] and w[n].

Problem 7.24 Evaluate the sequence x[n] given that its N = 16-point DFT is

X [k] = 2, 1 ≤ k ≤ N − 1

and X [0] = 15.

Problem 7.25 A sequence y[n] has a 12-point DFT Y [k] = X [k]V [k], where X [k] and
V [k] are the 12-point DFTs of the sequences

x[n] = 2δ[n] + 4δ[n− 7]

v[n] = [2 2 2 0 2 2 2 0 0 0 0 0 ].

Evaluate y[n].

Problem 7.26 Given the sequences

x[n] = δ[n] + 2δ[n− 1] + 4δ[n− 2] + 8δ[n− 3] + 4δ[n− 4] + 2δ[n− 5]

v [n] =

{
1, 0 ≤ n ≤ 4
0, otherwise

let X [k] and V [k] be the 7-point DFT of x[n] and v[n], respectively. Given that a sequence
y[n] has the 7-point DFT Y [k] = X [k]V [k], evaluate y[n].

Problem 7.27 With y[n] the linear convolution x[n] ∗ v[n], write the matrix equation that
gives the values of y[n] in terms of x[n] and v[n]. Deduce from this equation and Equa-
tion (7.173), how circular convolution can be evaluated from linear convolution.

Problem 7.28 The two signals vc(t) = cos 500πt and xc(t) = sin 500πt are sampled by a
C/D converter at a frequency fs = 1 kHz producing the two sequences v[n] and x[n].

(a) Evaluate the N = 16-point circular convolution z[n] = v[n] N©x[n].
(b) Evaluate the N = 16-point circular autocorrelation of v[n].
(c) Evaluate the N = 16-point circular cross-correlation of v[n] andx[n].

Problem 7.29 A causal filter has the transfer function

H(z) = z/(z − a)

The filter frequency response is sampled uniformly into N samples producing the sequence

V [k] = H(ej2πk/N )

Evaluate the inverse DFT v[n], with a = 0.95 and N = 64.
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Problem 7.30 Prove that multiplication of two finite duration sequences in the time do-
main corresponds to a circular convolution in the DFT domain.

Problem 7.31 Prove that for two N -point sequences v[n] and x[n] with DFTs V [k] and
X [k]

N−1∑

n=0

v[n]x∗[n] =
1

N

N−1∑

k=0

V [k]X∗[k]

Problem 7.32 Let y[n] = cos(2rπn/N) cos(2sπn/N) where r and s are integers, evaluate
the sum

N−1∑

n=0

y[n].

Problem 7.33 The real part of the frequency response of a causal system is given by

HR(ejΩ) = 1 + a4 cos(4Ω) + a8 cos(8Ω) + a12 cos(12Ω) + a16 cos(16Ω)

where a = 0.95. Knowing that the system unit sample response is real valued, deduce the
imaginary part of the frequency response HI(e

jΩ) and the system impulse response.

7.35 Answers to Selected Problems

Problem 7.1 a) Only the frequency band 12− 13 kHz preserved. b) Only the frequency
band 12−18 kHz preserved. c) The frequency band 12−23 kHz preserved. No aliasing, but
the frequency band 23− 35 kHz lost. d) No aliasing, spectrum shifted, but all information
preserved. See Fig. 7.57.

Problem 7.2 a) Yc(0) = 1, fy = 7.5 kHz; b) Yc(0) = 0.5, fy = 15 kHz; c) Yc(0) = 2,
fy = 5 kHz.

Problem 7.3 Hc(jω) =

{
(1− 1.526× 10−5e−j16Tω)/(1 − 0.5e−jTω), |ω| < π/T

0, otherwise.
.

Problem 7.4 See Fig. 7.58.

Problem 7.5
a) f1 ≥ 40 kHz.
b) T1 ≤ 1/40000, T2 = MT1.
c) yc(t) = xc(4t).

Problem 7.6

|X [k]| =





5N=20480, k=0
4N/2=8192, k=512, 3584
6N/2=12288, k=1536, 2560
10N/2=20480, k=1792, 2304
0, otherwise

Problem 7.7

|X [k]| =






N=4096, k=936, 3160
N/2=2048, k=944, 3152
N/4=1024, k=952, 3144
N/8=512, k=960, 3136
0, otherwise
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FIGURE 7.57 Comparison of different sampling approaches.
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FIGURE 7.58 Spectra XM (ejΩ) and Xr(e
jΩ).

The phase values arg[X [k] are arbitrary.

Problem 7.8 See Fig. 7.59.
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-p p
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jp/4
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FIGURE 7.59 Figure for Problem 7.8.
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Problem 7.9

a) y [n] = 12 + 0.175 sin (0.6πn− 1.310).

b) V [0] = 600, V [30] = 25e−j3π/4, V [70] = 25ej3π/4, V [k] = 0, otherwise..

Problem 7.10

Y [k] =






3N/2 = 72, n = 4, 44
∓j5N/2 = ∓j120, n = 8, 40
0, otherwise

Problem 7.11

c) X
(
aejΩ

)
=

1− e−jΩN

1− e−jΩ
= e−jΩ(N−1)/2 sin (NΩ/2)

sin (Ω/2)
= e−jΩ(N−1)/2SdN (Ω/2)

d) d) Xa [k] = 1−e−j2πk

1−e−j2πk/N =

{
N, k=0
0, k=1, 2, . . . , N-1

. See Fig. 7.60

FIGURE 7.60 Figure for Problem 7.11.

Problem 7.12

b) X
(
ejΩ
)

= 2π {δ (Ω− 3π/5) + δ (Ω + 3π/5)}+ jπ {δ (Ω− 4π/5)− δ (Ω + 4π/5)},

−π ≤ Ω ≤ π

c) y[n] = −sin(4πn/5).

Problem 7.13 The main component is a sinusoidal component of amplitude 7.3 volt and
frequency 2.15 kHz.

Problem 7.14 T9 = P−1S9PS9 = PS9PS9, S9 = (I3 × T3).

Problem 7.15 h [n] = 1
2δ [n− 1] + 1

2δ [n+ 1] + (−1)
n
n/[
√

2π
(
n2 − 1/16

)
].

Problem 7.16 X [k] = 2 sin (πk/4) + 4 cos (πk/2) + 2 cos (7πk/8).

Problem 7.17

a) h [n] =





−1, n = 2
2, n = 4, 12
1, n = 7, 9, 14

.

b) h [n] = 1
16 cos (11πn/16 + 11π/14) sin{4(π/7+πn/8)}

sin(π/14+πn/16) R16[n].

Problem 7.18

x [n] =
1

16
{64 + 98 cos (πn/8) + 72 cos (πn/4) + 50 cos (3πn/8) + 32 cos (πn/2)

+18 cos (5πn/8) + 8 cos (3πn/4) + 2 cos (7πn/8)
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Problem 7.19

X [k] =






8N, k = 0
−5N/2, k = 2, N − 2
∓j5N/2, k = 2, N − 3
0 ,

Problem 7.20

vc (t) = 2 cosKt
FSC←→ Vn =

{
1, n = ±K
0, otherwise.

Problem 7.21
Sd2N+1 (t/2)

FSC←→ ΠN [n], ΠN [n]
F←→ Sd2N+1 (Ω/2) .

Problem 7.22

yc (t) = 10 + 10 cos (300πt)− 15 sin (4000πt)

The spectra Xs (jω) and X
(
ejΩ
)

are shown in Fig. 7.61.

w
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10p/T

3000p
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10000p

-j /T15p

j /T15p
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X e( )
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p3 /5p 4 /5p-p

-j /T15p

W

w-ws

FIGURE 7.61 Spectra Xs (jω) and X
(
ejΩ
)
.

Problem 7.24 x[n] = 2δ[n] + 13/16.

Problem 7.25 y[n] = [12 12 4 0 4 4 4 8 8 8 0 8].

Problem 7.26 y[n] = {15 9 9 15 19 20 18}.

Problem 7.27
(a) z[n] = 8 sin(πn/2).

(b) cvv[n] = 8 cos(πn/2).
(b) cvx[n] = −8 sin(πn/2).
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Problem 7.28 v[n] = 1.039× 0.95nR64[n].

Problem 7.31
∑N−1

n=0 y[n] = N/2, if r = s or r = N − s, otherwise 0.

Problem 7.32 h[n] = δ[n]+0.8145δ[n−4]+0.6634δ[n−8]+0.5404δ[n−12]+0.4401δ[n−16].
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State Space Modeling

8.1 Introduction

A state space model is a matrix-based approach to describe linear systems. In this chapter
we study how state variables are used to construct a state space model of a linear system
described by an nth order linear differential equation. State space models of discrete-time
systems are subsequently explored.

8.2 Note on Notation

In this chapter, to conform to the usual notation on state space modeling in the literature,
we shall in general use the symbol u(t) to denote the input signal to a system. This is not
to be confused with the same symbol we have so far used to denote the unit step function.
The student should easily deduce from the context that the symbol u(t) denotes the input
signal here. As is usual in automatic control literature the unit step function will be denoted
u−1(t), to be distinguished from the input u(t).

The state space approach is based on the fact that a linear time invariant (LTI) system
may be modeled as a set of first order equations in the matrix form

ẋ(t) = Ax(t) +Bu(t) (8.1)

where in general x is an n-element vector, A is an n× n matrix, u is an m-element vector,
m being the number of inputs, and B is an n×m matrix.

In the homogeneous case where u(t) = 0 and with initial conditions x(0) the equation

ẋ(t) = Ax(t) (8.2)

is a first order differential equation having the solution

x(t) = eAtx(0)=△φ(t)x(0). (8.3)

The matrix

φ(t) = eAt (8.4)

is called the state transition matrix.

483
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8.3 State Space Model

Consider the nth order LTI system described by the linear differential equation

αny
(n) + αn−1y

(n−1) + . . .+ α0y = βnu
(n) + βn−1u

(n−1) + . . .+ β0u (8.5)

where u (t) is the system input and y (t) is its output and

y(i) =
di

dti
y (t) , u(i) =

di

dti
u (t) . (8.6)

u t( )
bn

bn-1

bn-2

b0

y t( )

x1

x2

xn

-an-1

-an-2

-a0

1/s

1/s

1/s

xn

x2

x1

FIGURE 8.1 First canonical form realization.

Dividing both sides by αn and letting ai = αi/αn and bi = βi/αn we have

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bn

dnu

dtn
+ bn−1

dn−1u

dtn
+ . . .+ b0u. (8.7)

Laplace transforming both sides assuming zero initial conditions

(
sn + an−1s

n−1 + . . .+ a0

)
Y (s) =

(
bns

n + bn−1s
n−1 + . . .+ b0

)
U (s) . (8.8)

The system transfer function is given by

H (s) =
Y (s)

U (s)
=
bns

n + bn−1s
n−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
. (8.9)
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To construct the state space model we divide both sides of (8.8) by sn

Y (s) = − an−1
Y (s)

s
− an−2

Y (s)

s2
− . . .− a0

Y (s)

sn

+ bnU (s) + bn−1
U (s)

s
+ . . .+ b0

U (s)

sn

= bnU (s) + {bn−1U (s)− an−1Y (s)} (1/s)+ {bn−2U (s)
− an−2Y (s)} (1/s2) + . . .+ {b0U (s)− a0Y (s)} (1/sn).

(8.10)

We can translate the input–output relation as the flow diagram shown in Fig. 8.1.

x2x xn n

u t( )

bnbn-1bn-2b0

x1x2 x1

-an-1-an-2-a0

y t( )

.

FIGURE 8.2 Equivalent representation of first canonical form.

In the figure, circles with coefficients next to them stand for multiplication by the co-
efficient. A circle is an adder if it receives more than one arrow and issues one arrow as
its output. We note that the diagram includes boxes having a transfer function equal to
1/s. Each box is an integrator. The diagram is redrawn in Fig. 8.2, showing the integrators
that would be employed to construct a physical model. Both equivalent flow diagrams are
referred as the first canonical model form of the system model.

The state space model is obtained by labeling the output of each integrator as a state
variable. An nth order system has n integrators acting as the n memory elements storing the
state of the system at any moment. Calling the state variables x1, x2, . . . , xn as shown in
the figures, the inputs to the integrators are given by ẋ1, ẋ2, . . . , ẋn, respectively, where
ẋi=△dxi/dt. Referring to Fig. 8.1 or Fig. 8.2 we can write

y = x1 + bnu (8.11)

ẋ1 = bn−1u− an−1y + x2 = − an−1x1 + x2 + (bn−1 − an−1bn)u (8.12)

ẋ2 = bn−2u− an−2y + x3 = − an−2x1 + x3 + (bn−2 − an−2bn)u (8.13)

ẋn−1 = −a1x1 + xn + (b1 − a1bn)u (8.14)

ẋn = −a0x1 + (b0 − a0bn)u. (8.15)

Using matrix notation these equations can be written in the form

ẋ (t) = Ax (t) +Bu (t) (8.16)

y (t) = Cx (t) +Du (t) (8.17)
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ẋ1

ẋ2

...
ẋn−1

ẋn




=




−an−1 1 0 . . . 0 0
−an−2 0 1 0 0

...
−a1 0 0 0 1
−a0 0 0 0 0







x1

x2

...
xn−1

xn




+




bn−1 − an−1bn
bn−2 − an−2b

...
b1 − a1bn
b0 − a0bn



u (t) (8.18)

y (t) =
[
1 0 0 . . . 0 0

]




x1

x2

...
xn−1

xn




+ bnu (t) (8.19)

where we identify A as a matrix of dimension (n× n), B as a column vector of dimension
(n× 1), C a row vector of dimension (1× n) and D a scalar. This is referred to as the first
canonical form of the state equations.

u t( )

FIGURE 8.3 Second canonical form realization.

A fundamental linear systems property is that reversing all arrows in a system flow diagram
produces the same system transfer function. This is effected on Fig. 8.2 resulting in Fig. 8.3.
Note that converging arrows to a point must lead to an adder, whereas diverging arrows
from a point means that the point is a branching point. This is the second canonical form
of the system state equations.

The second canonical form is obtained by writing the state equations corresponding to
this flow diagram. We have

ẋ1 = x2 (8.20)

ẋ2 = x3 (8.21)

ẋn−1 = xn (8.22)

ẋn = −a0x1 − a1x2 − . . .− an−2xn−1 − an−1xn + u (8.23)

y = b0x1 + . . .+ bn−2xn−1 + bn−1xn

+ bn {−a0x1 − a1x2 − . . .− an−2xn−1 − an−1xn + u (t)}
= (b0 − bna0)x1 + . . .+ (bn−2 − bnan−2) xn−1 + (bn−1 − bnan−1)xn + bnu

(8.24)
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that is, 


ẋ1

ẋ2

...
ẋn−1

ẋn




=




0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1







x1

x2

...
xn−1

xn




+




0
0
...
0
1



u (8.25)

y =
[
b0 − bna0 . . . bn−2 − bnan−2 . . . bn−1 − bnan−1

]




x1

x2

...
xn−1

xn




+ [bn]u. (8.26)

The second canonical form can be obtained directly from the system differential equation
or transfer function as the following example illustrates.

Example 8.1 Given the system transfer function:

H(s) =
3s3 + 2s2 + 5s

5s4 + 3s3 + 2s2 + 1
.

Show how to directly deduce the second canonical state space model which was obtained above
by reversing the arrows of the first canonical model flow diagram.

We have

H(s) =
Y (s)

U(s)
=

(3/5)s3 + (2/5)s2 + s

s4 + (3/5)s3 + (2/5)s2 + 1/5
.

We write H(s) = H1(s)H2(s); see Fig. 8.4.

Y
U(s)

FIGURE 8.4 A cascade of two systems.

H1(s) =
Y1(s)

U(s)
=

1

s4 + (3/5)s3 + (2/5)s2 + 1/5

H2(s) =
Y (s)

Y1(s)
= (3/5)s3 + (2/5)s2 + s

i.e. y
(4)
1 + (3/5)y

(3)
1 + (2/5)ÿ1 + (1/5)y1 = u. Let y1 = x1, ẋ1 = x2, ẋ2 = x3, ẋ3 = x4

as shown in Fig. 8.5, i.e. x2 = ẏ1, x3 = ÿ1, x4 = y
(3)
1 and ẋ4 = y

(4)
1 = −(3/5)x4 −

(2/5)x3 − (1/5)x1 + u.

y(t) = (3/5)y
(3)
1 + (2/5)ÿ1 + ẏ1 = (3/5)x4 + (2/5)x3 + x2.

The state space model is therefore



ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
0 0 1 0
0 0 0 1
−1/5 0 −2/5 −3/5







x1

x2

x3

x4


+




0
0
0
1


u (8.27)
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x4 x3 x1x2

y1 y1

x1
x2

u t( )

y t( )

ò ò ò ò

3/5

-3/5

2/5

-2/5 -1/5

y1
(4)

y1
(3)

y1

FIGURE 8.5 Direct evaluation of second canonical form.

y =
[
0 1 2/5 3/5

]



x1

x2

x3

x4


 . (8.28)

For a given dynamic physical system there is no unique state space model. A variety of
equivalent models that describe the system behavior can be found. The power of the state
space model lies in the fact that the matrix representation makes possible the modeling of
a system with multiple inputs and multiple outputs. In this case the input is a vector u (t)
representing i inputs and the output is a vector y (t), representing k outputs. The matrices
are: A of dimension (n× n), B of dimension (n× i), C of dimension (k × n) and D of
dimension (k × i). The initial conditions may be introduced as the vector x (0). In what
follows we shall focus our attention mainly on single input, single output systems. However,
the obtained results can be easily extended to the multiinput multioutput case.

8.4 System Transfer Function

Applying the Laplace transform to both sides of the state equations assuming zero initial
conditions we have

sX (s) = A X (s) +B U (s) (8.29)

Y (s) = C X (s) +D U (s) (8.30)

where X (s) = L [x (t)] , U (s) = L [u (t)] and Y (s) = L [y (t)]. We can write

(sI −A)X (s) = B U (s) (8.31)

X (s) = (sI −A)
−1
B U (s) (8.32)

Y (s) =
{
C (sI −A)

−1
B +D

}
U (s) (8.33)

wherefrom the transfer function is given by

H (s) = Y (s) {U (s)}−1
= C (sI −A)

−1
B +D. (8.34)

Writing

Φ (s) = (sI −A)−1 =
adj(sI −A)

det(sI −A)
(8.35)
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we have

H (s) = C Φ (s)B +D. (8.36)

Hence the poles of the system are the roots of det(sI − A), known as the characteristic
polynomial. The matrix (sI − A) is thus known as the characteristic matrix. The matrix
φ (t) = L−1 [Φ (s)] is the state transition matrix seen above in Equation (8.4). It can be
shown that the transfer function thus obtained is the same as that evaluated by Laplace
transforming the system’s nth order differential equation.

8.5 System Response with Initial Conditions

The following relations apply in general to multiinput multioutput systems and as a special
case to single input single output ones. Assuming the initial conditions x (0) = x0 we can
write

sX (s)− x0 = A X (s) +B U (s) (8.37)

X (s) = (sI −A)
−1
x0 + (sI −A)

−1
B U (s) (8.38)

Y (s) = C (sI −A)−1 x0 +
{
C (sI −A)−1B +D

}
U (s) (8.39)

X (s) = Φ (s)x0 + Φ (s)B U (s) (8.40)

Y (s) = C Φ (s)x0 + {C Φ (s)B +D}U (s) . (8.41)

In the time domain these equations are written

x (t) = φ (t)x0 +

ˆ t

0

φ (t− τ)Bu (τ) dτ (8.42)

where

φ (t) = L−1 [Φ (s)] (8.43)

y (t) = Cφ (t)x0 +

ˆ t

0

Cφ (t− τ)Bu (τ) dτ +Du (t)

= Cφ (t)x0 +

ˆ t

0

h (t− τ) u (τ) dτ

(8.44)

and

h (t) = Cφ (t)B +Dδ (t) (8.45)

is the system impulse response. In electric circuits, state variables are normally taken as
the voltage across a capacitor and a current through an inductor, that is, the electrical
quantities that resist instantaneous change and therefore determine the behavior of the
electric circuit. In general, however, such choice of physical state variables does not lead to
a canonical form of the state space model.
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8.6 Jordan Canonical Form of State Space Model

The Jordan or diagonal form is more symmetric in matrix structure than the canonical
forms we have just seen. There are two ways to obtain the Jordan form. The first is to effect
a partial fraction expansion of the transfer function H (s). The second is to effect a matrix
diagonalization using a similarity transformation. We have

H (s) =
Y (s)

U (s)
=
bns

n + bn−1s
n−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
. (8.46)

Effecting a long division we have

Y (s) =
{
bn + [(bn−1 − bnan−1) s

n−1 + (bn−2 − bnan−2) s
n−2

+ . . .+ (b0 − bna0)] / [sn + an−1s
n−1 + . . .+ a0]

}
U (s) = bnU (s) + F (s)U (s) .

Assuming at first simple poles λ1, λ2, . . . , λn, for simplicity, we can write

Y (s) = bnU (s) +

{
r1

s− λ1
+

r2
s− λ2

+ . . .+
rn

s− λn

}
U (s) (8.47)

ri = (s− λi)F (s) |s=λi . (8.48)

Consider the ith term. Writing
ẋi = λixi + u (8.49)

yi = rixi (8.50)

we have
sXi (s) = λiXi (s) + U (s) (8.51)

Hi (s) =
Xi (s)

U (s)
=

1

s− λi
(8.52)

Yi (s) = riXi (s) =
ri

s− λi
U (s) . (8.53)

The corresponding flow diagram is shown in Fig. 8.6. By labeling the successive integrator
outputs x1, x2, . . . , xn we deduce the state equations




ẋ1

ẋ2

...
ẋn


 =




λ1 0 0 . . . 0
0 λ2 0 . . .
...
0 0 0 . . . λn







x1

x2

...
xn


+




1
1
...
1


u (8.54)

y =
[
r1 r2 . . . rn

]




x1

x2

...
xn


+ bnu. (8.55)

We consider next the case of multiple poles. To simplify the presentation we assume one
multiple pole. Generalization to more than one such pole is straightforward. In this case we
write

Y (s) = βnU (s) + F (s)U (s)

= βnU (s) +

{[
r1,1

(s− λ1)
m +

r1,2

(s− λ1)
m−1 + . . .+

r1,m

(s− λ1)

]

+
rm+1

s− λm+1
+

rm+2

s− λm+2
+ . . .+

rn
s− λn

}
U (s) .

(8.56)
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u t( ) y t( )

FIGURE 8.6 Jordan parallel form realization.

We recall that the residues of the pole of order m are given by

r1,i =
1

(i− 1)!

di−1

dsi−1
(s− λ1)

m
F (s) |s=λ1 , i = 1, 2, . . . , m. (8.57)

The corresponding flow diagram is shown in Fig. 8.7. The state equations can be deduced
thereof. We obtain

ẋ1 = λ1x1 + x2 (8.58)

ẋ2 = λ1x2 + x3 (8.59)

...

ẋm−1 = λ1xm−1 + xm (8.60)

ẋm = λ1xm + u (8.61)

ẋm+1 = λm+1xm+1 + u (8.62)

...

ẋn = λnxn + u (8.63)

y = r1,1x1 + r1,2x2 + . . .+ r1,mxm + rm+1xm+1 + . . .+ rnxn + bnu. (8.64)

The state space model in matrix form is therefore



ẋ1

ẋ2

...
ẋm−1

ẋm

ẋm+1

...
ẋn




=




λ1 1 0 . . . 0 0 0 . . . 0
0 λ1 1 . . . 0 0 0 . . . 0
... . . . . . . 0
0 0 0 . . . λ1 1 0 . . . 0
0 0 0 . . . 0 λ1 0 . . . 0
0 0 0 . . . 0 0 λm+1 . . . 0
... . . . . . .
0 0 0 . . . 0 0 0 . . . λn







x1

x2

...
xm−1

xm

xm+1

...
xn




+




0
0
...
0
1
1
...
1




u (8.65)
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u

FIGURE 8.7 Jordan parallel form with multiple pole.

y =
[
r1,1 r1,2 . . . r1,m rm+1 . . . rn

]




x1

x2

...
xm−1

xm

xm+1

...
xn




+ [bn]u. (8.66)

The m ×m submatrix the diagonal elements of which are all the same pole λ1 is called a
Jordan block of order m.

Example 8.2 Consider the electric circuit shown in Fig. 8.8.
Evaluate the state space model. Let R1 = R2 = 1 Ω, L = 1 H and C = 1 F. Compare the

transfer function obtained from the state space model with that obtained by direct evaluation.
Evaluate the circuit impulse response, the response to the input u (t) = e−αtu−1 (t) and
the circuit unit step response.

Introducing the state variables x1 volts and x2 ampere shown in Fig. 8.8, we have

u = R1 (Cẋ1 + x2) + x1

Lẋ2 +R2x2 = x1

ẋ1 = − 1

C
x2 −

x1

R1C
+

u

R1C

ẋ2 =
1

L
x1 −

R2

L
x2

y = x1
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C

R2

L

y t( )x1

R1

u t( )

x2

FIGURE 8.8 Electric circuit.

(
ẋ1

ẋ2

)
=



− 1

R1C

−1

C
1

L

−R2

L



(
x1

x2

)
+




1

R1C
0


u

y =
(
1 0
)(x1

x2

)
.

With R1 = R2 = 1 Ω, L = 1 H and C = 1 F, we have

A =

[
-1 -1
1 -1

]
, B =

(
1
0

)
, C =

(
1 0
)
, D = 0

[
ẋ1

ẋ2

]
=

[
-1 -1
1 -1

] [
x1

x2

]
+

[
1
0

]
u (t)

y =
[
1 0
] [x1

x2

]
.

Alternatively, Laplace transforming the differential equations, assuming zero initial condi-
tions, we have

sX1 (s) = − 1

C
X2 (s)− 1

R1C
X1 (s) +

1

R1C
U (s)

sX2 (s) =
1

L
X1 (s)− R2

L
X2 (s)

Y (s) = X1 (s) .

Solving for X1 (s) and X2 (s) we obtain

X1 (s) =
(Ls+R2)

R1 + (1 +R1Cs) (Ls+R2)
U (s)

Y (s) =
Ls+R2

R1 + (1 +R1Cs) (Ls+ R2)
U (s)

H (s) =
Y (s)

U (s)
=

Ls+R2

R1 + (1 +R1Cs) (Ls+R2)
.

With the given values of R1, R2, L and C we have

H (s) =
s+ 1

1 + (1 + s) (s+ 1)
=

s+ 1

(s+ 1)2 + 1

Φ (s) = (sI −A)−1 =

[(
s 0
0 s

)
−
(
−1 −1
1 −1

)]−1

=

[
s+ 1 1
−1 s+ 1

]−1

=
adj (sI −A)

det (sI −A)
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adj (sI −A) = Transposeofthematrixofcofactors = (−1)
i+j

mij

=

(
s+ 1 1
−1 s+ 1

)T

=

(
s+ 1 −1

1 s+ 1

)

det(sI −A) ≡ |sI −A| = (s+ 1)
2
+ 1

Φ (s) =

(
s+ 1 −1

1 s+ 1

)

[
(s+ 1)

2
+ 1
] =




s+ 1

(s+ 1)
2

+ 1

−1

(s+ 1)
2
+ 1

1

(s+ 1)
2

+ 1

s+ 1

(s+ 1)
2
+ 1




φ (t) =

[
e−t cos t −e−t sin t
e−t sin t e−t cos t

]
u (t) .

The transfer function H (s) is given by

H (s) = C Φ (s)B +D

=
(
1 0
){

(s+ 1)
2

+ 1
}−1

[
s+ 1 −1

1 s+ 1

](
1
0

)
=

s+ 1

(s+ 1)
2
+ 1

.

The impulse response is given by

h (t) = L−1 [H (s)] = e−t cos t u (t) .

Alternatively, we have

h (t) = Cφ (t)B +Dδ (t)

=
(
1 0
) [ cos t − sin t

sin t cos t

]
e−tu (t)

(
1
0

)

=
(
cos t − sin t

)
e−tu (t)

(
1
0

)
= e−t cos t u (t)

y (t) = h ∗ v +Dv (t) = v (t) ∗ e−t cos t u (t) .

With
v (t) = e−αtu (t)

y =

ˆ ∞

−∞
e−ατu (τ) e−(t−τ) cos (t− τ)u (t− τ) dτ =

ˆ t

0

e−ατeτe−t cos (t− τ) dτ u (t)

= ℜ
[
e−t

ˆ t

0

e−(α−1)τej(t−τ)dτ

]
=
e−t

{
(α− 1) cos t+ sin t− (α− 1) e−(α−1)t

}

(α− 1)
2

+ 1
u (t) .

If α = 0

y =
e−t

2

(
− cos t+ sin t+ et

)
u (t)

which is the system unit step response.

Example 8.3 Evaluate the state space model of a system of transfer function

H (s) =
Y (s)

U(s)
=

3s3 + 10s2 + 5s+ 4

(s+ 1) (s+ 2) (s2 + 1)
.

Using a partial fraction expansion we have

Y (s) = H (s)U (s) =

(
3

s+ 1
− 2

s+ 2
+

1

s+ j
+

1

s− j

)
U(s).
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Writing
Y (s) = 3X1 (s)− 2X2 (s) +X3 (s) +X4 (s)

we obtain

X1 (s) =
U (s)

s+ 1
, ẋ1 + x1 = u, ẋ1 = −x1 + u

X2 (s) =
U (s)

s+ 2
, ẋ2 + 2x2 = u, ẋ2 = −2x2 + u

X3 (s) =
U (s)

s+ j
, ẋ3 + jx3 = u, ẋ3 = −jx3 + u

X4 (s) =
U (s)

s− j , ẋ4 − jx4 = u, ẋ4 = jx4 + u.

We have obtained the state space model



ẋ1

ẋ2

ẋ3

ẋ4


 =




-1 0 0 0
0 -2 0 0
0 0 -j 0
0 0 0 j







x1

x2

x3

x4


+




1
1
1
1


u

y =
[
3 -2 1 1

]



x1

x2

x3

x4


 .

This is the Jordan canonical form.

Example 8.4 Consider the multiple-input multiple-output system of which the inputs are
u1(t) and u2(t) and the transforms of the outputs y1(t) and y2(t) are given by

Y1 (s) =
3s3 + 10s2 + 5s+ 4

(s+ 1) (s+ 2) (s2 + 1)
{3U1 (s) + 5U2 (s)}

Y2 (s) = 2
s3 + 10s2 + 26s+ 19

(s+ 1) (s+ 2)
2 U1 (s) + 4

s+ 1

(s+ 1)
2

+ 1
U2 (s) .

Let UT = 3U1 + 5U2. We may write

Y1 =
3

s+ 1
UT −

2

s+ 2
UT +

1

s+ j
UT +

1

s− j UT

= 3X1 − 2X2 +X3 +X4

X1 =
UT

s+ 1
, X2 =

UT

s+ 2
, X3 =

UT

s+ j
, X4 =

UT

s− j
ẋ1 = −x1 + uT , ẋ2 = −2x2 + uT , ẋ3 = −jx3 + uT , ẋ4 = jx4 + uT




ẋ1

ẋ2

ẋ3

ẋ4


 =




−1
−2
−j

j







x1

x2

x3

x4


+




3 5
3 5
3 5
3 5




[
u1

u2

]

y1 =
[
3 −2 1 1

]



x1

x2

x3

x4


 .
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Let Y2 (s)=△Y21 (s) + Y22 (s) and Ui2=△2U1

Y21 (s) =

[
Ui2

(s+ 2)
2 +

3Ui2

s+ 2
+

2Ui2

s+ 1
+ Ui2

]

=△X5 + 3X6 + 2X7 + Ui2

X5 =
Ui2

(s+ 2)2
, X6 =

Ui2

s+ 2
, X7 =

Ui2

s+ 1
, X5 =

X6

s+ 2

ẋ5 = −2x5 + x6, ẋ6 = −2x6 + ui2, ẋ7 = −x7 + ui2


ẋ5

ẋ6

ẋ7



 =




−2 1
−2
−1








x5

x6

x7



+




0
2
2



u1

y21 =
[
1 3 2

]


x5

x6

x7


+ [2]u1

Y22 (s) =
s+ 1

(s+ 1)
2
+ 1

4U2 (s) =
s+ 1

(s+ 1)
2
+ 1

Ui3 (s)

where Ui3 (s) = 4U2 (s). With p = −1 + j we have

Y22 (s) =
0.5Ui3

s− p +
0.5Ui3

s− p∗ = 0.5X8 + 0.5X9

X8 =
Ui3

s− p, X9 =
Ui3

s− p∗
ẋ8 = (−1 + j)x8 + ui3, ẋ9 = (−1− j)x9 + ui3[

ẋ8

ẋ9

]
=

[
−1 + j

−1− j

] [
x8

x9

]
+

[
4
4

]
u2

y22 =
[
0.5 0.5

] [x8

x9

]
.

Combining we have



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9




=




−1
−2
−j

j
−2 1
−2
−1
−1 + j

−1− j







x1

x2

x3

x4

x5

x6

x7

x8

x9




+




3 5
3 5
3 5
3 5
0 0
2 0
2 0
0 4
0 4




[
u1

u2

]

[
y1
y2

]
=

[
3 − 2 1 1 0 0 0 0 0
0 0 0 0 1 3 2 0.5 0.5

]




x1

x2

x3

x4

x5

x6

x7

x8

x9




+

[
0 0
2 0

] [
u1

u2

]
.
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We have seen in constructing the Jordan state equations form that the system poles were
used to obtain a partial fraction expansion of the system transfer function. We will now see
that the poles are but the system eigenvalues. In fact, eigenvalues and eigenvectors play an
important role in a system state space representation as will be seen below.

8.7 Eigenvalues and Eigenvectors

Given a matrix A and a vector v 6= 0, the eigenvalues of A are the set of scalar values λ
for which the equation

Av = λv (8.67)

has a nontrivial solution.
Rewriting this equation in the form

(A− λI) v = 0 (8.68)

we note that a nontrivial solution exists if and only if the characteristic equation

det (A− λI) = 0 (8.69)

is satisfied.

Example 8.5 Find the eigenvalues of the matrix

A =

[
1 -1
2 4

]

we have
(A− λI) v = 0

i.e. {[
1 −1
2 4

]
−
[
λ 0
0 λ

]}[
v1,1

v2,1

]
=

[
0
0

]

[
1− λ −1

2 4− λ

] [
v1,1

v2,1

]
=

[
0
0

]
.

The characteristic equation is given by

det (A− λI) = 0 =

[
1− λ −1

2 4− λ

]
= (1− λ) (4− λ) + 2 = 0

i.e.
|A− λI| = λ2 − 5λ+ 6 = (λ− 2) (λ− 3) = 0.

The eigenvalues, the roots of this polynomial, are given by

λ1 = 2, λ2 = 3.

As with poles the eigenvalues can be distinct (simple) or repeated (multiple). There are
n eigenvalues in all for an (n× n) matrix.

Let λi, i = 1, 2, . . . , n be the n eigenvalues of a matrix A of dimension n × n.
Assuming that the eigenvalues are all distinct, corresponding to each eigenvalue λi there is
an eigenvector vi defined by

Avi = λivi. (8.70)
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Example 8.6 Evaluate the eigenvectors of the matrix A given in the previous example.
We write for λ1 = 2 [

1 -1
2 4

] [
v1,1

v1,2

]
= 2

[
v1,1

v1,2

]

v1,1 − v1,2 = 2v1,1

2v1,1 + 4v1,2 = 2v1,2, i.e. v1,1 = −v1,2

wherefrom the eigenvector associated with λ1 = 2 is given by

v1 =

[
1
−1

]
k1

where k1 is any multiplying constant. With λ2 = 3 we have

[
1 -1
2 4

] [
v2,1

v2,2

]
= 3

[
v2,1

v2,2

]

v2,1 − v2,2 = 3v2,1

2v2,1 − 4v2,2 = 3v2,2, i.e. 2v2,1 = −v2,2.

The eigenvector associated with the eigenvalue λ2 = 3 is thus given by

v2 =

[
1
−2

]
k2

where k2 is any scalar.

The definition of the eigenvector implies that an eigenvector vi of a matrix A is a vector
that is transformed by A onto itself except for a change in length λi. Moreover, as the last
example shows, an eigenvector remains one even if its length is multiplied by a scalar factor
k, for

A (kv) = kAv = kλv = λ (kv) . (8.71)

The eigenvector can be normalized to unit length by dividing each of its elements by its
norm

||v|| =
√
v2
1 + v2

2 + . . .+ v2
n. (8.72)

8.8 Matrix Diagonalization

Given a square matrix A, the matrix S = T−1AT is said to be similar to A. A special case
of similarity transformations is one that diagonalizes the matrix A. In this case the transfor-
mation matrix is known as the Modal matrix usually denoted M , so that the transformed
matrix S = M−1AM is diagonal.

Eigenvectors play an important role in matrix diagonalization. The modal matrix M has
as successive columns the eigenvectors v1, v2, . . . , vn of the matrix A assuming distinct
eigenvalue. We may write this symbolically in the form

M = [v1 v2 . . . vn] (8.73)
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and

A M = A [v1 v2 . . . vn] = [Av1 Av2 . . . Avn] = [λ1v1 λ2v2 . . . λnvn]

= [v1 v2 . . . vn]




λ1 0 0 . . .
λ2 0 . . .
...

0 0 0 λn


 = M Λ

(8.74)

where
Λ = diag (λ1, λ2, . . . , λn) . (8.75)

We have thus obtained
M−1A M = Λ. (8.76)

The matrix M having as columns the eigenvectors of the matrix A can thus transform the
matrix A into a diagonal one.

Example 8.7 Verify that the matrix M constructed using the eigenvectors in the last ex-
ample diagonalizes the matrix A.

Writing

M =

[
1 1
-1 -2

]

we have

M−1 =
adj [M ]

|M | =

[
-2 -1
1 1

]

−1
=

[
2 1
-1 -1

]

M−1A M =

[
2 1
−1 −1

] [
1 −1
2 4

] [
1 1
−1 −2

]
=

[
2 0
0 3

]
=

[
λ1 0
0 λ2

]
.

The matrix A is thus diagonalized by the matrix M as expected.

8.9 Similarity Transformation of a State Space Model

The state equation with zero input, u = 0, is given by

ẋ = Ax (8.77)

Let
x = Tz. (8.78)

We have
ẋ = T ż = A Tz (8.79)

ż = T−1A Tz = Sz. (8.80)

where
S = T−1A T. (8.81)

With nonzero input we write
ẋ = T ż = A Tz +Bu (8.82)
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ż = T−1A Tz + T−1Bu = Sz + T−1Bu = Sz +BTu (8.83)

where BT = T−1B, and

y = Cx+Du = C Tz +Du = CT z +DTu (8.84)

where CT = C T , DT = D. Similarly to the above, Laplace transforming the equations
we have

(sI − S)Z (s) = BTU (s) (8.85)

Z (s) = (sI − S)−1BTU (s) (8.86)

Y (s) =
{
CT (sI − S)

−1
BT +DT

}
U (s) (8.87)

wherefrom the transfer function is given by

H (s) = Y (s) {U (s)}−1
= CT (sI − S)

−1
BT +DT . (8.88)

Writing
Q (s) = (sI − S)

−1
(8.89)

we have
H (s) = CTQ (s)BT +DT . (8.90)

The matrix Q (s) and its inverse Q (t) = L−1 [Q (s)] are the state transition matrix of the
transformed model.

Letting
Q(t) = eSt (8.91)

we may write
φ(t) = eAt = T Q(t)T−1 = TeStT−1. (8.92)

Example 8.8 Evaluate the state transition matrix φ (t) for the matrix A of the previous
example.

A =

[
1 -1
2 4

]

φ (t) = eAt =

∞∑

n=0

Antn/n! = I +At+A2t2/2 + . . .

Φ (s) = (sI −A)
−1

=

{[
s 0
0 s

]
−
[

1 −1
2 4

]}−1

=

[
s− 1 1
−2 s− 4

]−1

=

adj

[
s− 1 1
−2 s− 4

]

(s− 1) (s− 4) + 2
=

[
s− 4 −1

2 s− 1

]

s2 − 5s+ 6
=




2

s− 2
− 1

s− 3

1

s− 2
− 1

s− 3−2

s− 2
+

2

s− 3

−1

s− 2
+

2

s− 3




φ (t) =

[
2e2t − e3t e2t − e3t

−2e2t + 2e3t −e2t + 2e3t

]
u (t)

φ11 (t) = 2

(
1 + 2t+

4t2

2
+ . . .

)
−
(

1 + 3t+
9t2

2
+ . . .

)
= 1 + t− t2

2
+ . . .

φ12 (t) =

(
1 + 2t+

4t2

2
+ . . .

)
−
(

1 + 3t+
9t2

2
+ . . .

)
= −t− 5t2

2
− . . .
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φ21 (t) = −2
(
1 + 2t+ 2t2 + . . .

)
+ 2

(
1 + 3t+

9t2

2
+ . . .

)
= 2t+ 5t2 + . . .

φ22 (t) = −
(
1 + 2t+ 2t2 + . . .

)
+ 2

(
1 + 3t+

9t2

2
+ . . .

)
= 1 + 4t+ 7t2 + . . . .

Alternatively, since

A2 =

[
1 −1
2 4

] [
1 −1
2 4

]
=

[
−1 −5
10 14

]

we may write

φ (t) = I +At+ A2t2/2 +A3t3/3! + . . . =

[
1 0
0 1

]
+

[
t −t
2t 4t

]
+

1

2

[
−t2 −5t2

10t2 14t2

]
+ . . .

=

[
1 + t− t2/2 + . . . −t− 5t2/2− . . .

2t+ 5t2 + . . . 1 + 4t+ 7t2 + . . .

]

which agrees with the result just obtained.

8.10 Solution of the State Equations

The solution of the state equation
ẋ = Ax (8.93)

can be found by Laplace transformation. We have

sX (s)− x (0) = A X (s) (8.94)

(sI −A)X (s) = x (0) (8.95)

X (s) = (sI −A)
−1
x (0) = Φ (s)x (0) (8.96)

x (t) = φ (t)x (0) (8.97)

φ (t) = L−1
[
(sI −A)−1

]
= eAt. (8.98)

Note that the usual exponential function properties apply to the exponential of a matrix.
For example, it is easy to show that

eAt1eAt2 = eA(t1+t2) (8.99)

eAte−At = eA·0 = I (8.100)

e−At =
{
eAt
}−1

(8.101)

d

dt
eAt = AeAt. (8.102)

From Equation (8.42) with nonzero initial conditions and input u(t) we have

x (t) = φ (t)x (0) + φ (t) ∗Bu (t) . (8.103)

We can write

x (t) = eAtx (0) + eAt ∗Bu (t) = eAtx (0) +

ˆ t

0

eAτBu (t− τ) dτ (8.104)
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h (t) = CeAtBu (t) +Dδ (t) (8.105)

y (t) = {Cφ (t)B +Dδ (t)} ∗ u =
{
CeAtB

}
∗ u+Du

=

ˆ t

0

CeA(t−τ)Bu (τ) dτ +Du (t) .
(8.106)

Example 8.9 Find the matrix eAt and the response of the electric circuit of Example 8.1.
We have

ẋ = Ax+Bu

y = Cx +Du

A =

[
-1 -1
1 -1

]
, B =

[
1
0

]
, C =

[
1 0
]
, D = 0.

The eigenvalues are the roots of the characteristic equation

det (λI −A) = 0

∣∣∣∣
λ+ 1 1
−1 λ+ 1

∣∣∣∣ = 0

(1 + λ)
2

+ 1 = 0

λ2 + 2λ+ 2 = 0

λ1 = −1 + j1, λ2 = −1− j1.
Av1 = λ1v1

(A− λ1I) v1 = 0
{[
−1 −1
1 −1

]
−
[
λ1 0
0 λ1

]}
v1 = 0

[
−1− λ1 −1

1 −1− λ1

] [
v11
v21

]
= 0

(−1− λ1) v11 − v21 = 0

v11 − (1 + λ1) v21 = 0

v21 = − (1 + λ1) v11

v11 = (1 + λ1) v21

v21 =
1

1 + λ1
v11

− (1 + λ1) v11 =
1

1 + λ1
v11

−1 + λ1 = −1− 1 + j1 = −2 + j1

1

1 + λ1
=

1

1− 1 + j1
=

1

j1
= −j

v21 = − (1 + λ1)
2
v21 = − (1 + λ1) v11.

Say
v11 = 1

v21 = − (1 + λ1) = − (1− 1 + j1) = −j
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v1 = [1 − j]T .
With v21 = 1 we have

v11 = (1 + λ1) = j

i.e.

v1 = [j 1]T .

With eigenvalue λ2 we have

v22 = − (1 + λ2) v12

v12 = − (1 + λ2) v22

with v12 = 1

v22 = − (1− 1− j1) v12 = j

i.e.

v2 =
[
1 j

]T

with v22 = 1

v12 = (−j) v12 = −j
i.e.

v2 =
[
-j 1

]T
.

Taking v1 =
[
1 -j

]T
and v2 =

[
1 j

]T
we have

M =

[
1 1
-j j

]

M−1 =

[
j j
−1 1

]T

/ (j + j) =

(
j −1
j 1

)
/j2 =

(
1/2 j/2
1/2 −j/2

)

M−1A M =
1

2

(
1 j
1 −j

)[
−1 + j −1− j
1 + j 1− j

]

=
1

2

[
−1 + j + j − 1 −1− j + j + 1
−1 + j − j + 1 −1− j − j − 1

]

=
1

2

(
−2 + j2 0

0 −2− j2

)
=

[
−1 + j 0

0 −1− j

]
= J

eAt = MeJtM−1

=

[
1 1
−j j

] [
e−t+jt 0

0 e−t−jt

] [
1 j
1 −j

]
/2

=
1

2

[
e−t+jt + e−t−jt je−t+jt − je−t−jt

−je−t+jt + je−t−jt e−t+jt + e−t−jt

]

=

[
e−t cos t −e−t sin t
e−t sin t e−t cot t

]
, t > 0

which is in agreement with what we found earlier as the value of φ (t).

Note that with

J =




λ1

λ2

. . .

λn


 (8.107)
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eJt =




eλ1t

eλ2t

. . .

eλnt


 . (8.108)

We conclude that the exponential of a diagonal matrix J is a diagonal matrix the elements
of which are the exponentials of the elements of J.

Example 8.10 Evaluate and verify the transformation between the canonical and Jordan
state space models of the system of Example 8.4 and transfer function

H (s) =
Y (s)

U(s)
=
s3 + 10s2 + 26s+ 19

(s+ 1) (s+ 2)
2 .

We have found 


ẋ1

ẋ2

ẋ3



 =




-2 1 0
0 -2 0
0 0 -1








x1

x2

x3



+




0
1
1



u

y =
[
1 3 2

]


x1

x2

x3


+ u

J =




-2 1 0
0 -2 0
0 0 -1




BJ =
[
0 1 1

]T
, CJ =

[
1 3 2

]

and

DJ = D.

To find the transformation matrix T and its inverse and the transition matrix Q(s) of the
Jordan model directly from the Jordan matrix J and from the canonical form matrix A we
note that

Q(t)=△e
Jt =



e−2t te−2t 0

0 e−2t 0
0 0 e−t




H (s) =
s3 + 10s2 + 26s+ 19

(s+ 1) (s2 + 4s+ 4)
=
s3 + 10s2 + 26s+ 19

s3 + 5s2 + 8s+ 4

b0 = 19, b1 = 26, b2 = 10, b3 = 1

a0 = 4, a1 = 8, a2 = 5, a3 = 1 = an

ẋ = Ax+Bu

y = Cx +Du

A =




-5 1 0
-8 0 1
-4 0 0





B =
[
5 18 15

]T
, C =

[
1 0 0

]
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and D = 1. We may also evaluate the transition matrix Q(t) by writing

Q(s) = (sI − J)
−1

=





s
s
s


−



−2 1 0
0 −2 0
0 0 −1





−1

=
adj (sI − J)

|sI − J |

=




1

s+ 2

1

(s+ 2)2
0

0
1

s+ 2
0

0 0
1

s+ 1




of which the inverse transform is indeed Q(t) found above. The eigenvalues are λi =
−2, −2, −1.

(A− λ1I)x1 = 0, i.e. (A+ 2I)x1 = 0.

Let x1 = [x11 x12 x13]
T . We have






-5 1 0
-8 0 1
-4 0 0


+




2
2

2







x11

x12

x13


 =




-3 1 0
-8 2 1
-4 0 2





x11

x12

x13


 =




0
0
0




−3x11 + x12 = 0, x12 = 3x11

−8x11 + 2x12 + x13 = 0

−4x11 + 2x13 = 0, x13 = 2x11

−8x11 + 6x11 + 2x11 = 0.

Take x1 = (α 3α 2α)
T

= α (1 3 2)
T
.

(A− λI) t1 = x1, i.e. (A+ 2I) t1 = x1.

Let t1 = [t11 t12 t13]
T
. 


−3 1 0
−8 2 1
−4 0 2








t11
t12
t13



 =




α
3α
2α





−3t11 + t12 = α, t12 = α+ 3t11

−8t11 + 2t12 + t13 = 3α

−4t11 + 2t13 = 2α, t13 = α+ 2t11

−8t11 + 2α+ 6t11 + α+ 2t11 = 3α.

Take t11 = β so that t1 = [β α+ 3β α+ 2β]
T

(A− λ2I)x2 = 0, (A+ I)x2 = 0.

With x2 = [x21 x22 x23]
T




−4 1 0
−8 1 1
−4 0 1








x21

x22

x23



 = 0

−4x21 + x22 = 0, x22 = 4x21

−8x21 + x22 + x23 = 0
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−4x21 + x23 = 0, x23 = 4x21

−8x21 + 4x21 + 4x21 = 0.

Take x21 = γ so that x2 = [γ 4γ 4γ].

T =
[
x1 t1 x2

]
=




α β γ
3α α+ 3β 4γ
2α α+ 2β 4γ



 .

Taking α = 1, β = 0, γ = 1

T =




1 0 1
3 1 4
2 1 4


 , |T | = 1

T−1 = adj [T ] /1 =




0 −4 1
1 2 −1
−1 −1 1




T

=




0 1 −1
−4 2 −1
1 −1 1




T−1A T =




0 1 −1
−4 2 −1
1 −1 1





−2 1 −1
−6 1 −4
−4 0 −4


 =



−2 1 0
0 −2 0
0 0 −1


 = J.

Example 8.11 The transformation to the Jordan form assuming distinct eigenvalues λ1,
λ2, . . ., λn produces

Aw = J = M−1A M =




λ1

λ2

. . .

λn




where the matrix M in this case is the one diagonalizing the matrix A, having as columns
the eigenvectors of A corresponding to λ1, λ2, . . . , λn respectively.

The state transition matrix of the transformed model can be similarly evaluated by Laplace
transforming the equations. We obtain

sW (s)−AwW (s) = BwU (s)

(sI −Aw)W (s) = BwU (s)

W (s) = (sI −Aw)
−1
BwU (s) = Q (s)BwU (s)

where
Q (s) = (sI −Aw)

−1
=
(
sI −M−1A M

)−1

Y (s) = Cw (sI −Aw)−1BwU (s) +DwU (s) .

The transfer function is given by

H (s) = Y (s)U−1 (s) = Cw (sI −Aw)
−1
Bw +Dw

and has to be the same as the transfer function of the system, that is,

H (s) = C (sI −A)−1B +D

and since Dw = D we have

Cw (sI −Aw)
−1
Bw = C (sI −A)

−1
B.
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To show this we recall the property

(F G)
−1

= G−1F−1.

Now
Cw (sI −Aw)

−1
Bw = C M (sI −Aw)

−1
M−1B

= C M
{
M
(
sI −M−1A M

)}−1
B

= C M (sM −A M)
−1
B

= C
{
(sM −A M)M−1

}−1
B = C (sI −A)

−1
B.

We may write
CwQ(s)Bw = C Φ(s)B

i.e.
C M Q(s)M−1B = C Φ(s)B

or
Φ(s) = M Q(s)M−1

φ(t) = M Q M−1

and in particular, if J = Aw = M−1A M , i.e. Q(t) = eJt then

φ(t) = MeJtM−1

as stated earlier.
We also note that

det (λI −Aw) = det
(
λI −M−1A M

)
= det

(
λM−1M −M−1A M

)

= det
[
M−1 (λI −A)M

]
.

Recalling that
det (X Y ) = det (X) det (Y )

and that
det
(
M−1

)
= (detM)

−1

we have
det (λI −Aw) = (detM)

−1
det (λI −A) det (M) = det (λI −A) .

8.11 General Jordan Canonical Form

As noted above, a transformation from the state variables x(t) to the variables w(t) may
be obtained using a transformation matrix M . We write

x (t) = Mw (t) (8.109)

i.e.
w (t) = M−1x (t) . (8.110)

The matrix M must be a n× n nonsingular matrix for its inverse to exist. Substituting in
the state space equations

ẋ = Ax+Bu (8.111)
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y = Cx +Du (8.112)

we have
Mẇ = A Mw +Bu (8.113)

ẇ = M−1A Mw +M−1Bu. (8.114)

Writing
ẇ = Aww +Bwu (8.115)

we have Aw = M−1A M and Bw = M−1B. Moreover

y = Cx +Du = C Mw +Du. (8.116)

Writing
y = Cww +Dwu (8.117)

we have Cw = C M and Dw = D.
The similarity transformation relating the similar matrices A and Aw has the following

properties:
The eigenvalues λ1, λ2, . . . , λn of Aw are the same as those of A. In other words

det (sI −Aw) = det (sI −A) = (s− λ1) (s− λ2) . . . (s− λn) . (8.118)

Substituting s = 0 we have

(−1)
n

detAw = (−1)
n

detA = (−1)
n
λ1λ2 . . . λn (8.119)

detAw = detA = λ1λ2 . . . λn. (8.120)

If the eigenvalues of the matrix M are distinct, we have

M−1A M = Λ = diag (λ1, λ2, . . . , λn) (8.121)

where the diagonal matrix is the diagonal Jordan Matrix J . If corresponding to every
eigenvalue λi that is repeated m times a set of m linearly independent eigenvectors can be
found then again

M−1A M = Λ = diag (λ1, λ2, . . . , λn) . (8.122)

In most cases of repeated roots the product M−1A M is not a diagonal matrix but rather
a matrix close to a diagonal one in which 1’s appear above the diagonal, thus forming what
is called a Jordan block.

Bik (λk) =




λk 1 0 . . . 0
0 λk 1 . . . 0
0 0 λk . . . 0
...
0 0 0 . . . 1
0 0 0 . . . λk




. (8.123)

The matrix M−1A M is then the general Jordan form, M−1A M = J where in the case of
an eigenvalue λ1 repeated m times and the rest are distinct eigenvalues

J =




B11 (λ1)
B21 (λ1)

. . .

Bm1 (λ1)
B12 (λ2)

. . .

Brs (λs)




. (8.124)
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We note that the Jordan block corresponding to a distinct eigenvalue λi reduces to one
element, namely, λi along the diagonal, so that the matrix J is simply the diagonal matrix

J = Λ = diag (λ1, λ2, . . . , λn) . (8.125)

Example 8.12 Identify the Jordan blocks of the matrix

J =




λ1 1
λ1 1

λ1 0
λ1 0

λ2 0
λ3



.

We have two triangular matrices, each including a 1 on the off diagonal. The Jordan blocks
are therefore

B11 (λ1) =




λ1 1

λ1 1
λ1



 , B21 (λ1) = λ1

B12 (λ2) = λ2, B13 (λ3) = λ3.

We have already seen above this Jordan form for the case of repeated eigenvalues and
the corresponding flow diagram. Let xi, t2, . . . , tn denote the column vectors of the
matrix M , where xi is the linearity independent eigenvector associated with the Jordan
block Bji (λi) of the repeated eigenvalue λi. We have

M = [xi | t1 | t2 | . . . | tk | . . .] (8.126)

A M = A[xi | t1 | t2 | . . . | tk | . . .] (8.127)

M Bji (λi) = [xi | t1 | t2 | . . . | tk | . . . ]




λi 1
λi 1
λi 1

. . .
. . .

λi 1
λi




= [λixi | λit1 + xi | λit2 + t1 | . . . | λitk + tk−1 | . . . ]

(8.128)

M−1A M = J = Bji (λi) , i.e. A M = M Bji (λi) . (8.129)

Hence

Axi = λixi, At1 = λit1 + xi, At2 = λit2 + t1, . . . , Atk = λitk + tk−1. (8.130)

The column vectors xi, t1, t2, . . . are thus successively evaluated.

8.12 Circuit Analysis by Laplace Transform and State Variables

The following example illustrates circuit analysis by Laplace transform and state space
representation.
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Example 8.13 Referring to the electric circuit shown in Fig. 8.9, switch S1 is closed at
t = 0 with vc (0) = vc0 = 7 volts. At t = t1 = 3s switch S2 is closed. The voltage source
v1(t) applies a constant voltage of K = 10 volts. Evaluate and plot the circuit outputs
y1 = x1 and y2 = x2.

At t = 0, with S1 closed and S2 open, the voltage vc across the capacitor is vc0 = 7 and
the current i2 is zero. x1 (0) = vc0, x2 (0) = 0, ẋ2 (0) = vc0/L = vc0/2.

x1 = (R2 +R3)x2 + Lẋ2 (8.131)

FIGURE 8.9 Electric circuit with two independent switches.

x2 = −Cẋ1 (8.132)

ẋ2 =
1

L
x1 −

(R2 +R3)

L
x2 (8.133)

y2 = iL = x2 (8.134)

y1 = vc = x1 (8.135)

(
ẋ1

ẋ2

)
=




0 − 1

C
1

L
− (R2 +R3)

L



(
x1

x2

)
(8.136)

y2 =
(
0 1
)(x1

x2

)
(8.137)

y1 =
(
1 0
)(x1

x2

)
(8.138)

A =

[
0 −1
0.5 −1.5

]

B = 0

C1 =
[
1 0
]
, C2 =

[
0 1
]

Φ (s) = (sI −A)
−1

=

[
s 1
−0.5 s+ 1.5

]−1

=

[
s+ 1.5 −1
0.5 s

]
/
(
s2 + 1.5s+ 0.5

)

[
x1 (t)
x2 (t)

]
=

[
φ11 (t) φ12 (t)
φ21 (t) φ22 (t)

] [
x1 (0)
x2 (0)

]
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so that
x1 (t) = φ11 (t)x1 (0) = vc0

(
2e−0.5t − e−t

)
u (t)

x2 (t) = φ21 (t) x1 (0) = vc0

(
e−0.5t − e−t

)
u (t) .

Substituting t = 3 we obtain vC = x1 = 4.8409 volt, and iL = x2 = 2.6492 ampere. These
are the initial conditions at the moment Switch S2 is closed., which is now considered the
instant t = 0. We write the new circuit equations. For t > 0 the output is the sum of the
response due to the initial conditions plus that due to the input v1 (t) applied at t = 0. We
may write v1 (t) = Ku (t).

The equations describing the voltage vc (t) and current iL (t) are

v1 (t) = R1i1 +R2iL + L
diL
dt

(8.139)

where
iL = i1 − i2 (8.140)

R3i2 −R2iL − L
diL
dt

= −vc (t) . (8.141)

With
x1 = vc (t) , x2 = iL (t) (8.142)

we have

v1 (t) = R1 (iL + i2) +R2iL + L
diL
dt

=(R1 +R2) iL +R1C
dvc

dt
+ L

diL
dt

= (R1 +R2) x2 +R1Cẋ1 + Lẋ2

(8.143)

and
R3Cẋ1 −R2x2 − Lẋ2 + x1 = 0. (8.144)

The two equations imply that

ẋ2 =
1

(R1 +R3)L
{R1x1 − (R1R3 +R2R3 +R1R2)x2 +R3v1 (t)} (8.145)

ẋ1 =
1

(R1 + R3)C
{−x1 −R1x2 + v1 (t)} (8.146)

(
ẋ1

ẋ2

)
=




−1

(R1 +R3)C

−R1

(R1 +R3)C
R1

(R1 +R3)L

− (R1R3 +R2R3 +R1R2)

(R1 +R3)L



(
x1

x2

)
+




1

(R1 +R3)C
R3

(R1 +R3)L


 v1 (t)

y1 (t) = vc (t) = x1 (8.147)

y2 = iL = x2. (8.148)

A =

[
−0.25 −0.5
0.25 −1

]

B =

[
0.25
0.25

]
, C1 =

[
1 0
]
, C2 =

[
0 1
]
, D = 0.

We may write

[
ẋ1 (t)
ẋ2 (t)

]
=

[
b1 b2
a1 a2

] [
x1 (t)
x2 (t)

]
+

[
b3
a3

]
v1 (t) = Ax+Bv1
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where b1 = a11, b2 = a12, b3 = b11, a1 = a21, a2 = a22, a3 = b21

X (s) = Φ (s)x (0) + Φ (s)BU (s)

Φ (s) = (sI −A)
−1

=

[
s− a2 b2
a1 s− b1

]
/
[
s2 − (a2 + b1) s+ a1b2

]

obtaining

X1 (s) =
b2x2 (0+) + (s− a2)x1 (0+)

(s− p1) (s− p2)
+
b2a3 + (s− a2) b3
(s− p1) (s− p2)

U1 (s) (8.149)

where

p1, p2 =

[
a2 + b1 ±

√
a2
2 + 2a2b1 + b21 − 4a1b2

]
/2. (8.150)

With v1 (t) = Ku (t) , U1 (s) = K/s

X1 (s) =
F

s− p1
+

G

s− p2
+

{
H

s
+

I

s− p1
+

J

s− p2

}
K (8.151)

F =
[
b2x2

(
0+
)

+ (p1 − a2)x1

(
0+
)]
/[p1 − p2] (8.152)

G =
[
b2x2

(
0+
)

+ (p2 − a2)x1

(
0+
)]
/[p2 − p1] (8.153)

H = [b2a3 − a2b3]/[p1p2] (8.154)

I = [b2a3 + (p1 − a2) b3]/[p1 (p1 − p2)] (8.155)

J = [b2a3 + (p2 − a2) b3]/[p2 (p2 − p1)] (8.156)

X2 (s) =
(s− b1)x2 (0+) + a1x1 (0+)

(s− p1) (s− p2)
+

(s− b1) a3 + a1b3
(s− p1) (s− p2)

U1 (s) . (8.157)

With U1 (s) = K/s

X2 (s) =
A

s− p1
+

B

s− p2
+

{
C

s
+

D

s− p1
+

E

s− p2

}
K (8.158)

where

A =
[
(p1 − b1)x2

(
0+
)

+ a1x1

(
0+
)]
/[p1 − p2] (8.159)

B =
[
(p2 − b1)x2

(
0+
)

+ a1x1

(
0+
)]
/[p2 − p1] (8.160)

C = [−b1a3 + a1b3]/[p1p2] (8.161)

D = [(p1 − b1) a3 + a1b3]/[p1 (p1 − p2)] (8.162)

E = [(p2 − b1) a3 + a1b3]/[p2 (p2 − p1)] . (8.163)

y1(t) = x1 (t) = [
{
Fep1t +Gep2t

}
+
{
H + Iep1t + Jep2t

}
K]u (t) (8.164)

y2(t) = x2 (t) = [
{
Aep1t +Bep2t

}
+
{
C +Dep1t + Eep2t

}
K]u (t) . (8.165)
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The following MATLABr program illustrates the solution of the state space model from
the moment switch S2 is closed, taking into account the initial conditions of the capacitor
voltage and the inductor current at that moment.

x10=vc0=4.8409

x20=iL0=2.6492

a11=-1/((R1+R3)*C)

a12=-R1/((R1+R3)*C)

a21=R1/((R1+R3)*L)

a22=-(R1*R3+R2*R3+R1*R2)/((R1+R3)*L)

A=[a11 a12; a21 a22]

b11=1/((R1+R3)*C)

b21=R3/((R1+R3)*L)

B=[b11 ; b21]

CC1=[1 0]

CC2=[0 1]

D=0

x0=[x10,x20]

t=0:0.01:10;

K=10

u=K*ones(length(t),1);

y1=lsim(A,B,CC1,D,u,t,x0);

y2=lsim(A,B,CC2,D,u,t,x0);

The state variables’ evolution of state variables x1(t) and x2(t) once switch S2 is closed
is shown in Fig. 8.10.

FIGURE 8.10 State variables x1 (t) and x2 (t) as a function of time.

8.13 Trajectories of a Second Order System

The trajectory of a system can be represented as a plot of state variable x2 versus x1 in the
phase plane x1 − x2 or z2 versus z1 in the z1 − z2 phase plane as t increases as an implicit
parameter from an initial value t0. The form of the trajectory depends on whether the
eigenvalues are real or complex, of the same or opposite sign, and on their relative values.
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As we have seen the matrix J has an off-diagonal element if λ1 = λ2, i.e.
[
ż1
ż2

]
=

[
λ 1
0 λ

] [
z1
z2

]
(8.166)

if λ1 and λ2 are complex, we may write:

λ1,2 = −ζω0 ± jω0

√
1− ζ2. (8.167)

Below we view the trajectories that result in each of these cases.

Example 8.14 The matrices of a system state space model ẋ = Ax+Bv, y = Cx+Dv
are given by

A =

[
0 1
−20 −9

]
, B =

[
0
1

]
, C

[
0 1
]
.

a) Assuming the initial conditions x(0) =

[
1
0

]
and v(t) = u(t−2), evaluate the system

output y(t).

b) With the initial conditions x(0) =

[
1
1

]
and v(t) = 0 sketch the system trajectory

in the z1 − z2 plane of the same system equivalent model

ż = Jz

where x = Tz and

J = T−1A T =

[
λ1 0
0 λ2

]
.

Φ(s) = (sI −A)−1 =

[
s -1
20 s+9

]−1

=

[
s+9 1
-20 s

]

s2 + 9s+ 20

φ(t) =

[
φ11 (t) φ12 (t)
φ21 (t) φ22 (t)

]

y(t) = Cφ(t)x(0) + Cφ(t)B ∗ v(t) =
[
0 1
]
φ(t)

[
1
0

]
+
[
0 1
]
φ(t)

[
0
1

]
∗ u(t− 2)

=
[
0 1
] [φ11 (t)
φ21 (t)

]
+ φ22(t) ∗ u(t− 2) = φ21(t) + φ22(t) ∗ u(t− 2)

φ21(t) = L−1

[ −20

s2 + 9s+ 20

]
= L−1

[ −20

(s+ 4)(s+ 5)

]
(20e−5t − 20e−4t)u(t)

φ22(t) = L−1

[
s

(s+ 4)(s+ 5)

]
=
(
5e−5t − 4e−4t

)
u(t)

φ22(t) ∗ u(t− 2) =

ˆ ∞

−∞
(5e−5τ − 4e−4τ )u(τ)u(t− τ − 2)dτ

=

{
ˆ t−2

0

(5e−5τ − 4e−4τ )dτ

}
u(t− 2) =

{
e−4(t−2) − e−5(t−2)

}
u(t− 2)

y(t) =
(
20e−5t − 20e−4t

)
u(t) +

{
e−4(t−2) − e−5(t−2)

}
u(t− 2).

b) z = T−1x, J = T−1A T

det(λI −A) = 0, λ(λ+ 9) + 20 = 0; hence λ1 = −5, λ2 = −4



State Space Modeling 515

J =

[
−5 0
0 −4

]
, T =

[
t11 t12
t21 t22

]

where

[
t11
t21

]
and

[
t12
t22

]
are the eigenvectors of A, i.e.

A

[
t11
t21

]
= λ1

[
t11
t21

]
, (λ1I −A)

[
t11
t21

]
= 0

[
−5 −1
20 4

] [
t11
t21

]
= 0, i.e.

[
t11
t21

]
=

[
1
−5

]

[
−4 −1
20 5

] [
t12
t22

]
= 0, i.e.

[
t12
t22

]
=

[
1
−4

]
.

Therefore T =

[
1 1
-5 4

]
, T−1 =

[
-4 -1
5 1

]

ż = Jz =

[
−5 0
0 −4

]
z,

[
ż1
ż2

]
=

[
−5 0
0 −4

] [
z1
z2

]

z(0) = T−1x(0) =

[
−4 −1
5 1

] [
1
1

]
=

[
−5
6

]

ż1 + 5z1 = 0, sZ1(s)− z1(0) + 5Z1(s) = 0,

Z1(s) =
z1(0)

s+ 5
, z1(t) = z1(0)e−5tu(t) = −5e−5tu(t)

z2(t) = z2(0)e−4tu(t) = 6e−4tu(t).

See Fig. 8.11.

FIGURE 8.11 Trajectory in z1 − z2 plane.

8.14 Second Order System Modeling

A second order system, as we have seen, may be described by the system function:

H(s) =
Y (s)

U(s)
=

1

s2 + 2ζω0s+ ω2
0

(8.168)
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s2Y (s) = −2ζω0sY (s)− ω2
0Y (s) + U(s). (8.169)

u y(t)
x1x1x2x2

-2zw0

-w0

2

FIGURE 8.12 Second order system.

We shall use a simple triangle as a symbol denoting an integrator. Connecting two in-
tegrators in cascade and labeling their outputs x1 and x2, we obtain Fig. 8.12. We may
write

x1 = y, ẋ1 = x2, ẋ2 = ÿ = −2ζω0ẏ − ω2
0y + u (8.170)

ẋ2 = −2ζω0ẋ1 − ω2
0x1 + u = −2ζω0x2 − ω2

0x1 + u. (8.171)

The state space equations are therefore
[
ẋ1

ẋ2

]
=

[
0 1
−ω2

0 −2ζω0

] [
x1

x2

]
+

[
0
1

]
u = Ax+Bu (8.172)

y =
[
1 0
] [x1

x2

]
= Cx. (8.173)

The system poles are the eigenvalues, that is, the roots of the equation

|A− λI| = 0 (8.174)
∣∣∣∣
−λ 1
−ω2

0 −2ζω0 − λ

∣∣∣∣ = λ2 + 2ζω0λ+ ω2
0 = 0 (8.175)

λ1, λ2 =

{
−2ζω0 ±

√
4ζ2ω2

0 − 4ω2
0

}
/2 = −ζω0 ± ω0

√
ζ2 − 1 = −ζω0 ± ωp (8.176)

where ωp = ω0

√
ζ2 − 1. To evaluate the eigenvectors, we have the following cases:

Case 1: Distinct real poles λ1 6= λ2.
Let p(1) and p(2) be the eigenvectors. By definition

λ1p
(1) = Ap(1), λ2p

(2) = Ap(2) (8.177)

λ1

[
p
(1)
1

p
(1)
2

]
=

[
0 1
−ω2

0 −2ζω0

][
p
(1)
1

p
(1)
2

]
(8.178)

λ1p
(1)
1 = p

(1)
2 . Choosing p

(1)
1 = 1 we have p

(1)
2 = λ1

λ1p
(1)
2 = −ω2

0p
(1)
1 − 2ζω0p

(1)
2 (8.179)

i.e. λ2
1 + 2ζω0λ1 + ω2

0 = 0 as it should. Similarly, p
(2)
1 = 1 and p

(2)
2 = λ2. The equivalent

Jordan form is ż = Jz where J is the diagonal matrix

J = T−1A T (8.180)
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T =
[
p(1) p(2)

]
=

[
1 1
λ1 λ2

]
, T−1 =

[
λ2 −1
−λ1 1

]
1

(λ2 − λ1)
(8.181)

J =

[
λ1 0
0 λ2

]
,

[
ż1
ż2

]
=

[
λ1 0
0 λ2

]
, Q(t) =

[
eλ1t 0
0 eλ2t

]
(8.182)

φ(t) = T Q T−1 =

[
1 1
λ1 λ2

] [
eλ1t 0
0 eλ2t

] [
λ2 −1
−λ1 1

]
1

(λ2 − λ1)

=

[
λ2e

λ1t − λ1e
λ2t −eλ1t + eλ2t

λ1λ2e
λ1t − λ1λ2e

λ2t −λ1e
λ1t + λ2e

λ2t

]
1

(λ2 − λ1)

(8.183)

which can alternatively be evaluated as

φ(t) = L−1[Φ(s)], Φ(s) = (sI −A)−1. (8.184)

Case 2: Equal eigenvalues λ1 = λ2 (double pole).
If ζ = 1, λ1, λ2 = −ω0. The eigenvectors denoted p and q should satisfy the equations

Ap = λp (8.185)

Aq = λq + p (8.186)
[

0 1
−ω2

0 −2ω0

] [
p1

p2

]
= −ω0

[
p1

p2

]
(8.187)

p2 = −ω0p1. Taking p1 = 1 we have p2 = −ω0.

q2 = −ω0q1 + p1 = −ω0q1 + 1. (8.188)

Choosing q1 = 0 we have q2 = 1, wherefrom

T =
[
p q
]

=

[
1 0
−ω0 1

]
, T−1 =

[
1 0
ω0 1

]
(8.189)

J = T−1A T =

[
−ω0 1

0 −ω0

]
=

[
λ 1
0 λ

]
(8.190)

Q(s) = (sI − J)−1 =

[
s− λ −1

0 s− λ

]−1

=

[
s− λ 1

0 s− λ

]
1

(s− λ)2

=

[
1/ (s− λ) 1/ (s− λ)2

0 1/ (s− λ)

]
=

[
eλt teλt

0 eλt

]
u(t)

(8.191)

and
φ(t) = L−1

[
(sI −A)−1

]
= T Q T−1. (8.192)

Case 3: Complex poles (complex eigenvalues) i.e. ζ < 1.

λ1, λ2 = −ζω0 ± jωp=△ − α± jωp, α = ζω0, ωp = ω0

√
1− ζ2 (8.193)

λ2 = λ∗1. (8.194)

As found above we have

T =

[
1 1
λ1 λ2

]
, T−1 =

[
λ2 −1
−λ1 1

]
1

(λ2 − λ1)
=

[
λ2 −1
−λ1 1

]
1

−j2ωp
(8.195)

J =

[
λ1 0
0 λ2

]
, Q(t) =

[
eλ1t 0
0 eλ2t

]
(8.196)
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φ(t) = T Q T−1. (8.197)

With zero input and initial conditions x(0)

x(t) = φ(t)x(0) (8.198)

z(t) = Q(t)z(0) (8.199)

z(t) = T−1x(t) (8.200)

z(0) = T−1x(0) (8.201)

φ = T Q T−1 =

[
λ2e

λ1t − λ1e
λ2t −eλ1t + eλ2t

λ1λ2e
λ1t − λ1λ2e

λ2t −λ1e
λ1t + λ2e

λ2t

]
1

−j2ωp
. (8.202)

Writing λ1 = |λ1| ej∠λ1 = ω0e
j(π−θ) where θ = cos−1 ζ, λ2 = ω0e

−j∠λ1 = ω0e
−j(π−θ)

φ11(t) =
{
ω0e
−j(π−θ)e(−α+jωp)t − ω0e

j(π−θ)e(−α−jωp)t
} 1

−j2ωp

=
ω0e
−αt

j2ωp

{
ej(ωpt+θ) − e−j(ωpt+θ)

}
=
ω0

ωp
e−αt sin(ωpt+ θ).

(8.203)

Similarly,
φ12(t) = (1/ωp)e

−αt sinωpt (8.204)

φ21(t) = (−ω2
0/ωp)e

−αt sinωpt (8.205)

φ22(t) = (−ω0/ωp)e
−αt sin(ωpt− θ) (8.206)

φ(t) =

[
(ω0/ωp) e

−αt sin (ωpt+ θ) (1/ωp) e
−αt sinωpt(

−ω2
0/ωp

)
e−αt sinωpt (−ω0/ωp) e

−αt sin (ωpt− θ)

]
u(t). (8.207)

Trajectories
We have found that in case 1, where λ1 and λ2 are real and distinct, we have

z1 = z1(0)eλ1t (8.208)

z2 = z2(0)eλ2t. (8.209)

If λ2 < λ1 < 0 then z2 decays faster than z1 and the system trajectories appear as in Fig.
8.13. Each trajectory corresponds to and has as initial point a distinct initial condition.
If the two poles are closer so that λ2 approaches λ1 then z1 and z2 decay at about the same
rate. With λ1 = λ2 the trajectories appear as in Fig. 8.14.

If on the other hand λ1 > 0 and λ2 < 0 then z1 grows while z2 decays and the
trajectories appear as in Fig. 8.15.

The case of complex conjugate poles leads to z1 and z2 expressed in terms of complex
exponentials. The trajectories are instead plotted in the x1 − x2 plane. We have

x(t) = φ(t)x(0) =

[
φ11 φ12

φ21 φ22

] [
x1 (0)
x2 (0)

]
. (8.210)

Substituting the values of φ11, φ12, φ21 and φ22 given above it can be shown that x1(t)
and x2(t) can be expressed in the form

x1(t) = A1x1(0)e−αt cos(ωpt+ γ1) (8.211)

x2(t) = A2x2(0)e−αt cos(ωpt+ γ2) (8.212)

where A1 and A2 are constants.
The trajectory has in general the form of a spiral, converging toward the origin if 0 <

ζ < 1, as shown in Fig. 8.16, and diverging outward if ζ < 0 as shown in Fig. 8.17. If
ζ = 0 the trajectories have in general the form of ellipses as shown in Fig. 8.18, and become
circles if the phase difference γ1 − γ2 = ±π/2.
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FIGURE 8.13 Set of trajectories in z1 − z2 plane.

0.2

0.2

z1

z2

FIGURE 8.14 Trajectories in the case λ1 = λ2.

8.15 Transformation of Trajectories between Planes

Knowing the form of the system trajectories in the z1 − z2 plane we can deduce their form
in the x1−x2 plane. To this end, in the x1−x2 plane we draw the two straight lines, passing
through the origin that represent the axes z1 and z2. The trajectories are then skewed to
appear as they should be on skewed axes z1 and z2 which are not perpendicular to each
other in the x1 − x2 plane. The following example illustrates the approach.

Example 8.15 For the system described by the state equations ẋ = Ax+Bu, where

A =

[
-3 -1
2 0

]
, B =

[
-2
0

]

sketch the trajectories with zero input u(t) in the z1 − z2 plane of the equivalent Jordan
model ż = Jz. Show how the z1 and z2 axes appear in the x1 − x2 plane and sketch the
trajectories as they are transformed from the z1 − z2 plane to the x1 − x2 plane.

We have

|λI −A| = 0, λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2) = 0
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FIGURE 8.15 Trajectories in the case λ1 > 0 and λ2 < 0 .

FIGURE 8.16 A trajectory in the case of complex conjugate poles and 0 < ζ < 1.

FIGURE 8.17 Diverging spiral-type trajectory.

λ1, λ2 = −1, −2

J =

[
−1 0
0 −2

]
, ż = Jz =

[
−1 0
0 −2

] [
z1
z2

]

z1 = z1(0)e−t, z2 = z2(0)e−2t.

The trajectories are shown in Fig. 8.19.
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FIGURE 8.18 Trajectory in the case of complex conjugate poles and ζ = 0.
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D

FIGURE 8.19 Trajectories in z1 − z2 plane.

The eigenvectors p(1) and p(2) are reduced from λ1p
(1) = Ap(1), λ2p

(2) = Ap(2). We
obtain

p(1) =

[
1
-2

]
, p(2) =

[
1
-1

]
(8.213)

wherefrom

T =
[
p(1) p(2)

]
=

[
1 1
−2 −1

]
, T−1 =

[
−1 −1
2 1

]
(8.214)

and
T−1A T = J (8.215)

as it should.
For the axes transformation to the x1 − x2 plane we have z = T−1x

[
z1
z2

]
=

[
−1 −1
2 1

] [
x1

x2

]
(8.216)

z1 = −x1 − x2 (8.217)

z2 = 2x1 + x2. (8.218)

For the axis z1 we set z2 = 0 obtaining the straight line equation x2 = −2x1. For the axis
z2 we set z1 = 0 obtaining the straight line equation x2 = −x1.
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The transformed axes are shown in the x1 − x2 plane in Fig. 8.20. The z1 − z2 plane
trajectories are now skewed to fit into the four sectors created by the two inclined z1 and z2
axes in the x1 − x2 plane, as seen in the figure. In particular the trajectories in the z1 − z2
plane, labeled A−A, B−B, C−C and D−D in Fig. 8.19 are transformed into the same
labeled trajectories, respectively, in the x1 − x2 plane, Fig. 8.20.

1

2

1

2

FIGURE 8.20 Trajectories in x1 − x2 plane.

8.16 Discrete-Time Systems

Similarly, a state space model is defined for discrete-time systems. Consider the system
described by the linear difference equation with constant coefficients

N∑

k=0

aky [n− k] =

N∑

k=0

bku [n− k] (8.219)

and assume a0 = 1 without loss of generality.

The system transfer function is obtained by z-transforming both sided. We have

N∑

k=0

akz
−kY (z) =

N∑

k=0

bkz
−kU (z) (8.220)

H (z) =
Y (z)

U (z)
=

N∑

k=0

bkz
−k

N∑

k=0

akz−k

=
b0 + b1z

−1 + . . .+ bNz
−N

a0 + a1z−1 + . . .+ aNz−N
=

b0z
N + b1z

N−1 + . . .+ bN
a0zN + a1zN−1 + . . .+ aN

.
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We can write

y [n] = −
N∑

k=1

aky [n− k] +
N∑

k=0

bku [n− k] (8.221)

Y (z) = −
N∑

k=1

akz
−kY (z) +

N∑

k=0

bkz
−kU (z) . (8.222)

The flow diagram corresponding to these equations is shown in Fig. 8.21. The structure
is referred to as the first canonical form. We will encounter similar structures in connection
with digital filters.

u n[ ]

FIGURE 8.21 Discrete-time system state space model.

x1 [n+ 1] = x2 [n] + b1u [n]− a1y [n] (8.223)

x2 [n+ 1] = x3 [n] + b2u [n]− a2y [n] (8.224)

...

xN−1 [n+ 1] = xN [n] + bN−1u [n]− aN−1y [n] (8.225)

xN [n+ 1] = − aNy [n] + bNu [n] (8.226)

y [n] = x1 [n] + b0u [n] (8.227)

x1 [n+ 1] = x2 [n] + b1u [n]− a1x1 [n]− a1b0u [n]
= − a1x1 [n] + x2 [n] + (b1 − a1b0)u [n]

(8.228)

x2 [n+ 1] = x3 [n] + b2u [n]− a2x1 [n]− a2b0u [n]
= − a2x1 [n] + x3 [n] + (b2 − a2b0)u [n]

(8.229)

...

xN−1 [n+ 1] = xN [n] + bN−1u [n]− aN−1x1 [n]− aN−1b0u [n]
= − aN−1x1 [n] + xN [n] + (bN−1 − aN−1b0)u [n]

(8.230)
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xN [n+ 1] = − aNx1 [n]− aNb0u [n] + bNu [n] = − aNx1 [n] + (bN − aNb0)u [n] (8.231)

y [n] = x1 [n] + b0u [n] (8.232)



x1 [n+ 1]
x2 [n+ 1]

...
xN−1 [n+ 1]
xN [n+ 1]




=




−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
−aN−1 0 0 . . . 1
−aN 0 0 . . . 0







x1 [n]
x2 [n]

...
xN−1 [n]
xN [n]




+




b1 − a1b0
b2 − a2b0

...
bN−1 − aN−1b0
bN − aNb0



u [n] (8.233)

y [n] =
[
1 0 0 . . . 0

]




x1 [n]
x2 [n]

...
xN [n]


+ b0u [n] . (8.234)

The state equations take the form

x [n+ 1] = Ax [n] +Bu [n] (8.235)

y [n] = Cx [n] +Du [n] . (8.236)

Example 8.16 Evaluate the transfer function and a state space model of the system de-
scribed by the difference equation

y [n]− 1.2y [n− 1] + 0.35y [n− 2] = 3u [n− 1]− 1.7u [n− 2] .

Applying the z-transform we obtain

Y (z)− 1.2z−1Y (z) + 0.35z−2Y (z) = 3z−1U (z)− 1.7z−2U (z)

H (z) =
Y (z)

U (z)
=

3z−1 − 1.7z−2

1− 1.2z−1 + 0.35z−2
=

3z − 1.7

z2 − 1.2z + 0.35
.

Writing H (z) in the form

H (z) =

2∑

k=0

bkz
−k

2∑

k=0

akz−k

we identify the coefficients ak and bk as

a0 = 1, a1 = −1.2, a2 = 0.35

b0 = 0, b1 = 3, b2 = −1.7.

See Fig. 8.22. The second canonical form state equations have the form
[
x1 [n+ 1]
x2 [n+ 1]

]
=

[
1.2 1
−0.35 0

] [
x1 [n]
x2 [n]

]
+

[
3
−1.7

]
u [n]

y [n] =
[
1 0
] [x1 [n]
x2 [n]

]
.

The first canonical form gives the state equations
[
x1 [n+ 1]
x2 [n+ 1]

]
=

[
0 1

−0.35 1.2

] [
x1 [n]
x2 [n]

]
+

[
0
1

]
u [n]

y [n] =
[
−1.7 3

] [x1 [n]
x2 [n]

]
.
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u n[ ]

FIGURE 8.22 Second order system model with state variables.

Example 8.17 Effect a partial fraction expansion and show the Jordan flow diagram of
the system transfer function

H (z) =
z2 − 5

(z − 1) (z − 2)3
.

We have

H (z) = A+
Bz3

(z − 2)
3 +

Cz2

(z − 2)
2 +

Dz

z − 2
+

Ez

z − 1

A = H (z)|z=0 =
−5

(−1) (−8)
= −5

8

E =
H (z) (z − 1)

z

∣∣∣∣
z=1

=
z2 − 5

z (z − 2)3

∣∣∣∣∣
z=1

=
−4

−1
= 4

B =
H (z) (z − 2)

3

z3

∣∣∣∣∣
z=2

=
z2 − 5

z3 (z − 1)
=

4− 5

8 (1)
=
−1

8
.

To find C and D we substitute z = 3 obtaining

9− 5

2× 1
=
−5

8
+

4× 3

3− 1
+
D × 3

1
+
C × 9

1
− 1

8
· 27

1

i.e.
3D + 9C = 0.

Substituting z = −1

1− 5

−2×−27
=
−5

8
+

4 (−1)

−2
+
D (−1)

−3
+
C

9
+

(−1)

8
· (−1)

(−27)

3D + C + 13 = 0

wherefrom C = 13/8 and D = −39/8.
We may write

Y (z) = A U (z) +Bz3X1 (z) + Cz2X2 (z) +DzX3 (z) + EzX4 (z)

where

X1 (z) =
U (z)

(z − 2)
3

X2 (z) =
U (z)

(z − 2)2
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X3 (z) =
U (z)

(z − 2)

X4 (z) =
U (z)

(z − 1)

X1 (z) =
1

(z − 2)
3U (z) =

1

z − 2
X2 (z) =

z−1

1− 2z−1
X2 (z)

x1 [n]− 2x1 [n− 1] = x2 [n− 1]

x1 [n+ 1] = 2x1 [n] + x2 [n]

X2 (z) =
1

(z − 2)
2U (z) =

1

z − 2
X3 (z) =

z−1

1− 2z−1
X3 (z)

x2 [n]− 2x2 [n− 1] = x3 [n− 1]

x2 [n+ 1] = 2x2 [n] + x3 [n]

X3 (z) =
1

z − 2
U (z) =

z−1

1− 2z−1
U (z)

x3 [n]− 2x3 [n− 1] = u [n− 1]

x3 [n+ 1] = 2x3 [n] + u [n]

X4 (z) =
1

z − 1
U (z) =

z−1

1− z−1
U (z)

x4 [n]− x4 [n− 1] = u [n− 1]

x4 [n+ 1] = x4 [n] + u [n] .

With λ1 = 2 and λ2 = 1 we have

x1 [n+ 1] = λ1x1 [n] + x2 [n]

x2 [n+ 1] = λ1x2 [n] + x3 [n]

x3 [n+ 1] = λ1x3 [n] + u [n]

x4 [n+ 1] = λ2x4 [n] + u [n]



x1 [n+ 1]
x2 [n+ 1]
x3 [n+ 1]
x4 [n+ 1]


 =




λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2







x1 [n]
x2 [n]
x3 [n]
x4 [n]


+




0
0
1
1


u [n]

y [n] = Au [n] +Bx1 [n+ 3] + Cx2 [n+ 2] +Dx3 [n+ 1] +Ex4 [n+ 1] .

Now

x4 [n+ 1] = λ2x4 [n] + u [n]

x3 [n+ 1] = λ1x3 [n] + u [n]

x2 [n+ 2] = λ1x2 [n+ 1] + x3 [n+ 1] = λ1 {λ1x2 [n] + x3 [n] + λ1x3 [n] + u [n]}
= λ2

1x2 [n] + 2λ1x3 [n] + u [n]

x1 [n+ 3] = λ1x1 [n+ 2] + x2 [n+ 2] = λ3
1x1 [n] + 3λ2

1x2 [n] + 3λ1x3 [n] + u [n] .
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Hence
y [n] = Au [n] +B{λ3

1x1 [n] + 3λ2
1x2 [n] + 3λ1x3 [n] + u [n]}

=
[
8B 12B + 4C 6B + 4C + 2D E

]
x [n]

+ (A+B + C +D + E)u [n]

=
[
−1 5 −4 4

]
x [n] =

[
r1 r2 r3 E

]



x1 [n]
x2 [n]
x3 [n]
x4 [n]




where

r1 = 8B, r2 = 12B + 4C, r3 = 6B + 4C + 2D

which is represented graphically in Fig. 8.23. We note that with a transfer function

H (z) =
Y (z)

U (z)
=

b0 + b1z
−1 + . . .+ bNz

−N

1 + a1z−1 + a2z−2 + . . .+ aNz−N
.

The corresponding difference equation is given by

y [n] + a1y [n− 1] + . . .+ any [n−N ] = b0u [n] + b1u [n− 1] + . . .+ bNu [n−N ] .

If we replace n by n+N in this difference equation we obtain

y [n+N ] + a1y [n+N − 1] + . . .+ aNy [n] = b0u [n+N ] + b1u [n+N − 1] + . . .+ bNu [n]

which corresponds to the equivalent transfer function

H (z) =
Y (z)

U (z)
=

b0z
N + b1z

N−1 + . . .+ bN
zN + a1zN−1 + a2zN−2 + . . .+ aN

.

It is common practice in state space modeling to write the difference equation in terms
of unit advances as in the last difference equation instead of delays as in the first one.

u[n]

FIGURE 8.23 Jordan flow diagram.
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8.17 Solution of the State Equations

We have found the state model in the form

x [n+ 1] = Ax [n] +Bu [n] (8.237)

y [n] = Cx [n] +Du [n] . (8.238)

We assume a causal input u [n] and the initial conditions given as the state vector x [0]. The
ith state equation is given by

xi [n+ 1] = ai1x1 [n] + ai2x2 [n] + . . .+ aiNxN [n] + bi1u1 [n] + bi2u1 [n] + . . .+ biNuN [n]

where aij are the elements of A and bij those of B and where for generality multiple input
is assumed. Applying the z-transform to this equation we have

zXi (z)− zxi (0) = ai1X1 (z) + ai2X2 (z) + . . .+ aiNXN (z)
+ bi1U1 (z) + bi2U2 (z) + . . .+ biNUN (z) .

(8.239)

The result of applying the z-transform to the state equations can be written in the matrix
form

zX (z)− zx (0) = A X (z) +B U (z) (8.240)

wherefrom
(zI −A)X (z) = zx (0) +B U (z) (8.241)

X (z) = z (zI −A)
−1
x (0) + (zI −A)

−1
B U (z) . (8.242)

Similarly to the continuous-time case we define the discrete-time transition matrix φ (n) as
the inverse transform of

Φ (z) = z (zI −A)−1 (8.243)

φ (n) = Z−1 [Φ (z)] (8.244)

so that
X (z) = Φ (z)x (0) + z−1Φ (z)B U (z) (8.245)

Y (z) = Cz (zI −A)
−1
x (0) +

{
C (zI −A)

−1
B +D

}
U (z)

= C Φ (z)x (0) +
{
Cz−1Φ (z)B +D

}
U (z) .

(8.246)

8.18 Transfer Function

To evaluate the transfer function we set the initial conditions x [0] = 0. We have

X (z) = (zI −A)
−1
B U (z) (8.247)

Y (z) = C X (z) +D U (z) =
[
C (zI −A)

−1
B +D

]
U (z) (8.248)

H (z) = Y (z) {U (z)}−1
= C (zI −A)

−1
B +D. (8.249)

We have found that
X (z) = Φ (z)x (0) + z−1Φ (z)B U (z) . (8.250)



State Space Modeling 529

Inverse z-transformation produces

x [n] = φ [n]x [0] + φ [n− 1] ∗Bu [n] = φ [n]x [0] +
n−1∑

k=0

φ [n− k − 1]Bu [k] (8.251)

Y (z) = C Φ (z)x (0) +
{
Cz−1Φ (z)B +D

}
U (z) (8.252)

y [n] = Cφ [n]x (0) + C

n−1∑

k=0

φ [n− k − 1]Bu [k] +Du [n] . (8.253)

Similarly to the continuous-time case we can express the transition matrix φ [n] as a power
of the A matrix. To show this we may substitute recursively into the equation

x [n+ 1] = Ax [n] +Bu [n] (8.254)

with
n = 0, 1, 2, . . .

obtaining
x [1] = Ax [0] +Bu [0] (8.255)

x [2] = Ax [1] + Bu [1] = A2x [0] +A Bu [0] +Bu [1] (8.256)

x [3] = Ax [2] +Bu [2] = A3x [0] +A2Bu [0] +A Bu [1] (8.257)

x [4] = Ax [3] +Bu [3] = A4x [0] +A3Bu [0] +A2Bu [1] +Bu [3] . (8.258)

We deduce that

x [n] = Anx [0] +

n−1∑

k=0

An−k−1Bu [k] . (8.259)

Comparing this with Equation (8.251) above we have

φ [n] = An (8.260)

which is another expression for the value of the transition matrix φ (n). We deduce the
following properties

φ [n1 + n2] = An1+n2 = φ (n1)φ (n2) (8.261)

φ [0] = A0 = I (8.262)

φ−1 [n] = A−n = φ [−n] . (8.263)

8.19 Change of Variables

As with continuous-time systems if we apply the change of variables

x [n] = Tw [n] (8.264)

then the state equations
x [n+ 1] = Ax [n] +Bu [n] (8.265)

y [n] = Cx [n] +Du [n] (8.266)
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take the form

Tw [n+ 1] = A Tw [n] +Bu [n] (8.267)

y [n] = C Tw [n] +Du [n] (8.268)

w [n+ 1] = T−1A Tw [n] + T−1Bu [n] = Aww [n] +Bwu [n] (8.269)

where

Aw = T−1A T, Bw = T−1B (8.270)

y [n] = Cww [n] +Dwu [n] (8.271)

where

Cw = C T, Dw = D. (8.272)

Similarly to continuous time systems it can be shown that

det (zI −Aw) = det (zI −A) = (z − λ1) (z − λ2) . . . (z − λN ) (8.273)

λ1, λ2, . . . , λN being the eigenvalues of A.

det (Aw) = det (A) = λ1, λ2, . . . , λN (8.274)

H (z) = Cw (zI −Aw)−1Bw +Dw = C (zI −A)−1B +D. (8.275)

The following examples illustrates the computations involved in these relations. MATLABr,
Mathematicar and Mapler prove to be powerful tools for the solution of state space equa-
tions.

Example 8.18 Evaluate the transfer function of a discrete-time system given that its state
space matrices are given by

A =




2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1


 , B =




0
0
1
1


 , C = [−1 5 − 4 4], D = 0.

We have

H (z) = C Φ (z) z−1B +D = C (zI −A)−1B +D

zI −A =




z-2 1 0 0
0 z-2 1 0
0 0 z-2 0
0 0 0 z-1




(zI −A)−1 =
adj [zI −A]

det [zI −A]

det [zI −A] = (z − 2)
3
(z − 1)

adj [zI −A] =




(z − 2)
2
(z − 1) 0 0 0

(z − 2) (z − 1) (z − 2)
2
(z − 1) (z − 2)

2
(z − 1) 0

z − 1 (z − 2) (z − 1) (z − 2)
2
(z − 1) 0

0 0 0 (z − 2)3
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(zI −A)
−1

=




(z − 2)
2
(z − 1) (z − 2) (z − 1) z − 1 0

0 (z − 2)
2
(z − 1) (z − 2) (z − 1) 0

0 (z − 2)
2
(z − 1) (z − 2)

2
(z − 1) 0

0 0 0 (z − 2)
3




(zI −A)
−1

=




1

z − 2

1

(z − 2)
2

1

(z − 2)
3 0

0
1

z − 2

1

(z − 2)
2 0

0
1

z − 2

1

z − 2
0

0 0 0
1

z − 1




H (z) = C (zI −A)
−1
B +D

=
[
−1 5 −4 4

]




1
z−2

1
(z−2)2

1
(z−2)3

0

0 1
z−2

1
(z−2)2

0

0 1
z−2

1
z−2 0

0 0 0 1
z−1







0
0
1
1




=
[(
−1
z−2

) (
−1

(z−2)2
+ 1

z−2

) (
−1

(z−2)3
+ 5

(z−2)2
− 4

z−2

) (
4

z−1

)]



0
0
1
1




=
−1

(z − 2)
3 +

5

(z − 2)
2 −

4

z − 2
+

4

z − 1
.

(8.276)

H (z) =
z2 − 5

(z − 1) (z − 2)
3 .

8.20 Second Canonical Form State Space Model

The following example illustrates an approach for evaluating the state space model of a
discrete-time system.

Example 8.19 Evaluate the state space model of a system, given its transfer function

H (z) =
Y (z)

U (z)
=
β0 + β1z

−1 + β2z
−2 + β3z

−3

1 + α1z−1 + α2z−2 + α3z−3
.

We have

H (z) =
β0z

3 + β1z
2 + β2z + β3

z3 + α1z2 + α2z + α3
.

Let us write

H (z) =
Y1 (z)

U (z)

Y (z)

Y1 (z)
= H1 (z)H2 (z)

where

H1 (z) =
Y1 (z)

U (z)
=

1

z3 + α1z2 + α2z + α3

H2 (z) =
Y (z)

Y1 (z)
= β0z

3 + β1z
2 + β2z + β3
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wherefrom
z3Y1 (z) = −α1z

2Y1 (z)− α2zY1 (z)− α3Y1 (z) + U (z) .

u n[ ]

FIGURE 8.24 Second canonical form state space model.

This relation can be represented in a flow diagram form as shown in Fig. 8.24 where delay
elements, denoted z−1, are connected in series. The state variables x1, x2 and x3 are the
outputs of these delay elements as shown in the figure, wherefrom we can write

y1 [n] = x1 [n] , x1 [n+ 1] = x2 [n] , x2 [n+ 1] = x3 [n]

x2 [n] = y1 [n+ 1] , x3 [n] = y1 [n+ 2] , x3 [n+ 1] = y1 [n+ 3]

z3Y1 (z) = zX3 (z) = −α1z
2Y1 (z)− α2zY1 (z)− α3Y (z) + U (z)

= −α1X3 (z)− α2X2 (z)− α3X1 (z) + U (z) .

This relation defines the value at the input of the left-most delay element, and is thus
represented schematically as shown in the figure. The figure is completed by noticing that

Y (z) = β0z
3Y1 (z) + β1z

2Y1 (z) + β2zY1 (z) + β3Y1 (z)
= β0zX3 (z) + β1X3 (z) + β2X2 (z) + β3X1 (z) .

We therefore found x3 [n+ 1] = −α1x3 [n]− α2x2 [n]− α3x1 [n] + u [n]

y [n] = β0x3 [n+ 1] + β1x3 [n] + β2x2 [n] + β3x1 [n] .

The state space equations are therefore given by:



x1 [n+ 1]
x2 [n+ 1]
x3 [n+ 1]



 =




0 1 0
0 0 1
−α3 −α2 −α1








x1 [n]
x2 [n]
x3 [n]



+




0
0
1



u [n]

y [n] = β0 {−α1x3 [n]− α2x2 [n]− α3x1 [n] + u [n]}+ β1x3 [n] + β2x2 [n] + β3x1 [n]
= (β3 − β0α3)x1 [n] + (β2 − β0α2)x2 [n] + (β1 − β0α1)x3 [n] + β0u [n]

y [n] =
[
(β3 − β0α3) (β2 − β0α2) (β1 − β0α1)

]



x1 [n]
x2 [n]
x3 [n]



+ β0u [n] .
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8.21 Problems

Problem 8.1 For the two-input two-output electric circuit shown in Fig. 8.25 let x1, x2

and x3 be the currents through the inductors, and x4 and x5 the voltages across the ca-
pacitors, as shown in the figure. The inputs to the system are the voltages v1 and v2. The
outputs are voltages across the capacitors y1 and y2. Evaluate the matrices A, B, C and D
of the state space model describing the circuit.

FIGURE 8.25 Two-input two-output system.

Problem 8.2 The force f (t) is applied to the mass on the left in Fig. 8.26, which is
connected through a spring of stiffness k to the mass on the right. Each mass is m kg. The
movement encounters viscous friction of coefficient b between the masses and the support.
By choosing state variable x1 as the speed of the left mass, x2 the force in the spring and
x3 the speed of the right mass and, as shown in the figure, and with the outputs y1 and y2
the speeds of the masses, evaluate the state space model.

FIGURE 8.26 Two masses and a spring.

Problem 8.3 With x1 the current in the inductor and x2 the voltage across the capacitor
in the circuit shown in Fig. 8.27, with v(t) the input and y1 and y2 the outputs of the circuit

a) Evaluate the state space model.
b) With R1 = 103Ω, R2 = 102Ω, L = 10 H and C = 10−3 F evaluate the transition

matrix Φ (s) , the transfer function matrix H (s) and the impulse response matrix.
c) Assuming the initial conditions

x1 (0) = 0.1 amp, x2 (0) = 10 volt

evaluate the response of the circuit to the input v (t) = 100u (t) volts.

Problem 8.4 For the circuit shown in Fig. 8.28 evaluate the state space model, choosing
state variables x1 and x2 as the voltages across the capacitors and x3 the current through
the inductor, as shown in the figure.
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FIGURE 8.27 R–L–C circuit with two outputs.

FIGURE 8.28 R–L–C electric circuit.

Problem 8.5 The matrices of a state space model are

A =

[
0 1

-5000 -50

]
, B =

[
0 0

5000 -74

]
, C =

[
1 0
]
, D = 0.

a) Evaluate the transition matrix φ (t) and the transfer function H (s).
b) Evaluate the unit step response given the initial conditions x1 (0) = 2 and x2 (0) = 4,

where x1 and x2 are the state variables.

Problem 8.6 Consider the system represented by the block diagram shown in Fig. 8.29
a) Evaluate the system state model.
b) Evaluate the transfer function from the input u (t) to the output y (t).

3 4

u t( )

0.5 2

x1

x2
y t( )

x1

.

x2

.

1
s

1
s

FIGURE 8.29 System block diagram.

Problem 8.7 Evaluate the state space model of the circuit shown in Fig.8.30 with x1 and
x2 the state variables equal to the voltage across the capacitor and the current through the
inductor, respectively. Draw the block diagram representing the system structure.

Problem 8.8 Consider the two-input electric circuit shown in Fig. 8.31. Assuming the
initial conditions in the capacitor C and inductor L to be v0 and i0, respectively,

a) Evaluate the state space model of the system.
b) Draw the block diagram representing the circuit.
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FIGURE 8.30 R–L–C electric circuit.

FIGURE 8.31 R-L-C Electric circuit.

Problem 8.9 Consider the block diagram of the system shown in Fig. 8.32.

a) Write the state space equations describing the system.

b) Write the third order differential equation relating the input u (t) and the output y (t).

c) Evaluate the transfer function from the input to the output. Verify the result using
MATLAB.

x1

x2

+

+

y t( )2

-3
+

+ +
-3

-4

+
-7

x3

-1

u t( )

+

+

FIGURE 8.32 System block diagram.
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Problem 8.10 Evaluate the state space model of the system of transfer function:

H(s) =
s2 + s+ 2

4s3 + 3s2 + 2s+ 1
.

Problem 8.11 Consider the electric circuit shown in Fig. 8.33 where the two switches
close at t = 0, the state variables x1 and x2 are the current through and voltage across
the inductor and capacitor, respectively, and where the output is the current i1 through the
resistor R1. Assuming the initial conditions x1(0) = 1 ampere and x2(0) = 2 volt, evaluate

a) The state space model matrices A, B, C and D, the transition matrix φ(t); the state
space vector x; and the output i1(t),

b) The equivalent Jordan form, the equivalent system ż = Jz and the system trajectories.

c) Repeat if R2 = 2.5Ω.

FIGURE 8.33 R–L–C electric circuit.

Problem 8.12 Consider the system represented by the block diagram shown in Fig. 8.34,
with state variables x1 and x2 as shown in the figure.

a) Write the state space equations describing the system.

b) From the system eigenvalues and assuming α > 0, state under what conditions would
the system be unstable?

c) With α = 5, k1 = 2, k2 = 3 evaluate the system output in response to the input
v(t) = u(t) and with zero initial conditions.

d) For the same values of α, k1 and k2 in part c) evaluate the equivalent Jordan diago-
nalized model ż = Jz and sketch the system trajectories in the x1− x2 and z1− z2 planes,
assuming zero input, and initial conditions x1(0) = x2(0) = 1. Show how the axes z1 and
z2 of the z1 − z2 plane appear in the x1 − x2 plane.

x1 y

x2

u k1

k2

s+a

s

FIGURE 8.34 System block diagram.

Problem 8.13 The switch S in the electric circuit depicted in Fig. 8.35 is closed at t = 0,
the circuit having zero initial conditions.
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Evaluate the matrices A, B, C and D of the state space equations, the state variables
x1(t) and x2(t) for t > 0, where x1 is the voltage across C and x2 the current through L
as shown in the figure.

FIGURE 8.35 R–L–C electric circuit.

Problem 8.14 Evaluate the state space model and the state space variables x1(t) and x2(t)
for the electric circuit shown in Fig. 8.36.

FIGURE 8.36 R–L–C electric circuit.

Problem 8.15 Evaluate the transfer function of the system of which the space model is
given by

ẋ(t) =




1 4 0
-2 0 2
0 2 1



 x(t) +




1
1
0



u

y =
[
1 0 2

]
x(t) + 3u(t).

Problem 8.16 The state space model of a system is given by ẋ = Ax+Bv, where

A =

[
0 -3
3 0

]
, B =

[
2
0

]
, x (0) =

[
3
0

]
, v (t) = 2u (t) .

Evaluate the state variables x1 (t) and x2 (t), the transition matrices Q (t) and φ (t), and
plot the system trajectory.

Problem 8.17 Consider the electric circuit shown in Fig. 8.37.

a) Evaluate the state space model assuming that the state space variables are the current
and voltage in the inductor and capacitor, respectively, as shown in the figure.

b) Evaluate the transition matrices φ (t) and Q (t).

c) Assuming the initial condition x1 (0) = 2 ampere, x2 (0) = 3 volt, evaluate x1 (t) and
x2 (t) and draw the system trajectories.
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FIGURE 8.37 R-L-C electric circuit.

8.22 Answers to Selected Problems

Problem 8.1



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=




−R/L 0 0 −1/L 0
0 0 0 1/L −1/L
0 0 −R/L 0 −1/L

1/C −1/C 0 0 0
0 1/C 1/C 0 0







x1

x2

x3

x4

x5




+




1/L 0
0 0
0 1/L
0 0
0 0




[
u1

u2

]

[
y1
y2

]
=

[
0 0 0 1 0
0 0 0 0 1

]



x1

x2

x3

x4

x5




Problem 8.2


ẋ1

ẋ2

ẋ3


 =



−b/m −1/m 0
k 0 −k
0 1/m −b/m





x1

x2

x3


+




1/m
0
0


 f (t)

Problem 8.3
c)

y (t) =

[
11.74 e−5.5t cos (8.93 t+ 0.552)u (t)
12.318 e−5.5t cos (8.93t− 7.571)u (t)

]

Problem 8.4



ẋ1

ẋ2

ẋ3



 =




−1/ (RC1) −1/ (RC1) 0
−1/ (RC2) −3/ (2RC2) −1/ (2C2)
0 1/ (2L) −R/ (2L)








x1

x2

x3



 +




1/ (RC1)
1/ (RC2)
0



 u

y = [0 1/2 −R/2]



x1

x2

x3




Problem 8.5
∆ = s2 + 50 s+ 5000

H(s) = [10000/∆ −148/∆] .

b)
yI.C. (t) = 4.3319e−25t cos (66.144t− 0.394)u (t)

yzero I.C. (t) =
[
0.1704 + 0.1822e−25t cos (66.144t+ 2.780)

]
u (t)
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y (t) = yI.C. (t) + yzero I.C. (t)

Problem 8.6

H(s) =
12

s2 + 15s+ 12

Problem 8.7 (
ẋ1

ẋ2

)
=

(− 1
CR1

− 1
C

1
L −R2

L

)(
x1

x2

)
+

(
1

CR1

0

)
ve

y =
(
1 0
)(x1

x2

)
+ 0 ve

Problem 8.8

[
ẋ1

ẋ2

]
=

[
−2

(R1+R2)C 0

0 −2R1R2

L(R1+R2)

] [
x1

x2

]
+

[
1

(R1+R2)C
1

(R1+R2)C
R2

L(R1+R2)
−R2

L(R1+R2)

] [
u1

u2

]

ẋ = Ax+Bu

Problem 8.9

H (s) =
Y (s)

U (s)
=

2s3 + 3s2 + s+ 2

s3 + 3s2 + 4s+ 1

Problem 8.10 

ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1
−1/4 −1/2 −3/4





x1

x2

x3


+




0
0
1


u

y =
[
1/2 1/4 1/4

]



x1

x2

x3





Problem 8.11
See Fig. 8.38.

FIGURE 8.38 Figure for Problem 8.11.

a)

φ(t) =
1

3

[
4e−5t − e−2t 2e−5t − 2e−2t

2e−2t − 2e−5t 4e−2t − e−5t

]
u(t)
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x(t) = φ(t)x(0) = φ(t)

[
1
2

]
= 1

3

[
8e−5t − 5e−2t

10e−2t − 4e−5t

]
u(t)

i1 = (1/R1)x2 = 0.5x2 = [(5/3)e−2t − (2/3)e−5t] u(t)

b) z1(t) = z1(0)e−2tu(t), z2(t) = z2(0)e−5tu(t).

c) i1 = (3te−3t + e−3t)u(t), z1(t) = z1(0)e−3tu(t) + z2(0)te−3tu(t).

Problem 8.12

a) A =

[
−α −k1

k2 0

]
, B =

[
k1

0

]
, C =

[
1 0
]
, D = 0.

See Fig. 8.39 and Fig. 8.40.

z1

z2

-4

5

FIGURE 8.39 Figure for Problem 8.12.

z1

z2

0

-0.01

-0.02

0.01

0.02

0.03

0 0.01-0.01 x1

x2

FIGURE 8.40 Figure for Problem 8.12.

b) The system is unstable if λ2 > 0 i.e. if sign(k1) 6= sign(k2).
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c)

x(t) =

[
2e−2t − 2e−3t

1− 3e−2t + 2e−3t

]
u(t)

d) x1(t) = (−2e−2t + 3e−3t − 2e−2t + 2e−3t)u(t) = (−4e−2t + 5e−3t)u(t)
x2(t) = (3e−2t − 3e−3t + 3e−2t − 2e−3t)u(t) = (6e−2t − 5e−3t)u(t)
z1 = −2x1 − 2x2, z2 = 3x1 + 2x2.

Problem 8.13

A =

[
−1 −2
1 −4

]
, B =

[
1
0

]
, C =

[
0 1
]
, D = 0.

φ(t) =

[
2e−2t − e−3t −2e−2t + 2e−3t

e−2t − e−3t −e−2t + 2e−3t

]
u(t)

x1(t) =

{
2

ˆ t

0

(2e−τ − e−3τ )dτ

}
u(t) = 2[2(1− e−t)− 1

3
(1− e−3t)]u(t)

x2(t) = φ21(t)∗2u(t) =

{
2

ˆ t

0

(2e−2τ − e−3τ )dτ

}
u(t) = 2[(1/2)(1−e−2t)−(1/3)(1−e−3t)]u(t)

Problem 8.14

A =

[
0 1/L
−1/C −1/(RC)

]
=

[
0 4
−2 −6

]

φ(t) =

[
2e−2t − e−4t 2e−2t − 2e−4t

−e−2t + e−4t −e−2t + 2e−4t

]
u(t)

x(t) = φ(t)x(0) =

[
φ11x1(0) φ12x2(0)
φ21x1(0) φ22x2(0)

]

Problem 8.15

H(s) = =
3s3 − 5s2 + 22s− 40

s3 − 2s2 + 5s− 4

Problem 8.16
x1 (t) = [3 cos 3t+ (4/3) sin 3t] u (t)

x2 (t) = [3 sin 3t+ (4/3) { 1− cos 3t } ]u (t)

Problem 8.17

Q (t) =

[
e−λ1t 0
0 eλ2t

]
=

[
e(−2+j2)t 0

0 e(−2−j2)t

]

φ (t) = e−2t

[
sin 2t+ cos 2t −2 sin 2t
sin 2t −2 sin 2t+ cos 2t

]
u (t)

x (t) = φ (t) x (0)
[
x1 (t)
x2 (t)

]
=

[
2e−2t (cos 2t− sin 2t)
2e−2t cos 2t

]
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9

Filters of Continuous-Time Domain

In this chapter we study different approaches to the design of continuous-time filters, also
referred to as analog filters. An important application is the design of a filter of which the
frequency response best matches that of a given spectrum. This is referred to as a problem
of approximation. It has many applications in science and engineering.

Filters are often used to eliminate or reduce noise that contaminates a signal. For example,
a bandpass filter may remove from a signal a narrow-band extraneous added noise. Filters
are also used to limit the frequency spectrum of a signal before sampling, thus avoiding
aliasing. They may be used as equalizers to compensate for spectral distortion inherent in
a communication channel. Many excellent books treat the subject of continuous-time filters
[4] [12] [48] [60].

In what follows we study approximation techniques for ideal filters. Lowpass, bandpass,
highpass and bandstop ideal filters are approximated by models known as Butterworth,
Chebyshev, elliptic and Bessel–Thomson.

9.1 Lowpass Approximation

Consider the magnitude-squared spectrum |H (jω)|2 of an ideal lowpass filter with a cut-off
frequency of 1, shown in Fig. 9.1.

FIGURE 9.1 Ideal lowpass filter frequency response.

Our objective is to find a rational transfer function, a ratio of two polynomials, which
has the same as or is an approximation of this frequency spectrum.

543
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9.2 Butterworth Approximation

A rational function, a ratio of two polynomials in ω, which approximates the given ideal
magnitude-squared spectrum is the Butterworth approximation given by

|H (jω)|2 =
1

1 + ε2ω2n
. (9.1)

The value of ε is often taken equal to 1, so that the magnitude spectrum is given by

|H (jω)|2 =
1

1 + ω2n
. (9.2)

To simplify the presentation, we follow this approach by setting ε = 1 and defer the
discussion of the case ε 6= 1, to a following section. The amplitude spectrum |H (jω)| of
the Butterworth approximation

|H (jω)| = 1√
1 + ω2n

(9.3)

is shown in Fig. 9.2 for different values of the filter order n.

| ( )|H jw

n = 1

n = 2

n = 4

n = 8

0.5 w

1

0
1 1.5 2

1 + e2

1

FIGURE 9.2 Butterworth filter frequency response.

We note that the amplitude spectrum |H (jω)|, similarly to the magnitude-squared spec-

trum |H (jω)|2, is written in a normalized form, the frequency ω being a normalized fre-
quency, such that the frequency ω = 1 is the cut-off frequency of the spectrum, also
referred to as the pass-band edge frequency, whereat the amplitude spectrum |H (jω)| drops
to a value of 1/

√
2, corresponding to a 3 dB drop from its value of 1 at ω = 0. Such a

normalized lowpass filter is referred to as a prototype, since it serves as a basis for obtaining
thereof denormalized and other types of filters.

We can rewrite the amplitude spectrum |H (jω)| using the binomial expansion in the
form

|H (jω)| =
(
1 + ω2n

)−1/2
= 1− 1

2
ω2n +

3

8
ω4n − 5

16
ω6n + . . . . (9.4)

Hence the 2n − 1 first derivatives of |H (jω)| are nil at ω = 0. The spectrum in the
neighborhood of ω = 0 is therefore as flat as possible for a given order n. The Butterworth
amplitude spectrum thus produces what is known as a “maximally flat” approximation.
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To evaluate the transfer function H (s) corresponding to the given power magnitude-

squared |H (jω)|2 we first note that

|H (jω)|2 = H (jω)H∗ (jω) = H (jω)H (−jω) = H (s)H (−s)|s=jω (9.5)

that is,

H (s)H (−s) = |H (jω)|2
∣∣
ω=s/j =

1

1 + (−js)2n =
1

1 + (−s2)n =
1

1 + (−1)
n
s2n

. (9.6)

We set out to deduce the value of H (s) from this product. The poles of the product
H (s)H (−s) are found by writing

(−1)n s2n = −1 (9.7)

s2n = (−1)n−1 = ej(n−1)πej2kπ , k = 1, 2, . . . . (9.8)

The poles are therefore given by

sk = ejπ(2k+n−1)/(2n), k = 1, 2, . . . , 2n. (9.9)

We note that there are 2n poles equally spaced around the unit circle |s| = 1 in the s
plane, as shown in Fig. 9.3 for different values of n.

FIGURE 9.3 Poles of Butterworth filter for different orders.

We also note that the n poles s1, s2, . . . , sn are in the left half of the s plane as shown in
the figure. We can therefore select these as the poles of H (s) thus ensuring a stable system.
The transfer function sought is therefore

H (s) =
1

n∏

i=1

(s− si)

(9.10)

where

si = ejπ(2i+n−1)/(2n) = cosπ

(
2i+ n− 1

2n

)
+ j sinπ

(
2i+ n− 1

2n

)
. (9.11)

Writing

H (s)=△
1

A (s)
=

1

sn + an−1sn−1 + . . .+ a2s2 + a1s+ 1
(9.12)

where A (s) is the “Butterworth polynomial,” we can evaluate the coefficients a1, a2, . . . ,
an−1. The result is shown in Table 9.1.
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TABLE 9.1 Butterworth filter coefficients of the denominator
polynomial sn + a1s

n−1 + a2s
n−2 + · · ·+ a2s

2 + a1s+ 1

n a1 a2 a3 a4 a5

2 1.414214
3 2
4 2.613126 3.414214
5 3.236068 5.236068
6 3.863703 7.464102 9.141620
7 4.493959 10.097834 14.591794
8 5.125831 13.137071 21.846150 25.688356
9 5.758770 16.581719 31.163437 41.986385
10 6.392453 20.431729 42.802061 64.882396 74.233429

TABLE 9.2 Butterworth lowpass filter prototype poles and residues

n Poles Residues
2 -0.7071± j0.7071 ∓j0.7071
3 -1.0000,-0.5000± j0.8660 1.0000,-0.5000∓ j0.2887
4 -0.9239± j0.3827,-0.3827± j0.9239 0.4619∓ j1.1152,-0.4619± j0.1913
5 -0.8090± j0.5878,-0.3090± j0.9511, -0.8090∓ j1.1135,-0.1382± j0.4253,

-1.0000 1.8944
6 -0.2588± j0.9659,-0.9659± j0.2588, 0.2041± j0.3536, 1.3195∓ j2.2854,

-0.7071± j0.7071 -1.5236,-1.5236
7 -0.9010± j0.4339,-0.2225± j0.9749, -1.4920∓ j3.0981, 0.3685± j0.0841,

-0.6235± j0.7818,-1.0000 -1.0325± j1.2947, 4.3119
8 -0.8315± j0.5556,-0.1951± j0.9808, -4.2087∓ j0.8372, 0.2940∓ j0.1964,

-0.9808± j0.1951,-0.5556± j0.8315 3.5679∓ j5.3398, 0.3468± j1.7433
9 -1.0000,-0.7660± j0.6428, 10.7211,-3.9788± j3.3386,

-0.1736± j0.9848,-0.5000± j0.8660, 0.0579∓ j0.3283, 1.6372± j0.9452,
-0.9397± j0.3420 -3.0769∓ j8.4536

10 -0.8910± j0.4540,-0.4540± j0.8910, -11.4697∓ j3.7267, 1.8989∓ j0.6170,
-0.1564± j0.9877,-0.9877± j0.1564, -0.1859∓ j0.2558, 9.7567∓ j13.4290,
-0.7071± j0.7071 ±j6.1449

We note that the coefficients are symmetric about the polynomial center, that is,

a1 = an−1, a2 = an−2, . . . (9.13)

a symmetry resulting from the uniform spacing of the poles about the unit circle. Note also
that with each complex pole si there is a conjugate pole s∗i so that

si s
∗
i = |si|2 = 1. (9.14)

The poles si of such a normalized prototype filter are function of only the order n. Hence,
given the order n, the poles si are directly implied, as given in Table 9.2.

The Butterworth transfer function denominator polynomial coefficients may be evaluated
recursively. We have an = a0 = 1 and

ak = ak−1
cos[(k − 1)π/(2n)]

sin[kπ/(2n)]
, k = 1, 2, . . . , n (9.15)

wherefrom we may write

ak =

k∏

m=1

cos[(m− 1)π/(2n)]

sin[mπ/(2n)]
, k = 1, 2, . . . , n (9.16)
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The MATLABr function Butter(n, Wn,
′s′), where the argument ′s′ means continuous-

time filter, accepts the value of the order n and the cut-off frequency Wn. If the cut-off
frequency Wn is set equal to 1, the resulting filter has ε = 1 and a 3 dB attenuation at the
cut-off frequency ω = 1. The MATLAB function (B, A) = Butter(n, Wn,

′s′) returns
the coefficients of the numerator B(s) and denominator A(s) of the transfer function. The
function (z, p, K) = Butter(n, Wn,

′s′) returns the filter zeros zi as elements of the
vector z, the poles pi as elements of the vector p and the “gain” K, so that the filter
transfer function is expressed in the form

H (s) = K

n∏

i=1

(s− zi)

n∏

i=1

(s− pi)

. (9.17)

With Wn = 1 the results A, B, z, p, K are those of the normalized filter and are the
same as those listed in the tables. To determine the filter order n, the function

[N, Wn] = buttord (Wp, Ws, Rp, Rs,
′s′) (9.18)

is used. In this case the arguments Wp and Rp are the edge frequency at the end of the
pass-band and the corresponding attenuation, respectively. The arguments Ws and Rs are
the stop-band edge frequency and the corresponding attenuation. The results N and Wn

are the filter order and the 3 dB cut-off frequency ωc, respectively.
The maximum value of the filter response occurs at zero frequency

|H (jω)|max = |H (j0)| = K. (9.19)

To obtain a maximum response of M dB we write

20 log10K = M (9.20)

K = 10M/20. (9.21)

For example, if M = 0 dB, K = 1 and if M = 10 dB, K = 100.5 = 3.1623.

9.3 Denormalization of Butterworth Filter Prototype

To convert the normalized filter into a denormalized one with a true cut-off frequency of fc

Hz, that is, ωc = 2πfc radians/second, the filter transfer function is denormalized by the
substitution

ω −→ ω/ωc (9.22)

meaning that we replace ω by ω/ωc.
The magnitude-squared spectrum of the denormalized filter is therefore

|H (jω)|2 =
1

1 + (ω/ωc)
2n (9.23)

a function of two parameters, the cut-off frequency ωc and the order n.
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FIGURE 9.4 Butterworth filter frequency response.

As Fig. 9.4 shows, the attenuation at the end of the pass-band, at ω = ωp, is αp dB. At
the beginning of the stop-band, at ω = ωs it is αs dB. The region between the pass-band
and the stop-band is the transition-band .

We note that at the cut-off frequency ω = ωc r/s the magnitude-squared spectrum is

given by |H (jωc)|2 = 0.5, |H (jωc)| = 0.707 and the attenuation by

αc = 10 log10

|H (j0)|2

|H (jωc)|2
= 10 log10

1

0.5
= 3 dB. (9.24)

Moreover

20 log10

|H (j0)|
|H (jωp)|

= αp (9.25)

i.e.

αp = 10 log10

{
1 + (ωp /ωc)

2n
}

(9.26)

(ωp/ωc)
2n

= 10αp/10 − 1. (9.27)

Similarly

20 log10





1

1/

√
1 + (ωs/ωc)

2n



 = αs (9.28)

i.e.

1 + (ωs/ωc)
2n

= 10αs/10 (9.29)

(ωs/ωc)
2n

= 10αs/10 − 1. (9.30)

Hence (
ωp

ωs

)2n

=
10αp/10 − 1

10αs/10 − 1
. (9.31)

Example 9.1 Evaluate the transfer function of a lowpass Butterworth filter that satisfies
the following specifications: a 3-dB cut-off frequency of 2 kHz, attenuation of at least 50 dB
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at 4 kHz. Evaluate the pass-band edge frequency ωp whereat the attenuation should equal
0.5 dB.

With cut-off frequency 2 kHz, i.e. ωc = 2π × 2000 r/s, taken as normalized frequency
ω = 1, the stop-band frequency (4 kHz) corresponds to ω = 2. We should have

10 log10

1

1 + 22n
= −50 (9.32)

i.e.
(
1 + 22n

)
= 105, or n = 8.3. We choose for the filter order the next higher integer

n = 9. From Butterworth filter tables we obtain the normalized (prototype) transfer function
with order n = 9. The denormalized transfer function is then

Hdenorm(s) = Hnorm(s)|s−→s/(2π×2000) . (9.33)

Substituting ωc = 2π × 2000 and αp = 0.5 we obtain

ωp = ωc(100.05 − 1)1/18 = 2π × 1779.4 r/s

so that the pass-band edge frequency is fp = 1.7794 kHz.

Example 9.2 Evaluate the order of a Butterworth filter having the specifications: at the
frequency 10 kHz the attenuation should at most be 1 dB; at the frequency 15 kHz the at-
tenuation should be not less than 60 dB.

We have αp = 1 dB, αs = 60 dB, ωp = 2π × 10 × 103 = 6.2832 × 104 r/s and
ωs = 2π × 15× 103 = 9.4248× 104 r/s

(
ωp

ωs

)2n

=

(
10

15

)2n

=
100.1 − 1

106 − 1
= 2.5893× 10−7

wherefrom n = 18.7029. We choose the next higher integer, the ceiling of n, ⌈n⌉ = 19, as
the filter order. If we maintain fixed the values ωs, αp and αs then the cut-off frequency ωc

may be evaluated by writing

ωc =
ωs

(10αs/10 − 1)1/38
=

9.4248× 104

(106 − 1)1/38
= 6.5521× 104 r/s

fc = ωc/(2π) = 10.4280 kHz.

The fourth value ωp will increase slightly due to the increase in the value of n to the next
higher integer. Let ω′p denote this updated value of the pass-band edge frequency. We have

(
ω′p
ωs

)2n

=
10αp/10 − 1

10αs/10 − 1
= 2.5893× 10−7

ω′p
ωs

=
(
2.5893× 10−7

)1/38
= 0.6709

ω′p = 0.6709ωs = 0.6709× 2π × 15× 103

= 2π × 1.0064× 104 = 6.3232× 104.

The same result is obtained by writing the MATLAB command

[N, Wn] = buttord (Wp, Ws, Rp, Rs,
′s′)

where Wp = ωp, Ws = ωs, Rp = αp, Rs = αs resulting in the order N = n = 19 and
Wn = ωc, the cutoff frequency found above.

Using MATLAB we obtain the order n = 19 and the value Wn, the cut-off frequency.
We can also obtain the numerator and denominator coefficients of the transfer function’s
polynomials B (s) and A (s) as well as the poles and zeros.
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9.4 Denormalized Transfer Function

As we have seen above, the denormalized filter magnitude-squared spectrum has the form

|H (jω)|2 =
1

1 + (ω/ωc)
2n =

ω2n
c

ω2n + ω2n
c

(9.34)

where ω is the true denormalized frequency in rad/sec. The transfer function is denormalized
by replacing s by s/ωc. We may write

H (s)H (−s) =
1

1 + (s/jωc)
2n =

ω2n
c

ω2n
c + (−1)

n
s2n

. (9.35)

The true, denormalized, poles are found by writing

(−1)n s2n = −ω2n
c (9.36)

s2n = ω2n
c ej(n−1)πej2kπ . (9.37)

Denoting by qk the denormalized poles we have

qk = ωce
jπ(2k+n−1)/(2n) = ωcsk, k = 1, 2, . . . , 2n. (9.38)

These are the same values of the poles obtained above for the normalized form except that
now the poles are on a circle of radius ωc rather than the unit circle. The transfer function
has the denormalized form

H (s) =
ωn

c
n∏

i=1

(s− qi)
(9.39)

where we note that its numerator is given by ωn
c instead of 1. The poles in the last example

may thus be evaluated. We have

qk = 2.0856× 104πejπ(2k+18)/38 = 6.5520× 104ejπ(2k+18)/38, k = 1, 2, . . . , 19. (9.40)

The transfer function H (s) is given by

H (s) =
ω19

c
19∏

i=1

(s− qi)
=

(
6.5520× 104

)19
19∏

i=1

(s− qi)
=

3.2445× 1091

19∏

i=1

(s− qi)
. (9.41)

The amplitude spectrum is shown in Fig. 9.5
As we have seen in Chapter 8, knowing the filter transfer function we can construct the

filter in structures known as canonical or direct forms as well as cascade or parallel forms.
As an illustration, the filter of this last example can be realized as a cascade of a first order
filter, corresponding to the single real pole, and nine second order filters, corresponding to
the complex conjugate poles, as shown in Fig. 9.6

We can alternatively evaluate the 19th order polynomial A (s), thus writing H (s) in the
form

H (s) =
1

A (s)
=

(
2.0856× 104π

)19

s19 + α18s18 + α17s17 + . . .+ α1s+ α0
. (9.42)
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10.4280

FIGURE 9.5 Butterworth filter frequency response.
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FIGURE 9.6 System cascade realization.

FIGURE 9.7 Possible filter realization.

The filter may be realized for example in a direct (canonical) form as described in Chapter
8, obtaining the structure shown in Fig. 9.7 with n = 19.

A parallel form of realization can be obtained by applying a partial fraction expansion. We
obtain the form

H (s) =

19∑

i=1

Ai

s− qi
=

A10

s− q10
+

9∑

i=1

Ais+Bi

s2 − 2ℜ [qi] s+ |qi|2
. (9.43)

The filter may thus be realized as a parallel structure containing one first order and nine
second order filters.



552 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

9.5 The Case ε 6= 1

For the Butterworth approximation with ε 6= 1 we may write

|Hε (jω)|2 =
H2

1 + ε2ω2n
(9.44)

and with

|H (jω)|2 =
H2

1 + ω2n
(9.45)

we note that
|Hε (jω)|2 = |H (jω)|2

∣∣∣
ω−→ε1/nω

(9.46)

and that the magnitude-squared spectrum |Hε (jω) |2 can be written as a denormalized
spectrum with the cut-off frequency ωc appearing explicitly by letting ε2 = 1/ωc

2n, or
ε = 1/ωc

n, and conversely ωc = ε−1/n.
The transfer function Hε (s) can be determined from H (s) by replacing s by ε1/ns, or

equivalently by s/ωc.

Hε (s) = H (s)|s−→ε1/ns =
1

n∏

i=1

(s− si)

∣∣∣∣∣∣∣∣∣∣
s−→ n√εs

=
1

n∏

i=1

( n
√
εs− si)

=
ε−1

n∏

i=1

(s− qi)
. (9.47)

The poles of Hε (s) are thus given by

qi = ε−1/nsi (9.48)

and are therefore on a circle in the s plane of radius ε−1/n as shown in Fig. 9.8.

e-1/n

FIGURE 9.8 Third order system poles in the case ε 6= 1.

Example 9.3 Starting from the prototype of a third order Butterworth filter, evaluate the
parameter ε needed to produce an attenuation of 2 dB at the frequency ω = 1. Evaluate
the filter transfer function obtained using this value of ε and the filter poles.

The third order Butterworth filter prototype transfer function is

H (s) =
1

s3 + 2s2 + 2s+ 1
.
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Writing
10 log10

(
1 + ε2

)
= 2

we obtain
1 + ε2 = 100.2 = 1.5849.

Hence ε2 = 0.5849 and ε = 0.7648.

Hε (s) = H (s)|s−→ε1/3s =
1

εs3 + 2ε2/3s2 + 2ε1/3s+ 1

=
ε−1

s3 + 2ε−1/3s2 + 2ε−2/3s+ ε−1

=
1.3076

s3 + 2.1870s2 + 2.3915s+ 1.3076
.

The poles are
qi = ε−1/3si = ε−1/3 (−0.5± j0.866) and − ε−1/3.

The attenuation at ω = 1 is given by

20 log10

|H (j0)|
|H (j1)| = 20 log10

1

1/
√

1 + ε2
= 10 log10

(
1 + ε2

)
= 2 dB

as required.

9.6 Butterworth Filter Order Formula

As with the case ε = 1, let the pass-band edge frequency of a Butterworth filter be ω = ωp.
Let the required corresponding drop in magnitude spectrum be at most Rp dB. Let the stop-
band edge frequency be ω = ωs and the corresponding magnitude attenuation be at least
Rs dB. The filter order can be evaluated by writing

|H(jω)|2 =
K2

1 + ε2ω2n
(9.49)

10 log10

[
|H(j0)|2 / |H(jωp)|2

]
= 10 log10

[
K2/

{
K2/(1 + ε2ω2n

p )
}]

= Rp (9.50)

i.e.
ε2ω2n

p = 100.1Rp − 1. (9.51)

Similarly
ε2ω2n

s = 100.1Rs − 1 (9.52)

ω2n
s

ω2n
p

=
100.1Rs − 1

100.1Rp − 1
(9.53)

2n log10

(
ωs

ωp

)
= log10

(
100.1Rs − 1

100.1Rp − 1

)
(9.54)

n = 0.5 log10

(
100.1Rs − 1

100.1Rp − 1

)
/ log10

(
ωs

ωp

)
. (9.55)

A MATLAB function may effect such an evaluation. Calling it butterorder.m we can
write the function in the form

function [n] = butterorder (wp,ws,Rp,Rs)
n=0.5*log10((10ˆ(Rs/10)-1)/(10ˆ(Rp/10)-1))/log10(ws/wp).
Note that MATLAB has the built-in function Buttord which evaluates the Butterworth

filter order.
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9.7 Nomographs

A nomograph for deducing the order of a Butterworth filter to meet given specifications is
shown in Fig. 9.9.
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FIGURE 9.9 Butterworth filter nomograph.

Nomographs can be used whatever the value of ε, in contrast with the tables of filter
transfer function coefficients and poles which are given for ε = 1. The following example
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shows that knowing the pass-band and stop-band attenuation or simply the attenuation at
two given frequencies the filter order can be determined using the nomograph.

Example 9.4 Design a Butterworth filter prototype having an attenuation of at most 1 dB
in the pass-band i.e. at ω = 1 and at least 30 dB at ω = 3. Evaluate the filter transfer
function if the cut-off frequency should equal 2 kHz.

Since the pass-band attenuation at ω = 1 is not 3 dB the value of ε is not 1. We
have

20 log
1

1/ {1 + ε2}1/2
= 1

√
1 + ε2 = 100.05 = 1.122

1 + ε2 = 1.26 i.e. ε2 = 0.26, or ε = 0.51

20 log {|H (j0)| / |H (j3)|} ≥ 30.

Writing
|H (j0)|
|H (j3)| =

1

1/
√

1 + ε232n
= 101.5 = 31.6228

n = 3.76.

We take the filter order as the ceiling ⌈n⌉ = 4.
Nomograph Approach

As shown in Fig. 9.10 a filter nomograph has two vertical scales labeled Rp and Rs on
the left of a chart labeled y versus Ω containing a set of curves. Let αp denote pass-band
attenuation or the attenuation at a frequency ω1 and αs denote stop-band attenuation or
the attenuation at a higher frequency ω2.

The chart is used by marking the value αp on the left vertical scale Rp and the value αs

on the vertical scale Rs, as shown in the figure.

FIGURE 9.10 Evaluating the filter order using the nomograph.

A straight-line is drawn joining the point Rp = αp = 1 on the left-hand vertical scale
to the point Rs = αs = 30 on the second vertical line and is extended until it intersects
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the vertical axis y of the attenuation versus Ω chart. As shown in the figure, a horizontal
line is subsequently drawn to the right. On the Ω axis a vertical line is drawn at the value
of Ω = ω2/ω1 = 3/1 = 3, that is, the ratio of the two given frequencies. The intersection
point of the two lines is noted. The filter order, n = 4 in the present example, is read on
the nomograph curve that is closest to and not lower than the intersection point.
Denormalization: From the tables the normalized filter transfer function is given by

H (s) =
1

s4 + 2.613s3 + 3.414s2 + 2.613s+ 1
.

To obtain a filter of cut-off frequency ωc = 2π × 2000 r/s, we replace ω by ω/ωc and s by
s/ωc, wherefrom the denormalized transfer function Hd(s) is given by

Hd (s) = H (s)|s−→s/ωc

=
1

(s/ωc)
4

+ 2.613 (s/ωc)
3

+ 3.414 (s/ωc)
2

+ 2.613 (s/ωc) + 1

=
ω4

c

s4 + 2.613ωcs3 + 3.414ω2
cs

2 + 2.613ω3
cs+ ω4

c
= 2.4937× 1016/D(s)

D(s) = s4 + 3.2838× 104s3 + 5.3915× 108s2 + 5.1855× 1012s+ 2.4937× 1016.

A MATLAB program containing the statements

Wn = 2π × 2000, N = 4, [b, a] = Butter (N, Wn, ′s′)

produces the same results.

9.8 Chebyshev Approximation

The Butterworth approximation being maximally flat at ω = 0 is the best approximation
of the ideal filter’s pass-band. However for a given filter it does not necessarily lead to
the best overall approximation of the ideal filter spectrum, as seen in Fig. 9.1. In fact a
narrower transition band can be obtained if the approximation allowed ripple variations in
the pass-band. This is what the Chebyshev approximation sets out to do, and is referred to
also as Chebyshev Type I. A dual form, Chebyshev Type II, will be studied later on in this
chapter.

The magnitude-squared spectrum of the Chebyshev approximation of the ideal lowpass
filter is given by

|H (jω)|2 =
1

1 + ε2C2
n (ω)

(9.56)

where Cn (ω) denotes the Chebyshev polynomials of order n. These are defined by the
equation

Cn (ω) = cos
(
n cos−1 ω

)
, 0 ≤ ω ≤ 1 (9.57)

or, equivalently,
Cn (ω) = cosh

(
n cosh−1 ω

)
, ω ≥ 1. (9.58)

By direct substitution we have

C1 (ω) = cos
(
cos−1 ω

)
= ω (9.59)
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C2 (ω) = cos
(
2 cos−1 ω

)
. (9.60)

Writing
cos−1 ω = θ i.e. ω = cos θ (9.61)

we have
C2 (ω) = cos (2θ) = 2 cos2 θ − 1 = 2ω2 − 1 (9.62)

C3 (ω) = cos 3θ = 4(cos θ)3 − 3 cos θ = 4ω3 − 3ω. (9.63)

We can obtain a recursive relation for generating these polynomials.

Cn+1 (ω) = cos [(n+ 1) θ] = cosnθ cos θ − sinnθ sin θ (9.64)

Cn−1 (ω) = cosnθ cos θ + sinnθ sin θ. (9.65)

Cn+1 (ω) + Cn−1 (ω) = 2 cos θ cosnθ = 2ωCn (ω) (9.66)

i.e.
Cn+1 (ω) = 2ωCn (ω)− Cn−1 (ω) . (9.67)

For example
C4 (ω) = 2ω

(
4ω3 − 3ω

)
−
(
2ω2 − 1

)
= 8ω4 − 8ω2 + 1 (9.68)

C5 (ω) = 16ω5 − 20ω3 + 5ω. (9.69)

We note, moreover, that

Cn (1) = cos
(
n cos−1 1

)
= cos (n2kπ) , k = 0, 1, 2, . . . (9.70)

i.e.
Cn (1) = 1 (9.71)

and that

Cn(0) =





0, n = 1, 3, 5, . . .
−1, n = 2, 6, 10, . . .
1, n = 0, 4, 8, . . .

(9.72)
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FIGURE 9.11 Chebyshev polynomials.
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Chebyshev polynomials Cn (ω) for n = 1 to 8 are shown in Fig. 9.11. We may write

cos−1 ω = θ, ω = cos θ (9.73)

sin θ =
√

1− ω2 (9.74)

ejθ = cos θ + j sin θ = ω + j
√

1− ω2 (9.75)

ejnθ =
(
ω + j

√
1− ω2

)n

(9.76)

so that
Cn (ω) = cos

(
n cos−1 ω

)
= cosnθ =

(
ejnθ + e−jnθ

)
/2

=
{(
ω + j

√
1− ω2

)n
+
(
ω + j

√
1− ω2

)−n
}
/2.

(9.77)

Since
e−jθ = cos θ − j sin θ = ω − j

√
1− ω2 (9.78)

we have, alternatively,

e−jnθ =
(
ω − j

√
1− ω2

)n

(9.79)

so that we can also write the equivalent alternative form

Cn (ω) =
{(
ω + j

√
1− ω2

)n

+
(
ω − j

√
1− ω2

)n}
/2. (9.80)

We can, moreover, use the more general hyperbolic functions, thus allowing |ω| to have
values greater than 1. We write

cosh−1 ω = γ, ω = coshγ (9.81)

sinhγ =
√
ω2 − 1 (9.82)

eγ = coshγ + sinhγ = ω +
√
ω2 − 1 (9.83)

e−γ = coshγ − sinh γ = ω −
√
ω2 − 1 (9.84)

Cn (ω) = cosh
(
n cosh−1 ω

)
= cosh (nγ) = (enγ + e−nγ) /2

=
{(
ω +
√
ω2 − 1

)n
+
(
ω +
√
ω2 − 1

)−n
}
/2

(9.85)

and since

e−nγ =
(
ω −

√
ω2 − 1

)n

(9.86)

we have, alternatively,

Cn (ω) =
{(
ω +

√
ω2 − 1

)n

+
(
ω −

√
ω2 − 1

)n}
/2. (9.87)

The magnitude-squared spectrum

|H (jω)|2 =
1

1 + ε2C2
n (ω)

(9.88)

is shown in Fig. 9.12 for n = 1 to 4. Having a uniform amplitude of oscillations in the
pass-band, this filter is known as an equiripple approximation. We note that for n odd,
H (j0) = 1, whereas for n even

|H (0)| = 1√
1 + ε2

(9.89)
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and that for all n

|H (j1)| = 1√
1 + ε2

. (9.90)

To denormalize the filter we use the replacement ω −→ ω/ωc. We may write

|Hdenorm (jω)|2 =
1

1 + ε2C2
n (ω/ωc)

. (9.91)

FIGURE 9.12 Chebyshev filter response for different orders.

Example 9.5 Evaluate the expression H (s)H (−s) for a Chebyshev filter of the fifth order
which has a maximum pass-band attenuation of 0.3 dB.

The maximum attenuation in the pass-band occurs at ω = 1. We have

10 log10

[
1 + ε2C2

n (1)
]

= 10 log10

(
1 + ε2

)
= 0.3 (9.92)

1 + ε2 = 100.03, ε2 = 0.0715, ε = 0.2674 (9.93)

|H (jω)|2 =
1

1 + 0.0715C2
5 (ω)

=
1

1 + 0.0715 (16ω5 − 20ω3 + 5ω)
2 (9.94)

|H (jω)|2 =
1

1 + 0.0715 (25ω2 − 200ω4 + 560ω6 − 640ω8 + 256ω10)

=
1

1 + 1.7880ω2 − 14.304ω4 + 40.051ω6 − 45.772ω8 + 18.309ω10

(9.95)

H (s)H (−s) = |H (jω)|2
∣∣∣
ω=−js

=
1

D (s)
(9.96)
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where

D (s) = 1 + 1.7880 (−js)2 − 14.304 (−js)4 + 40.051 (−js)6 − 45.772 (−js)8

+ 18.309 (−js)10

= 1− 1.7880s2 − 14.304s4 − 40.051s6 − 45.772s8 − 18.309s10. (9.97)

9.9 Pass-Band Ripple

Since the magnitude-squared spectrum

|H (jω)|2 =
1

1 + ε2C2
n (ω)

(9.98)

is a function of C2
n (ω), and since 0 ≤ C2

n (ω) ≤ 1 in the pass-band 0 ≤ |ω| ≤ 1 we have

|H (jω)|2max = 1 (9.99)

and

|H (jω)|2min =
1

1 + ε2
. (9.100)

It is worthwhile noticing that

C2
n (0) =

{
1, n, even
0, n, odd

(9.101)

and

|H (0)|2 =

{
1/
(
1 + ε2

)
, n even

1, N odd.
(9.102)

9.10 Transfer Function of the Chebyshev Filter

The transfer function H (s) is found by writing

H (s)H (−s) = |H (jω)| 2
∣∣
ω=−js

=
1

1 + ε2C2
n (−js) . (9.103)

The poles of the product H (s)H (−s) are the roots of the equation

1 + ε2C2
n (−js) = 0 (9.104)

i.e.
Cn (−js) = ±j/ε (9.105)

cos
[
n cos−1 (−js)

]
= ±j/ε. (9.106)

Writing
φ = φ1 + jφ2 = cos−1 (−js) (9.107)

we have
−js = cosφ = cosφ1 coshφ2 − j sinφ1 sinhφ2 (9.108)
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s = sinφ1 sinhφ2 + j cosφ1 coshφ2. (9.109)

We proceed to evaluate φ1 and φ2. We have

cos [n (φ1 + jφ2)] = ±j/ε (9.110)

cosnφ1 coshnφ2 − j sinnφ1 sinhnφ2 = ±j/ε (9.111)

wherefrom

cosnφ1 coshnφ2 = 0 (9.112)

sinnφ1 sinhnφ2 = ±1/ε (9.113)

i.e.

cosnφ1 = 0 (9.114)

nφ1 = ± (2k − 1)π/2, k = 1, 2, 3, . . . , 2n. (9.115)

Let

φ1 = (2k − 1)π/(2n), k = 1, 2, 3, . . . , 2n (9.116)

sinnφ1 = ±1 (9.117)

and

sinhnφ2 = 1/ε (9.118)

that is,

coshnφ2 =

√
1 +

1

ε2
(9.119)

or

enφ2 = coshnφ2 + sinhnφ2 =

√
1 +

1

ε2
± 1

ε
. (9.120)

Note that if

enφ2 =

√
1 +

1

ε2
+

1

ε
(9.121)

then

e−nφ2 =
1√

1 +
1

ε2
+

1

ε

=

√
1 +

1

ε2
− 1

ε
(9.122)

wherefrom

eφ2 =

{√
1 +

1

ε2
+

1

ε

}1/n

(9.123)

e−φ2 =

{√
1 +

1

ε2
+

1

ε

}−1/n

=

{√
1 +

1

ε2
− 1

ε

}1/n

(9.124)

coshφ2 =




(√

1 +
1

ε2
+

1

ε

)1/n

+

(√
1 +

1

ε2
+

1

ε

)−1/n


 /2 (9.125)

sinhφ2 =



(√

1 +
1

ε2
+

1

ε

)1/n

−
(√

1 +
1

ε2
+

1

ε

)−1/n

 /2. (9.126)
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The poles coordinates, are, therefore,

s = sk = σk + jωk (9.127)

σk = sinφ1 sinhφ2 = − sin

[(
2k − 1

2n

)
π

]
sinhφ2, k = 1, 2, . . . , 2n (9.128)

ωk = cosφ1 coshφ2 = cos

[(
2k − 1

2n

)
π

]
coshφ2, k = 1, 2, . . . , 2n. (9.129)

These equations satisfy the relation

σ2
k

sinh2 φ2

+
ω2

k

cosh2 φ2

= 1 (9.130)

which is the equation of an ellipse having major and minor axes of lengths a = coshφ2

and b = sinhφ2, respectively, as shown for the case n = 6 in Fig. 9.13.

FIGURE 9.13 Poles’ ellipse for a sixth order Chebyshev filter.

The poles therefore lie on this elliptic contour in the s plane and those n poles that are
in the left half of the s plane, namely, sk = σk + jωk, where

σk = − sin

[(
2k − 1

2n

)
π

]
sinhφ2, k = 1, 2, . . . , n (9.131)

ωk = cos

[(
2k − 1

2n

)
π

]
coshφ2, k = 1, 2, . . . , n (9.132)

are those of H (s).
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The figure is constructed by drawing two concentric circles of radii a and b, and radial
lines from the origin at angles π/12, 3π/12, 5π/12, . . . from the horizontal axis. From the
point of intersection of a radial line with the small circle a vertical line is drawn. From the
point of intersection of the same radial line with the big circle, a horizontal line is drawn. As
shown in the figure, the intersection of the vertical and horizontal lines is the pole location
on the ellipse.

The filter transfer function can thus be written in the form

H (s) =
1

n−1∏

i=0

(s− si)

(9.133)

which can also be written

H (s) =
1

sn + an−1sn−1 + . . .+ a1s+ a0
. (9.134)

The poles and the coefficients ai of the denominator polynomial of H (s) can be easily
evaluated for any order n. Using MATLAB functions such as

[B, A] = cheby1 (N, R, Wn, ′s′) (9.135)

[Z, P, K] = cheby1 (N, R, Wn, ′s′) (9.136)

[N, Wn] = cheb1ord (Wp, Ws, Rp, Rs, ′s′) (9.137)

such evaluations can be simplified.

9.11 Maxima and Minima of Chebyshev Filter Response

The magnitude frequency response |H (jω)| of the Chebyshev filter is maximum equal to
K when Cn (ω) = 0, i.e.

Cn (ω) = cos
(
n cos−1 ω

)
= 0 (9.138)

n cos−1 ω = (2k + 1)π/2, k = 0, 1, 2, . . . (9.139)

For 0 < ω < 1
cos−1 ω = (2k + 1)π/(2n) (9.140)

ω = cos [(2k + 1)π/(2n)] . (9.141)

The frequency values of the maxima are thus summarized as follows:
n = 1: ω = 0; n = 2: ω = 0.707; n = 3: ω = 0, 0.866; n = 4: ω = 0.3827, 0.9239; n = 5:

ω = 0, 0.5878, 0.9511.
The minima of |H (jω)| occur when |Cn (ω)| = 1

Cn (ω) = cos
(
n cos−1 ω

)
= ±1 (9.142)

n cos−1 ω = cos−1 1 = kπ, k = 0, 1, 2, . . . (9.143)

i.e. cos−1 ω = kπ/n, ω = cos(kπ/n).
We deduce that a minimum occurs for n = 1 at ω = 1, for n = 2 at ω = 0, 1, for

n = 3 at ω = 0.5, 1 and for n = 4 at ω = 0, 0.707, 1.
The points of maxima/minima are show in Fig. 9.12.
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9.12 The Value of ε as a Function of Pass-Band Ripple

Let Rp dB be the desired Chebyshev filter peak-to-peak ripple, i.e. between the minimum
and maximum of the filter response in the pass-band.

We write 20 log10

(
K

K/
√

1 + ε2

)
= Rp dB

10 log10

(
1 + ε2

)
= Rp (9.144)

wherefrom
ε =

√
10Rp/10 − 1. (9.145)

For example, for the ripple values Rp = 0.5, 1, 2 dB, the corresponding ε values are
ε = 0.3493, 0.5088, 0.7648, respectively.

9.13 Evaluation of Chebyshev Filter Gain

For Chebyshev filters the squared magnitude spectrum is given by

|H (jω)|2 =
K2

1 + ε2C2
n (ω)

(9.146)

and the transfer function has the form

H (s) =
b0

sn + an−1 sn−1 + . . .+ a1s+ a0
. (9.147)

The constants K and b0 produce the desired filter gain. The maximum values |H (jω)|max of
filter frequency response occur at values of ω such that Cn (ω) = 0, hence |H (jω)|max = K.
The minimum values of the magnitude response in the pass-band occur at values of ω such
that |Cn (ω)| is maximum, equal to 1, |Cn (ω)| = 1, hence |H (jω)|min = K/

√
1 + ε2. If

the filter order n is odd, therefore, the response is maximum equal to K at zero frequency.
We can therefore write

H (0) = |H (jω)|max = K = b0/a0, n odd. (9.148)

For n even the response at zero frequency is a pass-band minimum equal to K/
√

1 + ε2, so
that

H (0) = |H (jω)|min = K/
√

1 + ε2 = b0/a0, n even. (9.149)

To obtain |H (jω)|max = M dB, we write 20 log10 |H (jω)|max = 20 log10K = M , hence
K = 10M/20.

For n odd we have
b0 = Ka0 = 10M/20a0. (9.150)

For n even
b0 = Ka0/

√
1 + ε2 = 10M/20a0/

√
1 + ε2. (9.151)

For example, if the filter is to have maximum gain equal to 1, we have M = 0 dB, so that
for n odd, K = 1 and b0 = a0, whereas for n even, K = 1 and b0 = a0/

√
1 + ε2. If the

filter is to have M = 10 dB then 20 log10K = 10 dB, so that K = 101/2 = 3.1623. Hence
for n odd b0 = 3.1623a0 and for n even b0 = 3.1623a0/

√
1 + ε2.
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9.14 Chebyshev Filter Tables

Lowpass prototype Chebyshev filter denominator polynomial coefficients for different pass-
band ripples are given in Table 9.3 to Table 9.5. The corresponding poles and their residues
are given in Table 9.6 to Table 9.8.

TABLE 9.3 Chebyshev filter polynomial coefficients with ripple R = 0.5
dB, denominator polynomial A(s) = sn + an−1s

n−1 + . . .+ a2s
2 + a1s+ a0,

numerator polynomial B(s) = b0 and 0 dB maximum gain

n b0 an−1 an−2 an−3 an−4 an−5 an−6 an−7 an−8

2 1.4314 1.4256 1.5162
3 0.7157 1.2529 1.5349 0.7157
4 0.3578 1.1974 1.7169 1.0255 0.3791
5 0.1789 1.1725 1.9374 1.3096 0.7525 0.1789
6 0.0895 1.1592 2.1718 1.5898 1.1719 0.4324 0.0948
7 0.0447 1.1512 2.4127 1.8694 1.6479 0.7557 0.2821 0.0447
8 0.0224 1.1461 2.6567 2.1492 2.1840 1.1486 0.5736 0.1525 0.0237

TABLE 9.4 Chebyshev polynomial coefficients with ripple R = 1 dB,
denominator polynomial A(s) = sn + an−1s

n−1 + . . .+ a2s
2 + a1s+ a0,

numerator polynomial B(s) = b0 and 0 dB maximum gain

n b0 an−1 an−2 an−3 an−4 an−5 an−6 an−7 an−8

2 0.9826 1.0977 1.1025
3 0.4913 0.9883 1.2384 0.4913
4 0.2457 0.9528 1.4539 0.7426 0.2756
5 0.1228 0.9368 1.6888 0.9744 0.5805 0.1228
6 0.0614 0.9283 1.9308 1.2021 0.9393 0.3071 0.0689
7 0.0307 0.9231 2.1761 1.4288 1.3575 0.5486 0.2137 0.0307
8 0.0224 0.9198 2.4230 1.6552 1.8369 0.8468 0.4478 0.1073 0.0172

TABLE 9.5 Chebyshev polynomial coefficients with ripple R = 3 dB,
denominator polynomial A(s) = sn + an−1s

n−1 + . . .+ a2s
2 + a1s+ a0,

numerator polynomial B(s) = b0 and 0 dB maximum gain

n b0 an−1 an−2 an−3 an−4 an−5 an−6 an−7 an−8

2 0.5012 0.6449 0.7079
3 0.2506 0.5972 0.9283 0.2506
4 0.1253 0.5816 1.1691 0.4048 0.1770
5 0.0626 0.5745 1.4150 0.5489 0.4080 0.0626
6 0.0313 0.5707 1.6628 0.6906 0.6991 0.1634 0.0442
7 0.0157 0.5684 1.9116 0.8314 1.0518 0.3000 0.1462 0.0157
8 0.0078 0.5669 2.1607 0.9719 1.4667 0.4719 0.3208 0.0565 0.0111



566 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

TABLE 9.6 Chebyshev lowpass prototype poles and residues; ripple R = 0.5 dB

n Poles Residues

2 -0.7128± j1.0040 0∓ j0.7128
3 -0.3132± j1.0219,-0.6265 -0.3132∓ j0.0960, 0.6265
4 -0.1754± j1.0163,-0.4233± j0.4209 -0.1003∓ j0.1580, 0.1003∓ j0.4406
5 -0.1120± j1.0116,-0.2931± j0.6252, 0.0849± j0.0859,-0.2931∓ j0.1374,

-0.3623 0.4165
6 -0.0777± j1.0085,-0.2121± j0.7382, 0.0701∓ j0.0467,-0.1400± j0.1935,

-0.2898± j0.2702 0.0698∓ j0.3394
7 -0.0570± j1.0064,-0.1597± j0.8071, -0.0254∓ j0.0566, 0.1280± j0.1292,

-0.2308± j0.4479,-0.2562 -0.2624∓ j0.1042, 0.3196
8 -0.0436± j1.0050,-0.1242± j0.8520, -0.0458± j0.0130, 0.1146∓ j0.0847,

-0.1859± j0.5693,-0.2193± j0.1999 -0.1167± j0.1989, 0.0479∓ j0.2764
9 -0.0345± j1.0040,-0.0992± j0.8829, 0.0056± j0.0373,-0.0556∓ j0.1000,

-0.1520± j0.6553,-0.1864± j0.3487, 0.1498± j0.1174,-0.2301∓ j0.0760,
-0.1984 0.2606

10 -0.0279± j1.0033,-0.0810± j0.9051, 0.0305∓ j0.0010,-0.0866± j0.0357,
-0.1261± j0.7183,-0.1589± j0.4612, 0.1124∓ j0.1125,-0.0905± j0.1881,
-0.1761± j0.1589 0.0342∓ j0.2328

TABLE 9.7 Chebyshev lowpass prototype poles and residues; ripple R = 1 dB

n Poles Residues

2 -0.5489± j0.8951 0∓ j0.5489
3 -0.2471± j0.9660,-0.4942 -0.2471∓ j0.0632, 0.4942
4 -0.1395± j0.9834,-0.3369± j0.4073 -0.0663± j0.1301, 0.0663∓ j0.3463
5 -0.0895± j0.9901,-0.2342± j0.6119, 0.0748± j0.0574,-0.2342∓ j0.0896,

-0.2895 0.3189
6 -0.0622± j0.9934,-0.1699± j0.7272, 0.0477∓ j0.0453,-0.0913± j0.1600,

-0.2321± j0.2662 0.0436∓ j0.2588
7 -0.0457± j0.9953,-0.1281± j0.7982, -0.0284∓ j0.0393, 0.1113± j0.0848,

-0.1851± j0.4429,-0.2054 -0.2024∓ j0.0647, 0.2390
8 -0.0350± j0.9965,-0.0997± j0.8448, -0.0325± j0.0181, 0.0761∓ j0.0787,

-0.1492± j0.5644,-0.1760± j0.1982 -0.0726± j0.1569, 0.0290∓ j0.2062
9 -0.0277± j0.9972,-0.0797± j0.8769, 0.0116± j0.0270,-0.0564∓ j0.0672,

-0.1221± j0.6509,-0.1497± j0.3463, 0.1219± j0.0734,-0.1730∓ j0.0459,
-0.1593 0.1918

10 -0.0224± j0.9978,-0.0650± j0.9001, 0.0227∓ j0.0073,-0.0591± j0.0408,
-0.1013± j0.7143,-0.1277± j0.4586, 0.0708∓ j0.0952,-0.0547± j0.1436,
-0.1415± j0.1580 0.0204∓ j0.1710
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TABLE 9.8 Chebyshev lowpass prototype poles and residues; ripple R = 3 dB

n Poles Residues

2 -0.3224± j0.7772 ∓j0.3224
3 -0.1493± j0.9038,-0.2986 -0.1493∓ j0.0247, 0.2986
4 -0.0852± j0.9465,-0.2056± j0.3920 -0.0260± j0.0828, 0.0260∓ j0.2080
5 -0.0549± j0.9659,-0.1436± j0.5970, 0.0512± j0.0228,-0.1436∓ j0.0346,

-0.1775 0.1848
6 -0.0382± j0.9764,-0.1044± j0.7148, 0.0193∓ j0.0340,-0.0352± j0.1021,

-0.1427± j0.2616 0.0159∓ j0.1493
7 -0.0281± j0.9827,-0.0789± j0.7881, -0.0238∓ j0.0163, 0.0748± j0.0330,

-0.1140± j0.4373,-0.1265 -0.1183∓ j0.0234, 0.1346
8 -0.0216± j0.9868,-0.0614± j0.8365, -0.0138± j0.0173, 0.0299∓ j0.0564,

-0.0920± j0.5590,-0.1085± j0.1963 -0.0263± j0.0941, 0.0102∓ j0.1157
9 -0.0171± j0.9896,-0.0491± j0.8702, 0.0130± j0.0118,-0.0435∓ j0.0268,

-0.0753± j0.6459,-0.0923± j0.3437, 0.0756± j0.0267,-0.0980∓ j0.0160,
-0.0983 0.1060

10 -0.0138± j0.9915,-0.0401± j0.8945, 0.0101∓ j0.0099,-0.0240± j0.0342,
-0.0625± j0.7099,-0.0788± j0.4558, 0.0260∓ j0.0614,-0.0192± j0.0827,
-0.0873± j0.1570 0.0070∓ j0.0943

9.15 Chebyshev Filter Order

The pass-band edge frequency of a Chebyshev filter is also referred to as the cut-off fre-
quency. We write ωc = ωp. Let the required peak-to-peak ripple in the pass-band be
not more than Rp dB, the stop-band edge frequency be ω = ωs and the corresponding
attenuation be at least Rs dB. The filter order can be evaluated by writing

|H(jω)|2 =
K2

1 + ε2C2
n(ω/ωp)

(9.152)

10 log10

[
|H(jω)|2max / |H(jωp)|2

]
= 10 log10

[
K2

K2/ [1 + ε2C2
n (1)]

]
= Rp (9.153)

i.e. 1 + ε2 = 100.1Rp , or ε =
√

100.1Rp − 1 as obtained above. Similarly

1 + ε2C2
n (ωs/ωp) = 100.1Rs (9.154)

C2
n (ωs/ωp) = (100.1Rs − 1)/ε2 (9.155)

Cn (ωs/ωp) = cosh
{
n cosh−1 (ωs/ωp)

}
=
√

100.1Rs − 1/ε. (9.156)

Hence

n =
cosh−1

[√
100.1Rs − 1/ε

]

cosh−1 (ωs/ωp)
. (9.157)

A MATLAB function may effect such an evaluation. Calling it cheby1order.m we can
write the function in the form

function [n] = cheby1order (wp,ws,Rp,Rs)
eps=sqrt(10ˆ(0.1*Rp)-1)
n=acosh(sqrt(10ˆ(0.1*Rs)-1)/eps)/acosh(ws/wp)
Note that MATLAB has the built-in function Cheb1ord which evaluates the Chebyshev

(Type I) filter order.
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9.16 Denormalization of Chebyshev Filter Prototype

As with the Butterworth case, to denormalize the filter we replace ω by ω/ωc where ωc is
the desired cut-off frequency in rad/sec. We therefore write

ω −→ ω/ωc, s −→ s/ωc. (9.158)

The poles after denormalization are given by

qk = Σk + jΩk = ωcsk = ωcσk + jωcωk (9.159)

i.e.

Σk = −ωc sin

[
(2k − 1)

2n

]
sinhφ2 (9.160)

Ωk = ωc cos

[
(2k − 1)π

2n

]
coshφ2. (9.161)

The equation of the ellipse takes the form

Σ2
k

ω2
c sinh2 φ2

+
Ω2

k

ω2
c cosh2 φ2

(9.162)

Example 9.6 Evaluate the transfer function H (s) of a prototype Chebyshev filter of order
n = 7 and a pass-band attenuation of 0.5 dB. Evaluate the filter poles and zeros.

We may use the tables or the MATLAB function call

[B, A] = cheby1 (N, R, Wn, ′s′)

with N = 7, R = 0.5 dB and the 3 dB cut-off frequency Wn = 1 we obtain

H (s) =
0.0447

s7 + 1.151s6 + 2.413s5 + 1.869s4 + 1.648s3 + 0.756s2 + 0.282s+ 0.0447

which agrees with the values listed in the 0.5 dB of Table 9.3.
The poles and zeros of the filter may be obtained from the tables or using the MATLAB

command
[Z, P, K] = cheby1 (N, R, Wn, ′s′) .

We obtain

P = {−0.057± j1.0064, −0.1597± j0.8071, −0.231± j0.448, −0.256}

Z = ∅.
The filter transfer function has no zeros and has a gain factor K = 0.0447.

Example 9.7 Using MATLAB find the order and the 3 dB cut-off frequency of a Cheby-
shev filter having the following specifications: pass-band frequency ωp = 2π × 1000 r/s,
stop-band edge frequency ωs = 2π × 2500 r/s, Pass-band maximum attenuation αp = 1
dB, Stop-band minimum attenuation αs = 40 dB. Evaluate the transfer function, the poles,
zeros and gain.
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We can use the function cheby1order as developed in the last section to evaluate the filter
order. We write: wp = 2π×1000, ws = 2π×2500, Rp = 1, Rs = 40, and the function call
cheby1order(wp, ws, Rp, Rs), obtaining n = 3.8128, thus choosing n = 4. Alternatively,
we may use MATLAB’s built-in functions, writing

[N, Wn] = cheb1ord (Wp, Ws, Rp, Rs, ′s′)

where Wp = ωp, Ws = ωs, Rp = αp = 1, Rs = αs = 40, i.e. ωc = 6.2832× 103 r/s.
The program results are: N = 4, Wn = 6.2832× 103, that is, ωc = 6.2832× 103 r/s. The
transfer function’s numerator and denominator polynomial coefficients are found using the
MATLAB function call

[B, A] = cheby1 (N, R, Wn, ′s′)

where R = Rp, the pass-band ripple. We obtain

H (s) = N(s)/D(s).

where N(s) = 3.8287× 1014,

D (s) = s4 + 5986.7s3 + 5.7399× 107s2 + 1.8421× 1011s+ 4.2958× 1014.

The transfer function H(s) has no zeros. The poles are

P = {−2.1166± j2.5593, −0.8767± j6.1788}

and the gain is K = 3.8287× 1014.

Example 9.8 Design a Chebyshev filter having the specifications given in the following ta-
ble and a response of 0 dB at zero frequency.

Frequency Attenuation

10 kHz ≤ 1 dB
15 kHz ≥ 60 dB

Let ωp = 2π × 104 r/s, ωs = 2π × 15× 103 r/s.
In the prototype filter let the attenuation at ω = 1 be 1 dB. The normalized frequency

ω = 1 corresponds, therefore, to the true pass-band edge frequency ωp = 2π × 104 r/s.
The normalized frequency ω = 1.5 corresponds to the true stop-band edge frequency ωs =
2π × 15× 103 r/s. We have

10 log
[
1 + ε2

]
= 1

wherefrom ε2 = 100.1 − 1 = 0.259, i.e. ε = 0.51

10 log10

1

|H (j1.5)|2
= 60

10 log10

[
1 + ε2C2

n (1.5)
]

= 60

C2
n (1.5) =

106 − 1

ε2
= 3.86× 106
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Cn (1.5) = cosh
(
n cosh−1 1.5

)
= 1.963× 103

cosh (n× 0.9624) = 1.963× 103

n× 0.9624 = cosh−1 1.963× 103 = 8.275

i.e. n = 8.6. We choose n = 9.

φ2 = ln
(√

1 + 1/ε2 + 1/ε
)1/n

= 0.1587

sinhφ2 = 0.1594, coshφ2 = 1.013.

The normalized filter poles are given by

sk = σk + jωk

σk = − sin

(
2k − 1

9

π

2

)
× 0.1594, k = 0, 1, 2, . . . , n− 1

ωk = cos

(
2k − 1

9

π

2

)
× 1.013, k = 1, 2, . . . , n.

To denormalize the filter we replace s by s/ωc. The true (denormalized) filter poles are
thus given by

qk=△Σk + jΩk

where

Σk = −0.319× 104π sin

(
2k − 1

9

π

2

)

Ωk = 2.029× 104π cos

(
2k − 1

9

π

2

)
.

The ellipse’s minor axis has a length given by

α = ωc sinhφ2 = 0.319× 104π.

Its major axis is given by

β = ωc coshφ2 = 2.029× 104π

H (s) =
K

8∏

i=0

(s− qi)

where the gain K is taken equal to the product

K =

9∏

i=1

(−q
i
)

so that the zero-frequency gain H(0) = 1.
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Example 9.9 Design the filter having the specifications given in the last example using
MATLAB.

We write the program
Wp = 2π × 104

Ws = 2π × 15× 103

Rp = 1
Rs = 60
[N, Wn] = cheb1ord (Wp, Ws, Rp, Rs, ′s′)
[B, A] = cheby1 (N, Rp, Wn, ′s′)
[Z, P, K] = cheby1 (N, Rp, Wn, ′s′) ..

We obtain N = 9. The coefficients’ vectors B and A define a transfer function given by

H (s) =
1.1716× 104

D(s)

where
D(s) = s9 + 5.765× 104s8 + 1.054× 1010s7 + 4.667× 104s6

+ 3.706× 1019s5 + 1.177× 1024s4 + 4.838× 1028s3

+ 9.440× 1032s2 + 1.715× 1037s+ 1.1716× 1041.

The poles and zeros are

P = {−0.1738± j6.2658, −0.5006± j5.5100, −0.7669± j4.0897,
−0.9407± j2.1761, −1.0011}

Z = ∅ (no zeros)

and the gain is K = 1.1716× 1041 so that H(0) = 1.

9.17 Chebyshev’s Approximation: Second Form

By replacing ω by 1/ω the Chebyshev filter spectrum is made to have ripples in the stop-
band and none in the pass-band. The lowpass approximation, referred to often as Chebyshev
Type II takes the form

|H (jω)|2 =
ε2C2

n (1/ω)

1 + ε2C2
n (1/ω)

. (9.163)

To show this, let, |HI (jω)|2 be the spectrum of the Chebyshev approximation studied
above, which we shall now call Type I approximation. We start by evaluating the spectrum

G (jω) = 1− |HI (jω)|2 = 1− 1

1 + ε2C2
n (ω)

(9.164)

as can be seen in Fig. 9.14 for a fourth order filter. We next replace ω by 1/ω to obtain the
Chebyshev Type II spectrum

|HII (jω)|2 = G (j/ω) = 1− 1

1 + ε2C2
n (1/ω)

=
ε2C2

n (1/ω)

1 + ε2C2
n (1/ω)

. (9.165)



572 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

The amplitude spectrum of the fourth order Chebyshev Type II filter is shown in Fig. 9.14.
Poles, zeros and the transfer function of such filters can be readily evaluated using the
MATLAB function Cheby2.
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FIGURE 9.14 Amplitude spectrum of a fourth order Chebyshev Type II filter.

9.18 Response Decay of Butterworth and Chebyshev Filters

Plotting the amplitude spectrum in decibels versus a logarithmic scale of the frequency
ω axis we can readily compare the rate of decay of the responses of different orders of
Butterworth and Chebyshev filters. We may thus obtain and plot the response asymptotes.
Consider the Butterworth filter amplitude spectrum with ε = 1

|H (jω)| = 1√
1 + ω2n

. (9.166)

The magnitude of the spectrum at ω = 0 is given by

20 log10 |H (j0)| = 20 log10 1 = 0 dB. (9.167)

The attenuation at a general value ω is given by

10 log10[|H(j0)|2/|H(jω)|2] = 10 log10

(
1 + ω2n

)
dB. (9.168)

We now evaluate the two asymptotes of the attenuation curve, namely, the asymptote for
ω below the cut-off frequency ω = 1 and that for ω above the cut-off frequency, ω > 1.
Letting ω << 1 we obtain |H (jω)| ≈ 1 so that the attenuation is given by the asymptote

α1 = 20 log10 1 = 0 dB. (9.169)

With ω >> 1 we have

|H (jω)| ≈ 1√
ω2n

=
1

ωn
(9.170)

so that the asymptote for frequencies above the cut-off frequency ω = 1 is given by

α2 = −20 log10

1

ωn
= 20n log10 ω dB. (9.171)
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The asymptote α2 as a function of ω can be converted into the equation of a straight line
by rewriting it in terms of a logarithmic frequency scale. In w octaves the asymptote above
ω = 1 is given by

α2 = 20n log10 2w = 20nw × 0.3 = 6nw dB. (9.172)

The asymptote has a slope of 6n dB/octave. If instead we write ω = 10v then v is the
number of frequency decades, and

α2 = 20n log10 10v = 20nv dB (9.173)

that is, a slope of md = 20n dB/decade. The attenuation in the stop-band is therefore
6n dB per octave or, equivalently, 20n dB per decade. For a first order Butterworth filter,
it is 6 dB/octave (20 dB/decade) as shown in Fig. 9.15. For a second order filter, it is 12
dB/octave (40 dB/decade) and so on.

In the pass-band with ω << 1 the attenuation α1, as we found, is given by the asymptote
α1 = 0. In the vicinity of ω = 1 i.e. w = 0, the true relation of the attenuation α differs
slightly from the asymptotes α1 and α2, as shown by the dotted line in the figure. In
particular, at ω = 1, the value of the attenuation is

−20 log10 |H (j1)| = −20 log10

1√
2

= 10 log10 2 = 3 dB (9.174)

independently of the filter order n.

6n

12n

18n
a dB

6 dB/n octave

3

1 2 3-1 w0

FIGURE 9.15 First order Butterworth filter attenuation.

For the Chebyshev approximation we have

|H (jω)| = 1√
1 + ε2C2

n (ω)
. (9.175)

The ripple amplitude in the frequency range 0 < |ω| < 1 is given by

r = 1− 1√
1 + ε2

= 1−
(
1 + ε2

)−1/2
= 1− [1− (1/2)ε2 + (3/8)ε4 − . . .]. (9.176)

For small ε we have
r ≈ ε2/2. (9.177)

In the stop-band where ω >> 1 and ε2C2
n (ω) >> 1 we have

|H (jω)| = 1

εCn (ω)
. (9.178)

The attenuation in the pass-band is given by

α1 = −20 log10 ε
2/2 (9.179)
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and that in the stop-band is given by

α2 = −20 log10

1

εCn (ω)
= 20 log εCn (ω) . (9.180)

From Equation (9.87), for ω >> 1 we have

Cn (ω) ≈ 2n−1ωn (9.181)

so that
α2 = 20 log10 ε2

n−1ωn = 20 log10 ε+ 20n log10 ω + 20 log 2n−1. (9.182)

Writing ω = 2w we have

α2 = 20 log10 ε+ 20n log10 2w + 20 log10 2n−1 = 20 log0 ε+ 6nw + 6 (n− 1) . (9.183)

We note that ε is usually less than 1, so that the first term, 20 log ε is negative, reducing
the value of the attenuation α2. If ε = 1 the ripple amount is given by 20 log10

√
1 + ε2 = 3

dB. In this case 20 log10 ε = 0 and

α2 = 6nw + 6 (n− 1) (9.184)

which is the same as the Butterworth asymptote except for an increase of the constant
6 (n− 1) for a given n.
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9.19 Chebyshev Filter Nomograph

A nomograph for Chebyshev filters is shown in Fig. 9.16.
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FIGURE 9.16 Chebyshev filter nomograph.

To evaluate the required filter order for a given specification using the nomograph we
follow the same approach illustrated above in Fig. 9.10.
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9.20 Elliptic Filters

By allowing ripples to occur in both the pass-band and stop-band, the elliptic, or “Cauer,”
filter approximation attains a faster rate of attenuation in the transition band. We start
with a brief summary of properties of elliptic integrals.

9.20.1 Elliptic Integral

The incomplete elliptic integral of the first kind, in the Legendre Form, is defined as

u (ϕ, k) =

ˆ ϕ

0

dθ√
1− k2 sin2 θ

. (9.185)

The parameter k is called the modulus of the integral, k = mod u. The related parameter
k′ =

√
1− k2 is called the complementary modulus. The complete elliptic integral, denoted

K (k), or simply K, is given by

K (k) ≡ K = u (π/2, k) (9.186)

and
K (k′) = K ′ (k) ≡ K ′. (9.187)

The variables k and k′ are assumed to be real and 0 < k, k′ < 1.
In the incomplete elliptic integral the upper limit ϕ is a function of u, called the amplitude

of u
ϕ = amu. (9.188)

The inverse relation may be written

u = argϕ (9.189)

that is, u is argument of ϕ. The sine of the amplitude,

sinϕ = sin(amu) (9.190)

is given the symbol sn which stands for the sine-amplitude function, also called the Jacobian
elliptic sine function

sn u = sinϕ = sin amu (9.191)

which is also written
sn (u, k) = sin [ϕ (u, k)] . (9.192)

Related functions are the cosine amplitude function

cn u = cosϕ = cos amu (9.193)

and the delta amplitude function

dn u = ∆ϕ =

√
1− k2 sin2 ϕ =

dϕ

du
. (9.194)

The name elliptic integral is due to the fact that such an integral appears when the
circumference of an ellipse is evaluated. Differentiation of the elliptic functions leads to the
relations

d

du
(sn u) = cn u dnu (9.195)
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d

du
(cn u) = −sn u dnu (9.196)

d

du
(dn u) = −k2sn u cn u. (9.197)

The following relations can be readily established

sn(0) = 0, cn(0) = 1, dn(0) = 1 (9.198)

sn (−u) = −sn u, cn (−u) = cn u, dn (−u) = dn u, tn (−u) = −tn u (9.199)

where tn u = sn u/cn u = x/
√

1− x2.

9.21 Properties, Poles and Zeros of the sn Function

The sn (u) function resembles the trigonometric sine but is in general more rounded and
flat near its peak. With k = 0 the function

sn (u, 0) = sin (u) . (9.200)

As k increases toward 1 the function becomes progressively more flat about its peak and
with a progressively longer period, as seen in Fig. 9.17.

1 2 3 4 5 7 86

1

0.5

-0.5

-1

sn

k=0.98

k=0.9k=  0.7k=0

FIGURE 9.17 The sn function for different values of k.

With k = 1 it equals
sn (u, 1) = tanh (u) (9.201)

becoming flat-topped and of infinite period.
Note that in Mathematica instead of the variable k a variable m is used, where m = k2.

The elliptic function sn (u, k) is a generalization of the trigonometric sine function. Related
elliptic functions are

cn (u) = cos [ϕ (u)] (9.202)

sc (u) = tan [ϕ (u)] (9.203)

cs (u) = cot [ϕ (u)] (9.204)
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nc (u) = sec [ϕ (u)] (9.205)

ns (u) = csc [ϕ (u)] . (9.206)

Among the important properties of the sn function relate to its operation on a complex
argument. In particular we have

sn (ju, k) = j sc (u, k′) (9.207)

cn (ju, k) = nc (u, k′) . (9.208)

The following relations are among the important properties of elliptic integrals and Jacobi
elliptic functions

K (k) = u (π/2, k) =

ˆ π/2

0

dθ√
1− k2 sin2 θ

= K ′ (k′) (9.209)

u (−φ, k) = −u (φ, k) (9.210)

sn K (k) = 1 (9.211)

sn2u+ cn2u = 1 (9.212)

dn2u+ k2sn2u = 1 (9.213)

sn (u± v) =
sn u cn v dn v ± sn v cn u dnu

1− k2sn2u sn2v
(9.214)

sn (u+K) =
cn u

dnu
. (9.215)

Using this last relation we can write

sn (K + jK ′) =
cn jK ′

dn jK ′
=

1/cn (K ′, k′)

dn (K ′, k′) /cn (K ′, k′)
=

1

dn (K ′, k′)

=
1√

1− k′2sn2K ′ (k′)
=

1√
1− k′2sn2K (k)

=
1

k
.

(9.216)

The following relations can be established

sn (u+ 2K) = −sn u, cn (u+ 2K) = −cn u (9.217)

sn (2K + j2K ′) = 0, cn (2K + j2K ′) = 1, dn (2K + j2K ′) = −1 (9.218)

dn (u+ 2K) = dn u, tn (u+ 2K) = tn u. (9.219)

By replacing u by u+ 2K we also have

sn (u+ 4K) = sn u (9.220)

cn (u+ 4K) = cn u. (9.221)

The Jacobian elliptic functions sn u, cn u and dn u are doubly periodic, that is, periodic
along horizontal, vertical or oblique lines in the u plane. The following relations can be
established

sn (u+ j2K ′) = sn u (9.222)

cn (u+ 2K + j2K ′) = cn u (9.223)

dn (u+ j4K ′) = dn u. (9.224)
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FIGURE 9.18 Period parallelograms of Jacobian elliptic functions.

These periodicity relations may be represented graphically by drawing a grid on the
complex u plane. This is illustrated in Fig. 9.18.

In particular, the grids of periodicity of the sn and dn functions are shown respectively in
Fig. 9.18(a) and (c) and appear as repetitions of rectangular “cells” in the u plane. On the
other hand, the grid corresponding to the cn function, shown in Fig. 9.18(b) is a repetition
of parallelograms. Such cells are in fact referred to as period parallelograms.

For our present purpose the periodicity, the poles, and the zeros of the function sn u
are of particular interest. We have just seen that with m and n integers, the function sn u
has the periods 4mK + j2nK ′ and the zeros 2mK + j2nK ′. It can be shown that it has
the poles 2mK + j (2n+ 1)K ′ with their residues (−1)

m
/k. The pole-zero pattern thus

appears as shown in Fig. 9.19 where the poles with their residues written next to them in
parentheses, and the zeros are shown on the complex u plane, where u = x+ jy.
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FIGURE 9.19 Pole-zero pattern of the sn function.
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The complete elliptic integral K can be evaluated using MATLAB or Mathematicar, as we
shall see. It has the series expansion

K =
π

2

{
1 +

(
1

2

)2

k2 +

(
1.3

2.4

)2

k4 + . . .+

[
(2n− 1)!!

2nn!

]2
k2n + . . .

}
(9.225)

where the notation (2n− 1)!! stands for

(2n− 1)!! = 1, 3, 5, . . . , (2n− 1) . (9.226)

A plot of the complete elliptic integral K(k) as a function of its argument k is shown in
Fig. 9.20.

FIGURE 9.20 Complete elliptic integral K (k) as a function of k.

9.21.1 Elliptic Filter Approximation

The squared-magnitude spectrum of the elliptic filter approximation is written

|H (jω)|2 =
1

1 + ε2G2 (ω)
. (9.227)

As an illustration the desired form of the squared-magnitude spectrum |H (jω)|2 is shown
for an elliptic filter of the seventh order in Fig. 9.21, where we notice the ripples in both the
pass-band and the stop-band. We recall that in the Chebyshev approximation the function
|H (jω)|2 has the same expression except for the replacement of G2 (ω) by C2

n (ω) where

Cn (ω) = cos
(
n cos−1 ω

)
. (9.228)

In the elliptic filter approximation the trigonometric cosine is replaced with a Jacobian
elliptic sine function. The exact form of this function depends on whether the filter order,
denoted N , is even or odd. If N is odd the function G(ω) is given by

G (ω) = sn
[
n sn−1 (ω, k) , k1

]
. (9.229)

If N is even then
G (ω) = sn

[
n sn−1 (ω, k) +K1, k1

]
(9.230)

where k and k1 are deduced from the desired filter specifications.
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FIGURE 9.21 Elliptic filter magnitude-squared spectrum.

FIGURE 9.22 Function G(ω).

The function G(ω) is called the Chebyshev rational function. As an illustration this func-
tion is shown for the case N = 7 in Fig. 9.22(a) and (b). In Fig. 9.22(a) the form of the
function over the entire frequency range is shown. In Fig. 9.22(b) the form of the function,
mainly in the pass-band, is slightly magnified for better visibility.

The parameters that appear in the figure, namely, ω1, ω2, ω3 and k1 are to be explained
in what follows.

As the figure shows, the function is equal to zero at ω = 0, ω1, ω2 and ω3. It has poles,
where it tends to infinity, at ω = 1/ω3, 1/ω2, 1/ω1 and ∞. The function displays equal
local minima between the poles at ω = 1/ω3 and 1/ω2, as well as between 1/ω1 and
∞, where it equals 1/k1. It displays a local maximum equal to −1/k1 between the poles
at ω = 1/ω2 and 1/ω1. In Fig. 9.23 the low frequency range, namely, the pass-band and
transition band of the same function G(ω) are redrawn for better visibility of function form
in these bands. We shall shortly define a parameter k, and its reciprocal, the stop-band
edge frequency ωs = 1/k which appears in the figure. Note that in the figure the value of
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FIGURE 9.23 Function G(ω) over the pass-band and transition band.

G(ω) at ω = 1 is −1 and that its value at ω = ωs is −1/k1. The function tends to −∞
at ω = 1/ω3.

An important property that results in this particular shape of the function G (ω) is the
reciprocity of its values between the pass-band and stop-band. The relation has the form

G (ω)G
(ωs

ω

)
=

1

k1
. (9.231)

We note from the figure that in the pass-band the function G (ω) oscillates between −1 and
1. In the stop-band, as implied by the last relation, its absolute value has a minimum of
1/k1. The magnitude-squared spectrum |H (jω)|2 therefore oscillates between 1/

(
1 + ε2

)

and 1 in the pass-band and between 0 and 1/
(
1 + ε2/k2

1

)
in the stop-band.

The following relations apply

ωs =
ωp

k
(9.232)

where ωs is the stop-band edge frequency and ωp is the pass-band edge frequency which is
normalized to 1, that is,

ωp = 1, k = 1/ωs, k′ =
√

1− k2. (9.233)

Filter design specifications are commonly given as in Fig. 9.24, which shows the amplitude
spectrum of a third order filter as an illustration. As seen in the figure for this case the filter
gain at zero frequency is a maximum equal to 1. The pass-band ripple of the amplitude
spectrum |H (jω)| is denoted δ1, so that the minimum of the amplitude spectrum in the
pass-band is (1 − δ1) which, as will be seen, is also equal to 1/

√
1 + ε2 as shown. The

pass-band edge frequency is ωc ≡ ωp = 1, and that of the stop band is ωs = 1/k.

The relations between G(ω) and H(jω), summarized in Table 9.9 can be readily estab-
lished.
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FIGURE 9.24 Elliptic filter specifications.

TABLE 9.9 The relation between G(ω) and H(jω)

G (ω) |H (jω)|
Pass-band

0
(max/min) = ±1

1√
1/ (1 + ε2) = 1− δ1

Stop-band
(max/min) = ±1/k1

±∞
1/
√

1 + ε2/k2
1 = δ2

0

We have

δ22 =
1

1 + ε2/k2
1

(9.234)

wherefrom

k1 = δ2ε/
√

1− δ22 , k′1 =
√

1− k2
1 . (9.235)

In the pass-band

(1− δ1)2 =
1

1 + ε2
(9.236)

wherefrom

ε2 =
1

(1− δ1)2
− 1 =

2δ1 − δ21
(1− δ1)2

(9.237)

ε =

√
2δ1 − δ21

(1− δ1)
. (9.238)

Letting the ripple in the pass-band be Rp dB and that in the stop-band be Rs dB we deduce
the following useful relations.

20 log10 [1/ (1− δ1)] = Rp (9.239)

δ1 = 1− 10−0.05Rp (9.240)

20 log10 (1/δ2) = Rs (9.241)

δ2 = 10−0.05Rs (9.242)
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ε =
√

100.1Rp − 1 (9.243)

k1 =
√

(100.1Rp − 1) / (100.1Rs − 1). (9.244)

9.22 Pole Zero Alignment and Mapping of Elliptic Filter

In this section we evaluate the positions of the poles and zeros of the function |H (jω)|2 in
the complex u plane. A transformation in two steps is then applied to map these poles and
zeros to the Laplace s plane in such a way as to obtain the desired elliptic filter magnitude
spectrum.

To evaluate the filter transfer function H (s) and its poles and zeros we start by consid-
ering the squared magnitude spectrum given by

|H (jω)|2 = H (jω)H (−jω) =
1

1 + ε2G2 (ω)
. (9.245)

Letting ψ = sn−1 (ω, k), i.e. ω = sn (ψ, k), and

u = nψ = n sn−1 (ω, k) (9.246)

we have

G (ω) =

{
sn (nψ, k1) = sn (u, k1) , N odd
sn (nψ +K1, k1) = sn (u+K1, k1) , Neven

(9.247)

and

|H (jω)|2 =





1

1 + ε2sn2 (u, k1)
, N odd

1

1 + ε2sn2 (u+K1, k1)
, N even.

(9.248)

Writing

H (jω)H (−jω) = H (s)H (−s)|s=jω (9.249)

we have

H (s)H (−s) =






1

1 + ε2sn2 (u, k1)
, N odd

1

1 + ε2sn2 (u+K1, k1)
, N even

(9.250)

where

u = nψ = n sn−1 (ω, k) = n sn−1 (s/j, k) . (9.251)

The poles are obtained by writing

1 + ε2sn2 (u, k1) = 0, N odd (9.252)

1 + ε2sn2 (u+K1, k1) = 0, N even (9.253)

i.e.

sn (u, k1) = ±j/ε, N odd (9.254)

sn (u+K1, k1) = ±j/ε, N even. (9.255)
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From the periodicity of the sn function we can write

sn (u+mK1, k1) = ±j/ε,
{
m evenfor N odd
m oddfor N even

(9.256)

u = ±sn−1 (j/ε, k1)−mK1,

{
m evenfor N odd
m oddfor N even.

(9.257)

Letting

u0 = sn−1 (j/ε, k1) (9.258)

the position of the poles are given by

u = ±u0 −mK1,

{
m evenfor N odd
m oddfor N even.

(9.259)

The zeros and poles of the magnitude squared spectrum |H (jω)|2 on the complex u plane,
with u = x + jy, are shown in Fig. 9.25 which is plotted for illustration for an odd filter
order. Note that the zeros of |H (jω)|2 are double zeros, being the poles of sn2 (u, k1). The
value u0 = sn−1 (j/ε, k1) appears in the figure. Note the repetition of the poles along the
real axis with a spacing of 2K1. Note, moreover, the periodicity along the imaginary axis.
This is due to the periodicity of the sn function along the imaginary axis.

y

C' C

B' BA

K'(k
1
)

D

x

K'(k
1
)

N K k( )1

2 ( )K k1

u0

-u0

FIGURE 9.25 Zeros and poles on the complex u plane.

The periodic repetition of the poles with a spacing of 2K ′1 is seen in the figure. The figure
shows a rectangle drawn to enclose poles and zeros for the case N = 7 as an illustration. We
note that if we travel around the rectangle ABCD in the u plane, as shown in the figure, we
would readily observe maxima and minima created by the presence of the poles and zeros. In
fact, the rectangle ABCDC′B′A is drawn to include seven poles and accompanying seven
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zeros, in order to obtain the desired frequency response |H (jω)|2 shown in Fig. 9.21. The
portion AB of the path corresponds to the positive frequency pass-band. The portion CD
corresponds to the positive frequency stop-band. The line BC is the transition between the
pass-band and stop-band.

Note that the negative-frequencies portion of |H (jω)|2 are taken into account by following
the path ABCDC′B′A shown in the figure. Also note that the ripples in the pass-band are
due to the existence of the poles adjacent to this path. The ripples in the stop-band are due
to the zeros along the path.

The present objective is to convert the rectangle shown in the u plane to the left half s
plane in such a way that the zeros lie on the s = jω axis, the point B is transformed to
the point s = jωc = j, the point C is transformed to s = jωs = j/k and the point D is
transformed to s = ±j∞. These objectives are summarized in Table 9.10.

TABLE 9.10 Transformation
objectives

Point u s
A 0 0
B NK1 jωc = j
C NK1 + jK ′1 jωs = j/k
D jK ′1 j∞

A conformal mapping is used to effect such a transformation. The mapping is given by

s = j sn

(
K

NK1
u, k

)
(9.260)

such that with
u = n sn−1 (ω, k) (9.261)

if
K

NK1
=

1

n
=
K ′

K ′1
(9.262)

then
s = j sn (u/n, k) = jω (9.263)

and the four points are mapped as required. In particular we obtain the results shown in
Table 9.11.

TABLE 9.11 Mapping of four points from u to s
plane

Point u s
A 0 j sn (0, k) = 0
B NK1 j sn (K, k) = j
C NK1 + jK ′1 j sn (K + jK ′, k) = j/k
D jK ′1 j sn (jK ′, k) = j∞

The order of the filter is given by

N =
KK ′1
K ′K1

. (9.264)
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The transformation from the u plane to the s plane may be viewed as the result of a

v
0

C'

C

B'

B

A

K'(k)

K(k)

K(k)/ N

2K(k)/ N

D x

h

FIGURE 9.26 Poles and zeros in the v plane.

rotation of the u plane by 90◦ resulting in a v plane followed by one from the v plane to
the s plane. The first transformation is written

v = j
K (k)

NK (k1)
u. (9.265)

The poles and zeros in the v plane are shown in Fig. 9.26. The value u0 in the u plane is
transformed to v0 shown in the figure in the v plane, where

v0 = j
K (k)

NK (k1)
u0 = j

K (k)

NK (k1)
sn−1 (j/ε, k1) . (9.266)

The transformation from the v plane to the s plane is therefore

s = jωcsn (−jv, k) = j sn (−jv, k) . (9.267)

The points A, B, C and D of the u plane (Fig. 9.24) correspond to the similarly labeled
points in the v plane, where the successive coordinates are

v = 0, jK (k) , −K ′ (k) + jK (k) and −K ′ (k) . (9.268)

These are transformed respectively, as expected, to

s = jωcsn 0 = 0, jωcsn [K (k)] = jωc = j (9.269)
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jωcsn [K (k) + jK ′ (k)] = jωc/k = jωs = j/k (9.270)

and
jωcsn [jK ′ (k)] = j∞. (9.271)

The negative frequencies are similarly transformed. The successive transformations from
the u plane to the v plane and thence to the s plane are listed in Table 9.12 which shows
the four points A, B, C and D in the three different planes.

TABLE 9.12 Transformations from u to
v and s plane

Point u v s
A 0 0 0
B NK1 jK j
C NK1 + jK ′1 −K ′ + jK j/k
D jK ′1 −K ′ j∞

As stated above we have

|H (jω)|2 =
1

1 + ε2G2 (ω)
(9.272)

so that
G (ω) = sn (u, k1) = sn

(
n sn−1 (ω, k) , k1

)
. (9.273)

Given any point v = ξ + jη in the v plane we can evaluate the corresponding point
s = σ + jω in the s plane. We can thus deduce the positions of the poles and zeros in the
s plane using their known coordinates in the v plane. We have

s = σ + jω = j sn (−jv, k) = sn (−jξ + η, k)

= jωc
sn η cn jξ dn jξ − sn jξ cn η dn η

1− k2sn2 η sn2jξ
.

(9.274)

Now
cn (jv, k) = nc (v, k′) (9.275)

sn (ju, k) = j
sn (u, k′)

cn (u, k′)
(9.276)

cn (ju, k) =
1

cn (u, k′)
(9.277)

dn (ju, k) =
dn (u, k′)

cn (u, k′)
. (9.278)

Writing

s = jωc
N

D
(9.279)

we have

N = sn η
1

cn (ξ, k′)

dn (ξ, k′)

cn (ξ, k′)
− j sn (ξ, k′)

cn (ξ, k′)
cn η dnη

=
sn η dn (ξ, k′)− j sn (ξ, k′) cn η dn η cn (ξ, k′)

cn2 (ξ, k′)

(9.280)

D = 1 + k2sn2η
sn2 (ξ, k′)

cn2 (ξ, k′)
=
cn2 (ξ, k′) + k2sn2η sn2 (ξ, k′)

cn2 (ξ, k′)
(9.281)
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s =
jωcsn η dn (ξ, k′) + ωcsn (ξ, k′) cn η dn η cn (ξ, k′)

cn2 (ξ, k′) + k2sn2η sn2 (ξ, k′)
=△
N1

D1
(9.282)

D1 = 1− sn2 (ξ, k′) + k2sn2η sn2 (ξ, k′)
= 1− sn2 (ξ, k′)

[
1− k2sn2η

]
= 1− sn2 (ξ, k′) d2

n (η, k)
(9.283)

wherefrom

σ =
ωcsn (ξ, k′) cn (η, k) dn (η, k) cn (ξ, k′)

1− sn2 (ξ, k′) dn2 (η, k)
(9.284)

ω =
ωcsn (η, k) dn (ξ, k′)

1− sn2 (ξ, k′) dn2 (η, k)
. (9.285)

The poles may be found by substituting for their ξ and η coordinates in the v plane, as
shown in Fig. 9.26, namely,

v = ξ + jη = v0 ± j2
K (k)

N
i , i = 0, 1, . . . , (N − 1) /2. (9.286)

The zeros are found by substituting

v = ξ + jη = −K ′ (k)± j2K (k)

N
i, i = 0, 1, . . . , (N − 1) /2. (9.287)

We can, alternatively, obtain the poles’ and zeros’ locations in the s plane by transforming
their coordinates in the u plane using Table 9.11 or 9.12.

Part of the above analysis was carried out assuming N to be odd. The same analysis with
minor differences can be applied for the case of N even [4] [60].

9.23 Poles of H (s)

In this section we effect a direct evaluation of the poles of H (s). We first note that we can
write

v0 = j
u0

n
= j

K

NK1
u0. (9.288)

Using the relation

sn (jv, k) = j sc (v, k′) (9.289)

we can write

j sc (nv0, k
′
1) = sn (jnv0, k1) = sn (±u0, k1) = ±j/ε (9.290)

i.e.

v0 =
sc−1 (±1/ε, k′1)

n
= ± K

NK1
sc−1 (1/ε, k′1) (9.291)

which is another expression giving the value of v0.
As found above the poles are at u = ±u0 −mK1, i.e. at values of s given by

s = j sn

(
K

NK1
u, k

)
= j sn

(
± K

NK1
u0 −m

K

N
, k

)
,

m even for N odd; m odd for N even
(9.292)
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or equivalently

s = j sn

(
∓jv0 −m

K

N
, k

)
, m even for N odd; m odd for N even. (9.293)

The poles in the left half of the s plane are found by writing

s = j sn

(
jv0 −m

K

N
, k

)
, m even for N odd; m odd for N even. (9.294)

Using the summation formula

sn (u± v) =
sn u cn v dn v ± cn u sn v dn u

1− k2sn2u sn2v
(9.295)

we have

s = j

[
sn (jv0, k) cn

(
mK

N
, k

)
dn

(
mK

N
, k

)

± cn (jv0, k) sn

(
mK

N
, k

)
dn (jv0, k)

]

/

[
1− k2sn2 (jv0, k) sn

2

(
mK

N
, k

)]
.

(9.296)

Letting

µ = mK/N,

{
m odd for N even
m even for N odd

(9.297)

and using the relations

sn (jv, k) = j sc (v, k′) (9.298)

cn (jv, k) = nc (v, k′) (9.299)

dn (jv, k) =
dn (v, k′)

cn (v, k′)
(9.300)

we have the poles

s = j [j sc (v0, k
′) cn (µ, k) dn (µ, k)

± nc (v0, k
′) sn (µ, k) dn (v0, k

′) /cn (v0, k
′)]

/
[
1 + k2sc2 (v0, k

′) sn2 (µ, k)
]
.

(9.301)

Now

dn2 (µ, k) = 1− k2sn2 (µ, k) (9.302)

sc (v0, k
′) = sn (v0, k

′) /cn (v0, k
′) (9.303)

nc (v0, k
′) = 1/cn (v0, k

′) (9.304)

wherefrom the poles are given by

s =
−sn (v0, k

′) cn (µ, k) dn (µ, k) cn (v0, k
′)± j sn (µ, k) dn (v0, k

′)

cn2 (v0, k′) + k2sn2 (v0, k′) sn2 (µ, k)

=
−sn (v0, k

′) cn (µ, k) dn (µ, k) cn (v0, k
′)± j sn (µ, k) dn (v0, k

′)

1− dn2 (µ, k) sn2 (v0, k′)
.

(9.305)
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9.24 Zeros and Poles of G(ω)

The Chebyshev rational function G (ω) is zero if

G (ω) =

{
sn (nψ, k1) = 0, N odd
sn (nψ +K1, k1) = 0, N even

(9.306)

and from the periodicity of the sn function we can write, similarly to the above,

sn (nψ +mK1, k1) = 0,

{
m even for N odd
m odd for N even

(9.307)

i.e.
nψ +mK1 = 0 (9.308)

ψ = sn−1 (ω, k) = −mK1/n = −mK/N. (9.309)

The frequency values (for ω > 0) at which G (ω) = 0, which may be denoted ωm,z,G, are
therefore given by

ωm,z,G = sn (mK/N, k) ,

{
m even for N odd
m odd for N even.

(9.310)

Since

G (ω)G

(
1

kω

)
=

1

k1
(9.311)

if G (ω) = 0 then G

(
1

kω

)
=∞. The poles of G (ω) are therefore at frequencies given by

ωm,p,G =
1

kωm,z
=

1

k sn (mK/N, k)
,

{
m even for N odd
m odd for N even.

(9.312)

9.25 Zeros, Maxima and Minima of the Magnitude Spectrum

As noted above the zeros of H (jω) are the poles of G (ω), wherefrom the zeros of H(jω)
(for ω > 0) are given by

ωm,z,H =
1

k sn (mK/N, k)
,

{
m even for N odd
m odd for N even.

(9.313)

9.26 Points of Maxima/Minima

In the pass-band region the maxima of |H (jω)| are equal to 1 and occur at the zeros of
G (ω), i.e. at the frequencies, which may be denoted ωm,z,G

ωm,z,G = sn (mK/N, k) ,

{
m, even for N odd
m odd for N even.

(9.314)
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The minima of |H (jω)| in the pass-band correspond to the maxima of G2 (ω), that is,
the points of maxima or minima of

G (ω) =

{
sn (nψ, k1) = 0, N odd
sn (nψ +K1, k1) = 0, N even.

(9.315)

They can be deduced by noticing the locations of the zeros of the sn function along the
real axis, Fig. 9.19, and that by symmetry the function has its maxima/minima halfway
between these zeros. The frequencies of the maxima/minima of G (ω) in the pass-band,
denoted ωm,mx,p,G, are therefore given by

ωm,mx,p,G = sn (mK/N, k) ,

{
m odd for N odd
m even for N even

(9.316)

and those of maxima/minima in the stop band, denoted ωm,mx,s,G, are given by

ωm,mx,s,G =
1

kωm,mx,p,G
=

1

ksn (mK/N, k)
,

{
m odd for N odd
m even for N even.

(9.317)

9.27 Elliptic Filter Nomograph

The nomograph of elliptic filters is shown in Fig. 9.27. As stated above in connection
with Butterworth and Chebyshev filters, the elliptic filter in order to meet certain desired
specifications may be evaluated using the nomograph.

Example 9.10 Design an elliptic filter having an attenuation of 1% in the pass-band and
a minimum of 40 dB in the stop-band, with pass-band edge frequency ωp = 1 and stop-band
edge frequency ωs = 1.18. Evaluate the filter order N , the poles and zeros of G (ω), |H (jω)|
and H (s). Plot G (ω) and |H (jω)|2.

We have δ1 = 0.01 and
20 log10 δ2 = −40

δ2 = 0.01

k = 1/ωs = 0.84746, k′ =
√

1− k2 = 0.53086.

The pass-band cut-off frequency ωc is

ωc = ωp = 1.

We may evaluate K (k) using Mathematica, noticing that Mathematica, requires using m =
k2 as an argument rather than k. We write

K (k) = EllipticK[m] = 2.10308.

Similarly

K ′ = K (k′) = EllipticK
[
(k′)

2
]

= EllipticK
[
1− k2

]
= 1.7034
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FIGURE 9.27 Elliptic filter nomograph.

ε =

√
2δ1 − δ21

(1− δ1)
= 0.14249

k1 = δ2ε/
√

1− δ22 = 0.001425, k′1 =
√

1− k2
1 = 0.99999

K1 = K (k1) = EllipticK
[
k2
1

]
= 1.5708

K ′1 = K (k′1) = EllipticK
[
(k′1)

2
]

= 7.93989.

The order of the filter N should be the least integer value that is greater than or equal to,
i.e. the “ceiling,” of

K ′1K

K1K ′
= 6.2407
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wherefrom
N = Ceiling [6.2407] = 7.

This may be referred to as the “first iteration” in the filter design process. Having forced the
filter order to the integer value N = 7 it no longer equals the ratio (K ′1K) / (K1K

′). To
reconcile the value N = 7 with this ratio we reevaluate the parameter k so that the ratio
K(k)/K ′(k) is equal to the ratio

r =
NK (k1)

K ′ (k1)
=

7× 1.15708

7.93989
= 1.38485.

The function K (k) /K (k′) as a function of k is shown in Fig. 9.28.

K k K k'( )/ ( )

3

2

1

0.2 0.4 0.6 0.8 1 k

FIGURE 9.28 K/K ′ as a function of k.

The required value of k is that producing K/K ′ = r = 1.38485. Note that ωs = 1/k.
Altering k means altering ωs. The given stop-band edge frequency ωs is thus altered to ωs,2.
Since, however, the filter order N is made higher than the required ratio the result is a
filter with lower value of ωs and hence better than the given specifications. We may find the
value of k using a root-finding numerical analysis algorithm, or by using the Mathematica
instructions

ratio [k ] := EllipticK [kˆ2] / EllipticK [1− kˆ2]

and
ktrue = FindRoot [ratio [k] = r, {k, 0.5}]

we obtain
ktrue = 0.901937

wherefrom
ωs,2 = 1/ktrue = 1.10872.

The second iteration is thus started with this value of stop-band edge frequency ωs = 1.10872.
The updated values are

K = 2.289, K ′ = 1.65289.

The value v0 may be found by writing

v0 = −I (K/ (N K1)) InverseJacobiSN [I/ε, k1ˆ2]

where I = j. Alternatively,

v0 = K/ (N K1) InverseJacobiSC [1/ε, k1pˆ2]
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where k1p = k′1. We obtain
v0 = 0.550962.

The poles p0, p1, p2 and p3 are found by writing

p0 = I JacobiSN [I v0, kˆ2]

p1 = I JacobiSN [I v0 + 2K/N, kˆ2]

. . .

p3 = I JacobiSN [I v0 + 6K/N, kˆ2] .

We obtain
p0 = −0.607725

p1, p
∗
1 = −0.382695± j0.703628

p2, p
∗
2 = −0.135675± j0.957725

p3, p
∗
3 = −0.0302119± j1.02044.

The poles can be alternatively evaluated by converting the ξ and η coordinates in the v plane
to the s plane. The resulting poles and zeros in the s plane are shown in Fig. 9.29.

s

jw

1

2

-1

-2

1-1

FIGURE 9.29 Elliptic filter poles and zeros in s plane.

These coordinates are given by

(ξ, η) = (−v0, 0) , (−v0, 2K/N) , (−v0, 4K/N) , (−v0, 6K/N)
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i.e.
ξ0 = ξ1 = ξ2 = ξ3 = −v0 = −0.550962

and we find
η0 = 0, η1 = 0.654001, η2 = 1.308, η3 = 1.962.

The pole coordinates as found above are coded in Mathematica by writing

σ [ξ , η , k ] := JacobiSN [ξ, (1− kˆ2)]
JacobiCN [η, kˆ2]JacobiDN [η, kˆ2]
JacobiCN [ξ, (1− kˆ2)] /
(1− ((JacobiSN [ξ, (1− kˆ2)]) ˆ2)
((JacobiDN [η, kˆ2]) ˆ2))

and
ω [ξ , η , k ] := JacobiSN (η, kˆ2)

((JacobiDN (ξ, (1− k∧2))) ˆ2) /
(1− ((JacobiSN [ξ, (1− kˆ2)]) ˆ2)
((JacobiDN [η, kˆ2]) ˆ2)) .

The same values of the poles are obtained as

pi = σi + jωi.

The functions G (ω) and |H (jω)| are plotted by observing that

n = K ′1/K
′ = NK1/K = 4.80365

and writing

G [ω , n , k , k1 , K1 ] := JacobiSN [n InverseJacobiSN [ω, kˆ2] , k1ˆ2] .

This function is coded in Mathematica as complex-valued even though it has a zero imagi-
nary component, except for rounding off computational errors. To visualize G (ω) we there-
fore plot the real part of G (ω). The result is shown in Fig. 9.22(a) and (b), where the
overall spectrum and the pass-band, enlarged, are shown, respectively. The zeros of G (ω)
are evaluated by writing

ωz0 = JacobiSN [0, kˆ2]

ωz1 = JacobiSN [2K/N, kˆ2]

. . .

ωz3 = JacobiSN [6K/N, kˆ2] .

We obtain

ωz0 = 0, ωz1 = 0.580704, ωz2 = 0.887562, ωz3 = 0.989755.

The poles of G (ω) are given by ωpi = 1/ (k ωzi). We obtain

ωp0 =∞, ωp1 = 1.90928, ωp2 = 1.24918, ωp3 = 1.1202.

The points of maxima/minima in G (ω) and |H (jω)| are given in the pass-band by

ωm0 = JacobiSN [K/N, kˆ2] = 0.31682

ωm1 = JacobiSN [3K/N, kˆ2] = 0.76871
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ωm2 = JacobiSN [5K/N, kˆ2] = 0.95568

and in the stop band by 1/ (kωmi), that is,

ωms0 = 3.4995, ωms1 = 1.44232, ωms2 = 1.16014.

The function |H (jω)|2 is written as

Hsq [ω , n , k , k1 , ε , K1 ] := 1/
(
1 + ε2 (Re [JacobiSN

[n InverseJacobiSN [ω, kˆ2] , k1ˆ2]]) ˆ2) .

The magnitude-squared spectrum |H (jω)|2 is shown in Fig. 9.21. The pole zero pattern in
the u plane is seen in Fig. 9.30.

20
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FIGURE 9.30 Pole-zero pattern of n = 7 elliptic filter example.

The N even case is similarly treated and is dealt with in a problem at the chapter’s end.

9.28 N = 9 Example

Example 9.11 Design a lowpass elliptic filter having a maximum response of 0 dB, a
maximum pass-band ripple of Rp = 0.1 dB, a stop-band ripple of at least Rs = 55 dB, a
normalized pass-band edge frequency of ωp = 1 and a stop-band edge frequency ωs = 1.1.
Evaluate the filter transfer function, its poles and zeros and the poles and zeros of the func-
tion G (ω) in its frequency response.

From the filter specifications we obtain:

ε = 0.15262, k = 0.909091, K = 2.32192, K ′ = 1.64653, k1 = 0.00027140,
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k′1 = 1, K1 = 1.5708, K ′1 = 9.5982, N1 = (K ′1K) / (K1K
′) = 8.616.

The least higher integer is N = Ceil [8.616] = 9. Replacing the real value N1 by integer
N = 9 improves slightly the specifications altering in the process some parameters. The next
step is to ensure that the rational-Chebyshev function condition, namely, NK1/K

′
1 = K/K ′,

is satisfied. We can either re-evaluate Rs or ωs to satisfy this condition.
In the previous example of N = 7 we chose to update the value of k, hence modifying ωs.

In the present example, for illustration purposes, to validate the condition we shall choose
to keep the value k and hence ωs unchanged, and instead update the value k1 and hence the
attenuation Rs.

A numeric solution by iterative evaluation of the two ratios for successive values of k1,
starting with the present value k1 = 0.00027140, would produce an estimate of the value
k1. Alternatively, we may use the Mathematica command FindRoot. We write

ratio1 = K/K ′, ratio2 [N , k1 ] := NK1/K
′
1

k1true = FindRoot [ratio2 [N, k1] == ratio2, {k1, 0.00027140}] .
We obtain the new value

k1 = 0.000177117

Rs = 10 log10

[
1 +

(
100.1Rp − 1

)
/k2

1

]
= 58.707

k′1 = 1, K1 = 1.5708, K ′1 = 10.025, n = K ′1/K
′ = 6.08856, v0 = −0.423536.

The poles are given by

pm = −j sn (jv0 +mK/N, k) , m = 0, 1, 2, 3, 4.

We obtain

p0 = −0.448275, p1, p
∗
1 = −0.341731∓ j0.544813

p2, p
∗
2 = −0.173149∓ j0.847267

p3, p
∗
3 = −0.0695129∓ j0.969793.

p4, p
∗
4 = −0.0178438∓ j1.01057.

The zeros are zi = {j2.30201, j1.3902, j1.1706, j1.1065} and their conjugates. The zeros
of G (ω) are {0, 0.477843, 0.790219, 0.939686}. The poles are {2.30201, 1.39202, 1.1706, ∞}.
The rational Chebyshev function G (ω) is shown in Fig. 9.31.

FIGURE 9.31 Function G(ω) for elliptic filter of order N = 9.
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The filter transfer function is given by H(s) = N(s)/D(s) where

N(s) = 0.1339 + 0.301452s2 + 0.23879s4 + 0.07642s6 + 0.00777s8

D(s) = 0.133901 + 0.606346s+ 1.6165s2 + 3.23368s3 + 4.5243s4

+5.71909s5 + 4.69624s6 + 4.08983s7 + 1.65275s8 + s9.

The filter magnitude response |H (jω)| is shown in Fig. 9.32.

FIGURE 9.32 Magnitude spectrum function |G(ω)| of ninth order elliptic filter.

It is worthwhile noticing that MATLAB uses the approach followed in the previous N = 7
example; updating the value k and hence ωs, instead of updating k1 and hence Rs as was
done in the present example. To reconcile the values of the poles and zeros found in this
example with those that result from using MATLAB we should specify to MATLAB that
Rs = 58.707. Doing so we obtain identical results as found above.

The following short MATLAB program may be used for such verification.
Rp=0.1
Rs=58.707
Wp=1
Ws=1.1
[Nm, Wpm] = ellipord(Wp, Ws, Rp, Rs,’s’)
[Z,P,K]=ellipap(N,Rp,Rs)
[B,A]=ellip(N,Rp,Rs,Wp,’s’)

The student will note that the poles and zeros, and the transfer function, produced by
MATLAB are identical with the results obtained above.

9.29 Tables of Elliptic Filters

The transfer function coefficients, the poles and zeros of elliptic filters are listed in Table
9.13 to Table 9.22 for different values of the filter order N , the pass-band ripple Rp dB, the
stop-band edge frequency ωs, and the stop-band ripple Rs dB.
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TABLE 9.13 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 0.1 dB and

ωs = 1.05

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 0.3426455 1.7477711 6.3969941 13.8413868 30.4700260 47.2761726

a0 1.3990302 3.2826436 1.8508723 1.3173786 0.5256578 0.2097217

a1 0.1508135 1.4193116 1.4822580 1.8794136 1.3811996 0.8052803

a2 2.9026725 2.8780944 3.1068871 2.7719512 2.0212569

a3 1.3123484 2.8637648 3.9831910 3.8129189

a4 1.7228910 3.9074600 5.0952301

a5 3.5962977 6.2421799

a6 1.6550949 4.9331746

a7 4.2336178

a8 1.6490642

b0 1.3830158 3.2826436 1.8296856 1.3173786 0.5256578 0.2097217

b2 0.9613194 2.7232585 2.1383746 1.9050150 1.0658098 0.5467436

b4 0.4787958 0.6552837 0.6808319 0.5077885

b6 0.1324515 0.1943523

b8 0.0245867

Zeros

±j1.1994432 ±j1.0979117 ±j1.8200325 ±j1.3318177 ±j1.6475352 ±j1.9984177
±j1.0740734 ±j1.0646230 ±j1.1438273 ±j1.2626443

±j1.0571288 ±j1.0979117
±j1.0542324

Poles

−0.0754068 −0.0448535 −0.6185761 −0.2669018 −0.3623864 −0.3552567
±j1.1804000 ±j1.0793319 ±j1.1432441 ±j1.0158871 ±j0.7912186 ±j0.6169914

−2.8129654 −0.0375981 −0.0301146 −0.0979300 −0.1495512
±j1.0459484 ±j1.0280395 ±j0.9794960 ±j0.8930736

−1.1288581 −0.0182745 −0.0508626
±j1.0129061 ±j0.9820104
−0.6979132 −0.0117722

±j1.0073711
−0.5141787
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TABLE 9.14 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 0.1 dB and

ωs = 1.1

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 0.5588853 3.3742719 10.7205944 20.0502491 39.3573265 58.7070427

a0 1.6258769 2.8365345 1.6533079 1.0268282 0.3708066 0.1339013

a1 0.2589655 1.6486701 1.7995999 1.8610135 1.1739773 0.6063457

a2 2.4116752 2.7778502 2.8331900 2.4108458 1.6164997

a3 1.5410995 2.8724523 3.6754971 3.2336819

a4 1.6905622 3.7156317 4.5243044

a5 3.4943247 5.7190928

a6 1.6596349 4.6962447

a7 4.0898266

a8 1.6527468

b0 1.607235 2.8365345 1.6343826 1.0268282 0.3708066 0.1339013

b2 0.937700 2.0699894 1.6417812 1.2835929 0.6492805 0.3014518

b4 0.2910518 0.3717959 0.3518730 0.2387967

b6 0.0560947 0.0764154

b8 0.0077724

Zeros

±j1.3092301 ±j1.1706040 ±j2.0856488 ±j1.4809093 ±j1.8747718 ±j2.3020096
±j1.1361890 ±j1.1221945 ±j1.2344811 ±j1.3920196

±j1.1109130 ±j1.1706040
±j1.1065024

Poles

−0.1294827 −0.0854214 −0.7038162 −0.3296916 −0.3726059 −0.3417307
±j1.2685075 ±j1.1218480 ±j0.9764946 ±j0.9532986 ±j0.7068694 ±j0.5448126

−2.2408323 −0.0667335 −0.0495333 −0.1291176 −0.1731486
±j1.0661265 ±j1.0393462 ±j0.9574274 ±j0.8472668

−0.9321125 −0.0282791 −0.0695129
±j1.0182745 ±j0.9697934
−0.5996296 −0.0178438

±j1.0105669
−0.4482749
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TABLE 9.15 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 0.1 dB and

ωs = 1.20

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 1.0747750 6.6912446 17.0510120 28.3031082 50.9628677 73.6290512

a0 1.9986240 2.4314215 1.3903317 0.7920082 0.2577848 0.0839041

a1 0.4725369 1.9409142 1.9870989 1.7790993 0.9701640 0.4439832

a2 2.0576346 2.6737130 2.6525514 2.0995352 1.2791656

a3 1.6706022 2.8478775 3.3690655 2.7163413

a4 1.6920280 3.5413387 4.0003653

a5 3.3943024 5.2264667

a6 1.6671665 4.4675741

a7 3.9510615

a8 1.6574275

b0 1.9757459 2.4314215 1.3744167 0.7920082 0.2577848 0.0839041

b2 0.8836113 1.4305701 1.0948827 0.7874882 0.3588836 0.1501842

b4 0.1404266 0.1754069 0.1515365 0.0932849

b6 0.0180661 0.0228895

b8 0.0017088

Zeros

±j1.4953227 ±j1.3036937 ±j2.4948752 ±j1.7228950 ±j2.2286088 ±j2.7662959
±j1.2539659 ±j1.2333397 ±j1.3933201 ±j1.6059589

±j1.2164999 ±j1.3036937
±j1.2098579

Poles

−0.2362685 −0.1567661 −0.7268528 −0.3791553 −0.3711948 −0.3235983
±j1.3938440 ±j1.1702591 ±j0.7981539 ±j0.8753982 ±j0.6271909 ±j0.4807398

−1.7441024 −0.1084483 −0.0754299 −0.1614480 −0.1928080
±j1.0868686 ±j1.0516452 ±j0.9285520 ±j0.7970691

−0.7828577 −0.0410804 −0.0903314
±j1.0244980 ±j0.9539840
−0.5197204 −0.0254899

±j1.0143603
−0.3929724
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TABLE 9.16 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 0.1 dB and

ωs = 1.50

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 3.2103367 14.8477592 29.06367 43.41521 72.12859 100.84222

a0 2.7450464 2.0172143 1.0930740 0.5794907 0.1664555 0.0478134

a1 1.0682132 2.3059034 2.0598156 1.6299865 0.7556445 0.3003893

a2 1.8774745 2.6121931 2.5107679 1.7825338 0.9609295

a3 1.7447219 2.8060758 3.0337298 2.1981611

a4 1.7120869 3.3540711 3.4522831

a5 3.2864916 4.7003198

a6 1.6783862 4.2156830

a7 3.7991598

a8 1.6640812

b0 2.7136242 2.0172143 1.0805616 0.5794907 0.1664555 0.0478134

b2 0.6910082 0.7188895 0.5154718 0.3454847 0.1389352 0.0513107

b4 0.0352222 0.0439371 0.0342428 0.0187645

b6 0.0022557 0.0026331

b8 0.0001063517

Zeros

±j1.9816788 ±j1.6751162 ±j3.4784062 ±j2.3318758 ±j3.0870824 ±j3.8748360
±j1.5923420 ±j1.5574064 ±j1.8204368 ±j2.1532161

±j1.5285687 ±j1.6751167
±j1.5171083

Poles

−0.5341066 −0.2896462 −0.6987343 −0.4170375 −0.3594736 −0.2996915
±j1.5683675 ±j1.2124279 ±j0.6169485 ±j0.7757661 ±j0.5431284 ±j0.4158787

−1.2981820 −0.1736266 −0.1141294 −0.1983054 −0.2101821
±j1.1081139 ±j1.0661507 ±j0.8873446 ±j0.7358851

−0.6497532 −0.0595590 −0.1163022
±j1.0325530 ±j0.9312235
−0.4437103 −0.0363620

±j1.0194213
−0.3390055
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TABLE 9.17 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 0.1 dB and

ωs = 2.00

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 7.4183841 24.0103645 41.44714 58.90077 93.80865 128.71700

a0 3.2140923 1.8193306 0.9529442 0.4878087 0.1307924 0.0350682

a1 1.6868869 2.4820001 2.0536783 1.5354161 0.6536626 0.2408231

a2 1.8804820 2.6104007 2.4510162 1.6278777 0.8186090

a3 1.7733949 2.7860096 2.8652318 1.9547179

a4 1.7269419 3.2595117 3.1841259

a5 3.2332163 4.4386373

a6 1.6854397 4.0871892

a7 3.7222681

a8 1.6681999

b0 3.1773009 1.8193306 0.9420359 0.4878087 0.1307924 0.0350682

b2 0.4256776 0.3530481 0.2439743 0.1579160 0.0592773 0.0204342

b4 0.0084653 0.0105752 0.0078078 0.0040145

b6 0.0002660873 0.0002974799

b8 0.0000061483

Zeros

±j2.7320509 ±j2.2700682 ±j4.9221134 ±j3.2508049 ±j4.3544307 ±j5.4955812
±j2.1431894 ±j2.0892465 ±j2.4903350 ±j2.9870205

±j2.0445139 ±j2.2700801
±j2.0266929

Poles

−0.8434435 −0.3818585 −0.6704431 −0.4290917 −0.3501695 −0.2863379
±j1.5819910 ±j1.2179047 ±j0.5356388 ±j0.7213293 ±j0.5019931 ±j0.3848209

−1.1167650 −0.2162544 −0.1389126 −0.2171252 −0.2171315
±j1.1168200 ±j1.0735674 ±j0.8622670 ±j0.7025610

−0.5909334 −0.0711239 −0.1307105
±j1.0371404 ±j0.9171293
−0.4086024 −0.0430916

±j1.0223918
−0.3136567
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TABLE 9.18 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 1 dB and

ωs = 1.05

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 2.8161201 8.1342306 15.8403254 24.1345406 40.9259720 57.7355919

a0 1.1672218 0.9845755 0.6921654 0.3951263 0.1576625 0.0629026

a1 0.3141664 1.1629654 0.8610367 0.9765996 0.6017573 0.3248769

a2 1.0788120 1.7548053 1.3156878 1.1064552 0.7644661

a3 0.8757772 1.9993536 2.2500968 1.9224738

a4 0.9212833 1.8620958 2.2301505

a5 2.6510124 3.8865836

a6 0.9125805 2.4398959

a7 3.2892845

a8 0.9111509

b0 1.0402875 0.9845755 0.6168931 0.3951263 0.1576625 0.0629026

b2 0.7230927 0.8167971 0.7209700 0.5713782 0.3196723 0.1639868

b4 0.1614298 0.1965417 0.2042045 0.1523029

b6 0.0397267 0.0582928

b8 0.0073744

Zeros

±j1.1994432 ±j1.0979117 ±j1.8200325 ±j1.3318177 ±j1.6475352 ±j1.9984177
±j1.0740734 ±j1.0646230 ±j1.1438273 ±j1.2626443

±j1.0571288 ±j1.0979117
±j1.0542324

Poles

−0.1570832 −0.0655037 −0.4009260 −0.1811854 −0.2062934 −0.1952473
±j1.0688998 ±j1.0171063 ±j0.7239584 ±j0.8584824 ±j0.6815526 ±j0.5518380

−0.9478046 −0.0369626 −0.0235591 −0.0619527 −0.0875141
±j1.0046415 ±j1.0011643 ±j0.9376404 ±j0.8504819

−0.5117943 −0.0119201 −0.0306968
±j0.9997520 ±j0.9644962
−0.3522483 −0.0071783

±j0.9996399
−0.2698779
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TABLE 9.19 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 1 dB and

ωs = 1.10

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 4.0254035 11.4797106 20.8316784 30.4704971 49.8163643 69.1665344

a0 1.2099342 0.8507724 0.5725316 0.3079804 0.1112174 0.0401615

a1 0.4582576 1.2018049 0.8679778 0.8917965 0.4903824 0.2379754

a2 1.0114629 1.6637303 1.2198991 0.9529513 0.6027271

a3 0.9074267 1.9296353 2.0209396 1.5925974

a4 0.9200925 1.7563342 1.9553030

a5 2.5363598 3.4938834

a6 0.9141089 2.3051746

a7 3.1400957

a8 0.9121705

b0 1.0783550 0.8507724 0.5102693 0.3079804 0.1112174 0.0401615

b2 0.6291147 0.6208596 0.5125793 0.3849928 0.1947411 0.0904156

b4 0.0908691 0.1115141 0.1055386 0.0716232

b6 0.0168247 0.0229195

b8 0.0023312

Zeros

±j1.3092301 ±j1.1706040 ±j2.0856488 ±j1.4809093 ±j1.8747718 ±j2.3020096
±j1.1361890 ±j1.1221945 ±j1.2344811 ±j1.3920196

±j1.1109130 ±j1.1706040
±j1.1065024

Poles

−0.2291288 −0.0976508 −0.3992289 −0.2021446 −0.2067972 −0.1867364
±j1.0758412 ±j1.0163028 ±j0.6384812 ±j0.8047847 ±j0.6212643 ±j0.4973284

−0.8161613 −0.0544844 −0.0346207 −0.0776460 −0.0987919
±j1.0033507 ±j1.0002208 ±j0.9117621 ±j0.8075584

−0.4465618 −0.0175239 −0.0407234
±j0.9992438 ±j0.9490941
−0.3101749 −0.0105628

±j0.9993268
−0.2385414
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TABLE 9.20 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 1 dB and

ωs = 1.20

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 6.1502934 16.2089367 27.4318619 38.7567558 61.4223289 84.0885468

a0 1.2358198 0.7292653 0.4667410 0.2375500 0.0773183 0.0251657

a1 0.6411310 1.2304325 0.8489720 0.7997738 0.3916809 0.1703283

a2 0.9749216 1.5872189 1.1386032 0.8165457 0.4690942

a3 0.9252886 1.8562533 1.8052552 1.3064655

a4 0.9228818 1.6546732 1.7041823

a5 2.4244421 3.1289227

a6 0.9162023 2.1740050

a7 2.9947217

a8 0.9134463

b0 1.1014256 0.7292653 0.4159834 0.2375500 0.0773183 0.0251657

b2 0.4925897 0.4290762 0.3313791 0.2361943 0.1076413 0.0450453

b4 0.0425018 0.0526104 0.0454509 0.0279793

b6 0.0054186 0.0068653

b8 0.00051253

Zeros

±j1.4953227 ±j1.3036937 ±j2.4948752 ±j1.7228950 ±j2.2286088 ±j2.7662959
±j1.2539659 ±j1.2333397 ±j1.3933201 ±j1.6059589

±j1.2164999 ±j1.3036937
±j1.2098579

Poles

−0.3205655 −0.1364613 −0.3869712 −0.2175678 −0.2033161 −0.1765779
±j1.0644518 ±j1.0100591 ±j0.5604469 ±j0.7481667 ±j0.5641533 ±j0.4475963

−0.7019989 −0.0756731 −0.0480837 −0.0933708 −0.1080689
±j1.0002558 ±j0.9984784 ±j0.8818856 ±j0.7622858

−0.3915787 −0.0243799 −0.0516555
±j0.9984710 ±j0.9308186
−0.2740688 −0.0147112

±j0.9988877
−0.2114193
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TABLE 9.21 Elliptic filter denominator polynomial a0 + a1s + . . . + an−1s
n−1 + sn and

numerator polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 1 dB and

ωs = 1.50

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 11.1938734 25.1758442 39.51826 53.87453 82.58809 111.30172

a0 1.2144312 0.6050306 0.3638481 0.1738088 0.0499256 0.0143409

a1 0.8794183 1.2455788 0.8051777 0.6915782 0.2954669 0.1127507

a2 0.9664114 1.5155253 1.0556664 0.6773588 0.3453196

a3 0.9387957 1.7725538 1.5764157 1.0278672

a4 0.9286768 1.5422249 1.4440999

a5 2.3004806 2.7442405

a6 0.9192135 2.0283818

a7 2.8334117

a8 0.9152431

b0 1.0823629 0.6050306 0.3242800 0.1738088 0.0499256 0.0143409

b2 0.2756172 0.2156192 0.1546947 0.1036225 0.0416713 0.0153898

b4 0.0105703 0.0131782 0.0102706 0.0056281

b6 0.0006765593 0.00078975

b8 0.000031898

Zeros

±j1.9816788 ±j1.6751162 ±j3.4784062 ±j2.3318758 ±j3.0870824 ±j3.8748360
±j1.5923420 ±j1.5574064 ±j1.8204368 ±j2.1532161

±j1.5285687 ±j1.6751167
±j1.5171083

Poles

−0.4397091 −0.1876980 −0.3649884 −0.2288747 −0.1957901 −0.1637814
±j1.0104885 ±j0.9942250 ±j0.4806919 ±j0.6816781 ±j0.5027540 ±j0.3956954

−0.5910153 −0.1044094 −0.0665406 −0.1108784 −0.1162305
±j0.9939365 ±j0.9952536 ±j0.8432065 ±j0.7084979

−0.3378462 −0.0338441 −0.0650214
±j0.9971886 ±j0.9064133
−0.2381883 −0.0204507

±j0.9982014
−0.1842750
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TABLE 9.22 Elliptic filter denominator polynomial a0 +a1s+ . . .+an−1s
n−1 +sn and numerator

polynomial b0 + b2s
2 + b4s

4 + . . . coefficients, poles and zeros, with Rp = 1 dB and ωs = 2.00

N = 2 N = 3 N = 4 N = 5 N = 7 N = 9

Rs 17.0952606 34.4541321 51.90635 69.36026 104.26816 139.17599

a0 1.1700772 0.5456786 0.3170348 0.1463103 0.0392291 0.0105182

a1 0.9989416 1.2449721 0.7753381 0.6350259 0.2518903 0.0894842

a2 0.9740258 1.4831116 1.0142939 0.6104009 0.2910073

a3 0.9455027 1.7296971 1.4634978 0.9001004

a4 0.9325243 1.4845004 1.3181715

a5 2.2370582 2.5551229

a6 0.9210811 1.9536068

a7 2.7506700

a8 0.9163475

b0 1.0428325 0.5456786 0.2825575 0.1463103 0.0392291 0.0105182

b2 0.1397131 0.1058910 0.0731785 0.0473643 0.0177792 0.0061290

b4 0.0025391 0.0031719 0.0023418 0.0012041

b6 0.00007980855 0.000089228

b8 0.0000018442

Zeros

±j2.7320509 ±j2.2700682 ±j4.9221134 ±j3.2508049 ±j4.3544307 ±j5.4955468
±j2.1431894 ±j2.0892465 ±j2.4903350 ±j2.9870026

±j2.0445139 ±j2.2700672
±j2.0266819

Poles

−0.4994708 −0.2170337 −0.3512729 −0.2323381 −0.1906844 −0.1567457
±j0.9594823 ±j0.9815753 ±j0.4424977 ±j0.6464399 ±j0.4720468 ±j0.3702247

−0.5399584 −0.1214784 −0.0776246 −0.1197249 −0.1195047
±j0.9891761 ±j0.9929136 ±j0.8210439 ±j0.6795733

−0.3125989 −0.0395660 −0.0723407
±j0.9963087 ±j0.8920580
−0.2211307 −0.0239280

±j0.9977474
−0.1713093
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The following are useful MATLAB elliptic filter functions.

ellipap, ellipord, ellipdeg, ellip, ellipj, ellipk.

Moreover, MATLAB’s Maple allows the user to call Mathematica functions such as

JacobiSN and InverseJacobiSN.



Filters of Continuous-Time Domain 611

9.30 Bessel’s Constant Delay Filters

A filter of frequency response H(jω), having a magnitude spectrum |H(jω)| and phase
arg[H(jω)] amplifies and delays in general the signals it receives. Amplification and simple
delay do not change signal form. If the amplification and delay are constant, independent
of the input signal frequency, the filter output is as desired amplified and delayed with no
distortion. This is referred to as “distortionless transmission.” The present objective is to
obtain a filter that acts as a pure delay, say t0 seconds. The filter input signal x (t) produces
the filter output y (t) = K x (t− t0); an amplification of K and delay t0. In reality only
an approximation is obtained, similarly to the deviation from the ideally flat magnitude
response |H(jω)| in the pass-band in Butterworth approximation. The filter response in
both cases is shown in Fig. 9.33. The filter magnitude response |H(jω)| and delay, denoted
τ(ω), are the required values only at d-c and fall off with the increase in frequency ω.

FIGURE 9.33 Butterworth filter magnitude response and Bessel filter delay response.

The objective that the filter response to the input signal x (t) be y (t) = K x (t− t0) , t0 > 0
means that with an input Fourier transform spectrum X (jω) the output should be

Y (jω) = Ke−jt0ωX (jω) . (9.318)

A filter effecting such distortionless transmission should therefore have the frequency re-
sponse

H (jω) = Y (jω) /X (jω) = Ke−jt0ω (9.319)

so that the amplitude spectrum, denoted A(ω),

A(ω)=△ |H (jω)| = K (9.320)

is a constant at all frequencies, and the phase spectrum, denoted φ(ω),

φ(ω) = arg [H (jω)] = −ωt0 (9.321)

is proportional to frequency. The group delay τ(ω) is given by

τ(ω) = − d

dω
arg [H (jω)] = t0. (9.322)

The Bessel filter, also referred to as the Thomson filter sets out to approximate such a
linear-phase frequency response. We note that the desired filter transfer function is given
by

H (s) = Ke−st0 (9.323)
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and may be rewritten in the form

H (s) = Ke−s (9.324)

where s is a normalized complex frequency producing a delay of unity. We thus obtain a
normalized form that can be denormalized by replacing s by t0s to obtain a particular delay
t0. The objective is to find a rational function that approximates this exponential form. We
can write H (s) in the form

H (s) =
K

es
=

K

f (s) + g (s)
(9.325)

f (s) = cosh s and g (s) = sinh s. (9.326)

Using the power series expansions

cosh (s) = 1 +
s2

2!
+
s4

4!
+
s6

6!
+ . . . (9.327)

sinh (s) = s+
s3

3!
+
s5

5!
+
s7

7!
+ . . . (9.328)

we can write

f (s)

g (s)
= coth s =

1 + s2/2! + s4/4! + s6/6! + . . .

s+ s3/3! + s5/5! + s7/7! + . . .
. (9.329)

In what follows we convert this ratio into a series of integer multiples of (1/s) using a
“continued fraction expansion” thereof.

9.31 A Note on Continued Fraction Expansion

In the Theory of Numbers the continued fraction expansion is a basic tool that serves,
among others, to convert fractional numbers into a series of integers. Consider the simple
example of finding the continued fraction expansion of π. We may write

π = 3.141592 . . . = 3 +
1

7.0625
= 3 +

1

7 +
1

15.9966

= 3 +
1

7 +
1

15 +
1

1 + 0.0034

= 3 +
1

7 +
1

15 +
1

1 +
1

292.6346

= 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1.5758

= . . .

(9.330)
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We have thus converted the value π into a series of integers: {3, 7, 15, 1, 292, 1, . . .}. The
inverse operation of the set {3, 7, 15, 1, 292, 1} is

π ≃ 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 + 0

= 3 +
1

7 +
1

15 +
1

1 +
1

293

= 3 +
1

7 +
1

15 +
1

1 + 0.0034

= . . .

(9.331)

Mathematica has an instruction that evaluates the continued fraction of a number, to any
number of integers. Writing ContinuedFraction[π, 25] we obtain the result as the 25
integers {3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1}. Returning
to our Bessel filter approximation problem the presentation is simplified by effecting the
continued fraction expansion of the function coth s after truncating the numerator and
denominator polynomials f (s) and g (s) to say n = 5 terms. As shown in the table,

n ≡ numerator, d ≡ denominator
Q

d = s+ s3

3! + s5

5! + s7

7! + s9

9! n = 1 + s2

2! + s4

4! + s6

6! + s8

8! 1/s

1 + s2

3! + s4

5! + s6

7! + s8

9!

n = s+ s3

3! + s5

5! + s7

7! + s9

9! d = s2

3 + s4

30 + s6

840 + s8

45360 3/s

s+ s3

10 + s5

280 + s7

15120

d = s3

15 + s5

210 + s7

7560 n = s2

3 + s4

30 + s6

840 + s8

45360 5/s
s2

3 + s4

42 + s6

1512

n = s3

15 + s5

210 + s7

7560 d = s4

105 + s6

1890 7/s
s3

15 + s5

270

d = s5

945 n = s4

105 + s6

1890 9/s
s4

105

s6

1890

we first divide the numerator n = f(s) by the denominator d = g(s) obtaining the
quotient Q = n ÷ d = 1/s. Next we effect the subtraction n − Qd. This “remainder”
is now the new denominator d = s2/3 + s4/30 + s6/840 + s8/45360. The previous d
descends becoming the new n. Again we effect the division Q = n÷ d, obtaining the new
quotient Q = 3/s. Next we effect the subtraction n − Qd and this remainder is now the
new denominator d = s3/15 + s5/210 + s7/7560. The previous d now becomes the new
numerator n = s2/3 + s4/30 + s6/840 + s8/45360, so that Q = 5/s, and the process is
repeated as shown. The alternating numerator-denominator division process produces the
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series of quotients Q as the result of the continued fraction expansion

Q = {1/s, 3/s, 5/s, 7/s, 9/s} . (9.332)

It can be shown that for higher values of the polynomial truncation length n the same
pattern applies, that is,

Q = {1/s, 3/s, 5/s, 7/s, 9/s, 11/s, 13/s, . . .} . (9.333)

We have therefore obtained the approximation

f (s)

g (s)
= coth s =

1

s
+

1
3

s
+

1
5

s
+

1
7

s
+

1
9

s
+

1
11

s
+

1

. . . .

. (9.334)

With n = 5 we have

f (s)

g (s)
= coth s ≈ 1

s
+

1
3

s
+

1
5

s
+

1
7

s
+

1
9

s

=
1

s
+

1
3

s
+

1
5

s
+

9s

63 + s2

=
1

s
+

1

3

s
+
s
(
63 + s2

)

315 + 14s2

=
1

s
+

315s+ 14s3

945 + 105s2 + s4

=
945 + 420s2 + 15s4

945s+ 105s3 + s5

(9.335)

wherefrom
f (s) = cosh s ≈ 945 + 420s2 + 15s4 (9.336)

g (s) = sinh s ≈ 945s+ 105s3 + s5 (9.337)

and write the approximation

H (s) =
K

f (s) + g (s)
=

K

945 + 945s+ 420s2 + 105s3 + 15s4 + s5
. (9.338)

In the present case of n = 5, to have a gain H (0) equal to unity we set K = 945 obtaining

H (s) =
945

945 + 945s+ 420s2 + 105s3 + 15s4 + s5
. (9.339)

The process of evaluation of the continued fraction expansion can be coded as a MATLAB
program.

N=5
for i=1:N
e(i)=factorial(2*(i-1))
o(i)=factorial(2*i-1)
end
a=1./ e
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b=1./ o
nm=a
d=b
for i=1:N
xx=i
r(i)=nm(1)/d(1)
r2=r(i)*d
onebr2=1./r2
r2e=nm(2: N-i+1)-r2(2:N-i+1)
onebr2=1./ r2e
nm=d
onebnm=1./ nm
d=r2e(1:N-i)
onebd=1./ d
end

The program verifies the values of the successive quotients, {1/s, 3/s, 5/s, . . .} by evaluating
the successive numerator–denominator alternating division. To construct and simplify the
function H (s) from the result of the continued fraction expansion for any value n a Math-
ematica program can be written. The following program produces the result of simplifying
the continued fraction expansion for the case n = 5.

b = 0
c = 9/p + b
d = 1/c
e = 7/p + d
f = 1/e
g = 5/p + f
h = 1/g
i = 3/p + h
j = 1/i
H = 1/p + j
Cothx = Together[H]
num = Numerator[Cothx]
den = Denominator[Cothx]
exppap = Expand[num + den]
K = Coefficient[exppap, p, 0]
H = K (1/exppap)

An observation of the denominator polynomial of the transfer function H (s), namely

B (s) = s5 + 15s4 + 105s3 + 420s2 + 945s+ 945 (9.340)

reveals the fact that it is none other than the Bessel polynomial of order 5. This is generally
the case. For a general order n the denominator of the transfer function H (s) is the nth

order Bessel polynomial Bn (s). Table 9.23 shows the first six such polynomials. Bessel
polynomials can be evaluated using the recursive relation

Bn (s) = (2n− 1)Bn−1 (s) + s2Bn−2 (s) . (9.341)

In fact the coefficient ak in the Bessel polynomial

Bn (s) = sn + an−1s
n−1 + an−2s

n−2 + . . .+ a1s+ a0 (9.342)
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TABLE 9.23 Bessel polynomials

n Bn (s)

0 1
1 s+ 1
2 s2 + 3s+ 3
3 s3 + 6s2 + 15s+ 15
4 s4 + 10s3 + 45s2 + 105s+ 105
5 s5 + 15s4 + 105s3 + 420s2 + 945s+ 945
6 s6 + 21s5 + 210s4 + 1260s3 + 4725s2 + 10395s+ 10395

is given by

ak =
(2n− k)!

2(n−k)k! (n− k)! , k = 0, 1, . . . , n. (9.343)

The filter transfer function is H (s) = a0/Bn (s). As seen above, the transfer function of
Bessel filter general order n is derived directly from Bessel’s polynomials. In fact we can
write the transfer function in the form

H (s) =
b0

An (s)
(9.344)

where the denominator polynomial An(s) is Bessel’s polynomial Bn(s) of order n

An (s) = Bn(s) =

n∑

k=0

aks
k (9.345)

b0 = a0 =
(2n)!

(2n) (n!)
. (9.346)

The squared-magnitude spectrum is given by

|H (jω)|2 = H(s)H(−s)|s=jω =
b20

An (jω)An (−jω)
=

b20
Dn (ω2)

. (9.347)

It can be shown that

Dn

(
ω2
)

=

n∑

k=0

dn, kω
2(n−k) (9.348)

where

dn, k =
(n+ k)! (2k!)

(n− k)! [k!2k]
2 . (9.349)

This model of Bessel filter will be referred to henceforth as the delay normalized form of
Bessel filter to distinguish it from two other closely related forms that we shall see shortly.
The poles of the delay normalized Bessel filter can be evaluated as the roots of the Bessel
polynomial Bn (s). Using MATLAB for n = 5, for example, we evaluate the function roots
(A) where A is the vector representing the denominator polynomial of H (s)

A =
[
1 15 105 420 945 945

]
. (9.350)

We obtain the poles p1, p
∗
1 = −2.3247 ± j3.5710, p2 = −3.6467, p3, p

∗
3 = −3.3520 ±

j1.7427. Similarly the poles of a Bessel filter of order n = 10 say can be plotted using the
instructions
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A = [1 55 1485 25740 315315 2837835 18918900 91891800 310134825 654729075 654729075]
B = [654729075]
pzmap (B, A)
Figure 9.34 shows the filter’s poles for the case n = 10.
The Bessel filter transfer function denominator coefficients and poles are listed in Table
9.24.

0
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FIGURE 9.34 Poles of delay normalized Bessel filter model.

9.32 Evaluating the Filter Delay

Given a filter in general, Bessel or otherwise, of transfer function H (s) and frequency
response H (jω) = H (s)|s=jω it is interesting to find a form deducing thereof its group
delay τ (ω). To this end let us separate the real and imaginary parts, writing

H (jω) = X (jω) + jY (jω) (9.351)

where

X (jω) = ℜ [H (jω)] and Y (jω) = ℑ [H (jω)] . (9.352)

We can write

H (jω) = |H (jω)| ej φ(ω) (9.353)

where

|H (jω)| =
√

[X (jω)]
2
+ [Y (jω)]

2
(9.354)

φ (ω) = tan−1 [Y (jω) /X (jω)] . (9.355)
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TABLE 9.24 Bessel filter delay normalized model denominator coefficients

The group delay is by definition

τ (ω) = −dφ (ω)

dω
= − d

dω

{
tan−1 [Y (jω) /X (jω)]

}

=
−1

1 + Y 2 (jω) /X2 (jω)

X (jω)Y ′ (jω)−X ′ (jω)Y (jω)

X2 (jω)

=
X ′ (jω)Y (jω)−X (jω)Y ′ (jω)

|H (jω)|2
.

(9.356)

Note that H (−jω) = H∗ (jω), that is, X (−jω) = X (jω) and Y (−jω) = −Y (jω);
hence X (jω) is even and Y (jω) is odd and their derivatives X ′ (jω) and Y ′ (jω) are odd
and even, respectively. The group delay is therefore a ratio of two even functions of ω. In
fact the group delay will be shown next to be a ratio of two polynomials in powers of ω2,
similarly to the expression of the frequency spectrum |H (jω)|2.

9.33 Bessel Filter Quality Factor and Natural Frequency

We note that the transfer function of the Bessel filter may be factored into a product of
first and second order system transfer functions. In other words the Bessel filter may be
expressed as a cascade of first and second order systems. We recall that a typical second
order system transfer function may be written in the form

H (s) =
ω2

0

s2 + 2ζω0s+ ω2
0
=△

1

D (s)
. (9.357)



Filters of Continuous-Time Domain 619

The denominator D (s) is often written in the form

D (s) = s2 + (ω0/Q) s+ ω2
0 (9.358)

where Q is referred to as the quality factor Q = 1/(2ζ). The poles have the form

s = −α± jβ = −ζω0 ± jω0

√
1− ζ2, (9.359)

α = ζω0 = ω0/ (2Q) , β = ω0

√
1− ζ2 (9.360)

i.e. β = ω0

√
1− 1/ (4Q2) and ω0 =

√
α2 + β2. Moreover,Q = ω0/ (2α) =

√
α2 + β2/ (2α) .

For a Bessel filter of order n = 2, for example,

H (s) =
3

s2 + 3s+ 3
(9.361)

ω0 =
√

3. (9.362)

The poles are s = −1.5± j
√

3/2 = −α± jβ,

α = 1.5, β =
√

3/2, Q = ω0/ (2α) = 1/
√

3 = 0.577. (9.363)

For a fifth order filter by evaluating the quadratic factors of the transfer function we find

H (s) = 945/D (s) (9.364)

where

D (s) =
(
s2 + 6.7039s+ 14.2725

) (
s2 + 4.6493s+ 18.1563

)
(s+ 3.64674) . (9.365)

For the first two quadratic factors of D (s) the values of ω0 are respectively ω01 =√
14.2725 = 3.778 and ω02 =

√
18.1563 = 4.261. Their quality factors are Q1 =

ω01/6.7039 = 0.564 and Q2 = ω02/4.6493 = 0.916. The third factor of D (s) is a first
order expression showing a pole of H (s) at s = −3.64674.

9.34 Maximal Flatness of Bessel and Butterworth Response

In this section we consider the problem of attaining a maximally flat frequency response
such as the one encountered in the Butterworth filter magnitude spectrum |H (jω)| and
Bessel filter group delay τ (ω). Consider the general form of a system transfer function
H (s)

H (s) =
B (s)

A (s)
. (9.366)

We can write the transfer function in the form

H (s) =
m1 (s) + n1 (s)

m2 (s) + n2 (s)
(9.367)

wherem1 (s) is the polynomial of even powers of s in the numerator and n1 (s) is that of odd
powers. Similarly m2 (s) and n2 (s) are the even-powered and odd-powered in s polynomials
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of the denominator A (s), respectively. The magnitude spectrum |H (jω)| of the system is
given by

|H (jω)|2 = H (s)H (−s)|s=jω . (9.368)

Let F (s) = H (s)H (−s). We have

F (s) =
m1 (s) + n1 (s)

m2 (s) + n2 (s)

m1 (s)− n1 (s)

m2 (s)− n2 (s)
=
m2

1 (s)− n2
1 (s)

m2
2 (s)− n2

2 (s)
(9.369)

and

|H (jω)|2 = F (jω) =
m2

1 (jω)− n2
1 (jω)

m2
2 (jω)− n2

2 (jω)
. (9.370)

We note that m2
1 (s), n2

1 (s), m2
2 (s) and n2

2 (s) are polynomials in powers of s2. Similarly,
m2

1 (jω), n2
1 (jω), m2

2 (jω) and n2
2 (jω) are polynomials in powers of ω2.

Example 9.12 Let

H (s) =
s3 + 11s2 + 36s+ 36

s4 + 17s3 + 99s2 + 223s+ 140
.

By separating the even and odd polynomials in the numerator and the denominator, evaluate
|H (jω)|2.

We have m1 (s) = 11s2 + 36, n1 (s) = s3 + 36s, m2 (s) = s4 + 99s2 + 140, n2 (s) =
17s3 + 223s

F (s) = H (s)H (−s) =

(
11s2 + 36

)2 −
(
s3 + 36s

)2

(s4 + 99s2 + 140)2 − (17s3 + 223s)2

=
1296− 504s2 + 49s4 − s6

19600− 22009s2 + 2499s4 − 91s6 + s8

|H (jω)|2 =
1296 + 504ω2 + 49ω4 + ω6

19600 + 22009ω2 + 2499ω4 + 91ω6 + ω8
.

We note that the magnitude-squared spectrum can be written in the general form

|H (jω)|2 =
K
[
1 + d2ω

2 + d4ω
4 + d6ω

6 + . . .+ d2mω
2m
]

1 + c2ω2 + c4ω4 + c6ω6 + . . .+ c2nω2n
(9.371)

with n = m + 1. The function |H (jω)|2 is analytic at ω = 0 and can thus be expanded
into a Maclauren series. This can be obtained simply by performing a long division. We
obtain

|H (jω)|2 = K +K (d2 − c2)ω2 +K [(d4 − c4)− c2 (d2 − c2)]ω4 + . . . (9.372)

To obtain a flat spectrum equal to unity at ω = 0, we first set |H (j0)|2 = K = 1. Note that

the successive terms of this Maclauren expansion of |H (jω)|2 are the successive derivatives

of |H (jω)|2 at the origin. For maximum flatness we set each of these successively to zero;

except for evidently, the last one, otherwise we end up with |H (jω)|2 equal to 1. We thus
set the first (n− 1) derivatives with respect to ω2 to zero. Setting the first term to zero we
have d2 = c2. Setting the second to zero we obtain

d4 − c4 − c2 (d2 − c2) = d4 − c4 = 0, (9.373)
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i.e., d4 = c4; and so on. We conclude that for maximum flatness the coefficients of the same
powers of ω2 in the numerator and denominator have to be the same. The maximally flat
magnitude-squared spectrum has therefore the general form

|H (jω)|2 =
K
(
1 + d2ω

2 + d4ω
4 + . . .+ d2mω

2m
)

1 + d2ω2 + d4ω4 + . . .+ d2mω2m + c2nω2n
. (9.374)

In the Butterworth approximation a condition is added to maximal flatness, namely, that
the transfer function should have no zeros on the s = jω axis except at s = ∞, so that
the spectrum would not fall to zero along the jω axis except at infinite frequency. The
numerator should therefore have no powers of ω, and if we put K = 1

|H (jω)|2 =
1

1 + c2nω2n
(9.375)

which we write as the Butterworth filter form

|H (jω)|2 =
1

1 + ε2ω2n
. (9.376)

We can thus see the basis of the Butterworth approximation. The Bessel–Thomson filter is
maximally flat as far as the group delay τ (ω) is concerned. The expression of τ (ω) has the

same form as that we just obtained for the magnitude spectrum |H (jω)|2, namely

τ (ω) =
K
(
1 + d2ω

2 + d4ω
4 + . . .+ d2mω

2m
)

1 + d2ω2 + d4ω4 + . . .+ d2mω2m + c2nω2n
. (9.377)

For example, for n = 3

H (s) =
15

s3 + 6s2 + 15s+ 15
(9.378)

and by differentiation, as given in the last section, we find that the delay is given by

τ (ω) =
1 + 0.2ω2 + 0.0267ω4

1 + 0.2ω2 + 0.0267ω4 + 0.0044ω6
. (9.379)

Note the equality of corresponding numerator and denominator coefficients. For n = 5

H (s) =
945

s5 + 15s4 + 105s3 + 420s2 + 945s+ 945
(9.380)

the delay is similarly found to be

τ (ω) = N (ω) /D (ω) (9.381)

where

N (ω) =
{
1 + 0.1111ω2 + 0.0071ω4 + 3.5273× 10−4ω6

+ 1.6797× 10−5ω8
} (9.382)

D (ω) =
{
1 + 0.1111ω2 + 0.0071ω4 + 3.5273× 10−4ω6

+ 1.6797× 10−5ω8 + 1.198× 10−6ω10
}
.

(9.383)
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9.35 Bessel Filter’s Delay and Magnitude Response

The Bessel filter’s magnitude response |H(jω)| and magnitude square response |H(jω)|2
can be readily evaluated from its transfer function H(s). The magnitude response for filter
orders n = 1 to n = 10 is shown in Fig. 9.35. The magnitude response in decibels can
also be deduced as 10 log10(|H(jω)|2) and is shown in Fig. 9.36 for filter orders n = 3
to n = 10. The magnitude response versus a logarithmic frequency axis is shown in Fig.
9.37. The attenuation α(ω) in dB is α(ω) = −10 log10(|H(jω)|2) and is shown in Fig.
9.38. The filter delay τ(ω) is evaluated through differentiation of the real and imaginary
parts of its frequency response H(jω) as given above. It is also convenient to evaluate the
percentage error deviation ε of the filter delay, as a function of frequency, from its zero-
frequency nominal value. The results for filter orders n = 1 to n = 10 are shown in Fig.
9.39 and Fig. 9.40, respectively.

FIGURE 9.35 Bessel filter’s magnitude versus frequency response.

9.36 Denormalization and Deviation from Ideal Response

In order to obtain a filter transfer function that is normalized, to be valid for any value of
nominal delay t0, we have replaced t0s by s, noting that s becomes a normalized complex
frequency. We could have replaced t0s by p, in which case the symbol p is the normalized
complex frequency. In this case the normalized filter transfer function may be denoted
Hn(p). For example for a first order filter we have

Hn (p) =
1

p+ 1
. (9.384)
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FIGURE 9.36 Bessel filter magnitude in dB response for different filter orders.

FIGURE 9.37 Bessel’s magnitude spectrum versus logarithmic frequency scale.

Writing p = jΩ we recognize Ω as a normalized frequency in as much as p is a normalized
complex frequency and

Hn (jΩ) =
1

jΩ + 1
. (9.385)

To denormalize the filter to achieve a specific delay t0 we use the substitutions p = t0s and
with s = jω, p = t0jω = jΩ, i.e. Ω = t0ω. The denormalized filter has the transfer
function and frequency response given respectively by

H (s) = Hn (p)|p=t0s = Hn (t0s) =
1

t0s+ 1
(9.386)

H (jω) = Hn (jΩ)|Ω=t0ω = Hn (jt0ω) =
1

jt0ω + 1
. (9.387)
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FIGURE 9.38 Bessel filter attenuation.
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FIGURE 9.39 Bessel filter’s delay response for different filter orders.

The phase angle of the normalized “prototype” filter frequency response is φn (Ω) =
arg[Hn (jΩ)]. Similarly, the phase angle of the denormalized filter frequency response is
φ (ω) = arg[H (jω)].

The delay of the normalized filter is τn (Ω) = −dφn (Ω) /dΩ, and that of the denormalized
filter is

τ (ω) = −dφ (ω)

dω
= −dφn (Ω)

dΩ

dΩ

dω
= t0τn (Ω) = t0τn (t0ω) . (9.388)

Applying the approach to the first order Bessel filter we have

φn (Ω)=△ arg [Hn (jΩ)] = − tan−1 Ω. (9.389)
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FIGURE 9.40 Bessel filter’s percent delay error for different filter orders.

The delay of the prototype is given by

τn (Ω) = − d

dΩ
φn (Ω) =

1

1 + Ω2
. (9.390)

The delay of the denormalized filter is

τ (ω) = − d

dω
φ (ω) =

t0

1 + (t0ω)
2 . (9.391)

Alternatively,

τ (ω) = −dφn (Ω)

dΩ

dΩ

dω
= t0τn (t0ω) =

t0

1 + (t0ω)2
. (9.392)

Let for example t0 = 1 ms. The nominal delay at zero frequency is τ (0) = t0 = 1 ms
as required. Note that this Bessel filter of order 1 is far from ideal. Instead of a constant
nominal delay of 1 ms, the delay at a frequency of say, f = 100 Hz, i.e. ω = 200π

rad/sec, is τ (ω) = 10−3/
[
1 +

(
200π10−3

)2]
= 0.7170×10−3 sec = 0 .7170 ms. If the filter

input is say a sinusoid of frequency f = 500 Hz the filter would delay it by τ (1000π) =

10−3/
[
1 +

(
1000π10−3

)2]
= 0.0920 ms.

The normalized Bessel filter of order 3 has the transfer function

Hn (p) =
15

p3 + 6p2 + 15p+ 15
(9.393)

and its delay can be shown to be given by

τn (Ω) =
225 + 45Ω2 + 6Ω4

225 + 45Ω2 + 6Ω4 + Ω6
. (9.394)

Denormalized, this filter produces a delay of

τ (ω) = t0τn (t0ω) =
t0

[
225 + 45 (t0ω)

2
+ 6 (t0ω)

4
]

225 + 45 (t0ω)2 + 6 (t0ω)4 + (t0ω)6
. (9.395)

With a nominal delay of t0 = 1 ms, this third order filter produces the desired nominal
delay of t0 = 1 ms at zero frequency. At a frequency f = 100 Hz, substituting ω = 200π
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we find the delay equal to 0.9998 ms. At a frequency f = 500 Hz, the delay is 0.5660 ms,
and at the frequency f = 1000 Hz, its delay is 0.1558 ms. It is worthwhile noticing that
the normalized filter prototype is often written in the complex frequency variable s rather
than p. For example, the first order filter transfer function is written

Hn (s) =
1

s+ 1
(9.396)

and

Hn (jω) =
1

jω + 1
. (9.397)

Such notation implies that the frequency variables s and p are normalized. With s the
normalized frequency, the denormalization takes the form s −→ t0s and ω −→ t0ω, leading
to the same results just obtained.

9.37 Bessel Filter’s Magnitude and Delay

Let the required nominal delay at d-c be given by t0 = 10 µs, and the required attenuation
at f = 80 kHz, i.e. ω = 5.0265×105 rad/sec, be at most 10 dB. We have Ω = ωt0 = 5.0265.
From Figs. 9.37 and 9.39 we note that with Ω = 5.03 the required filter order is n = 7.
Note that the required 10 dB attenuation of |H (jΩ)| means that 20 log |H (jΩ)| = −10,
i.e. |H (jΩ)| = 0.3162 (see Fig. 9.38). In fact we have with n = 6, |H (j5)| = 11.85 dB
and with n = 7, |H (j5)| = 9.46 dB.

The percent delay versus the normalized frequency Ω = ωt0 is shown in Fig. 9.40.
For the same case t0 = 10 µs suppose that the deviation from the value t0 at the same
frequency ω = 5.0265 × 105 rad/sec should not exceed 2%. We have Ω = ωt0 = 5.0265.
The required filter order as seen in Fig. 9.40 is n = 8. To satisfy the specifications on both
magnitude and delay error we choose the higher of the two values; hence n = 8.

9.38 Bessel Filter’s Butterworth Asymptotic Form

Another form of a Bessel filter model, which may be referred to as the Butterworth asymp-
totic form, or for brevity the asymptotic form, is derived by requiring the magnitude squared
response to be asymptotically equivalent to the Butterworth filter response both at zero fre-
quency and at high frequencies. The result is a normalization of the Bessel filter by applying
a frequency transformation that causes its magnitude frequency response to be asymptot-
ically equivalent to that of Butterworth filter at high frequencies, while maintaining its
asymptotic equivalence to the same filter at low frequencies. The normalized Butterworth
filter magnitude-squared response at zero frequency is unity, the same as Bessel’s. Its high-
frequency, magnitude-squared response tends to

lim
ω−→∞

|H (jω)|2 =
1

ω2n
. (9.398)

For Bessel filter we have

lim
ω−→∞

|H (jω)|2 =
b20
ω2n

. (9.399)
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To equate the two limits we normalize ω by using the replacement

ω −→ b
1/n
0 ω, s −→ b

1/n
0 s. (9.400)

The frequency scaling constant shall be denoted p0, i.e. p0 = b
1/n
0 . We obtain the normalized

transfer function

HII (s) =
b0

An

(
b
1/n
0 s

) =
b0

n∑

k=0

akb
k/n
0 sk

=
1

n∑

k=0

akb
(k/n−1)
0 sk

(9.401)

and the magnitude squared response

|HII (jω)|2 =
b20

n∑

k=0

dn,k b
2(1−k/n)
0 ω2(n−k)

=
1

n∑

k=0

dn,kb
−2k/n
0 ω2(n−k)

. (9.402)

It can be shown that the group delay at zero frequency is

τ (ω)|ω=0 = b
1/n
0 . (9.403)

Example 9.13 With n = 3,

b0 =
(2n)!

(2n) (n!)
= 15

ak =
(2n− k)!

2n−kk! (n− k)! , k = 0, 1, . . . , n

H (s) =
15

s3 + 6s2 + 15s+ 15
, |H (jω)|2 =

225

ω6 + 6ω4 + 45ω2 + 225
.

With

p0 = b
1/3
0 = 2.4662, p3

0 = 15

HII (s) = H(s)|s−→p0s =
15

s3p3
0 + 6s2p2

0 + 15sp0 + 15

=
1

s3 + (6/p0) s2 + (15/p2
0) s+ 1

=
1

s3 + 2.433s2 + 2.466s+ 1
.

MATLAB has the commands besselap and besself which produce the Bessel asymptotic
form transfer function, poles and zeros, as the following short program illustrates.

n=5

Wo=1

[z,p,k]=besselap(n)

[b,a] = besself(n,Wo)

sys=tf(b,a) pzmap(sys)

The Bessel filter Butterworth asymptotic form transfer function coefficients and poles are
listed in Table 9.25.
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TABLE 9.25 Bessel–Butterworth asymptotic form filter coefficients

7.22365

9.39 Delay of Bessel–Butterworth Asymptotic Form Filter

Consider the Bessel–Butterworth asymptotic form transfer function

H (s) =
1

1 + a1s+ a2s2 + ...+ an−1sn−1 + sn
. (9.404)

We show that the nominal delay of this filter, that is, the d-c delay, is simply equal to the
coefficient of s, i.e. τ(0) = a1.

We can obtain a MacLauren series expansion of H (s) by performing a long division,
obtaining

H (s) = 1− a1s− (a2 + a2
1)s

2 − . . . (9.405)

which can be written in the form

H (s) = 1− b1s− b2s2 − b3s3 − . . . (9.406)

where in particular b1 = a1. We can write

H(s)H(−s) = (1− b1s− b2s2 − b3s3 − . . .)(1 + b1s− b2s2 + b3s
3 − . . .) (9.407)

which can be written in the form

H (s)H(−s) = 1− c2s2 + c4s
4 − c6s6 + . . . (9.408)

|H (jω)|2 = H (s)H(−s)|s=jω = 1 + c2ω
2 + c4ω

4 + c6ω
6 + . . . (9.409)

H (jω) =
(
1 + b2ω

2 + b4ω
4 + . . .

)
− j(b1ω + b3ω

3 + b5ω
5 + . . .) (9.410)
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X (jω) = 1 + b2ω
2 + b4ω

4 + . . . (9.411)

Y (jω) = −(b1ω + b3ω
3 + b5ω

5 + . . .) (9.412)

X ′ (jω) = 1 + 2b2ω + 4b4ω
3 + . . . (9.413)

Y ′ (jω) = −(b1 + 3b3ω
2 + 5b5ω

4 + . . .) (9.414)

τ(ω) =
X ′ (jω) Y (jω)−X (jω)Y ′ (jω)

|H (jω)|2
=
{[
−
(
1 + 2b2ω + 4b4ω

3+ . . .
) (
b1ω + b3ω

3 + b5ω
5+ . . .

)]

+
[(

1 + b2ω
2 + b4ω

4+ . . .
)]}

/
(
1 + c2ω

2 + c4ω
4+ . . .

)
.

(9.415)

Hence the d-c delay is simply
t0=△τ(0) = b1 = a1 (9.416)

as we set out to prove.
If a nominal delay of t1 seconds is desired the required transfer function can be evaluated

by replacing the frequency variable s in the transfer function by (t1/a1) s. In other words
we apply the replacement s −→ cs, where c = t1/a1. For example, with n = 5 we have

H (s) = 1/
(
1 + 3.9363s+ 6.8864s2 + 6.7767s3 + 3.8107s4 + s5

)
. (9.417)

The nominal delay of this Bessel–Butterworth-Asymptotic Form filter is therefore the coeffi-
cient of s, i.e. t0 = τ(0) = 3.9363 sec. To design a filter with a delay at d-c of t1 = 39.3628
sec we use the replacement s −→ cs where c = t1/t0 = 10, obtaining the required
denormalized transfer function

Hdenorm (s) = 1/
(
1 + 39.363s+ 688.64s2 + 6776.7s3 + 38107s4 + 105s5

)
(9.418)

which has the required d-c delay as seen by the coefficient of s.

9.40 Delay Plots of Butterworth Asymptotic Form Bessel Filter

The delay of the Butterworth asymptotic form Bessel filter as a function of normalized
frequency Ω is shown in Fig. 9.41.

The percentage error of deviation of the delay from the nominal d-c value of the Butter-
worth asymptotic form Bessel filter is shown in Fig. 9.42. The magnitude response in dB is
shown in Fig. 9.43.

Let τn(Ω) denote the delay of the nth order Butterworth asymptotic form filter, and t0
be its d-c delay. With n = 2, as can be seen in Fig. 9.42 the d-c delay is

t0 = τ2(0) = 1.73205 (9.419)

Ω = t0ω = 1.73205ω (9.420)

and

H (s) =
1

s2 + 1.73205s+ 1
. (9.421)

With n = 10, the nominal delay is τ10(0) = 7.61388.
Assume a required d-c delay of t0 = 10 µs.With n = 1 and s the normalized complex

frequency.

H (s) =
1

s+ 1
(9.422)
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FIGURE 9.41 Bessel–Butterworth asymptotic filter delay response.

τ (ω) =
1

1 + ω2
(9.423)

H (jω) =
1

1 + jω
=

1− jω
1 + ω2

(9.424)

|H (jω)|2 =
1

1 + ω2
(9.425)

arg [H (jω)] = φ (ω) = tan−1 (−ω) = − tan−1 ω (9.426)

τ (ω) =
−d
dω

φ (ω) =
1

1 + ω2
(9.427)

same as the delay normalized Bessel model.

FIGURE 9.42 Bessel–Butterworth asymptotic filter percent delay error.
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FIGURE 9.43 Magnitude dB response of Butterworth asymptotic form Bessel filter.

With n = 2

τ2 (ω) =
1.73205

(
1 + ω2

)

(1− ω + ω2) (1 + ω + ω2)
=

1.73205
(
1 + ω2

)

(1 + ω2)
2 − ω2

=
1.73205

(
1 + ω2

)

ω4 + 2ω2 + 1− ω2
=

1.73205
(
1 + ω2

)

ω4 + ω2 + 1
.

(9.428)

We have τ2(0) = 1.73205, and at ω = 1,

τ2 (ω)|ω=1 = 1.73205× 2

3
=

2

3
τ2(0). (9.429)

For n = 1,
τ1 (1) = 0.5 = 0.5τ1(0). (9.430)

The specifications would for example require at Ω = 0.8 a max error of 2% which implies
that n = 6 or more. If at ω = 0.8, the max error has to be 5% the required filter order is
n = 5. With n = 5, τ5(0) = 3.93628.

Note that if the prototype filter frequency response is written as a function of frequency
denoted Ω, so that if its phase is denoted φ (Ω) = arg [H (jΩ)] then the delay is given by
τ (Ω) = −dφ (Ω) /dΩ. If we apply the frequency transformation Ω = c ω and s −→ cs then
the resulting filter delay is τ (ω), where τ (ω) = −dφ (ω) /dω = − (dφ (Ω) /dΩ) dΩ/dω =
cτ (Ω). The filter delay is thus multiplied by the scaling constant c.

Example 9.14 With c = 10 we write s −→ 10s

H (s) =
a0

10nansn + . . .+ 102a2s2 + 10a1s+ a0
.

With n = 5

H (s) =
1

105s5 + 38107s4 + 6776.67s3 + 688.64s2 + 39.363s+ 1
.

The resulting delay at d-c is τ5 (0) = 39.3628 sec = 10τ5,prot (0) where τ5,prot (ω) is the
prototype model d-c delay.
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Suppose now that the Butterworth asymptotic form filter should satisfy the condition that
the error deviation from the nominal d-c value τn (0) should be at most 0.5% at Ω = 0.6.
From Fig. 9.43 we deduce that the filter order should be n = 5.

With n = 5 the prototype nominal delay is τ5 (0) = 3.93628. If the required delay is t1 =
100 sec then the required time scaling constant is c = τr/τ5(0) = 100/3.93628 = 25.405.
If the prototype filter normalized frequency variable is denoted Ω we use the substitution
Ω = cω. If it is denoted ω we write ω −→ cω. The true denormalized frequency is therefore
ω = Ω/c. The denormalized transfer function is obtained by writing s −→ cs.

Hdenorm (s) = H (s)|s−→cs .

Example 9.15 Design a Bessel–Butterworth asymptotic filter prototype that should have
an attenuation of 0 dB at ω = 0 and less than 5 dB for frequencies below Ω = 0.7 and
attenuation of at least 60 dB at Ω = 3. At Ω = 0.7 the percent delay error compared to its
nominal d-c value should not exceed 0.3%. Convert the prototype to obtain a delay at d-c of
t0 = 100 sec.

Referring to Fig. 9.44 we may make the following observations.

FIGURE 9.44 Bessel–Butterworth asymptotic filter, detail, magnitude dB response for
different filter orders.

With Ω = 0.7 and maximum attenuation α =≤ 5 dB we find n ≤ 6. With ω = 3
and attenuation α = 60 dB or more we find from Fig. 9.49 that the filter order n should
be n = 7. From Fig. 9.43 we see that with Ω = 0.7 r/s and percent delay error of 0.3%
the filter order should be at least n = 7. Placing priority on the delay percentage error we
choose n = 7. With n = 7 the normalized filter delay at d-c is t0 = τ7 (0) = 5.40713.

Since the required delay is τr = 100 sec, we have c = 100/5.40713 = 18.4941. The
transfer function is given by

H (s) = Hnorm (s)|s−→cs

= 1/
(
7.4× 108s7 + 2.072× 108s6 + 2.797× 107s5

+ 2.331× 106s4 + 12.8205× 104s3 + 4.615× 103s2 + 100s+ 1
)

and the filter d-c delay is 100 sec as required. Note that with the frequency scaling thus
applied the resulting filter should satisfy the condition that the attenuation at the frequency
ω = 0.7/c = 0.03785 is given by 5.08372 dB as expected, having taken n = 7 rather than
the value n ≤ 6 required to yield an attenuation of at most 5 dB. Moreover, with the
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transfer function thus obtained the delay error at the same frequency is given by 0.2103%,
which is an admissible error.

9.41 Bessel Filters Frequency Normalized Form

Bessel filter’s frequency normalized form is the same as the asymptotic form, but with a 3
dB cut-off frequency of 1 r/s. The magnitude response in dB is shown in Fig. 9.45.

Table 9.26 gives the attenuation in dB of this filter prototype at frequencies Ω = 2, 5, 10
with 0 dB attenuation at Ω = 0. These values are confirmed by the figure.

FIGURE 9.45 Magnitude response in dB of Bessel filter’s frequency normalized form.

TABLE 9.26 Bessel filter frequency
normalized form attenuation at three
frequencies

Filter Attenuation in dB
order n Ω = 2 Ω = 5 Ω = 10

1 6.99 14.15 20.04
2 9.82 24.07 35.89
3 12.00 33.44 51.23
4 13.41 41.92 65.68
5 14.06 49.39 79.12
6 14.17 55.93 91.62
7 13.98 61.69 103.34
8 13.68 66.80 114.40
9 13.38 71.35 124.91
10 13.14 75.41 134.92
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9.42 Poles and Zeros of Asymptotic and Frequency Normalized
Bessel Filter Forms

As we have seen, the Bessel–Thomson filter transfer function is an all-pole transfer function.
The poles of the different Bessel filter forms and filter orders n ranging from 0 to 10 are
given in the above table. As an illustration, the poles’ pattern in the complex s plane for
the Bessel filter asymptotic form is shown in Fig. 9.46 for filter order n = 10. By using
the same scales for the vertical and horizontal axes, this figure is redrawn, where it appears
together with the frequency normalized form, in Fig. 9.47(a) and (b), respectively. It can
be shown that the poles lie in general on close to circular contours of greater radius than
the unit circle and with centers displaced to the right of the origin, as can be seen in the
figure.

9.43 Response and Delay of Normalized Form Bessel Filter

The frequency normalized form Bessel filter transfer function coefficients and poles are
listed in Table 9.27. The delay of the frequency normalized form Bessel filter as a function
of normalized frequency Ω is shown in Fig. 9.48. The percentage delay deviation error from
the nominal d-c value of this filter is shown in Fig. 9.49.
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FIGURE 9.46 Bessel filter asymptotic form poles’ pattern in the s plane.
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FIGURE 9.47 Bessel filter poles’ pattern for: (a) the asymptotic form, (b) the frequency
normalized form.

FIGURE 9.48 Delay versus frequency response of the frequency normalized form Bessel
filter.

9.44 Bessel Frequency Normalized Form Attenuation Setting

As observed earlier, the frequency variable of the filter prototype may be denoted Ω or the
lower case ω. In either case it should be remembered that the frequency in question is a
normalized one. If the attenuation at unit frequency ω = 1 is to be a general value α dB
instead of the prototype attenuation 3 dB, we need to apply a frequency conversion of
the form ω −→ cnω, i.e. Ω = cnω.. The denormalized frequency is thus given by

ω = Ω/cn. (9.431)
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TABLE 9.27 Frequency normalized form Bessel filter coefficients

1.9983 2.1498 2.2926

0.24162

1.3884 1.5677 1.7335

0.8228 1.2211

0.27287 0.72726

1896.24

8823.03

11933.98

11216.21

6593.9311.1154

10.0702

11.2128

27.2182

29.3643

17.8198

204.322

278.355

228.229

122.485

43.3851

9.48599

194.026

616.929

915.412

831.618

508.505

215.58

62.3148

11.3221

580.175

1967.78

3140.75

3106.97

2107.58

1021.18

355.233

86.0601

13.2677

1836.25

555.865

15.3162

FIGURE 9.49 Delay deviation percentage error of the frequency normalized form Bessel
filter.

To evaluate the scaling constant cn we apply the transformation to the prototype magnitude
squared spectrum |H (jω)|2 replacing ω by cnω. We then evaluate the dB value of the
magnitude squared spectrum at ω = 1 and equate it with the required value α dB. We
obtain an nth order equation in the unknown cn, which is found by solving the equation.
With the value of cn determined we apply the transformation

s −→ cns (9.432)

to the transfer function H (s).

The following examples illustrate the approach.
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Example 9.16 Evaluate the transfer function of a second order lowpass Bessel Typ3 filter
which should have an attenuation of 1.5 dB rather than the prototype’s 3 dB at the edge
of the pass-band frequency ω = 1.

The prototype filter transfer function is given by

H (s) =
1.61803

1.61803 + 2.203s+ s2
=

1

1 + 1.361656s+ 0.618036s2
.

Its squared-magnitude frequency response is given by

|H (jω)|2 =
1

1 + a2ω2 + a4ω4

where a2 = 0.6180, a4 = 0.3820. The required frequency transformation is written ω −→
c2ω, where c2 is the scaling constant for the second order filter which is to be evaluated. The
resulting denormalized magnitude squared response is written.

|Hd (jω)|2 =
1

1 + a2c22ω
2 + a4c42ω

4
.

The attenuation at ω = 1 should be α = 1.5 dB, meaning that

10 log10

(
1 + a2c

2
2 + a4c

4
2

)
= α = 1.5

1 + 0.6180c22 + 0.3820c42 = 100.1α = 100.15 = 1.4125.

Letting c22 = x we have a quadratic equation in x, which solved produces the value c22 =
x = 0.50798, i.e. c2 = 0.7127. The required frequency transformation is therefore ω −→
0.7127ω, i.e. s −→ 0.7127s.

The required denormalized transfer function is therefore

Hd (s) =
1

1 + 1.361656× c2s+ 0.618036× c22s2
=

1

1 + 0.9705s+ 0.3139s2

which has a squared-magnitude spectrum given by

|Hd (jω)|2 =
1

1 + a2c22ω
2 + a4c42ω

4
=

1

1 + 0.3139ω2 + 0.0986ω4
.

Example 9.17 Repeat the above example given that the required filter is of order n = 3.

The prototype third order filter transfer function is given by

H (s) =
1

1 + 1.755674s+ 1.232954s2 + 0.360778s3
.

Its squared-magnitude frequency response is given by

|H (jω)|2 =
1

1 + a2ω2 + a4ω4 + a6ω6

where a2 = 0.6165, a4 = 0.2534, a6 = 0.1303. The required frequency transformation is
ω −→ c3ω. The denormalized magnitude squared response is

|Hd (jω)|2 =
1

1 + a2c23ω
2 + a4c43ω

4 + a6c63ω
6
.
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FIGURE 9.50 Bessel filter’s frequency normalized form: (a) amplitude, (b) phase and (c)
step response.

For an attenuation at ω = 1 of α = 1.5 dB, we have

10 log10

(
1 + a2c

2
3 + a4c

4
3 + a6c

6
3

)
= α = 1.5.

Letting c23 = x we have

1 + a2x+ a4x
2 + a6x

3 = 100.15 = 1.4125.

The solution of this cubic equation is c23 = x = 0.525184, i.e. c3 = 0.724696. The required
frequency transformation is therefore ω −→ 0.724696ω, i.e. s −→ 0.724696s. The required
denormalized transfer function is therefore

Hd (s) =
1

1 + 1.27237s+ 0.647574s2 + 0.13733s3
.

Plots of the magnitude and unwrapped phase and step responses of the frequency normal-
ized form Bessel filter are shown in Fig. 9.50(a-c). Unwrapping the phase may be effected
using the MATLAB function unwrap.
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9.45 Bessel Filter Nomograph

A nomograph for evaluating the frequency normalized form Bessel filter order is shown in
Fig. 9.51.

Example 9.18 Evaluate the order of a frequency normalized form Bessel filter which should
have an attenuation of at least 30 dB at Ω = 1 and 80 dB at Ω = 5. Suppose that in
addition the filter should have a delay at Ω = 1.5 that is not more than 2% off its d-c
delay value, which should be t1 = 10 sec. Evaluate the filter transfer function.

We may use the table or the Bessel nomograph, deducing that n = 6. We can see from
Fig. 9.49, which displays the percentage delay error, that the filter order should be n = 7.
Placing priority on the delay error requirement we may choose n = 7. The seventh order
filter delay at d-c is equal to τ7 (0) = 2.95172. The required scaling constant is c =
t1/2.95172 = 3.38785. Using the seventh order frequency normalized form filter transfer
function Hprototype (s) from the frequency normalized form table we have

H (s) = Hprototype (s)|s−→cs
= 69.2213/

(
5122.38s7 + 14342.7s6 + 19362.6s5 + 16135.5s4

+ 8874.52s3 + 3194.83s2 + 692.213s+ 69.2213
)
.

The d-c delay is as desired equal to 10 sec.

9.46 Frequency Transformations

Given the transfer function of a lowpass filter, such as a prototype normalized lowpass filter
transfer function we can convert the filter into a bandpass, bandstop or highpass filter.

Let H(s) be the transfer function of the prototype lowpass filter. The required transfor-
mation from the lowpass to the bandpass, highpass, . . . transfer function is effected by a
change of variable, and in particular by a transformation of the variable s of the form

s −→ R(s) (9.433)

where R(s) is a rational function of the general form

R(s) =
s(s2 + ω2

2)(s
2 + ω2

4)(s
2 + ω2

6) . . .

(s2 + ω2
1)(s

2 + ω2
3)(s

2 + ω2
5) . . .

. (9.434)

To this end we shall associate the variable p with the lowpass prototype filter transfer
function and the variable s with the desired filter transfer function. The change of variables
is thus written

p = R(s) =
s(s2 + ω2

2)(s
2 + ω2

4)(s
2 + ω2

6) . . .

(s2 + ω2
1)(s

2 + ω2
3)(s

2 + ω2
5) . . .

. (9.435)

If, moreover, we write p = jΩ and s = jω then in what follows the variable Ω will denote
the frequency variable of the prototype filter, and the variable ω will denote that of the
desired filter, and we have

jΩ =
jω
(
ω2

2 − ω2
) (
ω2

4 − ω2
)
. . .

(ω2
1 − ω2) (ω2

3 − ω2) . . .
(9.436)
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FIGURE 9.51 Bessel filter nomograph.

Ω =
ω
(
ω2

2 − ω2
) (
ω2

4 − ω2
)
. . .

(ω2
1 − ω2) (ω2

3 − ω2) . . .
. (9.437)

As illustration Fig. 9.52 shows, the frequency transformation resulting from writing

p = R (s) =
s
(
s2 + ω2

2

) (
s2 + ω2

4

)

(s2 + ω2
1) (s2 + ω2

3)
(9.438)

so that

Ω =
ω
(
ω2

2 − ω2
) (
ω2

4 − ω2
)

(ω2
1 − ω2) (ω2

3 − ω2)
. (9.439)
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FIGURE 9.52 Frequency transformation.

The construction shown by dotted lines in the figure starts by plottingH (jΩ), the frequency
response of the lowpass filter, versus Ω. Two dotted horizontal lines are then drawn at
Ω = −1 and Ω = 1. The points of intersection of these two horizontal lines with the
successive sections of the Ω versus ω curve indicate the successive values of ω corresponding
to Ω = 1 and Ω = −1. Vertical dotted lines are drawn at these ω values. The H (jω) plot
corresponding to the lowpass response H (jΩ) is then drawn by setting H(jω) = 1 at all
points of the axis ω which correspond to points on the axis Ω whereat H(jΩ) = 1.

The resulting frequency response H (jω), for this particular transformation, is seen to
have both a lowpass region and two bandpass regions. It is to be noted that in this figure,
and in most of those to follow, to simplify the figure only the positive axis of the frequency
ω is drawn. In reality there is the negative ω axis, and the amplitude spectrum |H (jω) | is
symmetric about the point ω = 0. In what follows, we study lowpass to bandpass, lowpass
to bandstop and lowpass to highpass transformations.

9.47 Lowpass to Bandpass Transformation

Consider the transformation of a prototype lowpass filter transfer function, which will be
referred to as HLP (s) to a bandpass one, denoted HBP (s). The desired bandpass filter
should have a low and high pass-band edge frequencies of ωL and ωH rad/sec, respectively.
Alternatively, the desired filter may be required to have a bandwidth B rad/sec and a
central frequency ω0, where B = ωH − ωL and ω0 =

√
ω1ω2.

The transformation is given by

p = R (s) =
s2 + ω2

0

Bs
(9.440)

that is,

s −→ s2 + ω2
0

Bs
. (9.441)
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With s = jω we have

p = jΩ =
−ω2 + ω2

0

jBω
=
j
(
ω2 − ω2

0

)

Bω
. (9.442)

The relation Ω versus ω and the resulting transformation from the prototype frequency
response H(jΩ) to the bandpass frequency response are shown in Fig. 9.53. We have

FIGURE 9.53 Lowpass to bandpass frequency transformation.

ω2 −BΩω − ω2
0 = 0 (9.443)

ω =
BΩ±

√
B2Ω2 + 4ω2

0

2
. (9.444)

We note that if Ω = 0 then ω = ±ω0. If Ω = ±∞ then ω = 0, ±∞. The normalized
pass-band cut-off edge frequency Ω = 1 and its negative frequency image Ω = −1 are
transformed to the low and high edge frequencies ωL and ωH These may also be denoted
ωp1 and ωp2 respectively, being the two pass-band edge frequencies; a notation used by
MATLAB. Similarly, the stop-band edge frequencies will be denoted ωs1 and ωs2.

ωH =
B +

√
B2 + 4ω2

0

2
(9.445)

ωL =
−B +

√
B2 + 4ω2

0

2
(9.446)

ωH − ωL = B (9.447)

ωHωL = ω2
0 (9.448)

as required. We thus obtain the bandpass filter transfer function

HBP (s) = HLP

(
s2 + ω2

0

Bs

)
. (9.449)
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We note in passing that we can obtain a normalized form of the bandpass filter transfer
function, where the central frequency is 1 and the bandwidth is a normalized bandwidth
β = B/ω0 by using the transformation

p =
s2 + 1

βs
. (9.450)

Proceeding similarly we find that if Ω = 0 then ω = 1, and substituting Ω = 1 and
Ω = −1 respectively we obtain

ωH =
β +

√
β2 + 4

2
(9.451)

ωL =
−β +

√
β2 + 4

2
(9.452)

ωH − ωL = β (9.453)

ω2
0 = ωHωL = 1. (9.454)

The advantage of this form of normalized bandwidth is that it is the form listed in filter
tables, which can therefore be used for verification.

Example 9.19 Design a bandpass Butterworth filter having a maximum pass-band gain
= 0 dB, pass-band edge frequencies ωp1 = 2π × 1000 r/s , wp2 = 2π × 2000 r/s. pass-band
maximum attenuation 3 dB, stop-band edge frequencies ωs1 = 2π× 500, ws2 = 2π× 3000,
and stop-band minimum attenuation 25 dB.

FIGURE 9.54 Bandpass filter response.

a) Evaluate the transfer function H (s) of the bandpass filter by first evaluating a lowpass
prototype and then converting it to a bandpass filter.

b) Evaluate the transfer function H (s) of the bandpass filter by constructing it as a lowpass
filter cascaded with a highpass one.

c) Which of the two filters is simpler to realize?

The filter specifications may be sketched as in Fig. 9.54. We note that the lowpass to
bandpass transformation is

s −→ s2 + ω2
0

Bs
.

With s = jΩ the frequency variable in the lowpass prototype we have

jΩ =
−ω2 + ω2

0

Bjω
, i.e. Ω =

ω2 − ω2
0

Bω
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B = 2π × 1000

ω0 =
√

2π × 1000× 2π × 2000 = 2π
√

2× 103.

With ω = ωp1 = 2π × 1000 and ω = ωp2 = 2π × 2000 we find Ω = ±1 as expected.
With ω = ωs1 = 2π × 500 we have Ωs1 = −3.5. With ω = ωs2 = 2π × 3000 we have
Ωs2 = 2.33

10 log10

(
1 + 2.332n

)
= 25 dB

2.332n = 102.5 − 1

2n log 2.33 = log10

(
102.5 − 1

)

n = log10

(
102.5 − 1

)
/ (2 log10 2.33) = 3.4.

We take n = 4. From the tables or MATLAB command

[B, A] = butter (N, Wn, ′s′) , N = 4, Wn = 1

H (s) =
1

s4 + 2.613s3 + 3.414s2 + 2.613s+ 1

∣∣∣∣
s−→ s2+ω2

0
Bs

=
1

s4 + 2.613s3 + 3.414s2 + 2.613s+ 1

∣∣∣∣
s−→ s2+ω2

0
Bs

= 1.56× 1015s4/D (s)

where

D (s) = s8 + 1.64× 104s7 + 4.5× 108s6 + 4.54× 1012s5 + 6.02× 1016s4

+ 3.58× 1020s3 + 2.8× 1024s2 + 8.08× 1027s+ 3.89× 1031.

b) For the lowpass part with ω = ωp2 = 2π × 2000, Ω = 1. With ω = ωs2 = 2π × 3000,
Ω = 1.5, 10 log10

(
1 + 1.52n

)
= 25 dB.

1.52n = 102.5 − 1

2n log10 (1.5) = log10

(
102.5 − 1

)

n = log10

(
102.5 − 1

)
/ (2 log10 1.5) = 7.095.

We choose n = 8.
For the highpass part, with ω = ωp1 = 2π × 1000Ω = 1 so that ω = ωs1 = 2π × 500

corresponds to Ω = 2.
10 log10

(
1 + 22n

)
= 25 dB

22n = 102.5 − 1

2n log10 2 = log10

(
102.5 − 1

)

n = log10

(
102.5 − 1

)
/ (2 log10 2) = 4.15.

We take n = 5

H (s) = H1 (s)|s−→2π×1000/s × H2 (s)|s−→s/2π×2000

where

H1 (s) =
1

s5 + 3.236 s4 + 5.236 s3 + 5.236 s2 + 3.236s+ 1
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H2 (s) = 1/D2 (s)

where

D2 (s) = s8 + 5.13s7 + 13.14s6 + 21.85s5 + 25.69s4 + 21.85s3

+13.14s2 + 5.13s+ 1.

c) Solution a) produces numerator order 4, denominator order 8. Solution b) produces
numerator order 0, denominator order 13. Solution a) is simpler to realize.

MATLAB produces the same result obtained above.
Wp = 1
Ws = 2.3
Rp = 3
Rs = 25
[N, Wn] = buttord (Wp, Ws, Rp, Rs, ′s′)

producing N = 4, Wn = 1.1205

Wn = [2 ∗ pi ∗ 1000 2 ∗ pi ∗ 2000] .

The function call
[B, A] = butter (4, Wn, ′s′)

yields the same transfer function H (s) of the bandpass filter obtained above in part a).
The results may also be obtained using Mathematica:

ω1 = 2π 1000

ω2 = 2π 2000

B = ω2− ω1

ω0sq = ω1 ω2

H [s−] := 1/
(
s4 + 2.6131 s3 + 3.4142 s2 + 2.6131 s+ 1

)

Hbp [s−] := H
[(
s2 + ω0sq

)
/ (Bs)

]
.

Factor [Hbp [s]] .

Example 9.20 a) Evaluate the transfer function H (s) of a lowpass Butterworth filter hav-
ing a magnitude characteristic of zero dB at zero frequency, maximum attenuation of 3
dB at frequency ω = 1 and maximum attenuation of 40 dB at ω = 4.

b) Convert the prototype lowpass filter thus obtained into a bandpass filter with lower and
upper 3-dB cut-off frequencies of 1400 Hz and 2000 Hz. Show the transformation required
to convert the lowpass filter of part a) to this bandpass filter and the transfer function of the
bandpass filter.

As can be seen in Fig. 9.55, at ω = 1 the attenuation is 3 dB; hence ε = 1.

20 log10

{
H (j0)

H (j4)

}
= 20 log10

{
1

1/
√

1 + 42n

}
= 40

i.e. 10 log10

(
1 + 42n

)
= 40

42n = 104 − 1, n =
log10

(
104 − 1

)

2 log10 4
= 3.3219.
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FIGURE 9.55 Lowpass Butterworth filter frequency response in dB

The filter order is the ceiling of this value, i.e. n = 4. We note that having replaced the
value n = 3.3219 by the integer value n = 4, we have effectively altered (improved on)
the given filter specifications. The resulting filter cannot have exactly 3 dB attenuation at
ω = 1 and 40 dB attenuation at ω = 4.

To evaluate precisely the resulting filter specifications we can fix the 3-dB frequency ωc

to one and evaluate the true attenuation of the n = 4 filter at ω = 4. In this case, the
attenuation is given by substituting n = 4, obtaining α = 20 log10

(√
1 + 48

)
= 48.165 dB.

The filter specifications have been exceeded as expected. If, on the other hand, we fix the
attenuation to 40 dB at ω = 4, then the 3-dB frequency ωc cannot equal 1; hence ε cannot
equal one.

To evaluate the 3 dB cut-off frequency ωc in this case, which is called Wn by MATLAB,
we write

|H (jω)| = 1√
1 + ε2ω2n

and we have the two equations

20 log10

√
1 + ε2ω8

c = 3

20 log10

√
1 + ε248 = 40

wherefrom
1 = ε248 = 104, ε2 =

(
104 − 1

)
/48 = 0.1526, ε = 0.3906

1 + ε2ω8
c = 100.3, ωc =

[(
100.3 − 1

)

ε2

]1/8

= 1.2642.

MATLAB follows this approach, producing Wn = 1.2649 as a result of the instruction
[N, Wn] = Buttord(Wp, Ws, Rs, ′s′), with Wp = 1, Ws = 4, Rp = 3, Rs = 40,
which is very close to this value of ωc. See Fig. 9.56. Note that the attenuation at ω = 1
is 20 log10

(√
1 + ε2

)
= 0.6167, which is within the given specifications.

In the present case we have N = 4 and denoting by HT (s) the transfer function as
given by the tables we have

HT (s) =
1

s4 + 2.613s3 + 3.414s2 + 2.613s+ 1
.

As we have just noted, this transfer function produces an attenuation of 3 dB at ω = 1
and 48.165 dB at ω = 4. The MATLAB instruction [B, A] = Butter(N, Wn, ′s′) with
Wn = 1.2649 (as produced by Buttord ) results is

H (s) =
2.5601

s4 + 3.3054s3 + 5.4629s2 + 5.2888s+ 2.5601
.
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FIGURE 9.56 Butterworth filter as obtained by MATLAB.

We note that the transfer function H (s) produced by MATLAB can be deduced from the
normalized (ωc = 1) transfer function HT (s) given by the tables by writing.

H (s) = HT (s) |s−→ε1/ns=ε1/4s=0.7906s

as can be easily verified.
b) The bandpass filter can be obtained by writing:

B = ω2 − ω1 = 1200π = 3769.9

ω0 =
√
ω1ω2 = 10514.

The bandpass filter transfer function may be obtained from the table transfer function by
writing:

HBP (s) = HT (s)

∣∣∣∣s−→ s2+ω2
0

Bs

=
2.01987× 1014s4

D (s)

where
D (s) = s8 + 9851.2s7 + 4.9068× 108s6 + 3.4068× 1012s5

+ 8.4244× 1016s4 + 3.7659× 1020s3 + 5.9956× 1024s2

+ 1.3306× 1028s+ 1.49304× 1032.

Alternatively, if H (s) is the filter transfer function obtained with ωc = 1.2642 and
ε = 0.3906 then we may write:

HBP (s) = H (s)

∣∣∣∣
s−→ωc

B

s2+ω2
0

s

.

We obtain the same transfer function as the one just found.
The MATLAB instruction [B,A] = Butter(N, Wn2, ′s′) with Wn2 = [w1, w2] and

w1 = ω1 , w2 = ω2 produces the same transfer function except for a small difference
due to the fact that MATLAB evaluates the 3-dB frequency as Wn = 1.2649, rather than
ωc = 1.2642, the value found above analytically.

Example 9.21 Evaluate the transfer function, the poles and the zeros of a third order
bandpass Butterworth filter with 0 dB maximum gain, 3 dB maximum attenuation in the
pass-band, a central frequency of 50 kHz and a bandwidth of 5 kHz.

ω0 = 2π × 50× 103 = 3.1416× 105

n = 3
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B = 2π × 5× 103 = 3.1416× 104

HLP (s) =
1

s3 + 2s2 + 2s+ 1

HBP (s) = HLP

(
s2 + ω2

0

Bs

)
=
B3s3

D(s)

where

D(s) = s6 + 2Bs5 +
(
3ω2

0 + 2B2
)
s4 +

(
4Bω2

0 +B3
)
s3 +

(
3ω4

0 + 2B2ω2
0

)
s2 + 2Bω4

0s+ ω6
0.

Let ci be the coefficient of si in the denominator polynomial. We have

c5 = 2B = 2π × 104 = 6.2832× 104

c4 = 3ω2
0 + 2B2 = 2.9806× 1011

c3 = 1.2434× 1016

HBP (s) = 3.1006× 1013s3/D (s)

where
D (s) = s6 + 6.2832× 104s5 + 2.9806× 1011s4 + 1.2434× 1016s3

+ 2.9418× 1022s2 + 6.1204× 1026s+ 9.6139× 1032.

Verification by MATLAB: We need to evaluate the two frequencies ωL and ωH at the two
edges of the pass-band

ωH =
B +

√
B2 + 4ω2

0

2
= 3.3026× 105

ωL =
−B +

√
B2 + 4ω2

0

2
= 2.9884× 105

ωH − ωL = 3.1416× 104 = B.

This is verified by the MATLAB program:
N = 3
Wn = [w1 w2]
[b, a] = butter(N, Wn, ′s′)
[z, p, k] = butter (N, Wn, ′s′)
pzmap [b, a] .

The last instruction plots the filter poles and zeros. The poles are given by

p =
{
−0.0819× 105 ± j3.2796× 105, −0.1571× 105

±j3.1377× 105, −0.0751× 105 ± j3.0075× 105
}
.

The transfer function has a triple zero at s = 0. Writing ωL = 2π f1 and ωH = 2πf2 we
have f1 = 47.562 kHz, f2 = 52.562 kHz, and the bandwidth is equal to f2 − f1 = 50 kHz
as required.

Example 9.22 Repeat the last example using a Chebyshev filter with an attenuation of
1 dB in the pass-band.

Referring to the Chebyshev tables of coefficients, or alternatively, using MATLAB, we
evaluate the third order, 1 dB, lowpass prototype (normalized) Chebyshev filter using the
instructions

N = 3, Wn = 1, R = 1



Filters of Continuous-Time Domain 649

[b, a] = cheby1 (N, R, Wn, ′s′)

obtaining

HLP (s) =
0.4913

s3 + 0.9883s2 + 1.2384s+ 0.4913

wherefrom

HBP (s) = HLP

(
s2 + ω2

0

Bs

)
=

0.4913B3s3

D (s)

where
D (s) =

(
s6 + 3s4ω2

0 + 3s2ω4
0 + ω6

0

)
+ 0.9883Bs

(
s4 + 2s2ω2

0 + ω4
0

)

+ 1.2384B2s2
(
s2 + ω2

0

)
+ 0.4913B3s3

i.e.
HBP (s) = 1.5234× 1013s3/D (s)

where
D (s) = s6 + 3.1048× 104s5 + 2.9731× 1011s4 + 6.1439× 1015s3

+ 2.9343× 1022s2 + 3.0244× 1026s+ 9.6139× 1032.

A simple MATLAB program may be written to verify these results and evaluate and plot
the poles and zero, by using in particular the functions

(with N = 3, R = 1, Wn = [ωL, ωH ])
[b, a] = cheby1 (N, R, Wn, ′s′)
[z, p, k] = cheby1 (N, R, Wn, ′s′)
pzmap (b, a) .

The poles are given by

p =
{
−0.0407× 105 ± j3.2968× 105, −0.0369× 105

±j2.9933× 105, −0.0776× 105 ± j3.1406× 105
}

and there is a zero of order 3 at s = 0.

Example 9.23 Evaluate the transfer function, poles and zeros of a bandpass elliptic filter
which has a ripple of at most 1 dB in the pass-band and at least 30 dB in the stopband and
which has a pass-band with edge frequencies 1.5 kHz and 3 kHz and a stopband with edge
frequencies of 1.0 kHz and 4 kHz.

We have ωL = 2π × 1.5 × 103 = 9424.78 r/s , ωH = 2π × 3 × 103 = 1.885 × 104 r/s ,
Rp = 1 dB , Rs = 30 dB , ωs1 = 2π × 103 r/s, ωs2 = 2π × 4× 103 r/s.

To first evaluate the transfer function of the lowpass prototype we need to find the filter
order n that would suffice to meet the given specifications. To this end we do an inverse
transformation in order to evaluate the pass-band cut-off frequency Ωp and stop-band edge
frequency Ωs of the prototype, corresponding to those of the given bandpass filter specifica-
tions.

We have
B = ωH − ωL = 2π × 1.5× 103 = 9424.78 r/s

ω0 =
√
ωLωH = 2π

√
4.5× 106 = 2π × 1.7321× 103 = 13328.6 r/s

Ω =
ω2 − ω2

0

Bω
.

Now
ω = ω0 implies that Ω = 0
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ω = ±ωL and ω = ±ωH imply that Ωp = ±1

ω = ±ωs1 = ±2π × 103 imply that Ωs1 = ±4

ω = ±ωs2 = ±2π × 4× 103 imply that Ωs2 = ±6.5.

Taking the positive values of the frequency Ω of the lowpass prototype we retain the narrower
transition interval from Ω = 1 to Ωs, namely, Ωs = 4 thus satisfying the more stringent
of the two conditions. For the lowpass prototype we therefore have the frequencies Ωp = 1
and Ωs = 4 and the corresponding attenuation limits Rp = 1 dB and Rs = 30 dB.

The filter order can be found as shown above in the section dealing with the design of
lowpass elliptic filters. Alternatively, using MATLAB with Wp = 1 and Ws = 4, the
function

[N, Wn] = ellipord (Wp, Ws, Rp, Rs, ′s′)

produces the values N = 3 and Wn = 1.

The filter order being known to equal 3 we may evaluate the MATLAB function

[b, a] = ellip (N, Rp, Rs, Wn, ′s′) .

We obtain the lowpass prototype transfer function

HLP (s) =
0.1490s2 + 0.5687

s3 + 0.9701s2 + 1.2460s+ 0.5687
.

and thence the bandpass transfer function

HBP (s) = HLP

(
s2 + ω2

0

Bs

)
.

We obtain

HBP (s) = N (s) /D (s)

where

N (s) = 4.43202× 1019s+ 9.75051× 1011s3 + 1404.29s5

D (s) = 5.60682× 1024 + 2.88557× 1020s+ 1.14344× 1017s2

+ 3.72465× 1012s2 + 6.43636× 108s4 + 9142.98s5 + s6.

The result is in agreement with the results produced by MATLAB upon execution of the
instructions, with N = 3,

Wn = [ωL ωH ]

[b, a] = ellip (N, Rp, Rs, Wn, ′s′) .

The filter’s poles and zeros are also evaluated and plotted by the functions

[z, p, k] = ellip (N, Rp, Rs, Wn, ′s′)

pzmap (b, a) .

The poles and zeros pattern is shown in Fig. 9.57.
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FIGURE 9.57 Elliptic bandpass filter poles and zeros.

9.48 Lowpass to Band-Stop Transformation

We consider now the transformation from a prototype (normalized) lowpass filter to a
bandstop filter transfer function. The desired bandstop filter should have a low and high
stop-band edge frequencies of ω1 and ω2 rad/sec, respectively. Alternatively, the desired
filter may be required to have a stop-band width B rad/sec and a central frequency ω0,
where B = ω2 − ω1 and ω0 =

√
ω1ω2. The transformation is

p =
Bs

s2 + ω2
0

. (9.455)

The transfer function of the bandstop filter is thus given by

HBS (s) = HLP

(
Bs

s2 + ω2
0

)
(9.456)

and substituting p = jΩ and s = jω, we obtain

Ω = Bω/(ω2
0 − ω2) (9.457)

Ωω2 +Bω − Ωω2
0 = 0 (9.458)

ω =
−B ±

√
B2 + 4Ω2ω2

0

2Ω
. (9.459)

The overall transformation, including positive and negative frequencies, of a normalized
“prototype” lowpass Chebyshev filter spectrum to a bandstop filter is illustrated in Fig.
9.58. We adopt the following notation. In the lowpass prototype we assign to the critical
points of maxima/minima on the positive frequency axis the letters A, B, C, . . . and their
negative-frequency images A−, B−, C−, . . .. As the figure shows, the positive frequency
points A, B, C, . . . are transformed to the set A−, B−, C−, . . . on the positive axis and to
A”, B”, C”, . . . on the negative axis.
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FIGURE 9.58 Lowpass to bandstop transformation.

Similarly the negative frequency points A−, B−, C−, . . . are transformed to the set A−
′
,

B−
′
, C−

′
, . . . on the positive axis and to A”, B”, C”, . . . on the negative axis. This notation

will be used in what follows.
We note that if Ω = 0 then ω = 0, ±∞. If Ω = ±∞ then ω = ±ω0. With Ω = 1 and
−1 respectively we have

ωH =
B +

√
B2 + 4ω2

0

2
(9.460)

ωL =
−B +

√
B2 + 4ω2

0

2
(9.461)

wherefrom
ωH − ωL = B (9.462)

ωLωH = ω2
0 (9.463)

as required.

Example 9.24 Design a bandstop Chebyshev filter with the following specifications: (1)
pass-band ripple 3 dB, (2) stop-band attenuation: minimum 25 dB, (3) pass-band cut-off
edge frequencies 500 Hz and 5 kHz, (4) stop-band cut-off edge frequencies 1 kHz and 3
kHz.

We use the substitution

s −→ Bs

s2 + ω2
0

.

We write

ωp1 = 2π × 500, ωp2 = 2π × 5000, ωs1 = 2π × 1000, ωs2 = 2π × 3000

B = ωp2 − ωp1 = 2π × 4500 = 2.8274× 104 r/s
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ω0 =
√
ωp1 ωp2 = 9.9346× 103 = 2π × 1581.1 r/s

Ωs1 =
Bωs1

|ω2
s1 − ω2

0 |
= 3

Ωs2 =
Bωs2

|ω2
s2 − ω2

0 |
= 2.0769.

We choose the lowpass prototype stop-band edge frequency Ωs = 2.0769 to ensure satisfying
the minimum requirement. As in the last example the 3 dB pass-band attenuation means
10 log10

{
1 + ε2C2

n (1)
}

= 3 dB wherefrom ε = 0.9976.

At Ω = Ωs = 2.0769 the attenuation should be 25 dB, i.e. 10 log10

{
1 + ε2C2

n (2.0769)
}

=
25, obtaining n = 2.6237. We therefore choose n = 3. The lowpass prototype transfer func-
tion HLP (s), from the 3-dB Chebyshev table, is thus the same as in the last example. The
required system function HBS (s) of the bandstop filter is given by

HBS (s) =
0.2506

s3 + 0.5972s2 + 0.9283s+ 0.2506

∣∣∣∣s−→ Bs

s2+ω2
0

.

Mathematica produces the required transfer function

HBS (s) = N (s) /D (s) .

where
N (s) = 9.61389× 1023 + 2.92227× 1016s2 + 2.96088× 108s4 + s6

D (s) = 9.61389× 1023 + 1.02023× 1021s+ 2.17251× 1017s2

+ 1.10872× 1014s3 + 2.20121× 109s4 + 104737s5 + s6.

The result can be confirmed by MATLAB.

N = 3

R = 3

Wn = [2 ∗ pi ∗ 5002 ∗ pi ∗ 5000]

[B2, A2] = cheby1(N, R, Wn, ′stop′, ′s′)

Hmat = tf(B2, A2)

produces similar results.

9.49 Lowpass to Highpass Transformation

Given a prototype lowpass filter to obtain a highpass filter with a pass-band edge frequency,
i.e. cut-off frequency, ωc, the transformation is written

p = R (s) = ωc/s (9.464)

and writing s = jω we have jΩ = −jωc/ω, i.e. Ω = −ωc/ω..
The relation Ω versus ω and the resulting transformation from the prototype frequency

response H(jΩ) to the highpass frequency response is shown in Fig. 9.59.
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FIGURE 9.59 Lowpass to highpass transformation.

FIGURE 9.60 Transformation of salient points from lowpass to bandpass, bandstop and
high transformation.
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The result of such transformation on the frequency magnitude response |H (jΩ)| is shown
as an illustration for a Chebyshev filter.

To summarize, the transformations of maxima/minima and edge frequencies, from the
lowpass filter prototype to bandpass, bandstop and highpass filters, are grouped together
in Fig. 9.60.

Example 9.25 Design a highpass Butterworth filter having a maximum response of 10 dB,
a pass-band edge frequency of 1000 Hz, a maximum pass-band attenuation of 1 dB, a stop-
band edge frequency of 500 Hz and a stop-band attenuation of at least 30 dB below the
maximum response.

The desired spectrum is shown in Fig. 9.61.

FIGURE 9.61 Desired highpass filter frequency response.

FIGURE 9.62 Lowpass (LP) prototype with 1 dB pass-band attenuation.

We start by evaluating the corresponding prototype shown in Fig. 9.62. We note that the
specified pass-band edge frequency ωp = 2π×1000 r/s corresponds to 1 dB attenuation from
the maximum value of the response. The value ε in the prototype lowpass filter is thus not
equal to 1. We write, using the variable Ω for the lowpass prototype frequency,

|H (jΩ)| = K√
1 + ε2Ω2n

.
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We have with Ω = 0

10 logK = 10 dB, K = 100.5 = 3.162.

The lowpass to highpass transformation is written

s −→ ωp/s, i.e. by replacement p = ωp/s

where ωp is the required cut-off frequency

ωp = 2π × 1000 r/s.

Writing p = jΩ and s = jω

jΩ =
ωp

jω
, Ω = −ωp

ω

Ω = −2π × 1000

ω
.

The frequency Ω = 1 in the prototype thus corresponds to the frequency ω = 2π × 1000
r/s in the highpass filter, as desired. Note that the absolute value of the frequency is taken;
thus evaluating the positive frequency value. We write

Ωs =
ωp

ωs
=

2π × 1000

2π × 500
= 2.

The attenuation at Ω = 1 is 1 dB relative to that at zero frequency

20 log10

{
K

K/
√

1 + ε2

}
= 1

1 + ε2 = 100.1 = 1.2589

ε2 = 0.2589, ε = 0.5088.

The attenuation at Ωs = 2 should be 30 dB below that at zero frequency

20 log

{
K

K/
√
/+ ε222n

}
= 30 dB

1 + ε24n = 103

0.2589× 4n = 999

4n = 3.8586× 103

n log 4 = 3 log (3.8586)

n = 5.95.

We choose n = 6 to ensure meeting the specifications. Since ε 6= 1 we may find the
lowpass filter system function Hε (s) by first finding the normalized ε = 1 system function
H (s) and then replace s by ε1/ns. From the filter tables or the MATLAB call
[B, A] = butter(6, 1, ′s′) %n = 6, cut-off frequency = 1, continuous filter

HLP (s) =
K

s6 + 3.864s5 + 7.464s4 + 9.142s3 + 7.464s2 + 3.864s+ 1
.
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Note that this is the tables prototype, characterized by an attenuation of 3 dB at ω = 1. To
obtain a 1 dB pass-band attenuation we evaluate ε and thus convert the lowpass prototype.

Hε (s) = HLP (s) |s−→ε1/6s=0.894s

=
3.162

0.5088s6 + 2.200s5 + 4.758s4 + 6.521s3 + 5.959s2 + 3.452s+ 1

and the highpass system function is given by

HHP (s) = Hε (s)
∣∣
s−→ωp/s=2π×1000/s .

We obtain

HHP (s) = N(s)/D(s)

where

N(s) = 3.162s6

D(s) = 3.131× 1022 + 2.154× 1019s+ 7.416× 1015s2

+ 1.618× 1012s3 + 2.353× 108s4 + 2.169× 104s5 + s6.

To verify this result using MATLAB we should find the 3 dB frequencies Ωc and ωc in
the prototype lowpass and highpass, respectively. We write

20 log
√

1 + ε2Ω2n
c = 3 dB

1 + ε2Ω12
c = 100.3

Ω12
c =

(
100.3 − 1

)
/ε2 = 3.8438

Ωc = 1.1187

and

Ωc =
ωp

ωc

ωc =
ωp

Ωc
=

2π × 1000

1.9606
= 2π × 893.86 r/s.

A MATLAB program including the statement

[B, A] = butter (6, wc, ‘high′, ′s′)

where wc = ωc produces the same system function HHP (s) as obtained above.

9.50 Note on Lowpass to Normalized Band-Stop Transformation

We note here again that a transformation from the prototype lowpass filter to a normalized
bandstop filter is of interest for generating filter tables. With a normalized bandwidth
β = B/ω0 the transformation is written

s −→ βs

s2 + 1
. (9.465)



658 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

Writing

p =
βs

s2 + 1
(9.466)

and substituting p = jΩ and s = jω, we obtain

Ωω2 + βω − Ω = 0 (9.467)

ω =
−β ±

√
β2 + 4Ω2

2
. (9.468)

Letting Ω = 1 and −1 respectively we have

ωH =

√
β2 + 4 + β

2
(9.469)

ωL =

√
β2 + 4− β

2
(9.470)

wherefrom
ωH − ωL = β (9.471)

ωLωH = 1 (9.472)

that is, the central frequency is 1 and the bandwidth is the normalized β. The filter can
be subsequently denormalized so that the central frequency be made equal to an arbitrary
value ω0 by writing

s −→ s

ω0
. (9.473)

The overall transformation is

s −→ βs

s2 + 1

s→s/ω0−−−−−→ Bs

s2 + ω2
0

(9.474)

as expected. We note that in the literature the filter tables are often given in terms of
the normalized bandwidth β.

Example 9.26 Using MATLAB’s instruction

[b, a] = cheby1(n, R, Wn, ′s′)

the transfer function of a bandpass Chebyshev filter of order n, attenuation in the pass-band
R dB and pass-band cut-off edge frequencies ωL and ωH , can be determined. Assuming a
normalized bandwidth of β = 0.1, n = 8 and R = 0.5 dB, the argument Wn is a vector
the elements of which are ωL ≡ ωp1 and ωH ≡ ωp1. We shall therefore write Wn = [ωL ωH ].

Note that the argument ′s′ in the MATLAB instruction signifies that the desired filter
is an analog (continuous-domain) filter. To evaluate ωL and ωH we note that ω0 = 1 so
that ωLωH = ω2

0 = 1. Moreover, β = 0.1 = ωL − ωH. Solving we have ωL = 0.9512,
ωH = 1.0512. The execution of the MATLAB command yields the transfer function

H (s) = N(s)/D(s)

where
N(s) = 2.237× 10−10s8

where
D(s) = s16 + 0.1146s15 + 8.026s14 + 0.8043s13 + 28.15s12 + 2.417s11

+ 56.38s10 + 4.032s9 + 70.5s8 + 4.031s7 + 56.37s6 + 2.416s5

+ 28.14s4 + 0.8039s3 + 8.021s2 + 0.1145s+ 0.9992.
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To obtain a central frequency ω0 = 2π × 1000 r/s we write

s −→ s

ω0
=

s

2π × 1000

and the bandwidth thus obtained is given by

B = βω0 = 2π × 100 r/s.

Example 9.27 Design a bandpass Chebyshev filter with the following specifications: (1)
pass-band ripple 3 dB, (2) stop-band attenuation: minimum 25 dB, (3) pass-band cut-off
edge frequencies 1 kHz and 3 kHz, (4) stop-band cut-off edge frequencies 500 Hz and 5
kHz.

We have the pass-band 3 dB edge frequencies

ωL ≡ ωp1 = 2π × 1000, ωH ≡ ωp2 = 2π × 3000

and the stop-band edge frequencies ωs1 = 2π × 500 and ωs2 = 2π × 5000.

FIGURE 9.63 Bandpass response points and corresponding lowpass ones.

The bandpass frequency response points and the corresponding points of the lowpass pro-
totype can be seen in Fig. 9.63. Point A maps to points A−

′
and A′. Point B maps to points

B−
′
and B′ as shown in the figure. We have

ω2
0 = ωLωH = 4π2 × 3× 106

ω0 =
√
ωLωH = 2π

√
3× 103 r/s

B = ωH − ωL = 2π × 2000 r/s.

To evaluate the positive frequency Ωs, i.e. point E in the lowpass prototype corresponding
to the points E−

′
and E′ in the bandpass filter we write

Ωs1 =

∣∣ω2
s1 − ω2

0

∣∣
Bωs1

=
4π2

∣∣5002 − 3× 106
∣∣

2π × 2000× 2π × 500
= 2.75

Ωs2 =

∣∣ω2
s2 − ω2

0

∣∣
Bωs2

=
4π2

∣∣25× 106 − 3× 106
∣∣

2π × 2000× 2π × 5000
= 2.2.

The stop-band edge frequencies therefore map to the frequencies Ωs = 2.2 and Ωs = 2.75
in the lowpass prototype.
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To meet the given specifications we choose Ωs = 2.2 since it produces the higher selec-
tivity; hence the higher filter order. In the lowpass prototype the attenuation at Ω = 1 is 3
dB, wherefrom

10 log10

{
1 + ε2C2

n (1)
}

= 3 dB

1 + ε2 = 100.3 = 1.9953, ε2 = 0.9953, ε = 0.9976.

At Ω = Ωs = 2.2 the attenuation should be 25 dB, wherefrom

10 log10

{
1 + ε2C2

n (2.2)
}

= 25 dB

1 + 0.9953C2
n (2.2) = 102.5, C2

n (2.2) = 315.2230, Cn (2.2) = 17.7545

cosh
(
n cosh−1 2.2

)
= 17.7545

cosh (n× 1.4254) = 17.7545

1.4254n = cosh−1 (17.7545) = 3.569

n = 2.51.

We choose n = 3. The filter spectrum is represented graphically in Fig. 9.63(a). The
corresponding lowpass prototype is shown in Fig. 9.63(b).

To obtain the coefficients for Chebyshev with attenuation of 1 dB in pass-band for say
n = 3 we may write

[B, A] = cheby1 (n, R, Wn, ′s′ ) = cheby1 (3, 1, 1, ′s′ ) (9.475)

We obtain the lowpass filter prototype system function

HLP (s) =
0.2506

s3 + 0.5972s2 + 0.9283s+ 0.2506
(9.476)

and deduce the bandpass filter system function by replacing s by
(
s2 + ω2

0

)
/ (Bs), obtaining

HBP (s) = HLP (s)

∣∣∣∣s−→ s2+4π2×3×106

2π×2000 s

. (9.477)

Using Mathematica we have

HBP (s) = 4.9729× 1011s3/D (s) (9.478)

where
D (s) = 1.661× 1024 + 1.053× 1020s+ 5.944× 1016s2

+ 2.275× 1012s3 + 5.019× 108s4 + 7.505× 103s5 + s6.

The MATLAB statements

Wn = [2 ∗ pi ∗ 1000, 2 ∗ pi ∗ 3000] (9.479)

[B, A] = cheby1 (3, 3, Wn, ′s′) (9.480)

produce the same system function HBP (s) we just obtained. The general appearance of the
frequency response of such a banpass filter is shown in Fig. 9.64. In the same figure we see
a corresponding bandstop filter response.
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FIGURE 9.64 Bandpass and bandstop responses.

9.51 Windows

We have seen in Chapter 2 the “spectral leakage” phenomenon that results from the trun-
cation of a pure infinite duration sinusoid. We have noted in Chapters 2 and 4 that the side
lobes and ripples that appear in the spectrum of a pure sinusoid are due to the fact that the
truncation extracting a finite-duration sinusoid is a multiplication in time by a rectangular
window.

If x (t) denotes an infinite duration signal then the finite duration truncation thereof
xf (t) may be written

xf (t) = x (t)w (t) (9.481)

where w (t) is the rectangular window. For example, w (t) may be the centered rectangle

w (t) = ΠT (t) = u (t+ T )− u (t− T ) . (9.482)

The result of the truncation in the frequency domain is a convolution of the spectrum
X (jω) with the transform W (jω) of the rectangular window. We may write

Xf (jω) = F [xf (t)] =
1

2π
X (jω) ∗W (jω) . (9.483)

Now
W (jω) = F [ΠT (t)] = 2TSa (Tω) (9.484)

so that

Xf (jω) =
T

π
X (jω) ∗ Sa (Tω) . (9.485)

To observe the effect of the convolution with the sampling function, consider a signal with
a finite bandwidth of which the spectrum X (jω) is idealized as a rectangle. The convolution
of this spectrum with the sampling function leads to a spectrum Xr (jω) having overshoot
and ripples, caused by the main lobe and side lobes of the sampling function. This illustrated
in Fig. 9.65, where both the sampling function Sa (Tω) and the resulting spectrum Xf (jω)
can be seen.



662 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

Sa( )Tw X jf( )w

w w

FIGURE 9.65 Ripples caused by rectangular window truncation.

This is the same Gibbs phenomenon that is observed by truncating the Fourier series of
a periodic function.

If a softer transition window is used instead of the rectangular window then the ripples
are reduced. On the other hand, the main lobe of the spectrum becomes wider than that
of the rectangular window reducing the resolution and increasing the transition width at
signal discontinuities. For example the corresponding result of the spectral convolution if
the rectangular window is replaced by a triangular one is shown in Fig. 9.66. In what follows,
we study several forms of basic windows and evaluate their spectra.

Sa( )Tw X jf( )w

w w

FIGURE 9.66 Ripples caused by triangular window truncation.

9.52 Rectangular Window

v (t) = u (t+ T/2)− u (t− T/2) = ΠT/2(t) (9.486)

V (jω) = T Sa

(
T

2
ω

)
= T Sa (πfT ) = T

sin (πfT )

(πfT )
. (9.487)

A rectangular window and its magnitude spectrum are shown in Fig. 9.67.
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FIGURE 9.67 Rectangular window and transform.

9.53 Triangle (Bartlett) Window

v(t) =

{
1− 2|t|

T

}
ΠT/2(t) (9.488)

V (jω) = (T/2)Sa2(Tω/4) (9.489)

Vf (f) =
T

2
Sa2

(
T

2
πf

)
=
T

2

sin2 (Tπf/2)

(Tπf/2)
2 . (9.490)

A triangular (Bartlett) window and its spectrum are shown in Fig. 9.68.

FIGURE 9.68 Triangle (Bartlett) window and transform.

9.54 Hanning Window

v (t) = A

(
cos2

πt

T

)
ΠT/2 =

A

2

{
1+cos

2πt

T

}
ΠT/2 (t)=△v1 (t)ΠT/2 (t) (9.491)

v1 (t) =
A

2

{
1 + cos

2π

T
t

}
(9.492)

V1 (jω) =
A

2
× 2πδ (ω) +

A

2
× π

{
δ

(
ω − 2π

T

)
+ δ

(
ω+

2π

T

)}
(9.493)
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V (jω) =
1

2π
V1 (jω) ∗ T Sa

(
T

2
ω

)

=
AT

4

{
2Sa

(
T

2
ω

)
+ Sa

[
T

2
ω − π

]
+ Sa

[
T

2
ω + π

]} (9.494)

Vf (f) =
AT

4
{2Sa (Tπf) + Sa [πTf − π] + Sa [πTf + π]}

− sin (πTf)Tf (Tf − 1)} / {Tπf (Tf − 1) (Tf + 1)}
=△
AT

4

N (f)

D (f)

(9.495)

N (f) = 2T 2f2 sin (Tπf)− 2 sinTπf − T 2f2 sin (Tπf)
− Tf sin (Tπf)− T 2f2 sin (Tπf) + Tf sin (Tπf) = −2 sinTπf

(9.496)

Vf (f) =
AT

2

sin (Tπf)

Tπf (1− T 2f2)
=
A

2

sin (Tπf)

πf (1− T 2f2)
. (9.497)

The Hanning window spectrum can also be rewritten in the form

V (jω) =
4π2 sin (Tω/2)

4π2ω − T 2ω3
. (9.498)

With A = 1 and T = 1 the form of the window and its spectrum are shown in Fig. 9.69.

FIGURE 9.69 Hanning window and transform.

9.55 Hamming Window

v (t) =

{
0.54 + 0.46 cos

2πt

T

}
/P iT/2 (t) = v1 (t) /P iT/2 (t) (9.499)

v1 (t) = 0.54 + 0.46 cos (2πt/T ) (9.500)

V1 (jω) = 0.54× 2πδ (ω) + 0.46π

{
δ

(
ω − 2π

T

)
+δ

(
ω +

2π

T

)}
(9.501)
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V (jω) =
1

2π
V1 (jω) ∗ T Sa

(
T

2
ω

)

=
T

2

{
1.08 Sa

(
T

2
ω

)
+ 0.46 Sa

[
T

2

(
ω − 2π

T

)]

+ 0.46 Sa

[
T

2

(
ω +

2π

T

)]}
(9.502)

which can be rewritten in the form

V (jω) =

(
0.16T 2ω2 − 4.32π2

)
sin (ωT/2)

T 2ω3 − 4π2ω
(9.503)

Vf (f) =
T

2

{
1.08

sin (πfT )

πfT
+ 0.46

sin (πfT − π)

πfT − π + 0.46
sin (πfT + π)

πfT + π

}

=
T

2

{
1.08

(
f2T 2 − 1

)
sinπfT − 0.46fT (fT + 1) sinπfT

−0.46fT (fT − 1) sinπfT } / {πfT (fT − 1) (fT + 1)}
=△
T

2

{
N1 (f)

πfT (f2T 2 − 1)

}
(9.504)

N1 (f) = 1.08f2T 2 sinπfT − 1.08 sinπfT − 0.46f2T 2 sinπfT
−0.46fT sinπfT − 0.46f2T 2 sinπfT + 0.46fT sinπfT

= sinπfT
{
0.16f2T 2 − 1.08

} (9.505)

Vf (f) =
1

2

sinπfT
{
0.16f2T 2 − 1.08

}

πf (f2T 2 − 1)
=

sinπfT
(
0.54− 0.08f2T 2

)

πf (1− f2T 2)
. (9.506)

The form of the Hamming window with A = 1 and T = 1 and its spectrum are shown
in Fig. 9.70.

FIGURE 9.70 Hamming window and transform.

9.56 Problems

Problem 9.1 a) Evaluate analytically the transfer function H (s) of a lowpass Butterworth
filter given the following specifications:

Gain at zero frequency = R dB; a constant. At normalized frequency ω = 1 the gain is
(R− 3) dB at ω = 4 the gain is less than or equal to (R − 48) dB.
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b) The objective is to design a bandpass Butterworth filter with a maximum gain G dB and
lower and upper 3-dB cut-off frequencies 1500 Hz and 2000 Hz. Show the transformation
required to convert the lowpass filter of part a) to this bandpass filter.

Problem 9.2 a) Evaluate the transfer function of a filter, given the following specification:

Frequency Attenuation

0 0dB
1 -1.5dB
2 -12dB

b) Rewrite the transfer function if the attenuations are 10, 8.5, and −2, respectively.

Problem 9.3 Use the lowpass filter designed in Problem 9.2 to evaluate the transfer func-
tion of a bandpass and bandstop filters with edge frequencies

ω1 = 2π × 750 r/s, ω2 = 2π × 1200 r/s.

Evaluate the transfer function of a highpass filter of cut-off frequency of 2π × 500 r/s.

Problem 9.4 Evaluate the transfer function HBS (s) of a bandstop Chebyshev filter having
the following specifications:

Maximum gain in pass-band 0 dB. Attenuation in pass-band ≤ 1 dB. Stop-band
attenuation ≥ 40 dB. Pass-band edge frequencies

ωl = 2π × 900 r/s

ωh = 2π × 4000 r/s.

Stop-band edge frequencies
ω2 = 2π × 2200 r/s

ω3 = 2π × 2900 r/s.

Problem 9.5 Evaluate the transfer function HLP (s) of a prototype lowpass fifth order
Butterworth filter of maximal gain 0 dB and attenuation of 3 dB at normalized frequency
ω = 1. Show the transformation needed to convert this filter into a bandstop filter of 3 dB
edge frequencies ωl = 2π × 90 r/s and ωh = 2π × 110 r/s.

Problem 9.6 Let HLP (s) be the lowpass prototype sixth order filter transfer function
(having an attenuation of 3 dB at ω = 1). The objective is to design a sixth order highpass
filter having an attenuation of 1.5 dB at ω = 1 and a maximum gain of 0 dB.

What transformation is needed to convert the lowpass transfer function HLP (s) into the
transfer function HHP (s) of the highpass filter?

Problem 9.7 Evaluate the transfer function HBS (s) of a bandstop Butterworth filter hav-
ing the following specifications.
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Frequency Gain
0, ∞ 10 dB

2π × 500, 2π × 1500 ≥ 9 dB
2π × 800, 2π × 930 ≤ 0 dB

Problem 9.8 Repeat the last problem where now the specifications are

Frequency Gain
0, ∞ 10 dB

2π × 500, 2π × 1500 ≥ 7 dB
2π × 800, 2π × 930 ≤ 0 dB

Problem 9.9 Evaluate the transfer function H (s) of a Butterworth lowpass filter having
the following specifications.

Frequency Gain
0 5 dB
1 2 dB

1.5 ≤ −9 dB

Problem 9.10 Starting from an eighth order Butterworth lowpass filter prototype with
gain 0 dB at zero frequency and 3 dB attenuation at the cut-off frequency ω = 1, what
transformation is needed to obtain a Butterworth highpass filter with maximum gain 0 dB
and a 1.5 dB attenuation at the cut-off frequency ω = 1?

Problem 9.11 Given
|H (jω)|2 =

(
ω2 + 4

)
/
(
ω2 + 1

)
.

a) Sketch the amplitude squared response |H (jω)|2 in dB versus the frequency ω indi-
cating the frequency values corresponding to 4, 3.5, 1.5, and 1 dB gain levels.

b) Evaluate the transfer function H (s) of a filter having |H (jω)|2 as the amplitude-
squared spectrum.

c) Sketch the amplitude spectrum |G (jω)| of the frequency response G (jω) of the filter
of which the transfer function is given by

G (s) = H (s)|s−→8π×106/s .

Problem 9.12 Consider the design of a bandpass Butterworth filter having the following
specifications:

a) Evaluate the filter transfer function using a lowpass to bandpass transformation.
b) Evaluate the filter transfer function by realizing the filter as a cascade of lowpass and

a highpass filters.
c) Considering the orders of the numerator and denominator polynomials of the transfer

functions obtained in the two approaches a) and b) which filter would be simpler to realize.
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Frequency Gain

Pass-band
2π × 1000 and 2π × 2000
2π × 500 and 2π × 3000

Maximum 0 dB
≥ −1 dB
≤ −25 dB

Problem 9.13 To generate a sinusoid of frequency 1 kHz a train p (t) of alternating
rectangles is used. The train has a frequency of repetition of f = 1 kHz and can be written
in the form

p (t) =

∞∑

n=−∞
p0 (t− nT ) , T = 1/f

where

p0 (t) =






1, |t| < T/4
−1, T/4 < |t| < T/2
0, otherwise

.

This train is applied to the input of a lowpass Butterworth filter which should attenuate all
frequency components above the fundamental frequency, thus leading to an approximation
of the sinusoid.

Evaluate and sketch the Fourier transform P (jω) of the train p (t). Evaluate the trans-
fer function H (s) of the lowest-order Butterworth filter ensuring that the resulting 1 kHz
sinusoid have an amplitude of at least 1 volt, and that all higher harmonics do not exceed
0.03 volt in amplitude.

Problem 9.14 Evaluate the transfer function H (s) of a Butterworth lowpass filter of order
4 of a maximum response of 0 dB and a gain of −1.5 dB at the frequency f = 100 kHz. At
what frequency does the filter have a gain of −3 dB?

Problem 9.15 Consider the continuous-time rectangular, triangular (Bartlett), Hanning
and Hamming windows.

a) Plot these windows spectra on the same frequency axis with their peaks normalized
to the same value showing their first three lobes (on a normal, not logarithmic scale) thus
allowing a visual comparison of their lobe widths and the decay of the side lobes. Which
of the windows has the narrowest main lobe and which has the widest? The width of the
lobe being the frequency corresponding to the point that is 3 dB below the maximum point.
Which window has the biggest first side-lobe?

b) Plot the same spectra with the vertical axis now expressed in decibels.

Problem 9.16 Verify the spectra of the continuous time Hanning and Hamming windows
by evaluating and plotting their Fourier transforms using Mathematica or Maple and com-
paring them with those obtained analytically.

Problem 9.17 Consider the signal

v (t) = cosβt+ cos γt

where
β = 7× 2π/T

and
γ = 9× 2π/T.
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The signal v (t) is multiplied by a window w (t) of overall width T . Evaluate and sketch the
spectrum W (jω) and that of the product z (t) = v (t)w (t) assuming T = 1 s for the four
different windows: rectangular, triangular (Bartlett), Hanning and Hamming. Repeat the
above if γ = 8× 2π/T instead. What conclusions can be made regarding the possibility of
detecting the signal frequency components. How can such detection be improved irrespective
of the kind of window used?

Problem 9.18 Design an elliptic filter having a ripple of δ1 = 0.01 in the pass-band and
δ2 = 0.01 in the stop-band, with a pass-band edge frequency of 1 kHz and a stop-band edge
frequency of 1.3 kHz. Evaluate the filter order N , the poles and zeros of its transfer function
H (s). Evaluate and plot the Chebyshev rational function G (ω) and the magnitude squared

spectrum |H (jω)|2. Evaluate the zeros and poles of G (ω) and the maxima/minima of G (ω)
and |H (jω)| in the pass-band and the stop-band.

Problem 9.19 Let
x = Aejθ

and
w (x) = sn (x, k) .

a) Evaluate wr, the real part if w (x), and wi, the imaginary part, as function of A, θ
and k.

b) Knowing that cn (u+ 2K) = −cn u, show that cn u has a period 4K.

Problem 9.20 A lowpass filter of cut-off frequency 3 kHz is required. The attenuation
should be at least 30 dB at 6 kHz and not more than 1.5 dB in the pass-band, where the
maximum response should be 0 dB.

a) Evaluate the minimum Butterworth filter order.
b) Evaluate the minimum Chebyshev filter order.

Problem 9.21 Evaluate the filter transfer function meeting the following specifications:
a) Butterworth, lowpass, – cut-off frequency 100 r/s
– maximum response 0 dB
– attenuation at the cut-off frequency: 1 dB
– attenuation of at least 30 dB at 300 r/s
b) Chebyshev, lowpass, – cut-off frequency: 2 kHz
– maximum response: 0 dB
– maximum attenuation in the pass-band 1 dB
– attenuation of at least 30 dB at 4 kHz

Problem 9.22 Evaluate the transfer function H (s) of a filter satisfying the following spec-
ifications:

– Chebyshev highpass
– Cut-off frequency 300 Hz
– Maximal response +20 dB
– Response at cut-off frequency +19 dB
– Response less than -22 dB in the frequency band 0 to 100 Hz

Problem 9.23 Evaluate the transfer function H (s) of a filter satisfying the following spec-
ifications:

– Chebyshev highpass
– Cut-off frequency 300 Hz
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– Maximal response +20 dB
– Response at cut-off frequency +19 dB
– Response less than −22 dB in the frequency band 0 to 100 Hz

Problem 9.24 The objective is to design for an audio system a tonality controller of three
frequency bands. The controller has three filters, namely, a lowpass, a bandpass and a high-
pass filter for the corresponding frequency ranges, and have the following properties:

Filter 1
– Butterworth, lowpass
– Cut-off frequency: 500 Hz
– Maximum response: 0 dB
– Attenuation at the cut-off frequency: 3 dB
– Attenuation at 1 kHz: 20 dB minimum
Filter 2
– Butterworth bandpass
– Edge frequencies: 500 Hz and 2 kHz
– Maximum response: 0 dB
– Attenuation at the edge frequencies: 3 dB
– Attenuation at 200 Hz and 2 kHz: 20 dB minimum
Filter 3
– Butterworth highpass
– Cut-off frequency: 2 kHz
– Maximum response: 0 dB
– Attenuation at the cut-off frequency: 3 dB
– Attenuation at 1 kHz: 20 dB minimum
a) Evaluate the transfer function of each of the three filters.
b) If the frequency responses of these filters should be increased or reduced by 10 dB, how

should the transfer function be altered?

Problem 9.25 Evaluate the transfer function H (s) of a least-order filter satisfying the
following specifications:

– Butterworth bandpass
– Cut-off frequency 697 Hz and 852 Hz
– Maximum response: 0 dB
– Attenuation at pass-band edge frequencies: 10 dB

Problem 9.26 To prevent illegal copying of analog audio signals it is proposed to use a
coder which employs a filter to cut off the frequency band (3715 to 3965 Hz). Signal recorders
would be so constructed as to detect a gap in the spectrum and stop illegal recording.

The proposed filter would have the following properties:
– Butterworth, bandstop
– Cut-off edge frequencies 3715 Hz and 3965 Hz
– Maximal response 0 dB
– Attenuation at cut-off frequencies: 3 dB
– Minimum attenuation of 60 dB at 3800 Hz and 3880 Hz
Evaluate the transfer function of the coding filter.

Problem 9.27 Given the transfer function of a filter

H (s) =
3

s2 + 3s+ 3
,
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show how to evaluate the group delay of the filter as a function of the frequency ω. Deduce
from the delay expression obtained the filter’s delay at frequencies ω = 0 and ω = 2.
Verify the result by referring to the filter’s delay figures.

Problem 9.28 a) For a Bessel type 1 filter of order 2 specify the transfer function and
evaluate the group delay and the value of its delay at frequency ω = 1 relative to its zero-
frequency delay. Evaluate the filter order so that the delay at frequency ω = 5 be greater
than or equal to half its value at zero frequency.

b) Evaluate the transfer function and poles of a type 1 Bessel filter of the second order
producing an attenuation of 0 dB at ω = 0. Evaluate the filter impulse response h(t).

9.57 Answers to Selected Problems

Problem 9.1
a) H (s) = 10R/20/(s4 + 2.613s3 + 3.414 s2 + 2.613s+ 1).
b) B = 2π (2000− 1500) = 2π.500, ω0 = 2π × 1732.1 r/s,

HBP (s) =
10R/20

s4 + 2.613s3 + 3.414 s2 + 2.613s+ 1

∣∣∣∣s−→ s2+ω2
0

Bs

Problem 9.2

H (s) =
2.0761

s3 + 2.5514 s2 + 3.2548 s+ 2.0761

H (s) =
5.4962× 1012

s3 + 2.4046× 104s2 + 2.8911× 108s+ 1.738× 1012

Problem 9.3 HHP (s) = s3/(s3 + 1.885× 104s2 + 1.777s+ 8.372× 1011).
Problem 9.4 See Fig. 9.71 HBS (s) = N (s) /D (s) where

N (s) = s10 +7.106× 108s8 +2 · 020× 1017s6 +2.871× 1025s4 +2.04× 1033s2 +5.798× 1040

D (s) = s10 + 92075s9 + 3.720× 109s8 + 1.54× 1014s7

+2.583× 1018s6 + 6.288× 1022s5 + 3.671× 1026s4

+3.11× 1030s3 + 1.068× 1034s2 + 3.757× 1037s+ 5.798× 1040

We obtain the same results as just found.
Problem 9.5

H (s) =
1

s5 + 3.236s4 + 5.236s3 + 5.236s2 + 3.236s+ 1

HBS (s) = HLP (s)
∣∣∣s−→Bs/(s2+ω2

0)

Problem 9.6

HHP (s) =
1

s6 + 3.86s5 + 7.46s4 + 9.14s3 + 7.46s2 + 3.86s+ 1
|s−→0.9289/s

Problem 9.7 See Fig. 9.72.

HBS (s) = K
s2 + b3

s2 + a2s+ a3



672 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 9.71 Figure for Problem 9.4.
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FIGURE 9.72 Figure for Problem 9.7.

where K = 3.1623, a3 = b3 = ω2
0 = 2.96× 107, a2 = εB = 3.1972× 103

Problem 9.8

HBS (s) = 3.1623
s2 + 2.96× 107

s2 + 6.28× 103s+ 2.96× 107

Problem 9.9 H (s) = K/(s4 + 2 · 613s3 + 3 · 414s2 + 2 · 613s+ 1), 10 log10K
2 = 5, K =

1 · 7783.
Problem 9.10

s
s→ε1/ns−→ ε1/ns

s→1/s−→ ε1/n/s

Problem 9.11
b) H (s) = (s− 2)/(s+ 1)
c) See Fig. 9.73.

Problem 9.13 See Figs. 9.74 and 9.75.

H (s) =
1

1 + 0.00029s+ 4.237 · 10−8s2 + 3.083 · 10−12s3

Problem 9.14

H (s) =
1

s4 + 2.613s3 + 3.414s2 + 2.613s+ 1

Hε, denorm (s) = 1/D(s)
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FIGURE 9.73 Filter responses of Problem 9.11.

FIGURE 9.74 A train and spectrum of Problem 9.13.

FIGURE 9.75 Filter response, Problem 9.13.

D(s) = 1 + 3.72× 10−6s+ 6.93× 10−12s2 + 7.56× 10−18s3 + 4.12× 10−24s4

Problem 9.15
The rectangular window has the narrowest main lobe. The Hanning window has the widest
main lobe. The rectangular window has the biggest first side lobe.
Problem 9.17
Increasing the window width T improves the resolution, the spectrum of a truncated sinusoid
becoming sharper, tending toward an impulse. See Fig. 9.76.

Problem 9.19

w = wr + jwi =
sn a dn (b, k′) + j cn a dn a sn (b, k′) cn (b, k′)

1− dn2 a sn2 (b, k′)

Problem 9.20
c) ha (t) = e−tu (t)− e−0.5t cos 8.66t u (t) + 0.5e−0.5t sin 8.66t u (t).
d) h [n] = [an − bn cosβn+ 0.5bn sinβn]u [n], where a = e−1, b = e−0.5 , β = 8.66.
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FIGURE 9.76 Figure for Problem 9.17.

e) H (z) =
1

1− az−1
− 1− bz−1 cosβ

1− 2bz−1 cosβ + b2z−2
+ 0.5

bz−1 sinβ

1− 2bz−1 cosβ + b2z−2
.

Problem 9.21
a) n ≥ 6.
b) n ≥ 4.

Problem 9.22

a) Hdenorm (s) =
1

s4 + 2.61s3 + 3.41s2 + 2.61s+ 1

∣∣∣∣
s→ ε1/4s

100 =8.446×10−3s

.

b) Hdenorm (s) =
0.25

s4 + 0.95s3 + 1.45s2 + 0.74s+ 0.28

∣∣∣∣
s→s/4000π

.

Problem 9.23

HHPdenorm (s) =
2.5

s4 + 0.95s3 + 1.45s2 + 0.74s+ 0.28

∣∣∣∣
s→600π/s

.

Problem 9.24

a) Filter 1 Hdenorm (s) =
1

s4 + 2.61s3 + 3.41s2 + 2.61s+ 1

∣∣∣∣
s→s/(1000π)

.

Filter 2 HBP (s) =
1

s3 + 2s2 + 2s+ 1
|s→(s2+ω2

0)/(Bs), where ω2
0 = 4π2×106 and B = 3000π.
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Filter 3 HHPdenorm (s) =
1

s4 + 0.95s3 + 1.45s2 + 0.74s+ 0.28

∣∣∣∣
s→4000π/s

.

b) The transfer functions should be multiplied by the factor 3.16 and 0.316, respectively.

Problem 9.25

Hbandpass (s) =
1

3s+ 1

∣∣∣∣
s→(s2+ω2

0)/(Bs)

,

where ω2
0 = (2π)2 × 697× 852 = 2.375π2 × 106, B = 2π (852− 697) = 310π.

Problem 9.26 The stopband filter transfer function is

Hstopband (s)
1

s7 + 4.5s6 + 10.1s5 + 14.6s4 + 14.6s3 + 10.1s2 + 4.5s+ 1

∣∣∣∣
s→Bs/(s2+ω2

0)

where ω2
0 = 58, 92π2 × 106, B = 500π.

Problem 9.27

τ =
3(3 + w2)

9 + 3w2 + w4

The delay at ω = 0 is τ = 1, and at ω = 2 is τ = 0.5675.

Problem 9.28
a) order is n ≥ 5. b) h (t) = 3.4642 e−1.5t sin(0.866t) u (t).
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10

Passive and Active Filters

In this chapter we study the design of passive and active continuous-time domain filters.

10.1 Design of Passive Filters

This chapter explores passive and active circuit realization of continuous-time filters. We
have seen how to evaluate the transfer function of a filter such as Butterworth, Chebyshev,
elliptic or Bessel–Thomson, given frequency response specifications. Having evaluated the
filter transfer function H (s) we have also seen how to realize it as an active filter using
integrators, constant multipliers and adders.

In this section we consider the problem of realizing lowpass filters as passive networks,
that is, electric circuits made up of resistors, inductors and capacitors without the need for
integrators. Converting these to bandpass, bandstop and highpass filters can be subsequently
effected by well-known circuit elements transformation techniques, as seen later on in this
chapter. In high frequency and microwave applications in particular, passive filters are
of great importance. In integrated circuit technology means exist, moreover, for realizing
inductances by equivalent components.

From network theory, ladder networks such as those shown in Fig. 10.1, are well suited for
implementing Butterworth, Chebyshev and Bessel–Thomson filters. Figures 10.1(a) and (b)
show voltage driven and current driven networks, respectively, terminated in a 1 ohm resis-
tor, which are suitable for realizing even-ordered lowpass filters. For odd-ordered lowpass
filters, Figures 10.1(c) and (d) show current driven and voltage driven networks, respec-
tively, similarly terminated in a 1 ohm resistor. We shall also see other ladder networks well
suited for implementing Cauer elliptic filters.

10.2 Design of Passive Ladder Lowpass Filters

In this section we study an approach to the design of general order lowpass filters in the
form of passive ladder networks. Consider the current-driven inductance capacitance (LC)
passive circuit terminated in a 1 ohm resistance shown in Fig. 10.1(c) and redrawn with
components replaced by their impedances in Fig. 10.2. We shall determine the recursive
relations describing the voltage and current values v1, v2, i0, i1, . . ., the circuit input
impedance and its transfer function.

By starting from the right side of the circuit we can deduce a recursive relation giving the
value of each voltage vk as a function of the voltage vk−1 and each current ik as a function
of the current ik−1.

677



678 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 10.1 (a) Voltage-driven passive ladder network for even-ordered lowpass filters
(LP), (b) current-driven network for even-ordered lowpass filters, (c) current-driven network
for odd-ordered LP filter, (d) voltage-driven network or for odd-ordered LP filter.

FIGURE 10.2 Ladder network with impedances.

We can write the voltage and current equations

V1 (s) = I0 (s) (10.1)

I1 (s) = I0 (s) + V1 (s)Y1 (s) (10.2)

V2 (s) = V1 (s) + I1 (s)Z2 (s) (10.3)

I2 (s) = I1 (s) + V2 (s)Y3 (s) (10.4)

and in general

Vk (s) = Vk−1 (s) + Ik−1 (s)Z2(k−1) (s) , k = 2, 3, . . . , (n+ 1)/2 (10.5)

Ik (s) = Ik−1 (s) + Vk (s)Y2k−1 (s) , k = 1, 2, . . . , (n+ 1)/2. (10.6)
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As an example consider the ladder network containing n = 3 components C1, L2 and
C3 shown in Fig. 10.3(a), where C1 = 1/2, L2 = 4/3 and C3 = 3/2. We shall see that
this passive ladder network is in fact a realization of a third order Butterworth filter.

FIGURE 10.3 Third order network and its impedance representation.

To proceed as in the analysis of general ladder networks as given above we redraw the circuit
with the impedance Z2 = L2s and admittances Y1 (s) = C1s and Y3 (s) = C3s as shown
in Fig. 10.3(b). The voltage-current equations are

V1 (s) = I0 (s) (10.7)

V2 (s) = V1 (s) + I1 (s)Z2 (s) (10.8)

I2 (s) = I1 (s) + V2 (s)Y3 (s) (10.9)

I1 (s) = I0 (s) + V1 (s)Y1 (s) = I0 (s) + I0 (s)C1s = I0 (s) (1 + C1s) (10.10)

V2 (s) = V1 (s) + I1 (s)Z2 (s) = I0 (s) + I0 (s) (1 + C1s)L2s
= I0 (s)

(
1 + L2s+ C1L2s

2
)
=△I0(s)P (s)

(10.11)

I2 (s) = I1 (s) + V2 (s)Y3 (s)
= I0 (s) (1 + C1s) + C3sI0 (s)

(
1 + L2s+ C1L2s

2
)

= I0 (s)
(
1 + C1s+ C3s+ C2L2s

2 + C1C3L2s
3
)
=△I0 (s)Q(s).

(10.12)

The input impedance is given by

Z (s) ≡ Zin (s) =
V2 (s)

I2 (s)
=

1 + L2s+ C1L2s
2

1 + (C1 + C3) s+ C3L2s2 + C1C3L2s3
. (10.13)

Substituting for C1, L2 and C3

Z (s) =
1 + (4/3)s+ (2/3)s2

1 + 2s+ 2s2 + s3
. (10.14)

We now proceed to establish a relation between the circuit input impedance Z(s) ≡ Zin(s)
and its transfer function H(s). We may rewrite the impedance in the form

Z (s) =
m1(s) + n1(s)

m2(s) + n2(s)
(10.15)

where m1(s) is the even polynomial and n1(s) the odd one of the numerator, and m2(s)
and n2(s) are the even and odd polynomials, respectively, of the denominator.

m1(s) = 1 +
2

3
s2, n1(s) =

4

3
s (10.16)

m2(s) = 1 + 2s2, n2(s) = 2s+ s3. (10.17)
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The transfer function is given by

H (s) =
V1 (s)

I2 (s)
=

1

1 + (C1 + C3) s+ C3L2s2 + C1C3L2s3

=
1

1 + 2s+ 2s2 + s3
=

1

m2(s) + n2(s)
. (10.18)

which is the third order Butterworth filter transfer function. We note that the impedance
and transfer function expressions have the same denominator m2(s) + n2(s). This simple
example will serve to illustrate the more general approach that follows.

10.3 Analysis of a General Order Passive Ladder Network

Consider now a general order passive ladder network. As the last example shows we can
evaluate the equations recursively and thus deduce the value of the input impedance and
that of the transfer function. In particular, for a general order n passive ladder network we
obtain

V1(s) = Io(s)P (s) (10.19)

and
Ii(s) = Io(s)Q(s) (10.20)

where P (s) and Q(s) are polynomials in s; hence

Z(s) ≡ Zin(s) =
V1(s)

Ii(s)
=
P (s)

Q(s)
(10.21)

H(s) =
Vo(s)

Ii(s)
=
Io(s)

Ii(s)
=

1

Q(s)
. (10.22)

The polynomials P (s) and Q(s) can be written in the form

P (s) = 1 + a1s+ a2s
2 + . . .+ an−1s

n−1 (10.23)

Q(s) = 1 + b1s+ b2s
2 + . . .+ bns

n. (10.24)

Letting as before m1(s) and n1(s) be the even polynomial and odd polynomial compo-
nents, respectively, of the polynomial P (s), and let m2(s) and n2(s) be the even and odd
polynomial components of the polynomial Q(s), we can write

Z(s) =
P (s)

Q(s)
=

1 + a1s+ a2s
2 + . . .+ an−1s

n−1

1 + b1s+ b2s2 + . . .+ bnsn
=
m1(s) + n1(s)

m2(s) + n2(s)
(10.25)

H(s) =
1

Q(s)
=

1

m2(s) + n2(s)
(10.26)

m1(s) = 1 + a2s
2 + a4s

4 + . . .+ an−1s
n−1 (10.27)

n1(s) = a1s+ a3s
3 + a5s

5 + . . .+ an−2s
n−2 (10.28)

m2(s) = 1 + b2s
2 + b4s

4 + . . .+ bn−1s
n−1 (10.29)

n2(s) = b1s+ b3s
3 + b5s

5 + . . .+ bns
n. (10.30)
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To deduce the input impedance Z(s) from a given transfer function H(s) we note that

Z (s) + Z (−s) =
m1 (s) + n1 (s)

m2 (s) + n2 (s)
+
m1 (s)− n1 (s)

m2 (s)− n2 (s)

=
2 {m1 (s)m2 (s)− n1 (s)n2 (s)}

m2
2 (s)− n2

2 (s)
. (10.31)

We shall show in the following section, through power transfer considerations, that the
factor m1m2 − n1n2 is equal to 1. For now let us verify this by direct evaluation in the
context of the Butterworth filter example of Fig. 10.3 considered above. We can write

m1(s)m2(s) = 1 + c2s
2 + c4s

4 + . . .+ c2n−2s
2n−2 (10.32)

n1(s)n2(s) = d2s
2 + d4s

4 + d6s
6 + . . .+ d2n−2s

2n−2 (10.33)

where
c2 = a2 + b2 (10.34)

c4 = a2b2 + a4 + b4 (10.35)

c6 = a2b4 + a4b2 + a6 + b6 (10.36)

. . .

d2 = a1b1 (10.37)

d4 = a1b3 + a3b1 (10.38)

d6 = a1b5 + a5b1 + a3b3. (10.39)

With n = 3 we have

a1 = L2, a2 = C1L2, b1 = C1 + C3, b2 = C3L2, b3 = C1C3L2. (10.40)

Hence
c2 = a2 + b2 = C1L2 + C3L2 = a1b1 = d2 (10.41)

and
c4 = a2b2 = C1C3L

2
2 = a1b3 = d4 (10.42)

and for a general order n
ci = di, i = 2, 4, 6, . . . (10.43)

We can therefore write

n1(s)n2(s) = c2s
2 + c4s

4 + . . .+ c2n−2s
2n−2 = 1 +m1(s)m2(s) (10.44)

i.e.
m1(s)m2(s)− n1(s)n2(s) = 1 (10.45)

as stated above. Hence

Z (s) + Z (−s) =
2

m2
2 (s)− n2

2 (s)
. (10.46)

We may therefore write
Z (s) + Z (−s) = 2H (s)H (−s) . (10.47)

Knowing the filter transfer function H (s) the required input impedance Z (s) may be eval-
uated using this equation. Let

F (s)=△H (s)H (−s) (10.48)
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i.e.
Z (s) + Z (−s) = 2F (s) . (10.49)

By effecting a partial fraction expansion we may write F (s) in the form

F (s) =
2n∑

i=1

ri
(s− pi)

(10.50)

where ri is the residue at the pole pi. Suppose the poles are written such that p1, p2, . . .,
pn are located in the left-half s plane. The value of the input impedance Z(s) is simply
given by

Z (s) = 2
n∑

i=1

ri
(s− pi)

(10.51)

where the pole locations in the left-half s plane ensures filter stability.
Given a filter magnitude-squared spectrum |H (jω)|2, therefore, we write

H (s)H (−s) = |H (jω)|2
∣∣∣
ω=−js

(10.52)

thus deducing the value of F (s) = H (s)H (−s), wherefrom the value of the filter transfer
function H (s) can be deduced. The required circuit input impedance may be found by
effecting a partial fraction expansion of F (s) and collecting the terms associated with the
left-half s plane poles. We may put the result obtained above in the form

1

2
{Z (s) + Z (−s)} =△ F (s) = H(s)H(−s) =

A
(
−s2

)

B (−s2)

=
A0 −A1s

2 +A2s
4 − . . .+ (−1)nAns

2n

B0 −B1s2 +B2s4 − . . .+ (−1)
n
Bns2n

. (10.53)

With s = jω we have

ℜ{Z (jω)} =
1

2
{Z (jω) + Z (−jω)} = |H (jω)|2 =

A
(
ω2
)

B (ω2)
. (10.54)

The following example illustrates the approach.

Example 10.1 Evaluate the passive ladder network input impedance Z (s) corresponding
to a lowpass Butterworth filter of order n = 3.

We have

|H (jω)|2 =
1

1 + ω6

ℜ{Z (jω)} =
1

1 + ω6
=
A
(
ω2
)

B (ω2)

A
(
ω2
)

= 1, B
(
ω2
)

= 1 + ω6

F (s) =
1

2
{Z (s) + Z (−s)} =

A
(
−s2

)

B (−s2) =
1

1− s6 =
−1

s6 − 1
.

The poles of F (s) are given by s6 = 1 = ej2πk, sk = ej2πk/6, k = 0, 1, 2, . . ., 5. The
poles in the left-half plane are given by p1 = s2 = ej2π/3, p2 = −1, p3 = e−j2π/3. The
residue at p1 is given by

r1 =
−1

(s− p2) (s− p3) . . . (s− p6)

∣∣∣∣
s=p1

=
−1

v1v2v3v4v5
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where v1, v2, . . ., v5 are the vectors shown in Fig. 10.4(a).

v1 = −1,

|v2| =
√

(1.5)
2

+ (
√

3/2)2 = 1.7321, arg [v2] = tan−1

(√
3/2

−1.5

)
= 2.6180,

|v3| = 2, arg [v3] = 2.0944, v4 = j
√

3, |v5| = 1, arg [v5] = π/3 = 1.0472.

3

2
60°

1 1

v
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v
2

v
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v
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v
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p
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p
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p
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p
3
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FIGURE 10.4 Vectorial evaluation of residues.

We obtain r1 = −0.1667ej2.094 = 0.1667e−j1.0472, r3 = r∗1 = 0.1667ej1.0472. From Fig.
10.4(b)

r2 =
1

|v6|2 |v7|2 v8
=

1

1 · (1.52 + 0.75) (−2)
= −0.1667.

We deduce the value of Z (s) by writing

Z (s) =
2r1
s− p1

+
2r2
s− p2

+
2r3
s− p3

=
0.333e−j1.0472

s− ej2π/3
+
−0.333

s+ 1
+

0.333ej1.0472

s− e−j2π/3
=

(2/3) s2 + (4/3) s+ 1

s3 + 2s2 + 2s+ 1
.

Note that for higher order systems a MATLABr program using the instruction “residue”
may be employed to expand F (s) into partial fractions by evaluating the residues r1, r2, r3
at the poles p1, p2, p3. The same instruction “residue” can subsequently be used to effect
the inverse of the partial fraction expansion needed to evaluate the impedance Z (s) as the
ratio of two polynomials.

10.4 Input Impedance of a Single-Resistance Terminated Network

A short-cut approach to input impedance evaluation for the realization of a given transfer
function may be formulated by referring to Fig. 10.5. This figure may serve as a model for
the lossless network terminated in a resistor.
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L-C
Ladder R2 v2

Z11

i1

v1
i2

FIGURE 10.5 Resistance terminated two-port network.

For simplicity of presentation the resistor is taken to be R2 = 1 ohm. By proper scaling the
case of a general value of R2 can be subsequently dealt with. As seen in the figure the input
impedance of the lossless network is denoted Z11. Since the two-port is lossless the average
input power to the network from the source is equal to that delivered to the load. We may
therefore write

|I1 (jω)|2 ℜ[Z11(jω)] = |V2 (jω)|2 (10.55)

With H(jω) = V2(jω)/I1(jω) we may write

ℜ[Z11(jω)] = |V2 (jω)|2 / |I1 (jω)|2 = |H (jω)|2 (10.56)

If Z(s) denotes the input impedance, i.e. Z=△Z11, we may write

ℜ[Z(jω)] =
1

2
[Z(jω) + Z(−jω)] = |H (jω)|2 (10.57)

and if Ze denotes the even part of Z we may write

Ze(s) =
1

2
[Z(s) + Z(−s)] = H(s)H(−s) (10.58)

as asserted above in the context of the particular LC ladder networks shown in Fig. 10.1.
Similar relations can be derived for the input admittance Y (s) = 1/Z(s).

10.5 Evaluation of the Ladder Network Components

Having evaluated the input impedance Z (s) we should evaluate the inductance (L) and
capacitance (C) values of the ladder network. Consider the circuit shown in Fig. 10.6. The
input impedance Z is given by

Z = Z1 + Z1,2 (10.59)

1

Z1,2
=

1

Z2
+

1

Z3 + Z3,4
, Z1,2 =

1
1

Z2
+

1

Z3 + Z3,4

(10.60)

FIGURE 10.6 Ladder network with impedances.
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1

Z3,4
=

1

Z4
+

1

Z5 + Z5,6
, Z3,4 =

1
1

Z4
+

1

Z5 + Z5,6

(10.61)

1

Z5,6
=

1

Z6
+

1

Z7 + Z8
, Z5,6 =

1
1

Z6
+

1

Z7 + Z8

. (10.62)

We conclude that

Z = Z1 +
1

1

Z2
+

1

Z3 +
1

1

Z4
+

1

Z5 +
1

1

Z6
+

1

Z7 + Z8

(10.63)

which is the impedance written in a continued fraction expansion.

Example 10.2 Write in the form of a continued fraction expansion the input impedance
of the circuit shown in Fig. 10.7.

FIGURE 10.7 LC type ladder network.

We recall an approach to the evaluation of the continued fraction expansion that we en-
countered in connection with the design of constant-delay Bessel filters. In the present con-
text we may write

Z =
1

C1s
+

1
1

L2s
+

1
1

C3s
+

1
1

L4s
+

1
1

C5s
+

1
1

L6s
+

1
1

C7s
+ L8s

.

As observed in Chapter 9 the process of continued fraction expansion can be written as
an alternating long division. The following example illustrates the approach.

Example 10.3 Consider the ladder network of Fig. 10.2. (a) Write the circuit input impedance
in a continued fraction expansion form. (b) Starting from the input impedance Z(s) as a ra-
tio of two polynomials show the continued fraction expansion, deducing the circuit elements
values.
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a) The input impedance of the circuit shown in this figure can be written in the form

Z (s) = Y3 +
1

Z2 +
1

Y1 + 1

Y3 = C3s, Z2 = L2s and Y1 = C1s

so that

Z (s) = C3s+
1

L2s+
1

C1s+ 1

= 1.5s+
1

4

3
s+

1

0.5s+ 1

.

b) We first write the value of the input admittance Y (s)

Y (s) =
1

Z (s)
=

s3 + 2s2 + 2s+ 1

(2/3)s2 + (4/3)s+ 1
.

We next perform the continued fraction expansion as an alternating long division where at
every new iteration the preceding denominator becomes the new numerator that is divided
by the remainder just obtained. The operation takes the form shown in Fig. 10.8. The
first term of the numerator

(
s3 + 2s2 + 2s+ 1

)
is first divided by that of the denominator

(2/3 s2 +4/3 s+1). The result (3/2)s is recorded as the first quotient and multiplied by the
denominator producing (s3 + 2s2 + 3/2 s). This product is subtracted from the numerator.
The result is the remainder (1/2) s+ 1.

FIGURE 10.8 Continued fraction expansion.

Now starts the second iteration. The past denominator (2/3 s2 + 4/3 s+ 1)now becomes
the new numerator to be divided by the remainder (1/2) s+ 1. The process is thus repeated
dividing the first term of 2/3 s2 of the numerator by that (1/2 s) of the denominator the
result is recorded as the second quotient 4/3 s.

The process is repeated leading to a third quotient of 1/2 s as seen above. The final step
produces the fourth quotient equal to 1.

The four quotients thus evaluated are none other than the successive impedances Z1, Z2,
Z3 and the 1 ohm resistor. We deduce that

Z1 = (3/2)s, Z2 = (4/3)s, Z3 = (1/2)s and R = 1 Ω

i.e.
L1 = 1.5 H, C2 = 4/3 F and L3 = 0.5 H

as desired.
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We have therefore seen how the continued partial fraction expansion using this alternating
type of long division yields the values of the ladder elements. It is interesting to note that
the same four quotients 3/2 s, 4/3 s, 1/2 s and 1 can be interpreted as Z3 = L′3s,
Y2 = C′2s, Z1 = L′1s and R, thus leading to the ladder circuit driven by a voltage source,
shown in Fig. 10.9

FIGURE 10.9 Third order ladder network.

In what follows we shall see how the values of the different circuit elements for a given
desired filter realization can be determined. We shall note that the two networks shown in
Fig. 10.1(a) and (b) are equivalent forms, and that the same is true for the two networks
shown in Figs. 10.1 (c) and (d). We shall also note in what follows that the component
values C1, L2, C3, L4, . . . are the same as the values L′1, C

′
2, L

′
3, C

′
4, . . . in the equivalent

circuit.
In voltage-driven ladder networks the voltage and current equations are the same as

those of the current and voltage equations, respectively, of the corresponding current driven
network. Impedances are replaced by admittances and vice versa. We obtain with

Z1 = L′1s, Y2 = C′2s and Z3 = L′3s (10.64)

I1 (s) = V0 (s) (10.65)

I2 (s) = I1 (s) + V1 (s)Y2 (s) (10.66)

V2 (s) = V1 (s) + I2 (s)Z3 (s) (10.67)

and in general

Ik (s) = Ik−1 (s) + Vk−1 (s)Y2(k−1) (s) , k = 2, 3, . . . , (n+ 1) /2 (10.68)

Vk (s) = Vk−1 (s) + Ik (s)Z2k−1 (s) , k = 1, 2, . . . , (n+ 1) /2 (10.69)

V1 (s) = V0 (s) + I1 (s)Z1 (s) = V0 (s) (1 + L′1s) (10.70)

I2 (s) = I1 (s) + V1 (s)Y2 (s) = V0 (s) + V0 (s) (1 + L′1s)C
′
2s

= V0 (s)
(
1 + C′2s+ C′2L

′
1s

2
) (10.71)

V2 (s) = V1 (s) + I2 (s)Z3 (s)
= V0 (s) (1 + L′1s) + L′3sV0 (s)

(
1 + C′2s+ C′2L

′
1s

2
)

= V0 (s)
{
1 + (L′1 + L′3) s+ C′2L

′
3s

2 + C′2L
′
1L
′
3s

3
}
.

(10.72)

The input impedance is given by

Z (s) =
V2 (s)

I2 (s)
=

1 + (L′1 + L′3) s+ C′2L
′
3s

2 + C′2L
′
1L
′
3s

3

1 + C′2s+ C′2L
′
1s

2
(10.73)
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as found above. Moreover, substituting we have

Y (s) =
(2/3) s2 + (4/3) s+ 1

s3 + 2s2 + 2s+ 1
(10.74)

and

H (s) =
V0 (s)

V2 (s)
=

1

s3 + 2s2 + 2s+ 1
(10.75)

which, as expected, is the Butterworth filter third order transfer function.
We have just seen how to obtain two passive ladder networks, current driven and voltage

driven, respectively, which are lowpass Butterworth filters of the third order n = 3. The
same principle applies to the realization of lowpass Butterworth, Chebyshev and Bessel–
Thomson filters of a general order.

Continued partial-fractions expansion has been shown to generate as successive quotients
the values of the inductor and capacitor elements. Before ending this section it is worthwhile
noticing that the alternating long division illustrated above can be rewritten in a form that
saves horizontal space. This is accomplished by rewriting it in the form shown in Table 10.1

TABLE 10.1 Continued fraction expansion

D, N, D, . . . N, D, N, . . . Q

D1:
2

3
s2 +

4

3
s+ 1 N1: s3 + 2s2 + 2s+ 1 Q1 :

3

2
s

Q1D1: s3 + 2s2 +
3

2
s

N2:
2

3
s2 +

4

3
s+ 1 D2:

1

2
s+ 1 Q2 :

4

3
s

Q2D2:
2

3
s2 +

4

3
s

D3: 1 N3:
1

2
s+ 1 Q3 :

1

2
s

Q3D3:
1

2
s

N4: 1 D4: 1 Q4 : 1
Q4D4: 1

0

Note:
N : numerator

D : denominator

N1, N2, N3, . . . are successive numerators

D1, D2, D3, . . . are successive denominators

Q1, Q2, Q3, . . . are quotients

R1, R2, R3, . . . are remainders

D2 = R1 = N1 −Q1D1 (10.76)

N2 = D1 (10.77)

Q2 = Quotient [N2/D2] (10.78)

D3 = R2 = N2 −Q2D2 (10.79)
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N3 = D2 (10.80)

Q3 = Quotient [N3/D3] (10.81)

N4 = D3. (10.82)

10.6 Matrix Evaluation of Input Impedance

An alternative approach to the evaluation of the input impedance Z (s) from the magnitude-

squared spectrum |H (jω)|2 is one that is visually appealing, being readily described in
matrix form. We deduce from Equation 10.51 that the impedance Z (s) of the ladder network
has the form

Z (s) =
a0 + a1s+ a2s

2 + . . .+ ans
n

b0 + b1s+ b2s2 + . . .+ bnsn
=
P (s)

Q (s)
(10.83)

where the denominator polynomial Q(s) may be directly deduced from the left-hand plane
poles pi of F (s)=△H(s)H(−s), i.e. Q(s) =

∏n
i=1(s−pi). In fact, if the filter transfer function

H(s) is known, then polynomial Q(s) is simply its denominator. The coefficients bk of the
impedance denominator Q(s) are therefore known. To to evaluate the impedance Z(s) we
therefore need to evaluate the coefficients ak of the numerator polynomial P (s).

To this end we start by expressing each of the two polynomials P (s) and Q (s) as a sum
of a polynomial of even powers and another of odd powers,

P (s) =
(
a0 + a2s

2 + a4s
4 + . . .

)
+
(
a1s+ a3s

3 + a5s
5 + . . .

)
= m1 + n1 (10.84)

Q (s) =
(
b0 + b2s

2 + b4s
4 + . . .

)
+
(
b1s+ b3s

3 + b5s
5 + . . .

)
= m2 + n2 (10.85)

so that

Z (s) =
P (s)

Q (s)
=
m1 + n1

m2 + n2
=
P (s)Q (−s)
Q (s)Q (−s) =

(m1 + n1) (m2 − n2)

m2
2 − n2

2

(10.86)

and if we put s = jω then

Q (jω) = m2 + n2 =
(
b0 − b2ω2 + b4ω

4 − . . .
)

+ jωb1 − jω3b3 + jω5b5 − . . . (10.87)

and

Z (jω) =
(m1 + n1) (m2 − n2)

(m2 + n2) (m2 − n2)

∣∣∣∣
s=jω

=
m1m2 −m1n2 +m2n1 − n1n2

m2
2 − n2

2

∣∣∣∣
s=jω

. (10.88)

We note that with s = jω the products m1m2 and n1n2 are real while m1n2 and m2n1

are imaginary, Hence

ℜ{Z (jω)} =
m1m2 − n1n2

m2
2 − n2

2

∣∣∣∣
s=jω

. (10.89)

The numerator and denominator polynomials are seen to be even having even powers of ω.
We can write

ℜ{Z (jω)} =
A0 +A1ω

2 + . . .+Anω
2n

B0 +B1ω2 + . . .+Bns2n =△
A
(
ω2
)

B (ω2)
= |H (jω)|2 . (10.90)
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We note that the denominator B
(
ω2
)

of ℜ{Z (jω)} is the same as that of |H (jω)|2. As for

the numerator B
(
ω2
)

we may write

A
(
ω2
)

= (m1m2 − n1n2)|s=jω . (10.91)

Now the right-hand side is given by

(m1m2 − n1n2) = (a0 + a2s
2 + . . .+ ans

n)(b0 + b2s
2 + . . .+ bns

n)
−
(
a1s+ a3s

3 + a5s
5 + . . .

) (
b1s+ b3s

3 + b5s
5 + . . .

) (10.92)

so that

A
(
ω2
)

= A0 +A1ω
2 + A2ω

4 + . . .+ Anω
2n = (m1m2 − n1n2)|s=jω

=
(
a0 − a2ω

2 + a4ω
4 − . . .

) (
b0 − b2ω2 + b4ω

4 − . . .
)

+ω2
(
a1 − a3ω

2 + a5ω
4 − . . .

) (
b1 − b3ω2 + b5ω

4 − . . .
)
.

(10.93)

In this equation the coefficients Ak are known since the polynomial A
(
ω2
)

is the numerator

of |H (jω)|2, the bk are known as stated above. To solve for the unknown coefficients ak we
equate the coefficients of equal power. We have

A0 = a0b0 (10.94)

A1 = − a0b2 + a1b1 − a2b0 (10.95)

A2 = a0b4 − a1b3 + a2b2 − a3b1 + a4b0 (10.96)

...

More generally, we can write

Ak =

k∑

i=−k

(−1)
i
ai+kbk−i. (10.97)

These relations can be put in the matrix form :




A0

A1

A2

A3

...




=




b0 0 0 0 0 0 0 0 . . .
−b2 b1 −b0 0 0 0 0 0
b4 −b3 b2 −b1 b0 0 0 0
−b6 b5 −b4 b3 −b2 b1 −b0 0

...







a0

a1

a2

a3

a4

a5

a6

...




. (10.98)

Evaluating a0, a1, a2, . . . we find P (s). Since as seen above

1

2
{Z (s) + Z (−s)} = H(s)H(−s) = |H (jω)|2

∣∣∣
ω=−js

=
A
(
−s2

)

B (−s2)
=
A0 −A1s

2 +A2s
4 − . . .+ (−1)

n
Ans

2n

B0 −B1s2 +B2s4 − . . .+ (−1)
n
Bns2n

(10.99)

the denominator B
(
−s2

)
is directly evaluated as the denominator of |H (jω)|2 with ω

replaced by s/j, and since

B
(
−s2

)
= m2

2 − n2
2 = Q (s)Q (−s) (10.100)
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the value of Q (s) is simply the product

Q (s) = (s− p1) (s− p2) . . . (s− pn) (10.101)

where p1, p2, . . ., pn are the roots of B
(
−s2

)
in the left half of the s plane, i.e. the poles

of F (s). Having found P (s) and Q (s) we have evaluated

Z (s) = P (s) /Q (s) . (10.102)

Example 10.4 Evaluate the input impedance Z (s) of the passive ladder network corre-
sponding to a lowpass Butterworth filter of order n = 4.

The magnitude-squared spectrum of a Butterworth filter is given by

|H (jω)|2 =
1

1 + ω2n
=

1

1 + ω8

1

2
{Z (s) + Z (−s)} = F (s) =

A
(
−s2

)

B (−s2) = |H (jω)|2
∣∣∣
ω=−js

=
1

1 + s8

that is, A
(
−s2

)
= 1, B

(
−s2

)
= 1 + s8.

The poles of F (s) are given by s8 = −1 = e−jπej2kπ, sk = ej(2k−1)π/8, k = 1, 2, 3, . . ..
The roots of Q (s) are the poles of F (s) which are in the left-half plane, i.e.,

p1 = s3 = ej5π/8, p2 = s4 = ej7π/8, p3 = p∗1, p4 = p∗2.

Hence
Q (s) = (s− p1) (s− p2) (s− p3) (s− p4)

= s4 + 2.6131s3 + 3.4142s2 + 2.6131s+ 1.

Since
Q (s) = b0 + b1s+ b2s

2 + . . .+ bns
n

we have
b0 = 1, b1 = 2.6131, b2 = 3.4142, b3 = 2.6131, b4 = 1.

Since
A
(
−s2

)
= A0 −A1s

2 +A2s
4 −A3s

6 +A4s
8 = 1

we have
A0 = 1 and A1 = A2 = A3 = A4 = 0.

We can thus construct the matrix form :




1
0
0
0
0




=




b0 0 0 0 0
−b2 b1 −b0 0 0
b4 −b3 b2 −b1 b0
0 0 −b4 b3 −b2
0 0 0 0 b4







a0

a1

a2

a3

a4



.

Note that the values b5, b6, b7 and b8 are all zero, simplifying the matrix structure. Sub-
stituting with the values of b0, b1, . . ., b4 we have

1 = a0

0 = −3.4142a0 + 2.6131a1 − a2 = −3.4142 + 2.6131a1 − a2

0 = 1− 2.6131a1 + 3.4142a2 − 2.6131a3 + a4
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0 = − a2 + 2.6131a3 − 3.4142a4

0 = a4.

Simplifying we have

0 = − a2 + 2.6131a3

0 = − 2.4142 + 2.4142a2 − 2.6131a3

which when added produce a2 = 1.7071. Hence a3 = 0.6533 and a1 = 1.9599. The value
of Z (s) is thus given by

Z (s) =
P (s)

Q (s)
=
a0 + a1s+ . . .+ ans

n

b0 + b1s+ . . .+ bnsn

=
1 + 1.9599s+ 1.7071s2 + 0.6533s3

1 + 2.6131s+ 3.4142s2 + 2.6131s3 + s4

and

Y (s) =
1

Z (s)
=

1 + 2.6131s+ 3.4142s2 + 2.6131s3 + s4

1 + 1.9599s+ 1.7071s2 + 0.6533s3

We perform a continued fraction expansion as shown in Table 10.2 which leads to the real-
ization shown in Fig. 10.10, with

C′4 = 1.531, L′3 = 1.577, C′2 = 1.083 and L′1 = 0.3827.

TABLE 10.2 Continued fraction expansion

D, N, D N, D, N Q
0.653s3 + 1.707s2 + 1.959s+ 1 s4 + 2.613s3 + 3.414s2 + 2.613s+ 1 1.531s

s4 + 2.613s3 + 3s2 + 1.531s
0.653s3 + 1.707s2 + 1.959s+ 1 0.414s2 + 1.082s+ 1 1.577s
0.653s3 + 1.707s2 + 1.577s

0.383s+ 1 0.414s2 + 1.082s+ 1 1.083s
0.414s2 + 1.082s

0.383s+ 1 1 0.383s
0.383s

1 1 1
1
0

L3¢

1i

L1¢

C4¢ C2¢

FIGURE 10.10 Resulting passive circuit realization.
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Alternatively we identify the successive quotients and corresponding elements as

Q1 = L4s, L4 = 1.531, Q2 = C3s, C3 = 1.577 (10.103)

Q3 = L2s, L2 = 1.083, Q4 = C1s, C1 = 0.383. (10.104)

as seen in Fig. 10.11.

FIGURE 10.11 Fourth order ladder network.

10.7 Bessel Filter Passive Ladder Networks

The same approach of designing Butterworth and Chebyshev filter passive ladder networks
applies to Bessel–Thomson ladder networks. The following example illustrates the approach.

Example 10.5 Show the realizations of a third order prototype lowpass Bessel filter type 1
as a passive ladder network. Evaluate the LC values if the filter is of the fourth, instead of
the third, order.

The prototype lowpass Bessel filter of order n = 3 has the transfer function

H(s) =
15

s3 + 6s2 + 15s+ 15
.

We have

F (s) = H (s)H (−s) =
−225

s6 − 6s4 + 45s2 − 225
.

Decomposing using partial fractions we write

F (s) =

2n∑

i=1

ri
(s− si)

such that the poles s1, s2 and s3 are in the left-hand half of the s plane. We find s1, s3 =
−1.8389± j1.7544, s2 = −2.3222 and their residues

r1, r3 = −0.0587∓ j0.4133, r2 = −0.7174

so that the network input impedance is given by

Z (s) =

n∑

i=1

2ri
(s− si)

=
1.2s2 + 7.2s+ 15

s3 + 6s2 + 15s+ 15
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and Y (s) = 1/Z(s). A continued fraction expansion produces the circuit element values
C3 = 0.833, L2 = 0.48, C1 = 0.1667, which apply to the current-driven circuit shown
in Fig. 10.1(c). Alternatively we write L′3 = 0.833 C′2 = 0.48, L′1 = 0.1667, which apply
to the voltage driven circuit shown in Fig. 10.1(d). For a Bessel filter of order n = 4 we
have

H (s) =
105

s4 + 10s3 + 45s2 + 105s+ 105
.

Proceeding as in the last example we obtain the ladder network input impedance

Z (s) =
1.408163s3 + 14.081632s2 + 59.081633s+ 105

s4 + 10s3 + 45s2 + 105s+ 105
.

Effecting a continued fraction expansion of the admittance Y (s) = 1/Z (s) we obtain
L4 = 0.7101449, C3 = 0.462682, L2 = 0.289855, and C1 = 0.1, which apply to the voltage
driven passive ladder network shown in Fig. 10.1(a).

For higher order filters, computations of the passive ladder network circuit components
should be automated by writing simple computer programs to evaluate the required filter
input impedance, and the continued fraction expansion, which produces the circuit elements.

10.8 Tables of Single-Resistance Ladder Network Components

Tables for Butterworth, Chebyshev, and Bessel–Thomson filter passive ladder networks
having the single-resistance structures seen above in Fig. 10.1 are given below. Elliptic filter
tables follow shortly.

Table 10.3 lists Butterworth passive ladder components.

TABLE 10.3 Butterworth passive ladder components

1.56431.85521.81211.68691.511.29211.04060.76270.465410 0.1564

01.56281.84241.77721.62021.40371.14080.84140.51569 0.1737

001.56071.82461.72871.52831.25880.93700.57768 0.1951

0001.55761.79881.65881.39721.0550.65607 0.2225

00001.55291.75931.55291.20160.75796 0.2588

000001.54511.69441.3820.89445 0.3090

0000001.53071.57721.08244 0.3827

00000001.51.33333 0.5

000000001.41422 0.7071

n C1 L2 C3 L4 C5 L6 C7 L8 C9 L10

Tables 10.4 and 10.5 list Chebyshev passive ladder components with pass-band ripples
of 0.5 and 1 dB, respectively. Table 10.6 lists the delay-normalized Bessel–Thomson filter
form passive ladder components.
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TABLE 10.4 Chebyshev 0.5 dB passive ladder components

1.45391.98161.81192.04321.81652.01971.76450.89051.474810 0.8771

01.62381.75712.02031.80552.01161.75910.88561.47149 0.8752

001.43791.98711.78381.9981.75080.87861.46668 0.8725

0001.59831.72521.97131.73691.86771.45957 0.8687

00001.40421.90181.71011.84941.44836 0.8627

000001.53881.64261.81421.42915 0.8529

0000001.31381.72791.39164 0.8352

00000001.34651.30013 0.7981

000000000.94032 0.7014

n C1 L2 C3 L4 C5 L6 C7 L8 C9 L10

TABLE 10.5 Chebyshev 1 dB passive ladder components

1.38012.11111.72152.18031.73072.16581.69622.06451.481710 1.0918

01.73171.67072.15741.72132.15821.69182.06011.4799 1.0899

001.36912.09221.70212.14531.6852.05371.47518 1.0872

0001.7121.64882.11941.67352.04381.46927 1.0833

00001.34572.04911.65072.0271.46016 1.0773

000001.66521.59081.99381.44415 1.0674

0000001.28171.90931.41264 1.0495

00000001.50881.33323 1.0118

000000000.99572 0.9110

n C1 L2 C3 L4 C5 L6 C7 L8 C9 L10

10.9 Design of Doubly Terminated Passive LC Ladder Networks

As noted above, there are two types of passive lowpass lossless ladder networks, namely, the
single-resistance terminated networks studied above and double-resistance terminated net-
works on which we presently focus our attention. For Butterworth, Chebyshev and Bessel
filters, the networks shown in Fig. 10.12 are suitable structures. We shall shortly see struc-
tures suitable for the realization of elliptic filters.

10.9.1 Input Impedance Evaluation

Each of the double-resistance terminated networks of Fig. 10.12 is a passive LC circuit
receiving its input from a source of resistance R1 and terminated into a resistive load R2,
as represented schematically in Fig. 10.13.

In the present contextIn the present context a transmission coefficient is defined as the
ratio of the power delivered to the load PL to the maximum available power from the source
Pa. We write

|T (jω)|2 =
PL

Pa
(10.105)

The maximum available power from a source of resistance R1 is obtained if the load
resistance is equal to that of the source. To show this we refer to Fig. 10.14, where the load
resistance is written R2 = x. The power dissipated in the resistance is given by

PL (x) = I2x =

(
vs

R1 + x

)2

x (10.106)
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TABLE 10.6 Bessel–Thomson passive ladder components

0.41610.27970.23110.20210.17700.15040.12090.08870.054310 0.0182

00.44240.29860.24650.21290.18110.14630.10770.06609 0.0222

000.47320.32120.26390.22270.18060.13380.08238 0.0278

0000.51110.34870.28270.22880.17040.10557 0.0357

00000.55950.38210.30050.22470.146 0.0476

000000.62310.42150.31030.19485 0.0667

0000000.71010.46270.28994 0.1

00000000.83330.483 0.1667

000000001.0002 0.3333

n C1 L2 C3 L4 C5 L6 C7 L8 C9 L10

Differentiating PL (x) with respect to x and equating the derivative to zero we obtain
R2 = R1, as stated, and note that the corresponding maximum available power is given by

Pa = v2
s/ (4R1) . (10.107)

The voltage transfer function is given by

H(s) = V2(s)/Vs(s) (10.108)

and
|H (jω)|2 = |V2 (jω)|2 / |Vs (jω)|2 (10.109)

We may therefore write

|T (jω)|2 =
PL

Pa
=
|V2 (jω)|2 /R2

|Vs (jω)|2 / (4R1)
=

4R1

R2
|H (jω)|2 (10.110)

A related function is the reflection coefficient, denoted |ρ (jω)|2, which is defined as the
ratio of the missed, or “reflected,” power to the available power. We may therefore write

|ρ (jω)|2 =
Pa − PL

Pa
= 1− |T (jω)|2 (10.111)

|ρ (jω)|2 = 1− 4R1

R2
|H (jω)|2 (10.112)

ρ(s)ρ(−s) = 1− 4R1

R2
H(s)H(−s). (10.113)

Since the LC ladder network is lossless the power Pi at its input is the same as the power
Po at its output. Let z0 denote the input impedance of the LC ladder, that seen past the
source resistance R1, as shown in Fig. 10.13. Writing

Z0 (jω) = R0 + jX0 (jω) (10.114)

we have

Pi = |I1 (jω)|2R0 =
|Vs (jω)|2

|R1 + Z0 (jω)|2
R0 (10.115)

Po =
|V2 (jω)|2

R2
. (10.116)

|Vs (jω)|2R0

|R1 + Z0 (jω)|2
=
|V2 (jω)|2

R2
(10.117)
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(a)

(b)

(.c)

(d)

‘

Zn-1

YnYn-2Y4Y2

C2

Z1 Z3

L1 L3

C4 Cn-2 Cn

vo

Ln-1

L ’nL ’2

C ’n-1C ’1 C ’3

CnCn-2

Ln-1L4L2

C3C1

C ’n-1C ’2 C ’4

L ’nL ’1 L ’3 L ’5

L ’n-2

C ’n-3

R2

R2

R2

R2

FIGURE 10.12 Double-resistance-terminated passive ladder networks for Butterworth,
Chebyshev and Bessel filters: (a) LC ladder, even order; (b) odd order; (c) dual form, even
order; (d) odd order.

R1

L-C
Ladder R2 v2vi

I1vs

Z0

FIGURE 10.13 Double-resistance terminated network model.

vs

R1

x

FIGURE 10.14 Electric circuit model for evaluating maximum deliverable power.

|T (jω)|2 =
4R1

R2
|H (jω)|2 =

4R1R0

|R1 + Z0 (jω)|2
(10.118)
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|ρ (jω)|2 = 1− |T (jω)|2 =
|R1 + Z0 (jω)|2 − 4R1R0

|R1 + Z0 (jω)|2
(10.119)

|ρ (jω)|2 =
(R1 +R0)

2 +X2
0 (jω)− 4R1R0

|R1 + Z0 (jω)|2
(10.120)

|ρ (jω)|2 =
(R1 −R0)

2
+X2

0 (jω)

|R1 + Z0 (jω)|2
=
|R1 − Z0 (jω)|2

|R1 + Z0 (jω)|2
(10.121)

ρ (s) ρ (−s) =
[R1 − Z0 (s)] [R1 − Z0 (−s)]
[R1 + Z0 (s)] [R1 + Z0 (−s)] (10.122)

ρ(s) = ±Z0(s)−R1

Z0(s) +R1
(10.123)

The function F (s)=△ρ (s) ρ (−s) should have quadrantal symmetry, each pole and each zero
in the left half of the s plane having a mirror image in the right half. The function ρ(s) is
chosen by grouping the poles in the left half plane and as a minimum phase function also
having its zeros in the left half of the plane, otherwise negative inductance and capacitance
values may result. The input impedance is therefore given by

Z0 (s) = R1
1− ρ (s)

1 + ρ (s)
(10.124)

or

Z0 (s) = R1
1 + ρ (s)

1− ρ (s)
. (10.125)

and the input admittance is Y0(s) = 1/Z0(s).
In applying these results to an nth order Butterworth, Chebyshev and Bessel filters we

note that the transfer function has the form

H(s) =
K

A(s)
=

K

sn + an−1sn−1 + an−2sn−2 + ...+ a0
(10.126)

where K is an arbitrary gain value. The dc response is given by H(0) = K/a0. For the
general case where the source and load resistances are R1 and R2, respectively, we note
that the network response at dc is given by

H(0) = (V2/Vs)|s=0 =
R2

R1 +R2
. (10.127)

since at dc all inductances are short circuits and all capacitors are open circuits. To reconcile
the values of the resulting network transfer function with that of the desired filter we write

H(0) =
K

a0
=

R2

R1 +R2
(10.128)

wherefrom

K = a0
R2

R1 +R2
. (10.129)

Having evaluated the network input impedance from knowledge of its transfer function,
the next step in the design is to evaluate the successive L and C circuit elements. The
following examples illustrate the approach.
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Example 10.6 Design a passive LC ladder network for Butterworth filter of the third order
with R1 = 1 and R2 = 0.5 ohm.

We have

H(s) =
K

s3 + 2s2 + 2s+ 1

K =
R2

R1 +R2
a0 = (0.5/1.5)a0 = 0.3333

H(s) =
0.3333

s3 + 2s2 + 2s+ 1

H(s)H(−s) =
−0.1111

s6 − 1

ρ (s) ρ (−s) =
s6 − 0.111

s6 − 1

ρ (s) =
s3 + 1.387s2 + 0.9615s+ 0.3333

s3 + 2s2 + 2s+ 1

Z0 (s) = [
2s3 + 3.387s2 + 2.961s+ 1.333

0.6133s2 + 1.039s+ 0.6667
]±1.

We may write

Y0 (s) = 1/Z0 (s) =
2s3 + 3.387s2 + 2.961s+ 1.333

0.6133s2 + 1.039s+ 0.6667
.

A continued fraction expansion of Y0 (s) produces

Y0(s) = 3.2611s+
1

0.7788s+ 1
1.1811s+ 1

0.5

= C1s+
1

L2s+ 1
C3s+ 1

R2

i.e.
C1 = 3.2611 F, L2 = 0.7788 H, C3 = 1.1811 F

which refer to the element values in Fig. 10.12(d), with order n = 3, redrawn in Fig. 10.15.

R1

R2

L2

C3C1

3.2611

0.7788

1.1811

1

0.5

FIGURE 10.15 Butterworth third order filter with R1 = 1 and R2 = 0.5 ohm.

Example 10.7 Design a passive lowpass Chebyshev filter having a pass-band edge frequency
of 1, a ripple of Rp = 1 dB in the pass-band, a stop-band edge frequency of 2 and an
attenuation of at least 40 dB in the stop band. The passive filter should have a source
resistance R1 = 1 ohm and a load resistance R2 = 0.5 ohm.

Using the Chebyshev filter nomograph or by direct evaluation, we find the filter order
n = 5, and the transfer function has the form

H(s) =
K

s5 + 0.9368s4 + 1.689s3 + 0.9744s2 + 0.5805s+ 0.1228
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K =
0.5

1 + 0.5
a0 = 0.1228/3 = 0.04094

H(s) =
0.04094

s5 + 0.9368s4 + 1.689s3 + 0.9744s2 + 0.5805s+ 0.1228

H(s)H(−s) =
−0.001676

s10 + 2.5s8 + 2.188s6 + 0.7813s4 + 0.09766s2 − 0.01509

ρ(s)ρ(−s) = N(s)/D(s)

where
N(s) = s10 + 2.5s8 + 2.188s6 + 0.7813s4 + 0.09766s2− 0.001676

D(s) = s10 + 2.5s8 + 2.188s6 + 0.7813s4 + 0.09766s2 − 0.01509

ρ(s) = Nr(s)/Dr(s)

Nr(s) = s5 + 0.3994s4 + 1.33s3 + 0.3711s2 + 0.3578s+ 0.04094

Dr(s) = s5 + 0.9368s4 + 1.689s3 + 0.9744s2 + 0.5805s+ 0.1228

Y0(s) = N0(s)/D0(s)

where
N0(s) = 2s5 + 1.336s4 + 3.019s3 + 1.345s2 + 0.9384s+ 0.1638

D0(s) = 0.5375s4 + 0.3591s3 + 0.6033s2 + 0.2227s+ 0.08188.

A continued fraction expansion of the impedance Y0(s) produces the values C1 = 3.7211,
L2 = 0.6949, C3 = 4.7448, L4 = 0.6650, C5 = 2.9936 with reference to Fig. 10.12(d).

Example 10.8 Design a passive lowpass Bessel filter of the fifth order, with a source re-
sistance R1 = 1 ohm and a load resistance R2 = 1 ohm.

The filter transfer function is given by

H(s) =
K

s5 + 15s4 + 105s3 + 420s2 + 945s+ 945

H(0) = K =
R2

R1 +R2
a0 =

1

2
945 = 472.5.

H(s)H(−s) =
−223300

s10 − 15s8 + 315s6 − 6300s4 + 99225s2 − 893025

ρ(s)ρ(−s) =
s10 − 15s8 + 315s6 − 6300s4 + 99225s2

s10 − 15s8 + 315s6 − 6300s4 + 99225s2 − 893025

ρ(s) =
s5 + 12.85s4 + 75.06s3 + 231.5s2 + 315s

s5 + 15s4 + 105s3 + 420s2 + 945s+ 945

obtaining

Y0(s) =
2s5 + 27.85s4 + 180.1s3 + 651.5s2 + 1260s+ 945

2.15s4 + 29.94s3 + 188.5s2 + 630s+ 945

Continued fraction expansion produces

Y0(s) = 0.9302987s+
1

0.4577030s+
1

0.3312217s+
1

0.2089637s+
1

0.0718129s+ 1
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Y0(s) = C1s+
1

L2s+
1

C3s+
1

L4s+
1

C5s+ 1

C1 = 0.9302987 F, L2 = 0.4577030 H, C3 = 0.3312217 F, L4 = 0.2089637 H, C5 =
0.0718129 F, with reference to Fig. 10.12(d).

It is important to recall that the input impedance is given by

Z0 (s) = R1

[
1 + ρ (s)

1− ρ (s)

]±1

. (10.130)

In these examples we have chosen the negative exponent so that

Y0 (s) = R1
1 + ρ (s)

1− ρ (s)
. (10.131)

and proceeded with a continued fraction expansion on Y0(s). We may write instead

Z0 (s) = R1
1 + ρ (s)

1− ρ (s)
. (10.132)

and perform the expansion on Z0(s) instead of Y0(s) we would obtain a dual circuit realiza-
tion. In the case of the Bessel filter of the last example the result of the continued fraction
expansion would be written in the form

Z0(s) = 0.9302987s+
1

0.4577030s+
1

0.3312217s+
1

0.2089637s+
1

0.0718129s+ 1

Z0(s) = L′1s+
1

C′2s+
1

L′3s+
1

C′4s+
1

L′5s+ 1

i.e. L′1 = 0.9302987 F, C′2 = 0.4577030 H, L′3 = 0.3312217 F, C′4 = 0.2089637 H, L′5 =
0.0718129 F, with reference to Fig. 10.12(b) which is the dual network for the same filter.
The same approach yields a dual network realization for any given passive filter.

10.10 Tables of Double-Resistance Terminated Ladder Network
Components

Tables for Butterworth, Chebyshev, and Bessel–Thomson filter passive ladder networks,
having the double-resistance structures seen above in Fig. 10.12 are given below.

The table depicted in Fig. 10.7 lists the LC components of Butterworth filter, Chebyshev
filter with Ripple Rp = 0.5 dB and Rp = 1 dB, respectively, and Bessel filter, given a source
and load resistances R1 = R2 = 1 Ohm.
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TABLE 10.7 LC components of Butterworth, Chebyshev, and Bessel filter with R1 = 1
and R2 = 1 ohm

6 0.8376592 0.4115725 0.3158199 0.2364269 0.1480323 0.0504892

10 0.6305036 0.3002230 0.2383952 0.2066336 0.1808241 0.1539468 0.1240671 0.0912645 0.0561304 0.0185163

Butterworth

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

2 1.4142135 1.4142135

3 1 2 1

4 0.7653669 1.8477590 1.8477590 0.7653669

5 0.6180340 1.6180340 2.0000000 1.6180340 0.6180340

6 0.5176381 1.4142135 1.9318516 1.9318516 1.4142135 0.5176381

7 0.4450419 1.2469796 1.8019377 2.0000000 1.8019377 1.2469796 0.4450419

8 0.3901806 1.1111405 1.6629392 1.9615705 1.9615705 1.6629392 1.1111405 0.3901806

9 0.3472964 1.0000000 1.5320889 1.8793852 2.0000000 1.8793852 1.5320889 1.0000000 0.3472964

10 0.3128689 0.9079810 1.4142135 1.7820131 1.9753767 1.9753767 1.7820131 1.4142135 0.9079810 0.3128689

Chebyshev , Rp=0.5 dB

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

3 1.5962801 1.0966917 1.5962801

5 1.7057701 1.2296268 2.5408273 1.2296268 1.7057701

7 1.7372911 1.2582365 2.6382923 1.3443341 2.6382923 1.2582365 1.7372911

9 1.7504390 1.2690431 2.6677804 1.3673258 2.7239041 1.3673258 2.6677804 1.2690431 1.7504390

Chebyshev , Rp=1 dB

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

3 2.0235927 0.9941024 2.0235927

5 2.1348815 1.0911072 3.0009229 1.0911072 2.1348815

7 2.1665573 1.1115092 3.0936420 1.1735204 3.0936420 1.1115092 2.1665573

9 2.1797233 1.1191769 3.1214337 1.1896729 3.1746340 1.1896729 3.1214337 1.1191769 2.1797233

Bessel

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

2 1.5773503 0.4226497

3 1.2550243 0.5527864 0.1921893

4 1.0598230 0.5116169 0.3181414 0.1104186

5 0.9302987 0.4577030 0.3312217 0.2089637 0.0718129

7 0.7676538 0.3744134 0.2944135 0.2378304 0.1778259 0.1104061 0.0374569

8 0.7125409 0.3445570 0.2734607 0.2296681 0.1866805 0.1386715 0.0855168 0.0289046

9 0.6677724 0.3202778 0.2547027 0.2183962 0.1859234 0.1505970 0.1111501 0.0681938 0.0229871
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TABLE 10.8 LC components of Butterworth, Chebyshev, and Bessel filter with R1 = 1
and R2 = 0.5 ohm

9 3.8210182 0.7181986 5.0012693 0.7485135 5.0411592 0.7428651 4.9003520 0.6797411 3.0495369

10 1.0568831 0.1459684 0.4709930 0.1024330 0.3586335 0.0762694 0.2456387 0.0451692 0.1113216 0.0091111

Butterworth

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

2 3.3460653 0.4482877

3 3.2611668 0.7788752 1.1810828

4 3.1868467 0.8826236 2.4523757 0.2174541

5 3.1331182 0.9237115 3.0509586 0.4955220 0.6856601

6 3.0937600 0.9422967 3.3686848 0.6542407 1.6531422 0.1412241

7 3.0640011 0.9513154 3.5532126 0.7511913 2.2726419 0.3535574 0.4798938

8 3.0408158 0.9557860 3.6677780 0.8139274 2.6862726 0.5003356 1.2340633 0.1042324

9 3.0222850 0.9579226 3.7425926 0.8564643 2.9733922 0.6046270 1.7846375 0.2734546 0.3684670

10 3.0071540 0.9587976 3.7933960 0.8864170 3.1794882 0.6807837 2.1942642 0.4021408 0.9817598 0.0825094

Chebyshev , Rp=0.5 dB

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

2 1.5132107 0.6537845

3 2.9430563 0.6502766 2.1902683

4 1.8158209 1.1328121 2.4881477 0.7731912

5 3.2227516 0.7645139 4.1228442 0.7115762 2.3196552

6 1.8786346 1.1884230 2.7588890 1.2403497 2.5976038 0.7976077

7 3.3055162 0.7898839 4.3574743 0.8132132 4.2418938 0.7251586 2.3565648

8 1.9011692 1.2053467 2.8152432 1.2863656 2.8478560 1.2628261 2.6310105 0.8063372

9 3.3403423 0.7994794 4.4282985 0.8341056 4.4545779 0.8235114 4.2795486 0.7303722 2.3719165

10 1.9116981 1.2127421 2.8365641 1.2999451 2.8964415 1.3054066 2.8743703 1.2713919 2.6456409 0.8104105

Chebyshev , Rp=1 dB

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

3 3.4774134 0.6152597 2.8539989

5 3.7211404 0.6949039 4.7448044 0.6649843 2.9936297

7 3.7915926 0.7118456 4.9425006 0.7347578 4.8636122 0.6756758 3.0331428

Bessel

n L1 C2 L3 C4 L5 C6 L7 C8 L9 C10

2 2.6180339 0.1909830

3 2.1156411 0.2612603 0.3618383

4 1.7892765 0.2460610 0.6126817 0.0529598

5 1.5686426 0.2216998 0.6456386 0.1015338 0.1392515

6 1.4101563 0.1999287 0.6196482 0.1158268 0.2894014 0.0246416

7 1.2904471 0.1820671 0.5797060 0.1171184 0.3496505 0.0541818 0.0734617

8 1.1963962 0.1675869 0.5394835 0.1134693 0.3685235 0.0683360 0.1683743 0.0142190

9 1.1201822 0.1557589 0.5029773 0.1081238 0.3680418 0.0744407 0.2195165 0.0336405 0.0453487

Similarly, the table depicted in Fig. 10.8 lists the LC components of Butterworth filter,
Chebyshev filter with Ripple Rp = 0.5 dB and Rp = 1 dB, respectively, and Bessel filter,
given a source resistance of R1 = 1 Ohm and a load resistance of R2 = 0.5 Ohm.

Similarly, Table 10.8 lists the LC components of Butterworth filter, Chebyshev filter with
ripple Rp = 0.5 dB and Rp = 1 dB, respectively, and Bessel filter, given a source resistance
of R1 = 1 ohm and a load resistance of R2 = 0.5 ohm.

10.11 Closed Forms for Circuit Element Values

There exist closed forms of the inductance and capacitance values for lowpass filter LC
passive ladder networks. For a Butterworth filter of order n, the filter transfer function has
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the form

H(s) =
K

sn + an−1sn−1 + . . .+ a1s+ a0
(10.133)

where the denominator coefficients are given by Equation (9.16) in Chapter 9. Let r21 denote
the ratio of the load resistance R2 to the source resistance R1., r21 = R2/R1. We have

α =

[
1 + r21
1− r21

]±1/n

(10.134)

where the plus and minus sign apply for r21 ≥ 1 and r21 ≤ 1, respectively. The input
impedance may be expanded in the form

Z0(s) = L1s+
1

C2s+ 1
L3s+ 1

...+ 1
X

(10.135)

where X is a resistance or a conductance, and letting

γm = mπ/(2n) (10.136)

we have

L1 =
2R1 sinγ1

(1− α)ωc
(10.137)

where ωc is the cut-off frequency, which is equal to one for a normalized prototype filter.

L2m−1C2m =
4 sinγ4m−3 sin γ4m−1

ω2
c (1− 2α cos γ4m−2 + α2)

(10.138)

L2m+1C2m =
4 sin γ4m−1 sinγ4m+1

ω2
c (1− 2α cos γ4m + α2)

. (10.139)

The last elements in the ladder are given by

Ln =
2R2 sinγ1

(1 + α)ωc
(10.140)

for n odd, and

Cn =
2 sinγ1

R2(1 + α)ωc
(10.141)

for n even.
Similar forms exist for expansions in the form

Y0(s) = C1s+
1

L2s+ 1
C3s+ 1

L4s+ 1
...+ 1

X

. (10.142)

Note that the first term C1s is an admittance same as the expanded Y0(s). Since each term
after the first is in the form of 1/D, its denominatorD represents successively an impedance,
an admittance, an impedance, and so on. Note also that each new term 1/D reflects the
role reversal in the continued fraction expansion, where the last denominator becomes the
new numerator. The final term X is therefore a resistance or a conductance depending on
whether n is even or odd.

C1 =
2 sinγ1

R1(1− α)ωc
(10.143)
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C2m−1L2m =
4 sinγ4m−3 sin γ4m−1

ω2
c (1− 2α cos γ4m−2 + α2)

(10.144)

C2m+1L2m =
4 sin γ4m−1 sinγ4m+1

ω2
c (1− 2α cos γ4m + α2)

. (10.145)

The last elements in the ladder are given by

Ln =
2R2 sinγ1

(1 + α)ωc
(10.146)

for n odd, and

Cn =
2 sinγ1

R2(1 + α)ωc
(10.147)

for n even, which lead to the dual circuit forms.
For Chebyshev passive filters similar closed forms have been proposed. We have, with Rp

denoting pass-band ripple,

ε =
√

10Rp/10 − 1 (10.148)

K = 1−
(

1− r21
1 + r21

)2

, n odd (10.149)

K = (1 + ε2)

[
1−

(
1− r21
1 + r21

)2
]

= 100.1Rp

[
1−

(
1− r21
1 + r21

)2
]
, n even (10.150)

â =
1

n
sinh−1(

√
1−K
ε

). (10.151)

The continued fraction expansion of the input impedance Z0(s) leads to the inductances
and capacitances values given in the following:

L1 =
2R1 sin γ1

(sinh a− sinh â)ωc
. (10.152)

Let
φm(a, â) = sinh2 a+ sinh2 â+ sin2 γ2m − 2 sinha sinh â cos γ2m (10.153)

L2m−1C2m =
4 sinγ4m−3 sin γ4m−1

ω2
cφ2m−1(a, â)

(10.154)

L2m+1C2m =
4 sin γ4m−1 sinγ4m+1

ω2
cφ2m(a, â)

. (10.155)

The continued fraction expansion of the input admittance Y0(s) leads to the inductances
and capacitances values given in the following:

C1 =
2 sinγ1

ωcR1(sinh a− sinh â)
(10.156)

C2m−1L2m =
4 sinγ4m−3 sin γ4m−1

ω2
cφ2m−1(a, â)

(10.157)

C2m+1L2m =
4 sinγ4m−1 sin γ4m+1

ω2
cφ2m(a, â)

(10.158)

Example 10.9 Design a fourth order passive lowpass Chebyshev filter having a pass-band
edge frequency of 1500 Hz and a maximum pass-band ripple of Rp = 0.5 dB. The passive
filter should have a source resistance R1 = 100 ohm and a load resistance R2 = 200 ohm.

We have ωc = 3000π = 9424.8 r/s, ε =
√

100.1Rp − 1 = 0.34931, K = 0.99735,
â = 0.036712, a = 0.44353, wherefrom we obtain the set of component values L1 = 0.019266
H, C2 = 1.202 µF, L3 = 0.0264 H, C4 = 0.82038 µF, with reference to Fig. 10.12(a)
redrawn in Fig. 10.16.
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C2

L1 L3

C4

vo

R2

R1

100

200

0.019 H 0.026 H

1.202 Fm 0.820 Fm

FIGURE 10.16 Chebyshev fourth order double-resistance terminated filter example.

10.12 Elliptic Filter Realization as a Passive Ladder Network

We now consider the design of double-resistance terminated elliptic filters, having a source
resistance R1 and load resistance R2, such as the passive elliptic filter of general odd order
n seen in Fig. 10.17(a), and its dual form, 10.17(b).

L2

C4

Ln

L4

R2

L1

C2

L3R1

Cn-1

Ln-1

R2

R1

C1’ C3’
C2’

L2’

Cn’

L4’ Ln-1’

C4’ Cn-1’

(a)

(b)

FIGURE 10.17 Elliptic filter passive ladder network of odd order employing (a) series LC
resonance circuits; (b) the dual form employing parallel resonance circuits.

The particular circuit shown in the figure is suitable for the realization of lowpass elliptic
filters of odd order. A similar structure with a slight change would be used for even order
filters. However, elliptic filters of even order require that the filter frequency response have
a finite value at infinite frequency. Ordinary passive ladder networks of the type seen so
far cannot have such properties. In fact a passive RLC network would have to employ
coupled coils, that is, transformers, in order to produce such a response. To avoid the added
complexity, and the difficulty in obtaining precise element values, it is common to simply
implement a filter of odd order N + 1 when the minimum requirements call for a filter of
even order N . The passive network thus obtained has higher selectivity than the minimum
required.
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We have just seen how to evaluate the input impedance of a double-resistance terminated
passive ladder network knowing its required transfer function. We now apply the approach
to the case of elliptic filters and then proceed to evaluate the L and C circuit elements.

10.12.1 Evaluating the Elliptic LC Ladder Circuit Elements

Elliptic filter transfer functions contain zeros on the s = jω axis. These are implemented
by including an inductance in series with a capacitance as shunt circuits in the ladder as
can be seen in Fig. 10.18 for the case of a fifth order filter.

L2

C4

L5

L4

R2

L1

C2

L3

Z0
Z2

R1

FIGURE 10.18 Fifth order elliptic, passive, double-resistance terminated, network.

Alternatively, they may be implemented as an inductance in parallel with a capacitance
as series circuits along the ladder network structure, seen in Fig. 10.17(b). The impedance
of an LC series combination is given by

Z (s) = Ls+ 1/ (Cs) (10.159)

i.e

Z (jω) = jωL+ 1/ (jωC) (10.160)

which has a zero value if jωL = −1/ (jωC) i.e ω2 = 1/ (LC), or ω = ±1/
√
LC.

This is the circuit resonance frequency, at which the series LC circuit becomes a short
circuit annulling the output, whence the zero of the transfer function. Similarly, the parallel
LC circuit at that same resonance frequency has zero admittance, thus acting as an open
circuit annulling the output. The zeros of elliptic filter transfer function H (s) are therefore
the resonance frequencies at which the LC combination circuits become short circuits.

Knowledge of the zeros of the filter transfer function is the key to dissecting the passive
ladder network into successive simple sections of which the elements can be identified.
Referring to Fig. 10.18, we note that the input impedance, labeled Z0 in the figure, seen to
the right of the source resistance R1, may be written

Z0 (s) = L1s+ Z2 (s) (10.161)

where Z2 (s) is the impedance looking to the right past the impedance L1. At the L2 − C2

shunt circuit resonance frequency ω = ±1/
√
L2C2 the series combination become a short

circuit, so that Z0 (s) = L1s and Z0 (jω) = jωL1. From the value of desired input impedance
Z0 (s) we may evaluate Z0 (jω) and thereof L1 = Z0 (jω) / (jω). We have thus identified
the first circuit component, L1, by short circuiting the rest of the ladder circuit. We now
deduce the value of Z2 (s) as Z2 (s) = Z0 (s) − L1s. This process, together with partial
fraction expansions applied successively, produces the ladder circuit elements.
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Example 10.10 As an illustration, let us consider the design of a passive lowpass fifth
order elliptic filter with pass-band ripple Rp = 0.1dB and ωs = 1.20 and with both source
and load resistances equal to 1 ohm. From the tables, the required transfer function is

H (s) =
K(0.17544s4 + 0.787581s2 + 0.79205)

s5 + 1.69203s4 + 2.84788s3 + 2.65258s2 + 1.77912s+ 0.79205
=△
KN(s)

D(s)

H(0) = K =
R2

R1 +R2
= 0.5

|H (jω)|2 =
1

4

|N (jω)|2

|D (jω)|2
(10.162)

Referring to Fig. 10.18 and proceeding as in the above we write

|T (jω)|2 =
4R1

R2
|H (jω)|2 =

|N (jω)|
|D (jω)|

2

(10.163)

|ρ (jω)|2 = 1− |T (jω)|2 =
|D (jω)|2 − |N (jω)|2

|D (jω)|2
(10.164)

ρ (s) ρ (−s) =
G (s)

D (s)D (−s)=△
P (s)P (−s)
D (s)D (−s) (10.165)

G (s) = P (s)P (−s) = −s10 − 2.8636s8 − 2.96856s6 − 1.31513s4 − 0.210917s2

P (s) = s5 + 1.43117s3 + 0.458157s

ρ (s) = ±P (s)

D (s)

Z0 (s) = R1
1∓ ρ (s)

1± ρ (s)

obtaining, for the case of R1 = 1 ohm,

Z0 (s) =
1.18202s5 + s4 + 2.52895s3 + 1.5677s2 + 1.32225s+ 0.468103

s4 + 0.837288s3 + 1.5677s2 + 0.7807s+ 0.468109

We presently, set out to evaluate the ladder circuit elements
L1, C2, L2, L3, C4, L4, and L5.
As observed above we start by evaluating the zeros of H (s), obtaining the purely imaginary

value sZ,1 = ±j1.72283 and sZ,2 = ±j1.233307.
Since at the resonance frequency ωZ,1, the L2−C2circuit is a short circuit, leading to the

transfer function zero, the input impedance reduces to simply

Z0 (sZ,1) = Z0 (jωZ,1) = jωZ,1L1

wherefrom L1 = 0.91439 H. Having identified the value of L1 we advance one step to the
right toward the load resistance. We have Z2 (s) = Z0 (s)−L1s, where Z2 (s) is the impedance
seen past the inductance L1 as shown in Fig. 10.18.

Referring to Fig. 10.19 we next effect a partial fraction expansion of Y2 (s) = 1/Z2 (s) =
Y2,1 (s) + Y2,2 (s) = C2s

L2C2s2+1 + Y2,2 (s) obtaining

Y2,1 (s) =
1.0651s

0.3369s2 + 1
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Y21

L2

C4

L5

L4

R2

L1

C2

L3R1

Y22

FIGURE 10.19 Admittances Y21 and Y22.

Y22 Z3

C4

L5

L4

R2

L3

Y31

FIGURE 10.20 Impedance Z3 as seen past inductance L3.

C2 = 1.0651f, L2 = 0.3163 H. We next write Y2,2 (s) = Y2 (s) − Y2,1 (s), which is the
admittance seen past the same shunt circuit,as seen in Fig. 10.20.

Next, we repeat the same steps followed above, using the zero sZ,2 to deduce that L3 =
Z2,2 (jωZ,2) / (jωZ,2) = 1.3819 H. The impedance seen to the right of the inductance L3 is
Z3 (s) = Z2,2 (s) − L3s. Proceeding similarly we obtain C4 = 0.6009F, L4 = 1.0942H and
L5 = 0.5299 H. These are the same values within round-off errors as those obtained above
through solution of simultaneous nonlinear equations.

The same approach may be used to evaluate the circuit components of double-resistance
terminated Butterworth, Chebyshev and Bessel filters.

10.13 Table of Elliptic Filter Passive Network Components

Table 10.9 lists the ladder network component values for different orders and ripple speci-
fications of elliptic filters.

10.14 Element Replacement for Frequency Transformation

In this section we study an approach to filter band frequency transformation by direct
replacement of circuit elements.
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TABLE 10.9 Tables of elliptic filter passive ladder network components

1.05

1.10

1.20

1.50
2.00

Rp = 0.1 dB

1.05

1.10

1.20

1.50
2.00

1.05

1.10

1.20

1.50
2.00

3

5

7

1.74777

Rs

3.37427

6.69124

14.84776

24.01036

13.84139

20.05025

28.30311

43.41521

58.90077

30.47003

39.35733

50.96287

72.12860

93.80866

0.355497

0.446263

0.573361

0.770308

0.895444

0.708128

0.812964

0.914410

1.027894

1.087578

0.919372

0.988208

1.050289

1.115931

1.149100

0.153744

0.269928

0.449805

0.745610

0.937589

0.766300

0.924184

1.065159

1.215166

1.293218

1.076593

1.167261

1.248717

1.335541

1.379787

5.395955

2.703534

1.308052

0.477968

0.206971

0.735718

0.493384

0.316277

0.151340

0.073172

0.342199

0.243745

0.161238

0.078568

0.038223

0.355497

0.446263

0.573361

0.770308

0.895444

1.127606

1.224451

1.382011

1.631785

1.793867

1.096230

1.277432

1.483773

1.756865

1.920258

0.201381

0.371933

0.601310

0.935251

1.143296

0.405179

0.597201

0.828694

1.151737

1.352206

4.381161

2.135006

1.093292

0.440827

0.200384

2.208500

1.356812

0.815420

0.371601

0.176920

0.049847

0.291249

0.529738

0.815488

0.977198

0.843355

1.040294

1.287231

1.638271

1.856642

0.503420

0.678807

0.874278

1.125017

1.270227

1.518268

0.966685

0.589181

0.268219

0.126941

0.410979

0.582816

0.753949

0.955875

1.067202

Rp = 1 dB

1.05

1.10

1.20

1.50
2.00

1.05

1.10

1.20

1.50
2.00

1.05

1.10

1.20

1.50
2.00

3

5

7

8.13423

11.47971

16.20894

25.17584

34.45413

24.13454

30.47050

38.75676

53.87453

69.36026

40.9260

49.81636

61.42233

82.58809

104.2681

1.055070

1.225248

1.424504

1.692004

1.851994

1.561908

1.696907

1.828121

1.976867

2.055944

1.821564

1.910406

1.991676

2.078817

2.123292

0.252230

0.374713

0.525437

0.733400

0.859035

0.675600

0.775115

0.870048

0.976938

1.033918

0.863434

0.926617

0.984742

1.047610

1.079929

3.289041

1.947518

1.119769

0.485925

0.225898

0.834490

0.588271

0.387204

0.188245

0.091523

0.426679

0.307046

0.204461

0.100162

0.048836

1.055070

1.225248

1.424504

1.692004

1.851994

1.554596

1.798923

2.090947

2.491606

2.735670

1.676318

1.935794

2.228038

2.613715

2.844461

0.265843

0.399221

0.563467

0.793618

0.935610

0.343810

0.480164

0.644442

0.873931

1.016380

3.318816

1.989070

1.166719

0.519499

0.244865

2.602712

1.687526

1.048557

0.489726

0.235377

0.885281

1.121089

1.380937

1.718891

1.919394

1.236956

1.552761

1.927241

2.440208

2.753060

0.467786

0.592772

0.730117

0.904835

1.633923

1.106990

0.705514

0.333487

1.223619

1.419933

1.625385

0.994075 1.4789830.630984

9

9

1.05 47.27617 1.025971 1.216541 0.205826 1.298028 0.606744 1.367286 0.761141 0.743116 0.844075 0.639189
1.10 58.70704 1.072265 1.277415 0.147725 1.464031 0.790466 0.923202 1.001541 0.635744 1.284733 1.149562
1.20 73.62905 1.112943 1.331389 0.098152 1.642565 0.999643 0.588578 1.290496 0.865383 0.789447 1.392296
1.50 100.8422 1.154932 1.387608 0.047998 1.867654 1.276112 0.279268 1.690553 1.189602 0.365229 1.720367
2.00 128.7170 1.175763 1.415677 0.023389 1.997615 1.440553 0.134707 1.936384 1.392257 0.174866 1.919004

1.05 57.73559 1.954712 0.956725 0.261722 1.948870 0.469508 1.766941 1.126045 0.353925 2.542240 1.409785
1.10 69.16653 2.015030 0.999760 0.188751 2.180479 0.600620 1.215011 1.473389 0.489292 1.669271 1.716911
1.20 84.08855 2.068669 1.038333 0.125854 2.430219 0.749854 0.784644 1.885305 0.653764 1.044986 2.068104
1.50 111.3017 2.124688 1.078952 0.061729 2.746013 0.946963 0.376337 2.450792 0.885313 0.490761 2.536252
2.00 139.1760 2.152745 1.099420 0.030117 2.928713 1.064150 0.182356 2.796797 1.029789 0.236418 2.817483

0.447452 2.010858 0.941339
0.895439 0.576332 0.770143

1.051430 0.368766 0.896971
1.236936
1.338872

0.174372
0.083711

1.041301
1.118424

1.005667 0.160336

1.877166
2.019236

0.737640
0.846524
0.975847
1.046885

0.699624
0.458028
0.221026
0.107061

1.637800
1.795801
1.979582
2.079170

n ws L1 C2 L4C4 L5L2 L3 L6C6 L7 L8C8 L9

10.14.1 Lowpass to Bandpass Transformation

The transformation from a lowpass filter to a bandpass is written

s→ s2 + ω2
0

Bs

ω2
0 = ω1ω2

B = ω2 − ω1.

The transformation of an inductance L is deduced by writing

LS → L
s2 + ω2

0

Bs
= L

(
s

B
+
ω2

0

Bs

)
= L′s+

1

C′B
,

where

L′ =
L

B
, C

′
=

B

Lω2
0

We deduce the transformation of the inductance show in Fig. 10.21(a).
The transformation of the a capacitor C is deduced by writing

1

Cs
←→ 1

C(s2 + ω2
0)/Bs

=
1

C( s
B +

ω2
0

Bs )
=

1

Cs
B +

Cω2
0

Bs

.
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FIGURE 10.21 Component replacement for frequency transformation.

We thus obtain a parallel combination of a capacitor C
′′

= C/B and an inductor L
′′

=
B/(Cω0

2). We deduce the transformation of the capacitance C shown in the figure.

10.14.2 Lowpass to Highpass Transformation

The lowpass to highpass transformation is written

s→ ω0

s

The inductance transformation is deduced by writing

Ls←→ L
ω0

s
=

1
1

Lω0
s

=
1

C ′s

C
′
=

1

Lω0

We deduce the transformation shown in Fig. 10.21(b).
The capacitance transformation is deduced by writing

1

Cs
←→ s

Cω0
= L′s

L′ =
1

Lω0

We deduce the transformation of the capacitance C into the inductance L′ shown in the
same figure.

10.14.3 Lowpass to Band-Stop Transformation

The transformation from lowpass (LP) to bandstop (BS) is written in the form

s→ Bs

s2 + ω2
0

.

Proceeding similarly we obtain the transformations of an inductance L and a capacitance
C to the parallel connection of an inductance L′ and a capacitor C′ where

L′ =
LB

ω2
0

, C′ = 1/(LB)
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and the transformation of a capacitor C into the series connection of an inductance L′ and
a capacitor C′, where

L′ =
1

CB
, C′ =

CB

ω2
0

as can be seen in Fig. 10.21(c).

Example 10.11 Given the lowpass ladder-type Butterworth filter shown in Fig. 10.22, show
how to obtain thereof a bandpass filter having pass-band edge frequencies ω1 = 103r/s and
ω2 = 2× 103r/s.

FIGURE 10.22 Component replacement for frequency transformation.

We have B = ω2 − ω1 = 103r/s, ω2
0 = ω2ω1 = 2 × 106, ω0 = 1.4142× 103, wherefrom

the inductor L2 is replaced by the element in series. L′2 = L2/B = (4/3)/103 = 1.333 ×
10−3H and C′2 = B/(L2ω

2
0) = 103/

[
(4/3)2× 106

]
= 3.75 × 10−4F The capacitance C1is

replaced by the parallel combination of C
′′
1 = C1/B = 0.5/103 = 0.5 × 10−3F and L

′′
1 =

B/(C1ω
2
0) = 103/(0.5 × 2 × 106) = 10−3H Similarly the capacitance C3 is replaced by the

parallel combination

C
′′

3 = C3/B = 1.5/103 = 1.5× 10−3F

and

L
′′

3 = B/(C3ω
2
0) = 103/(1.5× 2× 106) = 0.3333× 10−3H

The resulting circuit is shown in Fig. 10.23.

FIGURE 10.23 Component replacement for frequency transformation.

It can be shown that the filter transfer function is given by

H(s) =
109s3

s6 + 2× 103s5 + 8× 106s4 + 9× 109s3 + 1.6× 1013s2 + 8× 1015s+ 8× 1018
.
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10.15 Realization of a General Order Active Filter

There are several approaches to the realization of active filters of general order n. In one
approach, referred to as the cascade approach, the transfer function is factored into the
product of second order transfer functions if the filter order is even. If it is odd, one more
first order factor representing a real pole results from the factorization. The problem then
reduces to realizing a second order model for the second order factors and a first order model
for the first order one. It is important in designing these filter models to ensure that there is
enough isolation, provided by the employed operational amplifiers, to ensure that they can
be cascaded without loading effects that would alter the behavior of each individual model.

A second approach to filter realization is referred to as the direct approach. The approach
referred to as the state variables approach implements an nth order filter directly using n
integrators. We have encountered this approach in Chapter 8 in connection with the state
space representation of linear systems. In the following we start by considering some details
of this approach with the purpose of realizing filter prototypes to use in implementing filters
of general order. Subsequently, we shall study methods for realizing second order models,
referred to as biquadratic transfer functions, and means of realizing general order filters.

10.16 Inverting Integrator

FIGURE 10.24 Inverting integrator.

A possible implementation of an inverting integrator is shown in Fig. 10.24. Under ideal
conditions, operational amplifiers have an infinite input impedance, implying that the cur-
rent into the amplifier input terminals is nil. This in turn implies that the current I through
the resistance R is the same as that through the capacitor C, as shown in the figure. The
voltage between the ideal operational amplifier’s input terminals tends to zero. A second
assumption is that the circuit has a zero output impedance, thus acting as an ideal voltage
source; providing the necessary isolation if a load is connected to the circuit output. We
can write

I =
Vi

R
= (0− V0)Cs = −V0Cs (10.166)

V0

Vi
= − 1

RCs
. (10.167)
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If RC = 1 the output is simply the negative of the integral of the input. We have seen
in Chapter 8 bloc diagrams showing the structures of filters of general order. The same
structures can be used using inverting instead of noninverting integrators as the following
examples illustrate. We note that if a fourth order system is to be realized as a cascade
of two second order filters we may simply multiply each of the two transfer functions by a
minus sign to account for the inversion of sign of the inverting integral. If the system order
is odd a single amplifier may ultimately be needed to do a sign inversion.

Example 10.12 Show the realization using inverting integrals of a filter having the transfer
function

H(s) =
Y (s)

V (s)
=

−Ks
s2 + a1s+ a0

.

We have

Y (s)
(
s2 + a1s+ a0

)
= −Ks V (s)

s2Y (s) = −a1s Y (s)− a0Y (s)−Ks V (s)

Y (s) = −a1
1

s
Y (s)− a0

1

s2
Y (s)−K 1

s
V (s)

= −1

s
(a1Y +KV )− 1

s2
a0Y = −1

s

[
(a1Y +KV )− 1

s
a0Y

]
.

The filter realization is shown in Fig. 10.25.

FIGURE 10.25 Filter realization using inverting integrals.

Y (s) = K [−W (s) /s] = −K X1 (s)

X1 = W (s) /s, X2 = X1/s

W (s) = V (s)− a1X1 (s)− a0X2 (s) .

The filter structure is shown in Fig. 10.26.

10.17 Biquadratic Transfer Functions

The transfer function of a general order filter may be factored as a product of second order
transfer functions, each representing a pair of complex conjugate poles or a pair of real poles
and, if the filter order is odd, a first order factor representing a real pole.



Passive and Active Filters 715

FIGURE 10.26 An alternative realization.

The general form of a second order transfer function may be written

H (s) =
b2s

2 + b1s+ b0
a2s2 + a1s+ a0

. (10.168)

This is referred to as the general biquadratic form. A normalized lowpass Butterworth filter
of the fourth order, for example, may be constructed as a cascade of two second order filters,
each having a biquadratic transfer function with a2 = 1 and b2 = b1 = 0. In general the
biquadratic function of a lowpass filter such as Butterworth, Chebyshev or Bessel–Thomson
may be put in the form

H (s) = K
b0

s2 + a1s+ a0
= K

ω2
0

s2 + (ω0/Q) s+ ω2
0

(10.169)

where ω0 is the undamped natural frequency and Q the quality factor. We note that

Q =
1

2ζ
(10.170)

b0 = a0 = ω2
0 , a2 = 1, a1 = 2ζω0 =

ω0

Q
, Q =

ω0

a1
. (10.171)

The poles are at

s = −α± jβ = −ζω0 ± jω0

√
1− ζ2 (10.172)

where
α = ζω0 = ω0/ (2Q) (10.173)

β = ω0

√
1− ζ2 = ω0

√
1− 1/ (4Q2) (10.174)

ω0 =
√
α2 + β2 (10.175)

Q =
ω0

2α
=
√
α2 + β2/ (2α) . (10.176)

Replacing s by 1/s we obtain the corresponding highpass filter transfer function, which may
be written in the form

H (s) = K
s2

s2 + a1s+ a0
= K

s2

s2 + (ω0/Q) s+ ω2
0

. (10.177)

A bandpass filter transfer function can be factored into biquadratic expressions of the form

H (s) = K
b1s

s2 + a1s+ a0
= K

(ω0/Q) s

s2 + (ω0/Q) s+ ω2
0

. (10.178)
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A band-elimination transfer function may be factored into biquadratic transfer functions of
the form

H (s) =
s2 + b0

s2 + a1s+ a0
= K

s2 + ω2
0

s2 + (ω0/Q) s+ ω2
0

. (10.179)

An allpass transfer function may factored into biquadratic functions of the form

H (s) = K
s2 − a1s+ a0

s2 + a1s+ a0
= K

s2 − (ω0/Q) s+ ω2
0

s2 + (ω0/Q) s+ ω2
0

. (10.180)

10.18 General Biquad Realization

A general biquadratic transfer function having the form

H (s) = K
b2s

2 + b1s+ b0
s2 + a1s+ a0

(10.181)

may be realized using a single operational amplifier as shown in Fig. 10.27. This negative
feedback RC amplifier network, known as a Single Amplifier Biquad (SAB) was proposed
by Friend, Harris and Hilberman [38], and is related to that of Delyiannis.

FIGURE 10.27 General biquad realization.

Using Thevenin’s theorem the circuit may be replaced by its equivalent shown in Fig.
10.28(a) where

K1 =
R5

R4 +R5
, K2 =

RD

RC +RD
, K3 =

R7

R6 +R7
, (10.182)

R1 =
R4R5

R4 +R5
, r1 =

RCRD

RC +RD
, R3 =

R6R7

R6 +R7
. (10.183)

With K1vin as the only source, and the other two replaced by short circuits, as shown in
Fig. 10.28(b) we may write

V1 = V0
r1

r1 + r2
(10.184)

V2 − V1 = I1
1

C1s
(10.185)
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FIGURE 10.28 (a) Thevenin equivalent; (b) equivalent circuit with K1vin as the only
source.

V2 − V0 = I2
1

C2s
(10.186)

K1Vin = (I1 + I2)R1 + V2 (10.187)

I1 + (V0 − V1) /R2 = V1/R3. (10.188)

Simplifying these equations we obtain

K1Vin =

[(
R1

R3
+
R1

R2
+R1C2s+

R1C2

R3C1
+
R1C2

R2C1
+ 1 +

1

R3C1s
(10.189)

+
1

R2C1s

)
r1

r1 + r2
−
(
R1

R2
− R1C2

R2C1
−R1C2s−

1

R2C1s

)]
V0

and the transfer function is given by

H1 (s) =
V0

K1Vin
. (10.190)

With K3vin as the only source, as shown in Fig. 10.29(a) we may write

V1 = V0
r1

r1 + r2
(10.191)

(V1 − V0) = R2I2 (10.192)

V1 − V2 = I3
1

C1s
(10.193)

K3Vin − I1R3 = V1 (10.194)

I1 = I2 + I3 (10.195)

V0 − V2 = I4
1

C2s
(10.196)

I3 + I4 = V2/R1. (10.197)

Solving these equations we obtain the transfer function in the form

H3 (s) = V0/ (K3Vin) =
1

D3 (s) .
(10.198)
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FIGURE 10.29 Equivalent circuit with (a) K3vin as only source; (b) K2vin as only source.

The denominator D3(s) is given by

D3 (s) =

(
R3

R2
+ C1R2s+ 1− R3C

2
1s

2

C1s+ C2s+ 1/R1

)
r1

(r1 + r2)

− R3

R2
− R3C1C2s

2

C1s+ C2s+ 1/R1
.

(10.199)

With K2vin as the only source, as shown in Fig. 10.29(b) we have

V0 − V1 = I1R2 (10.200)

V0 − V2 = I2
1

C2s
(10.201)

V1 − V2 = I3
1

C1s
(10.202)

I1 = I3 + V1/R3 (10.203)

I2 + I3 = V2/R1 (10.204)

(V0 −K2Vin)

(
r1

r1 + r2

)
+K2Vin = V1. (10.205)

By successive elimination of intermediate variables we obtain the transfer function in the
form

H2 (s) = V0/ (K2Vin) = N2 (s) /D (s) (10.206)

where

N2 (s) = r1 [R2 +R3 + (C1R1R2 + C2R1R2 + C1R1R3 + C2R1R3

+ C1R2R3) s+ C1C2R1R2R3s
2
] (10.207)

and
D (s) = r1R2 − r2R3 + (C1r1R1R2 + C2r1R1R2 − C1R1r2R3

− C2R1r2R3 + C1r1R2R3) s− C1C2R1r2R2R3s
2.

(10.208)

Combining these results we obtain the overall transfer function, which can be written in
the form

H (s) =
β2s

2 + β1s+ β0

α2s2 + α1s+ α0
(10.209)
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and, equivalently, the form

H(s) =
b2s

2 + b1s+ b0
s2 + a1s+ a0

. (10.210)

With ρ = r1/r2 the numerator and denominator coefficients are given by

α2 = −C1C2R1r2R2R3 (10.211)

b2 = β2/α2 = K2 (10.212)

b1 = β1/α2 = − (C1K3ρR1R2 + C2K3ρR1R2 − C1K2R1R2 − C2K2R1R2

+ C1K3R1R2 + C2K3R1R2 − C1K2R1R3 − C2K2R1R3

+ C1K1ρR2R3 + C1K1R2R3 − C1K2R2R3) / (C1C2R1R2R3)
(10.213)

b0 = β0/α2 = − (K3ρR2 −K2R2 +K3R2 −K2R3) / (C1C2R1R2R3) (10.214)

a1 = α1/α2 = − (C1ρR1R2 + C2ρR1R2 − C1R1R3 − C2R1R3

+C1ρR2R3) / (C1C2R1R2R3)
(10.215)

a0 = α0/α2 = (R3 − ρR2) / (C1C2R1R2R3) . (10.216)

To realize a given quadratic transfer function we solve these equations, obtaining

R1 =
a1C2 +

√
a2
1C

2
2 + 4a0C2 (C1 + C2) ρ

2a0C2 (C1 + C2)
(10.217)

R2 =
(b2 −K3) (1 + ρ)

C1C2R1 (a0b2 − a0K3 + b0ρ− a0K3ρ)
(10.218)

R3 =
(b2 −K3) (1 + ρ)

(b0 − a0b2)C1C2R1
. (10.219)

To evaluate K1 we write

(C1C2R1R2R3) b1 + C1K3ρR1R2 + C2K3ρR1R2 − C1K2R1R2

−C2K2R1R2 + C1K3R1R2 + C2K3R1R2 − C1K2R1R3 − C2K2R1R3

−C1K2R2R3 = − (C1ρR2R3 + C1R2R3)K1

(10.220)

obtaining

K1 =
b2 − b1C2R1 + b0C1C2R

2
1 + b0C

2
2R

2
1

1 + ρ
. (10.221)

Example 10.13 Design an active elliptic filter with the following specifications
1. Ripple of 1 dB or less in pass-band 0 6 ω 6 1.
2. At ω = 2.00 the attenuation should be at least 17 dB.
Redo the above to obtain a pass-band cut-off frequency of 1 kHz.
From elliptic tables

H (s) = K
∏

i

s2 + ci
s2 + ais+ bi

.

With n = 2, Rp = 1 dB, Rs = 17.095 dB, ωs = 2.00.

Hnorm (s) =
0.1397s2 + 1.0427

s2 + 0.998942s+ 1.170077
= 0.1397

s2 + 7.464102

s2 + 0.998942s+ 1.170077
.

Denormalization: We have

ωc = 2πfc = 2π × 1000 = 2000π r/s.
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Replacing s by s/(2000π) we have

H (s) = K
[s/(2000π)]

2
+ 7.464102

[s/(2000π)]
2

+ 0.998942s/ (2000π) + 1.170077

H(s) =
0.1397s2 + 4.1166× 107

s2 + 6.2765× 103s+ 4.6193× 107

i.e.
b2 = 0.1397, b1 = 0, b0 = 4.1166× 107,

a1 = 6.2765× 103, a0 = 4.6193× 107.

We deduce that K2 = b2 = 0.1397 and we have four nonlinear equations in the eight
unknowns C1, C2, K1, K3, ρ, R1, R2, R3. We let C1 = C2 = 1 F, and note that we should
have 0 6 K1 6 1 and 0 6 K3 6 1.

For the normalized transfer function we obtain with K3 = 0.1, C1 = C2 = 1 F and
ρ = 0.8

R1 = 0.83586 Ω, R2 = 0.108627 Ω, R3 = 0.097231 Ω

K1 = 0.887076, K2 = 0.1397.

For the denormalized transfer function with the same values of K3, C1, C2 and ρ we find

R1 = 1.33031× 10−5 Ω, R2 = 1.72883× 10−5 Ω, R3 = 1.54747× 10−5 Ω

K1 = 0.887076, K2 = 0.1397.

If instead we let C1 = C2 = 1µF we would obtain for the normalized prototype R1 =
835.86 k Ω, R2 = 108.627 k Ω, R3 = 97.231 k Ω, K1 = 0.887076, K2 = 0.1397 and for
the denormalized filter the values R1 = 133.031Ω, R2 = 17.2883Ω, R3 = 15.4747Ω, and
the same values of K1 and K2.

Example 10.14 Design an active bandpass fourth order Chebyshev filter with pass-band
ripple of 1 dB and pass-band edge-frequencies ωL = 1 r/s and ωH = 3 r/s.

The bandpass filter transfer function is given by

H (s) =
3.9305s2

s4 + 2.1955s3 + 10.4100s2 + 6.5864s+ 9
.

Factoring H (s) we can write

H (s) =
−1.9825s

(s2 + 1.6180s+ 8.4048)

−1.9825s

s2 + 0.5775s+ 1.0708
.

Writing H (s) = H1 (s)H2 (s) we have

b2 = 0, b1 = −1.9825, b0 = 0

for both transfer functions H1 (s) and H2 (s). The denominator coefficients are a1 = 1.6180,
a0 = 8.4048 for H1 (s) and a1 = 0.5775, a0 = 1.0708 for H2 (s). We obtain for the
realization of H1(s)

R1 = 0.13904Ω, R2 = 0.855719Ω, K1 = 0.250589

and for H2(s)
R1 = 0.38953Ω, R2 = 2.39745Ω, K1 = 0.702041.
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10.19 First Order Filter Realization

As noted earlier if the filter has a real pole, there may arise the need for a simple realization
of first order filter section. A possible passive circuit realization is shown in Fig. 10.30(a,b).
The transfer functions of these circuits are, respectively,

H1 (s) =
1/(RC)

s+ 1/(RC)

and

H2 (s) =
s

s+ 1/(RC)

the second having a zero at s = 0.

FIGURE 10.30 Two circuit realizations of first order filters.

We note that the first is a lowpass filter while the second is a highpass one.It is noted that if
such a filter section is included as the last stage of a cascade of second order active networks
then the preceding stage output will provide the required loading isolation between stages.

Active first order filters using one operation amplifier are easy to realize. Consider the
circuit with two impedances shown in Fig. 10.31.

FIGURE 10.31 Active first order filter.

We can write

I1 (s) = Vi (s) /Z1 (s) = [0− Vo (s)] /Z2 (s) . (10.222)

The circuit transfer function is

H (s) =
Vo (s)

Vi (s)
= −Z2 (s)

Z1 (s)
. (10.223)
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If Z1 (s) = Z2 (s) = R we have an inverter with

H (s) =
Vo (s)

Vi (s)
= −1. (10.224)

If Z1 (s) = R and Z2 (s) =
1

Cs
then

H (s) = − 1

RCs
(10.225)

V0 (s) = − 1

RCs
Vi (s) (10.226)

i.e.

v0 (t) = − 1

RC

ˆ

vidt (10.227)

and the circuit is a simple integrator as seen earlier.
To realize a transfer function H (s) that serves as a general first order filter we seek a

solution leading to the general first order transfer function

H (s) = −K s+ b0
s+ a0

. (10.228)

The negative sign is due to the fact that the circuit produces negative gain. Writing

H (s) =
−Z2 (s)

Z1 (s)
=
−K
s+ a0

(s+ b0) (10.229)

we can write

Z2 (s) =
K

s+ a0
(10.230)

Z1 (s) =
1

s+ b0
=

1
1

1/s
+ b0

(10.231)

Y1 (s) = 1/Z1 (s) =
1

1/s
+ b0 = Y11 + Y12 = 1/Z11 + 1/Z12 (10.232)

Z11 = 1
s , Z12 = 1/b0, i.e. Z1 (s) is a capacitor C1 = 1 in parallel with a resistor

R1 = 1/bo Ω. Similarly

Z2 =
K

s+ ao
=

1

s/K + ao/K
=

1
1

K/s
+ ao/K

(10.233)

Y2 =
1

K/s
+ ao/K = Y21 + Y22 (10.234)

Z21 = 1/Y21 =
K

s
=

1

(1/K) s
=

1

Cs
(10.235)

Y22 = ao/K, Z22 = K/ao (10.236)

i.e. Z2 is a capacitor C2 = 1/K F, in parallel with a resistor R2 = K/ao Ω. The circuit is
shown in Fig. 10.32.
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FIGURE 10.32 Realization of a first order filter.

10.20 A Biquadratic Transfer Function Realization

An approach to the realization of biquadratic functions is shown in Fig. 10.33. In this figure,
the R-C circuit has the two inputs vi and vo. Its output v1, provides positive feedback to the
operational amplifier being connected to its positive input terminal. A negative feedback to
the operational amplifier is provided by the resistors RA and RB through a connection to
the operational amplifier’s negative input terminal.

FIGURE 10.33 Biquadratic transfer function realization.

Assuming that the operational amplifier has infinite gain, the voltage between its termi-
nals and the current through them are assumed to be zero. The voltage at point A in the
figure is therefore equal to v1. We can write

V1 (s) = V0 (s)
RA

RA +RB
. (10.237)

Letting ρ = RA/RB we have

V1 (s) = V0 (s)
ρ

1 + ρ
. (10.238)

Let Hi,1 (s) be the feed forward transfer function Hf (s) of the RC circuit and Ho,1 (s) be
its feedback transfer function Hb (s). We have

Hf (s) = Hi,1 (s) =
V1 (s)

Vi (s)

∣∣∣∣
Vo(s)=0

(10.239)
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Hb (s) = Ho,1 (s) =
V1 (s)

Vo (s)

∣∣∣∣
Vi(s)=0

. (10.240)

Using a common denominator D (s), we can write Hf (s) and Hb (s) in the form

Hf (s) = Nf (s) /D (s) , Hb (s) = Nb (s) /D (s) (10.241)

and we have
V1 (s) = Hf (s) Vi (s) +Hb (s)Vo (s) (10.242)

i.e.
ρ

1 + ρ
Vo (s) = Hf (s)Vi (s) +Hb (s)Vo (s) (10.243)

[ρ/ (1 + ρ)−Hb (s)]Vo (s) = Hf (s)Vi (s) . (10.244)

The overall transfer function is

H (s) =
Vo (s)

Vi (s)
=

Hf (s)

[ρ/ (1 + ρ)]−Hb (s)
=

Nf (s) /D (s)

[ρ/ (1 + ρ)]−Nb (s) /D (s)

=
(1 + 1/ρ)Nf (s)

D (s)− (1 + 1/ρ)Nb (s)
. (10.245)

Among the many possible choices of the R-C circuit an example is shown in Fig. 10.34.
The feed forward and feedback transfer functions Hf (s) and Hb (s) are found by grounding
the terminals marked (1) and (2), resulting in the two circuits shown in Fig. 10.35(a,b)
respectively.

FIGURE 10.34 Possible R-C circuit for biquadratic transfer function realization.

Let the outputs of these two circuits be labeled v′1 and v′′1 as shown in the figure. We
have, from Fig. 10.35(a)

Hf (s) =
V ′1 (s)

Vi (s)
=

z3z4
z1z4 + z1z2 + z1z3 + z2z4 + z3z4

(10.246)

Hb (s) =
z1z3

z1z4 + z1z2 + z1z3 + z2z4 + z3z4
. (10.247)

With
Hf (s) = Nf (s) /D (s) (10.248)
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FIGURE 10.35 Result of grounding the terminals marked (1) and (2).

Hb (s) = Nb (s) /D (s) (10.249)

H(s) =
(1 + 1/ρ)Nf(s)

D(s)− (1 + 1/ρ)Nb(s)

=
(1 + 1/ρ)z3z4

z1z4 + z1z2 + z1z3 + z2z4 + z3z4 − (1 + 1/ρ)z1z3
. (10.250)

Letting z1 = R1, z2 = R2, z3 =
1

C2s
, z4 =

1

C1s
we obtain the circuit shown in Fig.

10.34 known as the lowpass Sallen–Key circuit.

10.21 Sallen–Key Circuit

FIGURE 10.36 Sallen Key circuit.

The Sallen Key circuit is shown in Fig. 10.36.We can write the circuit equations

V2 = KV1 (10.251)

V1vi = V2
R1

R1 +R2
(10.252)

v2 = Av3, v3 = v2
RA

RA +RB
(10.253)
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Let

α =
RA +RB

RA
= 1 +

RB

RA
(10.254)

V2 (s)− V4 (s) =
1

C1s
I2 (10.255)

(V1 − V4) = R1V1 (10.256)

(I1 + I2)R2 = V4 − V3 (10.257)

V3 = (I1 + I2)
1

C2s
=
V4 − V3

R2

1

C2s
= V2 ×

RA

RA +RB
(10.258)

V3

(
1 +

1

R2

)
=

V4

R2C2s
(10.259)

V4 = (R2C2s+ C2s)V3 = (R2C2s+ C2s)V2/α (10.260)

V4 = V1 −R1I1 (10.261)

I1 = I3 − I2 (10.262)

V1 − V4

R1
=

V4

R2 +
1

C2s

− (V2 − V4)C1s (10.263)

V1 − V4

R1
=

V4

R2 +
1

C2s

− (V2 − V4)C1s =
V4C2s

1 +R2C2s
− (V2 − V4)C1s

=
V4C2s− (V2 − V4)C1s (1 +R2C2s)

1 +R2C2s

=
V4C2s− V2C1s (1 +R2C2s) + V4C1s (1 +R2C2s)

1 +R2C2s

=
V4 [C2s+ C1s (1 +R2C2s)]− V2C1s (1 +R2C2s)

1 +R2C2s
(10.264)

(V1 − V4) (1 +R2C2s) = V4 [R1C2s+R1C1s (1 +R2C2s)]

−V2R1C1s (1 +R2C2s) (10.265)

V1 (1 + R2C2s) = V4 [(1 +R2C2s) +R1C2s+R1C1s (1 +R2C2s)]

−V2R1C1s (1 +R2C2s)

=
(R2C2s+ C2s)

A
V2 [(1 +R2C2s) +R1C2s

+R1C1s (1 +R2C2s)]− V2R1C1s (1 +R2C2s) (10.266)

V1 =
V2

α
[1 +R2C2s+R1C2s+R1C1s (1 +R2C2s)]− V2R1C1s

= V2

[
1 +R2C2s+R1C2s+R1C1s+R1R2C1C2s

2

α
− R1C1s

]

= V2

[
1 + (R2C2 +R1C2 +R1C1) s+R1R2C1C2s

2 −R1C1αs

α

]
(10.267)



Passive and Active Filters 727

H (s) =
V2

V1
=

α

1 + (R2C2 +R1C2 +R1C1) s+R1R2C1C2s2 −R1C1αs

=
α/ (R1R2)

1

R1R2
+

(
C2

R1
+
C2

R2
+
C1

R2

)
s+ C1C2s2 −

C1α

R2
s

=
αG1G2

G1G2 + (C2G1 + C2G2 + C1G2) s+ C1C2s2 − C1G2αs
(10.268)

which has the form

H (s) =
K

s2 + a1s+ a0
=

K

s2 + (ω0/Q) s+ ω2
0

(10.269)

with
K = α/ (R1R2C1C2) (10.270)

a1 =
1

C1R1
+

1

C1R2
+

1

C2R2
− α

C2R2
(10.271)

a0 =
1

R1R2C1C2
(10.272)

α = 1 +RB/RA (10.273)

ω0 =
√
a0, Q = ω0/a1 =

√
a0/a1. (10.274)

We have two equations in a0 and a1 and the five unknowns C1, C2, R1, R2 and α. We may
arbitrarily set C1 = C2 = C obtaining

K = α/
(
R1R2C

2
)

(10.275)

a0 =
1

R1C
+

2− α
R2C

, (10.276)

Example 10.15 Show the active filter realization of a fourth order Butterworth filter pro-
totype using the Sallen-Key configuration. Repeat to obtain the same filter with a cut-off
frequency of 1 kHz.

The prototype filter transfer function can be factored into quadratic forms

H (s)=△H1 (s)H2 (s) =
1

s2 + 0.7654s+ 1

1

s2 + 0.8478s+ 1
.

For
H1 (s) , K = 1, a1 = 0.7654, a0 = 1.

For
H2 (s) , K = 1, a1 = 1.8478, a0 = 1.

Taking C1 = C2 = 1 F and RA = RB, i.e.

α = 2

we have for H1 (s)

R1 = 1/0.7654 = 1.3066 Ω, R2 = a1/a0 = 0.7654 Ω.

For H2 (s) we have

R1 = 1/1.8478 = 0.5412 Ω, R2 = 1.8478 Ω.
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Replacing ω by ω/ (2π × 1000) we obtain the denormalized transfer function

H (s) =
1.5585× 1015

s4 + 1.6419× 104s3 + 1.3479× 108s2 + 6.4819× 1011s+ 1.5585× 1015

H1 (s) =
K1

s2 + 1.161× 104s+ 3.9478× 107

H2 (s) =
K1

s2 + 4.8089× 103s+ 3.9478× 107

where
K1 = 3.9478× 107.

For H1 (s) and H2 (s) we have a0 = b0 = 3.9478 × 107 and a1 = 1.161 × 104 and
a1 = 4.8089× 103, respectively. We obtain for H1 (s):

R1 = 8.6134× 10−5Ω

R2 = 2.9408× 10−4Ω

and for H2 (s)
R1 = 2.0795× 10−4Ω

R2 = 1.2181× 10−4Ω.

10.22 Problems

Problem 10.1 A system is described by the differential equation

a1ẏ + a0y = b0x

and has a transfer function H1 (s). A second system is described by the equation

a2ÿ + a1ẏ + a0y = b1ẋ+ b0x

and has a transfer function H2 (s).
Using these two systems we need to obtain a third order filter which should have the

transfer function

H (s) =
K (s− z1)

(s− p1) (s− p∗1) (s− p3)

where
z1 = −γ, p1 = −α1 + jβ1, p3 = −α2

Draw the block diagram of this filter and evaluate the coefficients a0, a1, a2, b0 and b1
which produce the desired filter.

Problem 10.2 Consider a Butterworth filter of order n = 5. Write its magnitude-squared
spectrum |H(jω)|2. Deduce thereof the function F (s) = H(s)H(−s). Deduce the required
input impedance Z(s) for a passive ladder network realization. Sketch the ladder network.
Perform a continued-fraction expansion and deduce the values of the passive ladder network
components.
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Problem 10.3 Find the input impedance Z(s) of a passive ladder network corresponding
to a lowpass Butterworth filter of order n = 5 using the matrix evaluation approach.

Problem 10.4 Evaluate the required input impedance Z(s) of a passive ladder network for
a Chebyshev filter of order n = 10 and pass-band ripple of 1 dB. Perform a continued-
fraction expansion deducing the values of the circuit components.

Problem 10.5 For a delay normalized Bessel lowpass filter prototype of order n = 5 write
the value of the transfer function H(s) and the input impedance Z(s) of a corresponding pas-
sive ladder network. Show a continued-fraction expansion and deduce the circuit components
with reference to a sketch of the circuit.

Problem 10.6 For an elliptic filter lowpass prototype of order n = 7, a pass-band ripple
of Rp = 0.1 dB, a stop band edge frequency of Ws = 1.05, sketch a realization as a passive
ladder network and deduce its components.

Problem 10.7 Design an active elliptic filter using the SAB circuit of Fig. 10.27 with the
following specifications

1. Ripple of 1 dB or less in the pass-band 0 6 ω 6 1.
2. At ω = 1.5 the attenuation should be at least 11 dB.
Assume C1 = C2 = 1 F, K3 = 0.1 and ρ = 0.8.
Re-do the above to obtain a pass-band cut off frequency of 200 Hz. Assume C1 = C2 =

1µF, K3 = 0.1 and ρ = 0.8.

Problem 10.8 Using the Sallen Key circuit design an active lowpass Chebyshev filter with
pass-band ripple of 1 dB, a minimum attenuation in the stop band of 50 dB and with pass-
band edge frequency ω = 1 and stop band edge frequency of ω = 4.

10.23 Answers to Selected Problems

Problem 10.1 See Fig. 10.37.

H (s) = H1 (s)H2 (s)

where

H1 (s) =
K

s+ α2
=

b0
a1s+ a0

H2 (s) =
s+ γ

s2 + s c1 + c0
=

b1s+ b0
a2s2 + a1s+ a0

For H2 (s):
b1 = 1, b0 = γ, a2 = 1, a1 = c1, a0 = c0

For H1 (s):
b0 = K, a1 = 1, a0 = α2

Problem 10.2

Z(s) = 2

5∑

i=1

ri
s− pi

=
0.6472s4 + 2.094s3 + 3.142s2 + 2.589s+ 1

s5 + 3.236s4 + 5.236s3 + 5.236s2 + 3.236s+ 1
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FIGURE 10.37 Block diagram, Problem 10.1.

The input admittance of the fifth order ladder network is Y (s) = 1/Z(s). Performing a
continued partial fraction expansion we obtain the successive quotients:
Q = {1.5451s, 1.6944s, 1.3820s, 0.8944s, 0.3090s}. The successive element values of the

ladder network shown in Fig. 10.1 (c), which should be re-drawn for n = 5, are therefore
C1 = 0.3090, L2 = 0.8944, C3 = 1.3820, L4 = 1.6944, C5 = 1.5451.

Problem 10.3

Z(s) =
0.6472s4 + 2.0944s3 + 3.1416s2 + 2.5889s+ 1

s5 + 3.236s4 + 5.236s3 + 5.236s2 + 3.236s+ 1

The input admittance of the fifth order ladder network is Y (s) = 1/Z(s). Performing a
continued partial fraction expansion we obtain the successive quotients:
Q = {1.5451s, 1.6944s, 1.3820s, 0.8944s, 0.3090s}. The successive element values of the lad-
der network shown in Fig. 10.1 (c), which should be re-drawn for n = 5, are therefore
C1 = 0.3090, L2 = 0.8944, C3 = 1.3820, L4 = 1.6944, C5 = 1.5451.

Problem 10.4
The filter transfer function to be realized has the form H(s) = K/D(s), where

D(s) = s10 + 0.9159s9 + 2.919s8 + 2.108s7 + 2.982s6 + 1.613s5

+1.244s4 + 0.4554s3 + 0.1825s2 + 0.0345s+ 0.004307

and K = 0.004307. The coefficient a0 to a9 are given, respectively, by
ak = {0.0043067, 0.041402, 0.14919, 0.4959, 0.78538, 1.5881, 1.2995, 1.8667, 0.66366, 0.72457}.
The denominator polynomial of the input impedance is the same denominator polynomial
D(s) of the transfer function. We effect a continued fraction expansion, obtaining the same
circuit component values as listed in Chapter 10, Table 10.14.
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Problem 10.5
H(s) = 945/(s5 + 15s4 + 105s3 + 420s2 + 945s+ 945).
The coefficient a0 to a9 are given, respectively, by ak = {945, 582.41, 162.41, 24.074, 1.6049, }.

The denominator polynomial of the input impedance is the same denominator polynomial
D(s) of the transfer function. We effect a continued fraction expansion, obtaining the same
circuit component values as listed in Chapter 10, Table 10.15.
Problem 10.6

Z0 = Zin − 1=△Nz(s)/Dz(s)

where

Nz(s) = 0.3176 + 0.630497s+ 1.6748s2 + 1.45543s3 + 2.36087s4 + 0.822248s5 + s6

and

Dz(s) = 0.3176+1.03853s+1.6748s2+3.35783s3+2.36087s4+3.52349s5+1.s6 +1.20839s7

and evaluating the zeros of H(s) we apply the same approach as in the example to short
circuit the remainder of the network, deducing successively the series inducatances, applying
a partial fraction, deducing the shunt circuits’ L and C components. We obtain the values
L1, C2, L2, L3, C4, L4, L5, C6, L6, L7 equal respectively to

0.9194, 1.0766, 0.3422, 1.0962, 0.4052, 2.2085, 0.8434, 0.50342, 1.5183, 0.4110.

Problem 10.7

H(s) =
0.2756s2 + 1.0823629

s2 + a1s+ a0
=

b2s
2 + b0

s2 + a1s+ a0

K = b2 = 0.2756172.
With C1 = C2 = 1 F, K3 = 0.1, ρ = 0.8. we obtain K2 = 0.2756172, R1 = 0.782821,

R3 = 0.54011, R2 = 0.411207, K1 = 0.890099.
The denormalized filter transfer function is given by

H(s) =
427300 + 0.275617s2

479438 + 552.555 + s2

With C1 = C2 = 10−6 F we obtain K2 = 0.2756172, R1 = 1245.9, R3 = 859.611, R2 =
654.457, K1 = 0.890099.

Problem 10.8 For H1(s): K = b0 = 0.4956, b1 = b2 = 0, a0 = 0.2794, a1 = 0.6737, a2 = 1,
K = b0 = 0.4956, R2 = 1/a1 = 1.4843, R1 = 1/(a0 ∗ R2 ∗ C1 ∗ C2) = 2.4112, α = 1.7739,
RB/RA = 0.7739.

For H2(s): Taking K = 1 we have b0 = 0.4956, b1 = b2 = 0, a0 = 0.9865, a1 = 0.2791,
a2 = 1, K = b0 = 0.4956, R2 = 1/a1 = 3.5829, R1 = 1/(a0 ∗ R2 ∗ C1 ∗ C2) = 0.2829,
α = 1.0137, RB/RA = 0.0137. We have used the value K = 1 for the realization of the
second transfer function H2(s) rather than K = b0 = 0.4956 to avoid obtaining negative
value for the ration RB/RA. Such replacement of the gain value does not affect the desired
frequency response characteristic response.
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11

Digital Filters

11.1 Introduction

In this chapter we study different approaches to the design of digital filters. There are
in general three types of structures of digital filters. As we shall see in what follows, finite
impulse response (FIR) filters are nonrecursive in structure and are all-zero, no poles, filters.
They are also referred to as moving average (MA) type filters. All-pole, no zero, filters are
recursive in structure and are also referred to as autoregressive (AR) type filters. Infinite
impulse response (IIR) filters are recursive in structure and are pole-zero filters, also referred
to as autoregressive moving average (ARMA) type filters. We shall study methods for
deducing the required transfer function from the continuous filter counterpart or otherwise.
Lattice type filter structures are subsequently introduced. Least squares approaches to the
design of digital filters are subsequently presented.

11.2 Signal Flow Graphs

Similarly to continuous-time systems a discrete-time system may be represented by a signal
flow graph. Such a graph is composed of nodes and directed branches. If a system of transfer
function H (z) receives an input v [n] and has an output y [n], then

Y (z) = V (z)H (z) (11.1)

a relation that can be represented by a directed branch labeled H(z), with input node
marked v[n] and output node y[n]. If the system simply multiplies the input v [n] by a
constant α, i.e. y [n] = α v [n] the relation can be represented by a directed branch with an
associated weighting coefficient, or weighting constant equal to α, as shown in Fig. 11.1(a).
The input node is called a source node. The output node is a sink node. A node from which
directed branches emanate is a branch point. A node to which more than one directed
branch converge is an adder, as shown in Fig. 11.1(b), where the output is the weighted
sum y[n] = av1[n] + bv2[n].

FIGURE 11.1 Flow diagram symbols for weighting, addition and delay.
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An important element of a signal flow graph is the delay element. We note that the
transfer function of a system that applies a unit delay to its input is H (z) = z−1. If
the input is v [n], the output is y [n] = v [n− 1] since in the z-domain this means that
Y (z) = z−1V (z). The signal flow graph is therefore a directed branch of weighting constant
z−1 as shown in Fig. 11.1(c).

11.3 IIR Filter Models

We have seen in Chapter 6 that the input–output relation of an IIR filter may be written
in the form

y[n] = −
N∑

k=1

aky[n− k] +

M∑

k=0

bkv[n− k]. (11.2)

and in the z-domain

Y (z) = −
N∑

k=1

akz
−kY (z) +

M∑

k=0

bkz
−kV (z). (11.3)

The transfer function may be written in the form

H(z) =
Y (z)

V (z)
=

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz−k

=
b0 + b1z

−1 + b2z
−2 + . . .+ bMz−M

1 + a1z−1 + a2z−2 + . . .+ aNz−N
. (11.4)

In what follows we study different structures for the implementation of IIR filters.

11.4 First Canonical Form

The input–output relation as described by the difference Equation (11.2), or the z-domain
Equation (11.4), can be represented graphically by a signal flow graph as shown in Fig. 11.2.
The diagram is constructed by drawing the input line v [n] ←→ V (z) and the output
line y [n] ←→ Y (z). By adding delay elements, of transfer function z−1, the flow graph
generates v [n− 1]←→ z−1V (z), v [n− 2]←→ z−2V (z), . . . as delayed values of the input
v [n]. Similarly, y [n− 1] ←→ z−1Y (z), y [n− 2], . . . are generated as delayed versions of
y[n], as shown in the figure. The filter structure shown in Fig. 11.2 is known as the first
canonical form, or direct-form I.

11.5 Transposition

From system theory if all arrows of a signal flow graph are reversed the resulting flow graph
has the same transfer function as that of the original one.
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FIGURE 11.2 Digital IIR filter first canonical form.

FIGURE 11.3 First canonical form with order of poles and zeros reversed.

If such process of arrow-reversal is applied to the flow graph of Fig. 11.2 the result is the
flow graph shown in Fig. 11.3. Note that arrow-reversal implies that branch points become
summing points and vice versa. The resulting structure is also known as the transposed
direct-form I. Alternatively, we can obtain the structure shown in Fig. 11.3 by writing

H(z) =

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz
−k

= H1(z)H2(z) (11.5)

where

H1(z)=△
1

1 +

N∑

k=1

akz
−k

(11.6)

H2(z)=△
M∑

k=0

bkz
−k. (11.7)



736 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

Let

H1(z) =
W (z)

V (z)
(11.8)

and

H2(z) =
Y (z)

W (z)
. (11.9)

We have

W (z) +W (z)

N∑

k=1

akz
−k = V (z) (11.10)

i.e.

W (z) = −
N∑

k=1

{akW (z)} z−k + V (z) (11.11)

w[n] = −
N∑

k=1

akw[n− k] + v[n] (11.12)

Y (z) =

M∑

k=0

{bkW (z)} z−k (11.13)

and

y[n] =

M∑

k=0

bkw[n− k]. (11.14)

Denoting by w the central branch point in Fig. 11.3 we note that these equations are well
described by this figure.

11.6 Second Canonical Form

Equations (11.11) and (11.13) can be rewritten in the forms

W (z) = V (z)−
N∑

k=1

ak

{
W (z)z−k

}
(11.15)

and

Y (z) =
M∑

k=0

bk
{
W (z)z−k

}
. (11.16)

These equations lead to the structure shown in Fig. 11.4 which is drawn for the case M = N .
This form, known as the second canonical form or the direct-form II, can also be obtained
from the first canonical form of Fig. 11.2 by viewing the structure as the cascade of two
systems linked together by the middle point of the structure. By simply reversing the order
of these two systems the second canonical form is obtained. We note that this form is
optimal in the sense that it employs the least number of delay elements

(
z−1
)
, equal to the

system order.
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FIGURE 11.4 Second canonical form.

11.7 Transposition of the Second Canonical Form

Rewriting Equation (11.3) in the form

Y (z) =

N∑

k=1

{bkV (z)− akY (z)} z−k + b0V (z) (11.17)

y[n] =
N∑

k=1

{bkv[n− k]− aky[n− k]}+ b0v[n] (11.18)

we obtain the filter structure shown in Fig. 11.5.

FIGURE 11.5 Second canonical form with orders of poles and zeros reversed.

This structure can also be obtained by the transposition (arrow-reversal) of the structure
of Fig. 11.4. It is also known as the transposed direct-form II.
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11.8 Structures Based on Poles and Zeros

A given rational transfer function H (z) may be factored into the product of simple first
and/or second order systems, or decomposed into the sum of such systems.

11.9 Cascaded Form

The transfer function H(z) given by Equation (11.4) may be factored into the form

H (z) = G
∏

i

Hi (z) (11.19)

where G is the gain factor. Each Hi(z) is a first or second order system transfer function.
Real poles lead to first order systems; complex conjugate poles combine to form second
order systems.

If z = pi is a real pole the resulting transfer function has the general form

Hi (z) =
1− ziz

−1

1− piz−1
. (11.20)

Employing the second canonical form we obtain the structure of this first order filter shown
in Fig. 11.6(a).

FIGURE 11.6 First and second order filter prototypes.

Note that if Hi (z) has no zero, that is, if the value zi in the numerator of Hi (z) is zero,
the branch having a coefficient −zi in the figure is eliminated.

A transfer function Hk (z) having two conjugate zeros zk and z∗k, and two conjugate poles
pk and p∗k may be written in the form

Hk (z) =
1−Akz

−1 +Bkz
−2

1− Ckz−1 +Dkz−2
. (11.21)

This second order filter structure is shown in Fig. 11.6(b).
In general a system transfer function may be decomposed in the form

H (z) = G
∏

i

1− ziz
−1

1− piz−1

∏

k

1−Akz
−1 +Bkz

−2

1− Ckz−1 + dkz−2
(11.22)

and has the form of a cascade of first and second order systems as those shown in Fig. 11.6.
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11.10 Parallel Form

A partial fraction expansion of the filter transfer function H (z) leads to a parallel filter
structure. If the order of the numerator of H (z) is greater than that of the denominator, a
long division is performed. The result is the decomposition

H (z) =
∑

i

eiz
−i +

∑

j

Aj

1− pjz−1
+
∑

k

Ek

(
1− zkz

−1
)

1− ckz−1 +Dkz−2
. (11.23)

A filter having such parallel structure is shown in Fig. 11.7.

FIGURE 11.7 Parallel filter realization.

11.11 Matrix Representation

Another distinct model of such discrete-time systems is the state space model.

The approach may be illustrated using for example the IIR second canonical form which
is reproduced in Fig. 11.8.

This state space model and alternative ones as well as matrix state space equations that
can be deduced thereof are described and can be viewed in Chapter 8.
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FIGURE 11.8 Matrix representation using state variable assignment.

11.12 Finite Impulse Response (FIR) Filters

As we have seen in Chapter 6, if the input to an FIR filter is x[n] and its output is y[n] we
have

H (z) = Y (z)/X(z) =

N−1∑

n=0

h [n]z−n (11.24)

y [n] =

N−1∑

k=0

h [k]x [n− k] . (11.25)

The filter can be realized using the structure shown in Fig. 11.9. obtaining a dual structure.

z -1 z -1z -1

h[0]

h[1] h[2]

y  n[ ]

h N[ -1]

x n[ ]

FIGURE 11.9 Finite impulse response filter structure.

Example 11.1 Show the structure of an FIR filter of which the impulse response is a
10-point truncation of

h∞ [n] = (0.5)
n
u [n] .

We have

h [n] = h∞ [n]R10 [n]
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where

R10 [n] = u [n]− u [n− 10]

h [n] = (0.5)
n
R10 [n] .

The filter structure is the same as shown in Fig. 11.9, with the coefficients given by

h [0] = 1, h [1] = 0.5, h [2] = 0.52 = 0.25

h [3] = 0.53 = 0.125, h [4] = 0.54 = 0.0625, h [5] = 0.0313

h [6] = 0.0157, h [7] = 0.0079, h [8] = 0.0039, h [9] = 0.0019.

We note that if an FIR filter’s transfer function is factored by evaluating its roots then
it can be expressed in the general form

H (z) = G
∏

i

(
1− ziz

−1
)∏

i

(
1−Akz

−1 +Bkz
−2
)

(11.26)

and can be realized as a cascade of first and second order zeros-only sections.

11.13 Linear Phase FIR Filters

FIR filters can be so designed as to have a linear phase frequency response. Note that if
the impulse response is even-symmetric, the system frequency response is real. If the same
symmetric impulse response is time-delayed, the system frequency response will have linear
phase. Therefore, establishing even symmetry we write

h(n) = h(N − 1− n). (11.27)

The symmetry around the center of h [n] is shown for the odd and even cases, N = 7 and
N = 8, respectively, in Fig. 11.10. The case of odd symmetry is similarly analyzed and will
be dealt with in Section 11.46.

FIGURE 11.10 Symmetric impulse response for odd and even order.

Note that the center of symmetry is the point n = (N − 1) /2 for N odd and the
midpoint between n = (N/2)− 1 and N/2 for N even. Such a shift to the right of h [n] by
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about N/2 point leads to causal impulse response that is nil for n < 0, hence to a realizable
filter. We have

H (z) =

N−1∑

n=0

h (n)z−n. (11.28)

For even N
H (z) = h [0]

(
z0 + z−(N−1)

)
+ h [1]

(
z−1 + z−(N−2)

)
+ . . .

+ h [N/2− 1]
(
z−(N/2−1) + z−N/2

)

=

N/2−1∑

n=0

h [n]
(
z−n + z−(N−1−n)

)
.

(11.29)

For odd N

H (z) = h [0]
(
z0 + z−(N−1)

)
+ . . .+ h [(N − 1) /2− 1]

×
{
z−(N−3)/2 + z−(N+1)/2

}
+ h [(N − 1) /2]

(
z−(N−1)/2

)

=

(N−3)/2∑

n=0

h [n]
(
z−n + z−(N−1−n)

)
+ h [(N − 1) /2] z−(N−1)/2

(11.30)

and Y (z) = X(z)H(z). The filter structure may be represented as shown in Fig. 11.11. For
the odd N case the structure is shown in Fig. 11.12.

FIGURE 11.11 Linear phase FIR filter of even order.

The symmetry of the impulse response leads to a particular symmetry of the zeros’
positions in the z-plane. In fact, if H(z) has a zero z = zi it has a companion zero at
z = 1/zi. To show that this is the case note that the condition h(n) = h(N − 1−n) implies
that

H (z) = h[N − 1] + h[N − 2]z−1 + . . . + h[0]z−(N−1) = z−(N−1)H(z−1). (11.31)

If z = zi is a zero then z
−(N−1)
i H(z−1

i )=0, i.e. H(1/zi) = 0, wherefrom 1/zi is also a
zero. If h [n] is real, its transform H (z) has, moreover, with every complex zero z = zi a
conjugate zero z = z∗i , as shown in Fig. 11.13. A complex zero z = zi is thus accompanied
by its conjugate z = z∗i , the inverse z = 1/zi and the conjugate inverse z = 1/z∗i . A
complex zero that is not on the unit circle comes therefore in a group of four. A real zero
zi that is not on the unit circle is accompanied by its inverse 1/zi.
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FIGURE 11.12 Linear phase FIR filter of odd order.

FIGURE 11.13 Sets of zeros of linear phase FIR filter.

As shown in the figure, a zero on the unit circle has its conjugate as its inverse. The system
function H(z) can thus be factored into first, second and fourth order components.

11.14 Conversion of Continuous-Time to Discrete-Time Filter

To derive a digital filter from a corresponding continuous-time analog filter either of two
approaches are commonly used, namely, the impulse invariance approach, and the bilinear
transform approach.

11.15 Impulse Invariance Approach

Let Hc(s) be the transfer function of the continuous-time filter. Our objective is to evaluate
a transfer function H(z) of the digital filter that is the discrete-time domain counterpart.

The approach of impulse invariance consists of sampling the impulse response hc (t) of
the continuous-time filter. The result is taken to be the impulse response (the unit-sample
response) h [n] of the digital filter. With h [n] evaluated the system function H(z) can be
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deduced. An infinite impulse response IIR or an FIR filter can therefore be constructed. We
have

hc (t) = L−1 [Hc (s)] . (11.32)

The impulse response of the digital filter is given by

h [n] = T hc (nT ) (11.33)

where T is the sampling period. The system function is given by

H (z) = Z [h [n]] . (11.34)

Using partial fractions, assuming simple poles we can write

Hc (s) =

n∑

k=1

Ak

s− sk
(11.35)

wherefrom

hc (t) =

n∑

k=1

Ake
sktu (t) (11.36)

and

h [n] = T

n∑

k=1

Ake
sknTu [n] (11.37)

H (z) =
n∑

k=1

T Ak

1− eskT z−1
. (11.38)

Such sampling leads to the frequency domain relation, as found in Chapter 7,

H
(
ejΩ
)

= T
1

T

∞∑

n=−∞
Hc

[
j

(
Ω− 2πn

T

)]
=

∞∑

n=−∞
Hc

[
j

(
Ω− 2πn

T

)]
. (11.39)

We note that aliasing would occur if the filter bandwidth exceeds half the sampling frequency
fs = 1/T . In the absence of aliasing, on the other hand, we have

H
(
ejΩ
)

= Hc

(
j
Ω

T

)
, |Ω| < π. (11.40)

The multiplication by T of the impulse response is arbitrary and has no effect other than
adjusting the digital filter gain. If the sampling frequency is high the filter gain is high.
Multiplication by T is usually applied to brings down the gain to an acceptable level.

Example 11.2 Let

Hc (s) =
s+ c0

s2 + b1s+ b0

and let p and p∗ be the poles of Hc (s) and let p = −α+ jβ. We have

Hc (s) =
s+ c0

(s− p) (s− p∗) =
A

s− p +
A∗

s− p∗

A =
p+ c0
p− p∗
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wherefrom
hc (t) = Aept +A∗ep∗t = 2 |A| e−αt cos(βt+ arg[A])u(t)

h [n] = T
(
AepnT +A∗ep∗nT

)
= 2T |A| e−αnT cos(βnT + arg[A])u[n]

H (z) = T

(
A

1− epT z−1
+

A∗

1− ep∗T z−1

)
.

Writing a = epT = e(−α+jβ)T we have

H (z) = T

(
A

1− az−1
+

A∗

1− a∗z−1

)
= T

(A+A∗)− (Aa∗ +A∗a) z−1

(1− az−1) (1− a∗z−1)

which can be rewritten as

H (z) =
T [2Ar − 2 |A| |a| cos(arg[A] + arg[a])z − 1]

1− 2arz−1 + |a|2 z−2

where
Ar = ℜ [A] .

Now
ar = ℜ [a] = e−αT cosβT

|a| = e−αT , arg[a] = βT

wherefrom

H (z) =
2 |A|T cos (arg[A])− 2 |A|Te−αT cos(arg[A] + βT )z−1

1− 2e−αT cosβBTz−1 + e−2αtz−2
.

Higher order filters can be constructed using such a second order filter. A few observations
may be added regarding the impulse invariance approach.

If the transfer function of the lowpass normalized (prototype) filter is Hc (s) and if the
required cut-off (pass-band edge) frequency is ωc we can denormalize the filter by using the
substitution

s −→ s/ωc. (11.41)

The resulting denormalized filter transfer function is then

Hc,denorm (s) = Hc (s)|s−→s/ωc
. (11.42)

The impulse response is then

hc,denorm (t) = L−1 [Hc,denorm (s)] = L−1 [Hc (s/ωc)] . (11.43)

The digital filter impulse response is then

h [n] = T hc,denorm (nT ) (11.44)

and the digital filter transfer function is

H (z) = Z [h [n]] . (11.45)

Assuming that the lowpass continuous-time prototype filter transfer function can be ex-
pressed in the form

Hc (s) =

M∑

i=1

Ai

s− si
(11.46)
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we have

Hc,denorm (s) =
M∑

i=1

Ai

s/ωc − si
=

M∑

i=1

Aiωc

s− ωcsi
(11.47)

hc,denorm (t) =
M∑

i=1

Aiωce
ωcsitu [t] (11.48)

h [n] = T
M∑

i=1

Aiωce
ωcsinTu [n] (11.49)

H (z) = T
M∑

i=1

Aiωc

1− eωcTsiz−1
. (11.50)

Since Ωc = ωcT

H (z) =

M∑

i=1

AiΩc

1− eΩcsiz−1
. (11.51)

We note that we can follow a shortcut to this procedure by the transformation from Hc (s)
to H (z) in the form

M∑

i=1

Ai

s− si
−→

M∑

i=1

AiΩc

1− eΩcsiz−1
. (11.52)

Note also that the sampling period T determines the value Ωc in the transformation.

11.16 Shortcut Impulse Invariance Design

We can implement the impulse invariance approach by normalizing the prototype lowpass
filter directly to Ωc. With

Hc (s) =

M∑

i=1

Ai

s− si
(11.53)

we write

Hc,denorm (s) = Hc (s)|s−→s/Ωc
=

M∑

i=1

Ai

s/Ωc − si
=

M∑

i=1

AiΩc

s− Ωcsi
(11.54)

hc,denorm (t) =

M∑

i=1

AiΩce
Ωcsitu (t) . (11.55)

In this case, however, the resulting analog filter has the same cut-off frequency as the
desired digital filter cut-off frequency implying that now we should substitute T = 1, so
that

h [n] = hc,denorm (n) =

M∑

i=1

AiΩce
Ωcsinu [n] (11.56)

and

H (z) =

M∑

i=1

AiΩc

1− eΩcsiz−1
(11.57)
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which is the same result obtained above. In practice we can write, by inspection, Equation
(11.57) directly from Equation (11.54)

11.17 Backward-Rectangular Approximation

We consider the discrete-time approximation of the constant-coefficients linear differential
equation having the general form

N∑

k=0

ak
dk

dtk
yc (t) =

M∑

k=0

bk
dk

dtk
xc (t) . (11.58)

In particular, we approximate the derivative dy/dt by the first backward difference denoted
∇(1) defined by

∇(1) [y [n]] =
y [n]− y [n− 1]

T
(11.59)

where (see Fig. 11.14)

y [n] = yc (nT ) . (11.60)

y tc( )

t( -1)n T nT

FIGURE 11.14 Approximation of the integral of a function.

The second derivative d2y/dt2 is similarly approximated by the second backward differ-
ence ∇(2), as shown in Fig. 11.15

∇(2) [y [n]] = ∇(1)
[
∇(1)y [n]

]
=

y[n]− y[n− 1]

T
− y[n− 1]− y[n− 2]

T
T

=
y[n]− 2y[n− 1] + y[n− 2]

T 2
(11.61)

H1 (z) =
Z
[
∇(1)y [n]

]

Y (z)
=

1− z−1

T
(11.62)

Z
[
∇(2) [y [n]]

]
= H2

1 (z)Y (z) =

(
1− z−1

T

)2

Y (z) (11.63)

Z
[
∇(k) [y [n]]

]
=

(
1− z−1

T

)k

Y (z) (11.64)
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y n[ ]
H z1( )

Ñ(1)
[ [ ]]y n

H z1( )
Ñ(2)

[ [ ]]y n

FIGURE 11.15 Backward derivative approximation block diagram.

N∑

k=0

ak∇(k) [y [n]] =

M∑

k=0

bk∇(k) [x [n]] (11.65)

N∑

k=0

ak

(
1− z−1

T

)k

Y (z) =

M∑

k=0

bk

(
1− z−1

T

)k

X (z) (11.66)

H (z) =
Y (z)

X (z)
=

M∑

k=0

bk

(
1− z−1

T

)k

N∑

k=0

ak

(
1− z−1

T

)k
. (11.67)

We note that

Hc (s) =

M∑

k=0

bks
k

N∑

k=0

aks
k

. (11.68)

Comparing H (z) with Hc (s) we note that

H (z) = Hc(s)|s= 1−z−1

T

.

The Laplace variable s is thus related to z by writing s =
1− z−1

T
, i.e.

z−1 = 1− sT, z =
1

1− sT . (11.69)

Setting s = jω we have

z =
1

1− jωT . (11.70)

If ω = 0, then z = 1; if ω =∞, then z = 0;and if ω = −∞, then z = 0. The transformation

z =
1

1− sT is a conformal mapping converting circles into circles. The jω axis of the s

plane is transformed into a circle passing through the points z = 1 and z = 0. Its center

is at z =
1

2
, which can be verified by writing

z =
1

2
+

1

1− jωT −
1

2
=

1

2
+

1

2

(1 + jωT )

(1 − jωT )
=

1

2
+

1

2
ej2θ (11.71)

θ = tan−1 ωT. (11.72)

The jω axis is thus transformed into the circle of radius 1/2 and center z = 1/2 as
shown in Fig. 11.16. We note that a stable system of which the transfer function’s ROC is
to the left of the jω axis, is transformed into a stable system, since the ROC is mapped
into the inside of that circle. If the sampling period T is small the spectrum is concentrated
close to z = 1 resulting in a good approximation, and vice versa.
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FIGURE 11.16 Transformation of the jω axis.

11.18 Forward Rectangular and Trapezoidal Approximations

Consider the first order linear differential equation with constant coefficients

y′ + ay = bx (11.73)

y′ = bx− ay (11.74)

(s+ a)Y (s) = bX (s) (11.75)

Y (s) =
b

s+ a
X (s) (11.76)

y =

ˆ

y′dt =

ˆ

(bx− ay)dt=△
ˆ

y1dt (11.77)

where
y1 = bx− ay (11.78)

y =

ˆ (n−1)T

−∞
y1dt+

ˆ nT

(n−1)T

y1dt. (11.79)

In forward rectangular approximation, as seen in Fig. 11.17, each new increment is ap-
proximated as a rectangle. We have

y (nT ) = y [(n− 1)T ] + Ty1 [(n− 1)T ] . (11.80)

t

y t1( )

( -1)n T nT

FIGURE 11.17 Forward rectangular approximation.

In trapezoidal approximation each new increment is approximated as a trapezoid. We
write

y (nT ) = y [(n− 1)T ] +
T

2
[y1 [(n− 1)T ] + y1 (nT )] . (11.81)
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For the rectangular approximation we have

Y (z) = z−1Y (z) + Tz−1Y1 (z) = z−1Y (z) + Tz−1 [bX (z)− aY (z)] (11.82)

Y (z)
[
1− z−1 + aTz−1

]
= Tz−1bX (z) (11.83)

H (z) =
Y (z)

X (z)
=

bT z−1

1− z−1 + aTz−1
=

b

1

T

1− z−1

z−1
+ a

= H (s)|s= 1
T (z−1) . (11.84)

i.e. if H (s) =
∑ bi

s+ ai
then H (z) =

∑ bi
1

T
(z − 1) + ai

.

We note that z = 1 + sT , which is a vertical line going through z = 1 as shown in Fig.
11.18.

FIGURE 11.18 Forward rectangular approximation.

If s = jω, then z = 1 + jωT ; if ω = 0, then z = 1; if ω = ∞, then z = 1 + j∞; and
if ω = −∞, then z = 1− j∞. A stable system may thus be transformed into an unstable
one. For the trapezoidal approximation we write

Y (z) = z−1Y (z) +
T

2

{
[bX − aY ] z−1 + bX − aY

}
(11.85)

Y (z)− z−1Y (z) =
T

2

{
bXz−1 − aY z−1 + bX − aY

}
(11.86)

Y (z)

[
1− z−1 + a

T

2
z−1 + a

T

2

]
=
T

2
bX (z)

(
1 + z−1

)
(11.87)

H (z) =
Y (z)

X (z)
=

b
T

2

(
1 + z−1

)

(1− z−1) +
aT

2
(1 + z−1)

=
b

2

T

1− z−1

1 + z−1
+ a

= H (s)|
s= 2

T
1−z−1

1+z−1

.

Such continuous domain to discrete domain transformation is known as the bilinear trans-
formation, and will be discussed in the following section.
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11.19 Bilinear Transform

We have seen that an ideal filter having an impulse response that is not causal is not
realizable. We have also seen that analog classic filters, namely Butterworth, Chebyshev,
elliptic and Bessel have a spectrum that extends to ω = ±∞. Sampling the impulse response
hc (t) to obtain a digital counterpart, according to the impulse invariance approach, will
therefore always lead to spectral aliasing causing distortion. The trapezoidal approximation
just seen is a conformal mapping called the bilinear transform. It converts the entire jω axis
of the s plane to one turn around the unit circle in the z-plane.

The bilinear transform has the form

s =
2

T

1− z−1

1 + z−1
(11.88)

i.e.

z =
1 + (T/2) s

1− (T/2) s
. (11.89)

Writing

s = jω and z = rejΩ (11.90)

we have

z = rejΩ =
1 + j (T/2)ω

1− j (T/2)ω
. (11.91)

We note, as stated above, that the point ω = 0 is mapped to the point z = 1 and that
the points ω = ±∞ are mapped to the point z = −1, and, equating the magnitude and
phase angle, we obtain

r = |z| = 1 (11.92)

and that

ejΩ = e2j tan−1(T ω/2) (11.93)

wherefrom

Ω = 2 tan−1 (T ω/2) (11.94)

and

ω = (2/T ) tan (Ω/2) . (11.95)

The relation of the analog frequency ω versus the digital frequency Ω is shown in Fig. 11.19,
with T taken equal to 1. We note that this nonlinear relation compresses the ω axis such
that as ω −→ ±∞, Ω −→ ±π. Such nonlinearity causes a distortion in the form of a
compression of the spectrum. The figure also shows that a lowpass filter of bandwidth ωc

is transformed to one with bandwidth Ωc where

Ωc = 2 tan−1 (T ωc/2) (11.96)

instead of the usual relation where ωc is normally transformed to Ωc = ωcT . The nonlinear-
ity of the bilinear transform results in a different cut-off frequency than the expected one.
To counteract such distortion a “prewarping,” is applied by altering the analog frequency
to a value that when converted by the bilinear transform it produces the desired cut-off
frequency. To this end we set

ωc =
2

T
tan (Ωc/2) . (11.97)
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FIGURE 11.19 Bilinear transform continuous-time versus discrete-time frequency.

An analog filter having a transfer function

H (s) =

n∑

i=1

ais
i

m∑

i=1

bisi

(11.98)

is transformed into a digital filter with transfer function

H (z) =

n∑

i=1

ai

[
2

T

(
1− z−1

)

(1 + z−1)

]i

m∑

i=1

bi

[
2

T

(
1− z−1

)

(1 + z−1)

]i . (11.99)

Example 11.3 A continuous-time signal xa (t) is limited in frequency to 2 kHz. It is sam-
pled at the rate of 5000 samples/sec to produce the sequence x [n] = xa (n/5000) which is
applied to the input of a digital filter. The filter output y [n] is in turn applied to the input
of a digital to analog D/A converter, producing the continuous-time signal ya (t). A digital
is required so that the signal ya (t) correspond to filtering of the signal xa (t) by a lowpass
first order Butterworth filter, with ε = 1, cut-off frequency 200 Hz and maximum gain 0
dB.

a) Evaluate H (z) using impulse invariance.
b) Evaluate H (z) using the bilinear transformation.

a) The continuous-time domain frequency is ω = 2π×200 = 400π r/s. The corresponding
discrete-time domain frequency is Ω = ωT = 400π/5000 = 0.08π.
The analog filter transfer function is

Ha (s) =
1

s+ 1

∣∣∣∣
s→s/0.08π

=
0.08π

s+ 0.08π
. (11.100)
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FIGURE 11.20 Digital filter structures by impulse invariance and bilinear transform.

The digital filter transfer function using impulse invariance is

H (z) =
0.08π

1− e−0.08πz−1
=

0.251

1− 0.778z−1
. (11.101)

b) Applying prewarping we have ω0 = 2 tan (0.08π/2) = 0.2527. The denormalized analog
filter transfer function is

Ha (s) =
1

s+ 1

∣∣∣∣
s→s/ω0

=
1

s/0.2527 + 1
. (11.102)

The digital filter transfer function using the bilinear transform is

H (z) = Ha (s)|
s=

2(1−z−1)
1+z−1

=
0.112

(
1 + z−1

)

1− 0.776z−1
. (11.103)

The filter structures using impulse invariance and the bilinear transform, respectively, are
shown in Fig. 11.20.
The MATLABr commands
[Bm,Am]=butter(1,0.08)
filtMATLAB=filt(Bm,Am)

produce the same result we obtained using the bilinear transform.

Example 11.4 Apply the bilinear transformation to a first order Butterworth filter to ob-
tain the transfer function H(z) of a digital filter having the following specifications:

– Lowpass
– Cut-off frequency π/4
– Maximum response 0 dB
– Attenuation at cut-off frequency 3 dB

Applying prewarping we have ωc = 2 tan (0.25π/2) = 0.8284. The denormalized continuous-
domain transfer function is

Ha (s) =
1

s+ 1

∣∣∣∣
s→s/ωc

=
1

s/0.8284 + 1
(11.104)

The digital filter transfer function is

H (z) = Ha (s)|
s=

2(1−z−1)
1+z−1

=
0.293

(
1 + z−1

)

1− 0.414z−1
. (11.105)

The filter structure is shown in Fig. 11.19.
The MATLAB commands
[Bm,Am]=butter(1,0.25)
filtMATLAB=filt(Bm,Am)

produce the same result.
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FIGURE 11.21 Digital filter structure using the bilinear transform.

Example 11.5 Design a second order Butterworth lowpass digital filter with a 3 dB cut off
frequency of 125 Hz and a sampling frequency of 2000 Hz, using the bilinear transform.

We have a sampling frequency of fs = 2000 i.e. a sampling period T = 1/2000 and a
required cut-off frequency of fc = 125 Hz meaning a digital filter cut-off frequency

Ωc = ωcT =
2π × 125

2000
= π/8.

Prewarping: The true required analog filter cut off frequency is

ωc =
2

T
tan

(
Ωc

2

)
=

2

T
tan

( π
16

)
=

c

T
= 0.3978/T.

For second order

Hc (s) =
c2

T 2s2 + 1.4142cT + c2
=

0.1583

T 2s2 + 0.5626Ts+ 0.1583

H (z) = Hc (s)|
s= 2

T
1−z−1

1+z−1

=
0.1583 + 0.3165z−1 + 0.1583z−2

5.2835− 7.6835z−1 + 3.0331z−2
.

Example 11.6 Design a lowpass Chebyshev digital filter of the second order, which receives
an input sequence x [n] that is the result of A/D conversion of a continuous-time signal xc (t)
at a frequency of 2000 samples per second. The signal xc (t) is band limited to |ω| < 1 kHz.
The filter should have a maximum gain of 15 dB and a gain of 13.5 dB at the cut-off
frequency of 100 Hz.

a) Design a suitable lowpass continuous-time prototype filter, evaluating its poles and
transfer function. Compare the transfer function thus obtained with MATLAB’s. Plot the
filter frequency response. Verify the resulting filter gain.

b) Convert the prototype into the required filter using impulse invariance. Verify if the
gain versus frequency of the resulting filter is as required. If not, explain why?

c) Repeat b) using the bilinear transform.

a) |Hc (jω)|2 =
K2

1 + ε2C2
2 (ω)

=
K2

1 + ε2 (2ω2 − 1)
2

|Hc (jω)|max = K (at ω = ±1/
√

2)

|Hc (jω)|2 = K2/
(
1 + ε2

)
at ω = 0, ±1

10 log10K
2 = 15

K = 1015/20 = 5.6234.

Note that MATLAB gives H (s) as H (s) = G/A (s) where G is chosen such that |H (jω)|max =
1, i.e. 0 dB.
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In the present case of n = 2
|H (j0.707)| = 1

since |H (jω)| is maximum for ω = 1/
√

2.

10 log10

(
1 + ε2

)
= 1.5 dB

ε =
√

100.15 − 1 = 0.6423

σk = −b sin [(2k + 1) π/4] , k = 0, 1

ωk = a cos [(2k + 1) π/4] , k = 0, 1.

Hence the poles are
s = −0.4611± j0.8442

H (s) =
G

s2 + 0.922177s+ 0.925206
.

The value G in the prototype is chosen so that |H (jω)|max = 1. We note that H (j0) =

|H (jω)|max/
√

1 + ε2. Hence G/0.925206 = |H (jω)|max/
√

1 + ε2

G =
0.925206√

1 + ε2
= 0.7785.

This agrees with MATLAB wherein the command [B, A] = cheby1(N, R, Wn, ′s′) with
N = 2, R = 1.5 dB and Wn = 1 produces the same result

Hc (s) =
0.7785

s2 + 0.9222s+ 0.9252
.

The prototype transfer function is therefore

Hc (s) =
K 0.7785

s2 + 0.9222s+ 0.9252
=

4.37762

s2 + 0.9222s+ 0.9252
.

Denormalization: Using the substitution s −→ s/200π we obtain

Hc,denorm (s) =
1.7282× 106

s2 + 579.435s+ 3.6525× 105
=

3258.36β

(s+ α)2 + β2

where
α = 289.718, β = 530.394

hc (t) = 3258.36e−αt sinβt u (t) .

b) h [n] = Thc (nT ) = 1.62918an sin bn u [n]
where

a = 0.86514, b = 0.265197

H (z) =
1.62918a sinbz−1

1− 2a cos bz−1 + a2z−2
=

0.3694z−1

1− 1.6698z−1 + 0.7485z−2
.

See Fig. 11.22.
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FIGURE 11.22 Digital filter.

To verify the resulting filter specifications we may use MATLAB, writing the commands
B = [0 0.3694 0]
A = [1 − 1.6698 0.7485]
w = [0 0.1π]
H = freqz (B,A,w)
Habs = abs (H)
gain1 = 20 ∗ log 10 (Habs (1))
gain2 = 20 ∗ log 10 (Habs (2)) .
We obtain gain1 = 13.43
gain2 = 14.96
which are the gains at Ω = 0 and Ω = 0.1π, respectively, and are close to the desired

values 13.5 and 15 dB, respectively.
c) To use the bilinear transform we note that the desired cut-off frequency of 100 Hz, i.e.

200π corresponds to Ωc = 200π T = 0.1π.
Prewarping is effected by writing

ωc = (2/T ) tan (0.1π/2) = 633.538 r/s.

To denormalize therefore we use the substitution

s −→ s/633.538

obtaining

Hc,denorm (s) =
4.37762

s2 + 0.9222s+ 0.9252

∣∣∣∣
s−→s/633.538

=
1.75705× 106

s2 + 584.2342s+ 3.7135× 105

H (z) = Hc,denorm (s)|
s −→ 2

T
1−z−1

1+z−1

=
0.09392 + 0.18784z−1 + 0.0939z−2

1− 1.67077z−1 + 0.75017z−2
.

Example 11.7 Design a Chebyshev lowpass digital filter. The sampling frequency is 400
Hz. The filter should have 0 dB attenuation at zero frequency, a pass-band edge frequency
of 40 Hz with a corresponding attenuation of at most 1 dB and a stop-band edge frequency
of 60 Hz with at least 20 dB attenuation. Derive first the continuous-time prototype filter
and then show its conversion to the required digital filter using impulse invariance and the
bilinear transform.

The pass-band cut-off frequency, that is, the pass-band edge frequency is

ωc ≡ ωp = 80π r/s.

The stop-band edge frequency is
ωs = 120π r/s,
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|H (jω)|2 =
1

1 + ε2C2
n (ω/ωc)

20 log10 |H (jωc)| > −1, i.e. |H (jωc)| > 0.8913.

Setting

10 log10

1

1 + ε2
= −1

ε2 = 100.1 − 1, i.e. ε = 0.5088

ωs = 1.5ωp = 1.5ωc

20 log10 |H (jωs)| 6 −20, i.e. |H (jωs)| 6 10−1.

Writing

10 log10

1

1 + ε2C2
n (1.5)

= −20

we have
1 + ε2C2

n (1.5) = 100

Cn (1.5) = cosh
(
n cosh−1 1.5

)
= 19.5538

n cosh−1 1.5 = cosh−1 19.5538, n = 3.809.

We take n = 4

H (s) =
K

s4 + 0.9528s3 + 1.4539s2 + 0.7426s+ 0.2756
.

To obtain a maximum gain of 1, for 0 dB magnitude response, we set

H (0) =
K

0.2756
=

1√
1 + ε2

K =
0.2756√
1 + ε2

= 0.2457

in agreement with MATLAB using the command [B, A] = cheby1 (4, 1, 1, ’s’) .
This prototype has the required attenuation of 1 dB in the pass-band. However, its pass-

band edge frequency (cut-off frequency) is normalized to unity. To convert it using impulse
invariance to the required digital filter there are two possible approaches:

In the first approach we first denormalize this filter to obtain a true cut-off frequency
of ωp = 2π × 40 = 80π r/s by writing s −→ s/80π obtaining the denormalized transfer
function

Hd (s) =
9.801× 108

s4 + 239.5s3 + 9.184× 104s2 + 1.179× 107s+ 1.1× 109
.

The same may obtained by writing the MATLAB command [B, A] = cheby1 (4, 1, 80π, ′s′).
The frequency response is shown in Fig. 11.23.

Using partial fraction expansion the transfer function Hd (s) is expressed in the form

Hd (s) =

4∑

k=1

Rk

s− pk
.

The poles pi and the residues Ri may obtained using the MATLAB command [R, P, K] =
residue (B, A) . The poles and their residues are given respectively by

P = {−35.07± j247.15, −84.66± j102.37} ,
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FIGURE 11.23 Chebyshev filter frequency response.

R = {−16.654± j32.71, 16.654∓ 87.028} .
The required transfer function is then given by

H (z) = T

4∑

k=1

Rk

1− epkT z−1
.

The poles of H (z) are given by

qk = epkT = {0.747± j0.531, 0.783± j0.205}

where T = 1/400 sec. We obtain

H (z) =
0.00537z−1 + 0.0181z−2 + 0.00399z−3

1− 3.059z−1 + 3.832z−2 − 2.292z−3 + 0.5495z−4

The frequency response using the MATLAB command freq z (B, A) is shown in Fig.
11.24.

In the second approach we denormalize the lowpass prototype directly to the frequency
Ωp = ωpT = 80π/4000 = 0.2π. We thus use the substitution s −→ s/ (0.2π) obtaining

Hd,2 (s) =
0.03829

s4 + 0.599s3 + 0.574s2 + 0.184s+ 0.043
.

A partial fraction expansion of Hd,2 (s) produces

Hd,2 (s) =

4∑

k=1

ρk

s− rk
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FIGURE 11.24 Chebyshev filter frequency response as obtained using MATLAB.

where the residues and poles are given, respectively, by

ρ = {−0.042± j0.082, 0.042∓ j0.218}

r = {−0.088± j0.618, −0.212± j0.256} .
We note that these are the same values as obtained above, multiplied by T . The digital

filter transfer function is obtained as in the above but with T omitted. We write

H (z) =

4∑

k=1

ρk

1− erkz−1
=

4∑

k=1

ρk

1− qkz−1

obtaining the same poles qk and same transfer function H (z) found above.
To convert the filter using the bilinear transform we first apply prewarping by writing

ωp = 2 tan

(
Ωp

2

)
= 2 tan

(
0.2π

2

)
= 0.6498

ωs = 2 tan

(
Ωs

2

)
= 1.0191

20 log10 |Ha (jωp)| = 20 log10 |Ha (j0.6498)| > −1

|Ha (j0.6498)| > 10−1/20
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1√
1 + ε2

= 10−0.05,
1

1 + ε2
= 10−0.1, ε2 = 100.1 − 1, ε = 0.5088

|H (jω)|2 =
1

1 + ε2C2
n (ω/ωc)

ωc = ωp = 0.6498.

With ω = ωs = 1.0191

10 log

[
1

1 + ε2C2
n (1.0191/0.6498)

]
6 −20

Cn (1.5683) = cosh
(
n cosh−1 1.5683

)
= 19.5538

n cosh−1 1.5683 = cosh−1 19.5538, n =
cosh−1 (19.5538)

cosh−1 (1.5683)
= 3.5897.

Take n = 4. As before we replace s by s/ (0.6498) or using [B, A] = cheby1(4, 1, 0.6498, ′s′)
we obtain

Hd (s) =
0.0438

s4 + 0.6192s3 + 0.61402s2 + 0.20379s+ 0.04916
.

Using the substitution s −→ 2
1− z−1

1 + z−1
we obtain

H (z) =
0.00184 + 0.00734z−1 + 0.01101z−2 + 0.00734z−3 + 0.00184z−1

1− 3.05434z−1 + 3.829z−2 − 2.29245z−3 + 0.55075z−4

which is in agreement with the result obtained using the MATLAB command [B, A] =
cheby1(4, 1, 0.2).

11.20 Lattice Filters

Lattice filters have received special attention due to their symmetric structures, their modu-
larity and their resemblance to physical models such as those representing the human vocal
tract for speech analysis and synthesis. Finite impulse response (FIR), all-zero, all-pole as
well as pole-zero IIR filters can be realized as lattice structures as seen in what follows.

11.21 Finite Impulse Response All-Zero Lattice Structures

An FIR filter is a cascade of two-port networks such as the one shown in Fig. 11.25. The
coefficients ki shown in the figure are called the “reflection coefficients.”

We shall write the input–output relations and transfer function for one simple basic
section, then proceed to do the same for a cascade of two and then three sections. Such
simplified presentation should help explain and justify the same relations as they apply to
a general order filter.
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11.22 One-Zero FIR Filter

A simple one-zero FIR lattice filter section is shown in Fig. 11.25(a). In what follows the
output of a first order filter will be denoted y1[n], that of a second order filter y2[n], and so
on. Referring to this figure we can write the following equations.

FIGURE 11.25 First and second order all-zero FIR lattice filter.

e1 [n] = e0 [n] + k1ẽ0 [n− 1] (11.106)

ẽ1 [n] = k1e0 [n] + ẽ0 [n− 1] (11.107)

with the boundary conditions

e0 [n] = ẽ0 [n] = x[n] (11.108)

e1 [n] = y1[n]. (11.109)

Applying the z-transform to the equations we have

E1 (z) = E0 (z) + k1z
−1Ẽ0 (z) (11.110)

Ẽ1 (z) = k1E0 (z) + z−1Ẽ0 (z) . (11.111)

Two transfer functions, H1 (z) and H̃1 (z) relate the input x[n] to the outputs e1 [n] and
ẽ1 [n], respectively. We write

H1 (z) = E1 (z) /X(z) = Y1(z)/X(z) (11.112)

H̃1 (z) = Ẽ1 (z) /X(z). (11.113)

Applying the initial conditions we have

Y1 (z) = X (z) + k1z
−1X (z) (11.114)

H1 (z) = Y1 (z) /X (z) = 1 + k1z
−1 = 1 + a

(1)
1 z−1 (11.115)

where a
(1)
1 = k1.

The transfer function H1 (z) of the first order all-zero filter is, as expected, a first order
polynomial in z−1 which will be denoted A1 (z).

H1 (z) = A1 (z) = 1 + a
(1)
1 z−1. (11.116)
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As we shall see shortly, the transfer function of a first order all-pole filter will be written
H1(z) = 1/A1 (z), where A1 (z) is this same polynomial.

Regarding the lower outputs we have

Ẽ1 (z) =
(
k1 + z−1

)
X (z) (11.117)

H̃1 (z) = Ẽ1 (z) /X (z) = k1 + z−1 = a
(1)
1 + z−1 = z−1H1

(
z−1

)
. (11.118)

We shall also write
Ã1 (z)

△
= H̃1 (z) = z−1A1

(
z−1
)
. (11.119)

11.23 Two-Zeros FIR Filter

The transfer function of a single one-zero section was denoted H1 (z). The transfer function
of a cascade of two such sections is denoted H2 (z), and for a cascade of i sections it is
denoted Hi (z). As we shall see shortly, we will find that Hi (z) has the general form

Hi (z) = 1 + a
(i)
1 z−1 + a

(i)
2 z−2 + . . .+ a

(i)
i z−i = 1 +

i∑

k=1

a
(i)
k z−k △

= Ai (z) . (11.120)

The superscript (i) of the coefficients a
(i)
k specifies that the coefficients are associated with

the ith order transfer function Hi (z). For example, for a cascade of two sections, such as
the one shown in Fig. 11.25(b) we have

H2 (z) = E2(z)/X(z) = Y2(z)/X(z) = 1 + a
(2)
1 z−1 + a

(2)
2 z−2 △

= A2 (z) . (11.121)

As Fig. 11.25(b) shows the upper nodes are designated e0 [n], e1 [n] and e2 [n], while the
lower ones ẽ0 [n], ẽ1 [n] and ẽ2 [n]. We note that the same equations found for the first order
filter apply to each of the two cascaded sections, that is, for s = 1, 2, where s designates
the section number, we have

es [n] = es−1 [n] + ksẽs−1 [n− 1] (11.122)

ẽs [n] = kses−1 [n] + ẽs−1 [n− 1] (11.123)

with the boundary conditions
e0 [n] = ẽ0 [n] = x [n] (11.124)

e2 [n] = y2 [n] . (11.125)

We note that the first section is described by the same equations written above for the
case of one section. We can therefore write

E1 (z) = E0 (z) + k1z
−1Ẽ0 (z) = X (z) + k1z

−1X (z) (11.126)

Ẽ1 (z) = k1E0 (z) + z−1Ẽ0 (z) = k1X (z) + z−1X (z) . (11.127)

Let H1(z) denote the transfer function between the input x[n] and the first section upper
output e1[n], and H̃1(z) that between the input and its lower output ẽ1[n], that is,

H1 (z) = E1 (z) /X(z) (11.128)
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H̃1 (z) = Ẽ1 (z) /X(z). (11.129)

The overall transfer functions between the input x[n] and the upper and lower final outputs
are similarly denoted H2(z) and H̃2(z)

H2 (z) = E2 (z) /X(z) = Y2 (z) /X(z) (11.130)

H̃2 (z) = Ẽ2 (z) /X(z). (11.131)

We may now use the above results to evaluate the transfer functions of this second order
filter. We have

H1 (z) = E1 (z) /X(z) = 1 + k1z
−1 = 1 + a

(1)
1 z−1 = A1(z) (11.132)

where A1(z) is the first order polynomial defined above. Moreover,

H̃1 (z) = Ẽ1 (z) /X (z) = k1 + z−1 = z−1H1

(
z−1
)

= Ã1 (z) . (11.133)

From the equations describing the second section we can write

E2 (z) = E1 (z) + k2z
−1Ẽ1 (z) (11.134)

Y2(z) = E2 (z) = {H1 (z) + k2z
−1H̃1 (z)}X(z) (11.135)

H2 (z) = Y2 (z) /X(z) = H1 (z) + k2z
−1H̃1 (z) = A1 (z) + k2z

−1Ã1 (z) = A2(z) (11.136)

where

A2 (z) = A1 (z) + k2z
−2A1

(
z−1
)

= 1 + a
(1)
1 z−1 + k2z

−2(1 + a
(1)
1 z)

= 1 + k1z
−1 + k2z

−2(1 + k2z) = 1 + (k1 + k1k2)z
−1 + k2z

−2 (11.137)

i.e.
a
(2)
1 = k1 + k1k2 (11.138)

a
(2)
2 = k2 (11.139)

H2(z) = H1 (z) + k2z
−2H1

(
z−1
)
. (11.140)

Moreover, from the equation

ẽ2 [n] = k2e1 [n] + ẽ1 [n− 1] (11.141)

we can write

Ẽ2 (z) = k2E1 (z) + z−1Ẽ1 (z) = {k2H1(z) + z−1H̃1(z)}X(z) (11.142)

H̃2 (z) = Ẽ2 (z) /X(z) = k2H1 (z) + z−1H̃1 (z) = k2H1(z) + z−2H1(z
−1) (11.143)

Ã2 (z) = k2A1 (z) + z−1Ã1 (z) = k2A1(z) + z−2A1(z
−1) (11.144)

H̃2 (z) = z−2H2(z
−1) (11.145)

Ã2 (z) = z−2A2(z
−1). (11.146)

Following the same steps we can now write the equations for the third order all-zero filter
shown in Fig. 11.26. Denoting again the section number by the variable s, we obtain

H3 (z) = Y3 (z) /X(z) = H2 (z) + k3z
−1H̃2 (z) = H2 (z) + k3z

−3H2

(
z−1

)
(11.147)

A3 (z) = A2 (z) + k3z
−3A2

(
z−1
)

(11.148)
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FIGURE 11.26 Third order all-zero FIR lattice filter.

H3(z) = H2 (z) + k3z
−3H2

(
z−1
)

(11.149)

H3(z) = A3(z) = {1 + a
(2)
1 z−1 + a

(2)
2 z−2}+ k3z

−3{1 + a
(2)
1 z + a

(2)
2 z2}

= 1 + {a(2)
1 + k3a

(2)
2 }z−1 + {a(2)

2 + k3a
(2)
1 }z−2 + k3z

−3

= 1 + a
(3)
1 z−1 + a

(3)
2 z−2 + a

(3)
3 z−3

(11.150)

a
(3)
3 = k3 (11.151)

a
(3)
1 = a

(2)
1 + k3a

(2)
2 = k1 + k1k2 + k2k3 (11.152)

a
(3)
2 = a

(2)
2 + k3a

(2)
1 = k2 + k3(k1 + k1k2). (11.153)

These relations can be written in matrix form. We have a
(3)
3 = k3 and

[
a
(3)
1

a
(3)
2

]
=

[
a
(2)
1

a
(2)
2

]
+ k3

[
a
(2)
2

a
(2)
1

]
(11.154)

H̃3 (z) = z−3H3

(
z−1

)
(11.155)

Ã3 (z) = z−3A3

(
z−1

)
. (11.156)

11.24 General Order All-Zero FIR Filter

We are now in a position to deduce from the above the input–output relations and transfer
functions Hs(z) and H̃s(z) of the first to last section s = 1, 2, 3, . . ., i, of a general all-zero
filter of order i. We have

Hs (z) = Es (z) /X(z) = As(z), s = 1, 2, . . . , i (11.157)

H̃s (z) = Ẽs (z) /X(z) = Ãs (z) , s = 1, 2, . . . , i (11.158)

es [n] = es−1 [n] + ksẽs−1 [n− 1] (11.159)

ẽs [n] = kses−1 [n] + ẽs−1 [n− 1] (11.160)

with the boundary conditions

e0 [n] = ẽ0 [n] = x [n] (11.161)

ei [n] = y [n] . (11.162)
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Each transfer function Hs (z) can be deduced from the lower order Hs−1 (z) using the
upward recursive relations

Hs (z) = Hs−1 (z) + ksz
−1H̃s−1 (z) = Hs−1 (z) + ksz

−sHs−1

(
z−1

)
(11.163)

H̃s (z) = z−sHs

(
z−1

)
. (11.164)

From the upward recursion

Hs (z) = Hs−1 (z) + ksz
−sHs−1

(
z−1

)
(11.165)

we can find the inverse, downward recursion. We write

Hs−1 (z) = Hs (z)− ksz
−sHs−1

(
z−1

)
(11.166)

Hs−1

(
z−1

)
= Hs

(
z−1
)
− ksz

sHs−1 (z) (11.167)

Hs (z) = Hs−1 (z) + ksz
−s
{
Hs

(
z−1
)
− ksz

sHs−1 (z)
}

=
(
1− k2

s

)
Hs−1 (z) + ksz

−sHs

(
z−1

) (11.168)

Hs−1 (z) =
1

(1− k2
s)

{
Hs (z)− ksz

−sHs

(
z−1

)}
(11.169)

As (z) = Hs (z) = As−1 (z) + ksz
−iAs−1

(
z−1

)
(11.170)

Ãs (z) = H̃s (z) = z−sAs

(
z−1
)

(11.171)

As (z) = 1 +
s∑

m=1

a(s)
m z−m (11.172)

Ãs (z) = z−sAs(z
−1) = z−s + z−s

s∑

m=1

a(s)
m zm = z−s +

s∑

m=1

a(s)
m zm−s. (11.173)

The coefficients of the polynomial As(z) are related by the upward recursion

a(s)
s = ks (11.174)

a(s)
m = a(s−1)

m + ksa
(s−1)
s−m , m = 1, 2, . . . , s− 1 (11.175)

and we can deduce thereof the inverse, downward recursion. Replacing m by s−m we have

a
(s)
s−m = a

(s−1)
s−m + ksa

(s−1)
m (11.176)

wherefrom

a
(s−1)
m = a

(s)
m − ksa

(s−1)
s−m = a

(s)
m − ks

{
a
(s)
s−m − ksa

(s−1)
m

}

= a
(s)
m − ksa

(s)
s−m + k2

sa
(s−1)
m

(11.177)

a(s−1)
m

(
1− k2

s

)
= a(s)

m − ksa
(s)
s−m. (11.178)

We have thus obtained the downward recursion

a(s−1)
m =

a
(s)
m − ksa

(s)
s−m

1− k2
s

, m = 1, 2, . . . , s− 1. (11.179)
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In both recursions a
(s)
s = ks. The upward recursion can be written in the matrix form




a
(s)
1

a
(s)
2
...

a
(s)
s−1




=




a
(s−1)
1

a
(s−1)
2
...

a
(s−1)
s−1




+ ks




a
(s−1)
s−1

a
(s−1)
s−2
...

a
(s−1)
1




(11.180)

and the downward recursion can be written in the form



a
(s−1)
1

a
(s−1)
2
...

a
(s−1)
s−1




=
1

(1− k2
s)








a
(s)
1

a
(s)
2
...

a
(s)
s−1



−ks




a
(s)
s−1

a
(s)
s−2
...

a
(s)
1








. (11.181)

Example 11.8 Show the lattice filter corresponding to the FIR filter shown in Fig. 11.27.

FIGURE 11.27 FIR filter.

From the figure we have

H3 (z) = 1− 0.7z−1 + 0.25z−2 − 0.175z−3 = 1 + a
(3)
1 z−1 + a

(3)
2 z−2 + a

(3)
3 z−3

i.e.
a
(3)
1 = −0.7, a

(3)
2 = +0.25, a

(3)
3 = −0.175.

We have k3 = a
(3)
3 = −0.175. Applying the downward recursion, starting with s = 3, we

obtain the transfer function coefficients and hence the reflection coefficients for the successive
sections s = 2 and s = 1. We write

[
a
(2)
1

a
(2)
2

]
=

1

(1− k2
3)

{[
a
(3)
1

a
(3)
2

]
− k3

[
a
(3)
2

a
(3)
1

]}

a
(2)
1 =

a
(3)
1 − k3a

(3)
2

1− k2
3

=
−0.7 + 0.175 (0.25)

1− (0.175)
2 = −0.6770

a
(2)
2 =

a
(3)
2 − k3a

(3)
1

1− k2
3

=
0.25 + 0.175× (−0.7)

1− (0.175)
2 = 0.1315

wherefrom k2 = a
(2)
2 = 0.1315. Setting s = 2 we have the downward recursion

[
a
(1)
1

]
=

1

(1− k2
2)

{[
a
(2)
1

]
−k2

[
a
(2)
1

]}
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a
(1)
1 =

a
(2)
1 − k2a

(2)
1

1− k2
2

=
−0.6770− 0.1315× (−0.6770)

1− (0.1315)
2 =− 0.5983 = k1.

The lattice filter thus obtained is shown in Fig. 11.28.

FIGURE 11.28 Third order all-zero FIR lattice filter.

Equivalently, we can evaluate the transfer functions H1(z), H2(z), H3(z), . . . from the
input x[n] to the outputs of the successive sections of the filter, and hence the successive
reflection coefficients, as the following example illustrates.

Example 11.9 Let h [n] = Aa−nRN [n] with A = 1, a = 4 and N = 5. Show a lattice
realization of a filter having h [n] as its unit sample (impulse) response. We have

H (z) =

4∑

n=0

4−nz−n =
(
1 + 4−1z−1 + 4−2z−2 + 4−3z−3 + 4−4z−4

)
.

We have
H4 (z) = 1 + 4−1z−1 + 4−2z−2 + 4−3z−3 + 4−4z−4

= 1 + 0.25z−1 + 0.0625z−2 + 0.0156z−3 + 0.0039z−4

k4 = 4−4 = 39.06× 10−4.

We use the downward recursion

Hs−1 (z) =
1

1− k2
s

{
Hs (z)− ksz

−sHs

(
z−1
)}

and note that since Hs(z) = As(z) for all values of s, we can write this recursion alterna-
tively as

As−1 (z) =
1

1− k2
s

{
As (z)− ksz

−sAs

(
z−1

)}
.

With s = 4 we write

H3 (z) =
1

1− k2
4

{H4 (z)− k4z
−4(1 + 4−1z + 4−2z2 + 4−3z3 + 4−4z4)}

=
1

1− 4−8
×
(
1 + 4−1z−1 + 4−2z−2 + 4−3z−3 + 4−4z−4

− 4−4z−4 − 4−5z−3 − 4−6z−2 − 4−7z−1 − 4−8
)

= 1 +
4−1 − 4−7

1− 4−8
z−1 +

4−2 − 4−6

1− 4−8
z−2 +

4−3 − 4−5

1− 4−8
z−3

= 1 + 0.2499z−1 + 0.0623z−2 + 0.0146z−3

wherefrom k3 = 0.0146.
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Repeating, with s = 3, we have

H2 (z) =
1

1− (0.0146)
2 ×

{
1 + 0.2499z−1 + 0.0623z−2 + 0.0146z−3

− 0.0146z−3
(
1 + 0.2499z + 0.0623z2 + 0.0146z3

)}

= 1 + 0.2490z−1 + 0.0587z−2

wherefrom k2 = 0.0587. With s = 2

H1 (z) =
1

1− (0.0587)2
{
1 + 0.249z−1 + 0.0587z−2

− 0.0587z−2
(
1 + 0.249z + 0.0587z2

)}
= 1 + 0.2352z−1

k1 = 0.2352.

Alternatively we may write with

k4 = a
(4)
4 = 4−4 = 0.0039



a
(3)
1

a
(3)
2

a
(3)
3


 =

1

(1− k2
4)







a
(4)
1

a
(4)
2

a
(4)
3


− k4



a
(4)
3

a
(4)
2

a
(4)
1








=




0.2499
0.0623
0.0146





k3 = a
(3)
3 = 0.0146

[
a
(2)
1

a
(2)
2

]
=

1

(1− k2
3)

{[
a
(3)
1

a
(3)
2

]
− k3

[
a
(3)
2

a
(3)
1

]}
=

[
0.2491
0.0586

]

k2 = a
(2)
2 = 0.0586

[
a
(1)
1

]
=

1

(1− k2
2)

{[
a
(2)
1

]
− k2

[
a
(2)
1

]}
= 0.2353 = k1.

The resulting lattice filter is shown in Fig. 11.29.

FIGURE 11.29 Fourth order all-zero FIR lattice filter.

Example 11.10 Given the lattice filter shown in the last figure evaluate its transfer func-
tion H (z). Compare the result with that of the previous example.

From the figure we have

k1 = 0.2352, k2 = 0.0587, k3 = 0.0146 and k4 = 4−4.
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We evaluate the coefficients a
(s)
m of the transfer functions Hs(z) for the successive sections

s = 1, 2, . . . , 4 using the upward recursion. We write

a
(1)
1 = k1

i.e. a
(1)
1 = 0.2352. The coefficients a

(2)
1 and a

(2)
2 of H2 (z) are evaluated by writing a

(2)
2 =

k2 = 0.0587 and
[
a
(2)
1

]
=
[
a
(1)
1

]
+ k2

[
a
(1)
1

]
= [0.2352] + 0.0587 [0.2352] = [0.2490] .

Repeating the process we have a
(3)
3 = k3 = 0.0146 and

[
a
(3)
1

a
(3)
2

]
=

[
a
(2)
1

a
(2)
2

]
+ k3

[
a
(2)
2

a
(2)
1

]
=

[
0.2490
0.0587

]
+ 0.0146

[
0.0587
0.2490

]
=

[
0.2499
0.0623

]

i.e. a
(3)
1 = 0.2499, a

(3)
2 = 0.0623 and

H3 (z) = 1 + 0.2499z−1 + 0.0623z−2 + 0.0146z−3

a
(4)
4 = k4 = 0.0039

and 

a
(4)
1

a
(4)
2

a
(4)
3


 =



a
(3)
1

a
(3)
2

a
(3)
3


+ k4



a
(3)
3

a
(3)
2

a
(3)
1


 =




0.25
0.0625
0.0156




wherefrom
H4 (z) = 1 + 0.25z−1 + 0.0625z−2 + 0.0156z−3 + 0.0039z−4

as expected.

11.25 All-Pole Filter

An all-pole filter of order i has a transfer function Hi (z) of the form

Hi (z) =
1

1 +
i∑

m=1

a
(i)
m z−m

△
=

1

Ai (z)
(11.182)

where Ai (z) is the same polynomial defined above in the context of the all-zero filter. The
transfer function of the all-pole filter is therefore the inverse of the transfer function of the
all-zero FIR filter studied above. For example, a first order filter has a transfer function
designated H1 (z) where

H1 (z) =
1

1 + a
(1)
1 z−1

=
1

1 + k1z−1
. (11.183)

A second order filter has a transfer function

H2 (z) =
1

1 + a
(2)
1 z−1 + a

(2)
2 z−2

=
1

1 + (k1 + k1k2) z−1 + k2z−2
. (11.184)
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Similarly to the all-zero FIR lattice filter, the all-pole filter may be realized as a cascade of
two-port first order sections. An all-pole filter of order i is thus composed of i first-order
stages.

Similarly to the all-zero filter case we write the input–output relations and transfer func-
tions starting from the basic one-pole section followed by successively higher orders.

A single-stage first-order one-pole lattice filter is shown in Fig. 11.30(a). Referring to this
figure we can write the input–output relations.

FIGURE 11.30 First and second order all-pole FIR lattice filter.

11.26 First Order One-Pole Filter

We have

d0 [n] = d1 [n]− k1d̃0 [n− 1] (11.185)

d̃1 [n] = d̃0 [n− 1] + k1d0 [n] (11.186)

with the boundary conditions
d1 [n] = x[n] (11.187)

d0 [n] = d̃0 [n] = y1[n]. (11.188)

Substituting, we have

d0 [n] = y1 [n] = x [n]− k1y1 [n− 1] (11.189)

Y1 (z) + k1z
−1Y1 (z) = X (z) (11.190)

H1 (z) =
Y1 (z)

X (z)
=

1

1 + k1z−1
=

1

1 + a
(1)
1 z−1

=
1

A1(z)
(11.191)

where, as defined above, a
(1)
1 = k1. We write

H̃1 (z) = Y1 (z) /D̃1 (z) (11.192)

d̃1 [n] = y1 [n− 1] + k1y1 [n] (11.193)

D̃1 (z) = z−1Y1 (z) + k1Y1 (z) (11.194)
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H̃1 (z) =
1

z−1 + k1
=

1

z−1 + a
(1)
1

=
1

z−1A1(z−1)
= zH1(z

−1) = 1/Ã1(z) (11.195)

Ã1 (z) = zA1(z
−1). (11.196)

11.27 Second Order All-Pole Filter

Consider now the second order all-pole filter shown in Fig. 11.30(b). We can write, for
s = 1, 2,

ds−1 [n] = ds [n]− ksd̃s−1 [n− 1] , s = 1, 2 (11.197)

d̃s [n] = d̃s−1 [n− 1] + ksds−1 [n] , s = 1, 2. (11.198)

We note that s = 1 thus refers to the right section of the cascade, and s = 2 refers to
the left section. The boundary conditions are

d2 [n] = x[n] (11.199)

d0 [n] = d̃0 [n] = y2[n] (11.200)

D1 (z) = {1 + k1z
−1}Y2 (z) =

(
1 + a

(1)
1 z−1

)
Y2 (z) = A1(z)Y2 (z) . (11.201)

Note that the last section is identical to the single one-pole section just analyzed. It has
therefore the same transfer function H1(z).

H1 (z) =
Y2(z)

D1(z)
=

1

1 + a
(1)
1 z−1

=
1

A1(z)
(11.202)

d̃1 [n] = d̃0 [n− 1] + k1d0 [n] = y2[n− 1] + k1y2[n] (11.203)

D̃1 (z) = {(z−1 + k1})Y2 (z) = Ã1 (z)Y2(z) (11.204)

H̃1 (z) = Y2(z)/D̃1(z) = 1/Ã1(z) = zH1(z
−1) (11.205)

where, as established in the all-zero filter case,

Ã1 (z) = z−1A1

(
z−1

)
. (11.206)

The left section is described by the equations

d2 [n] = x[n] = d1 [n] + k2d̃1 [n− 1] (11.207)

D2 (z) = D1(z) + k2z
−1D̃1(z) = {A1(z) + k2z

−1Ã1(z)}Y2(z) = A2(z)Y2(z) (11.208)

where
A2 (z) = A1 (z) + k2z

−1Ã1 (z) = 1 + a
(2)
1 z−1 + a

(2)
2 z−2 (11.209)

as in the above
H2 (z) = Y2(z)/D2(z) = Y2(z)/X(z) = 1/A2(z) (11.210)

H̃2 (z) = Y2(z)/D̃2 (z) (11.211)

d̃2 [n] = d̃1 [n− 1] + k2d1 [n] (11.212)

D̃2 (z) = z−1D̃1 (z) + k2D1(z) = {z−1Ã1 (z) + k2A1(z)}Y2(z) = Ã2 (z)Y2(z) (11.213)
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d  n2[ ]
~

z
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~
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~
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FIGURE 11.31 Third order all-pole FIR lattice filter.

Ã2(z) = z−1Ã1(z) + k2A1(z) = z−2A2(z
−1) (11.214)

H̃2 (z) = Y2(z)/D̃2(z) = 1/Ã2(z) = 1/
{
z−2A2(z

−1)
}

= z2/
{
1 + a

(2)
1 z + a

(2)
2 z2

}
.

(11.215)

Similarly, referring to the third order all-pole filter shown in Fig. 11.31, we have for s = 1,
2, 3, where s = 1 refers to the right-most, last, section, s = 2, to the middle section, and
s = 3 to the left-most, first section,

Hs (z) = Y3(z)/Ds(z) = 1/As(z), s = 1, 2, 3 (11.216)

H̃s (z) = Y3(z)/D̃s (z) , s = 1, 2, 3 (11.217)

H1 (z) =
Y3(z)

D1(z)
=

1

1 + a
(1)
1 z−1

=
1

A1(z)
(11.218)

H̃1 (z) = Y3(z)/D̃1(z) = 1/Ã1(z) = zH1(z
−1) (11.219)

Ã1 (z) = z−1A1

(
z−1
)

(11.220)

Ã3(z) = z−3A3(z
−1) (11.221)

H̃3 (z) = Y3(z)/D̃3(z) = 1/Ã3(z) = z3/{1 + a
(3)
1 z + a

(3)
2 z2 + a

(3)
3 z3}. (11.222)

11.28 General Order All-Pole Filter

We deduce that for a general all-pole filter of order i the input–output transfer function
Hi(z) = Yi(z)/X(z) is simply the inverse of that of the all-zero filter of the same order,
and that for each section s of the filter, i.e. for s = 1, 2, 3, . . ., i, the transfer function
Hs(z) = Yi(z)/Ds(z) = 1/As(z) where As(z) is the corresponding polynomial of the all-zero
filter. We can therefore write

Hi (z) = Yi(z)/Di(z) = 1/Ai(z) (11.223)

H̃i (z) = Yi(z)/D̃i (z) = 1/Ãi(z). (11.224)

The intermediate transfer functions between the intermediate upper nodes d1[n], d2[n], . . .,
as well as the lower ones d̃1[n], d̃2[n], . . . and the output yi[n] are given by

Hs(z) = Yi(z)/Ds(z) = 1/As(z), s = 1, 2, . . . , i (11.225)
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H̃s(z) = Yi(z)/D̃s(z) = 1/Ãs(z), s = 1, 2, . . . , i (11.226)

where again

As (z) = 1 +

s∑

m=1

a(s)
m z−m (11.227)

Ãs (z) = z−sAs(z
−1) = z−s + z−s

s∑

m=1

a(s)
m zm = z−s +

s∑

m=1

a(s)
m zm−s. (11.228)

The upward and downward recursions of the polynomial Ai(z) and its coefficients, deduced
above in studying the all-zero filter, can be used to evaluate the all-pole transfer functions.
In particular we recall that

As (z) = As−1 (z) + ksz
−sAs−1

(
z−1

)
(11.229)

Ãs (z) = z−sAs

(
z−1
)

(11.230)

As−1 (z) =
1

(1− k2
s)

{
As (z)− ksz

−sAs

(
z−1
)}
. (11.231)

The same downward recursion governing the relation between the coefficients may be
used, namely, 



a
(s−1)
1

a
(s−1)
2
...

a
(s−1)
i−1




=
1

(1− k2
s)








a
(s)
1

a
(s)
2
...

a
(s)
i−1



− ks




a
(s)
i−1

a
(s)
i−2
...

a
(s)
1








(11.232)

and ks = a
(s)
s .

Example 11.11 Consider the filter transfer function

H (z) =
1

1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4
.

Show a lattice realization of this filter. Verify the results by evaluating the system function
of the resulting filter. Writing

H4 (z) = H(z) =
1

A4 (z)

where
A4 (z) = 1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4

we have k4 = 0.0945. Applying the “downward recursion”

A3 (z) =
1

1− k2
4

{
A4 (z)− k4z

−4A4

(
z−1
)}

we have

A3 (z) =
1

1− (0.0945)
2

{
1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4

− 0.0945z−4
(
1− 2.4z + 2.06z2 − 0.744z3 + 0.0945z4

)}

= 1− 2.3507z−1 + 1.8821z−2 − 0.5219z−3

wherefrom k3 = −0.5219
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Repeating we have

A2 (z) =
1

1− (0.5219)
2

{
1− 2.3507z−1 + 1.8821z−2 − 0.5219z−3

+ 0.5219z−3
(
1− 2.3507z + 1.8821z2 + 0.5219z3

)}

= 1− 1.8807z−1 + 0.9006z−2

k2 = 0.9006

A1 (z) =
1

1− (0.9006)
2

{
1− 1.8807z−1 + 0.9006z−2

− 0.9006z−2
(
1− 1.8807z + 0.9006z2

)}
= 1− 0.9895z−1

k1 = −0.9895.

Alternatively we may write

With a
(4)
1 = −2.4, 2.06, . . .

k4 = a
(4)
4 = 0.0945



a
(3)
1

a
(3)
2

a
(3)
3


 =

1

(1− k2
4)








a
(4)
1

a
(4)
2

a
(4)
3


− k4



a
(4)
3

a
(4)
2

a
(4)
1








=



−2.3507

1.8821
−0.5219




k3 = a
(3)
3 = −0.5219

[
a
(2)
1

a
(2)
2

]
=

1

(1− k2
3)

{[
a
(3)
1

a
(3)
2

]
− k3

[
a
(3)
2

a
(3)
1

]}
=

[
−1.8806

0.9007

]

k2 = a
(2)
2 = 0.9007

[
a
(1)
1

]
=

1

(1− k2
2)

{[
a
(2)
1

]
− k2

[
a
(2)
1

]}
= −0.9894 = k1.

The structure shown in Fig. 11.32 is thus obtained. Note that the transfer functions Hs(z),
s = 1, 2, 3, 4 from the successive upper nodes d1[n], d2[n], d3[n] and d4[n] = x[n] to the
output d0[n] = y4[n] are given by Hs(z) = 1/As(z).

z
-1

z
-1

z
-1

z
-1

-0.0945 0.5219 -0.9006 0.9895

0.0945 -0.5219 0.9006 -0.9895

-k4 -k3 -k2 -k1

k4 k3 k2 k1

d  n4[ ]

d  n4[ ]
~

FIGURE 11.32 Fourth order all-pole FIR filter.

To verify the results we evaluate A4 (z). We have

a
(1)
1 = k1

i.e. a
(1)
1 = −0.9895 and

A1 (z) = 1− 0.9895z−1.
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Since k2 = 0.9006 we have
[
a
(2)
1

a
(2)
2

]
=

[
a
(1)
1

0

]
+ k2

[
a
(1)
1

1

]
=

[
−1.8807

0.9006

]

or a
(2)
1 = −1.8807, a

(2)
2 = 0.9006 and

A2 (z) = 1− 1.8807z−1 + 0.9006z−2.

With k3 = −0.5219 we have


a
(3)
1

a
(3)
2

a
(3)
3


 =



a
(2)
1

a
(2)
2

0


+ k3



a
(2)
2

a
(2)
1

1


 =



−2.3507

1.8821
−0.5219




so that
A3 (z) = 1− 2.3507z−1 + 1.8821z−2− 0.5219z−3.

With k4 = 0.0945 we have



a
(4)
1

a
(4)
2

a
(4)
3

a
(4)
4


 =




a
(3)
1 + k4a

(3)
3

a
(3)
2 + k4a

(3)
2

a
(3)
3 + k4a

(3)
1

k4


 =




−2.4
2.06
−0.744
0.0945




i.e.
A4 (z) = 1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4

and H4(z) = 1/A4(z).

11.29 Pole-Zero IIR Lattice Filter

FIGURE 11.33 Third order pole-zero lattice filter.

The structure of a pole-zero IIR filter is shown in Fig. 11.33. The IIR lattice structure
has the form of an all-pole lattice filter in cascade with a tapped delay line. The transfer



776 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

function from the input to the output of the all-pole filter is

H(z) =
1

A(z)
. (11.233)

This is in cascade with the transfer function from the all-pole output to the taps of the
delay line. The transfer function form the input to the successive taps of the delay line is
therefore

Hk(z) = H1(z) ˜Hk(z) (11.234)

=
1

A(z)
z−kAk(z−1).

The overall transfer function from the input x[n] to the output y[n] is therefore, with

ck ≡ c(i)k ,

H(z) =

i∑

k=0

ckHk(z) =
1

A(z)

i∑

k=0

ckz
−kAk(z−1) =

B(z)

A(z)
. (11.235)

In other words

B(z) =

i∑

k=0

ckz
−kAk(z−1). (11.236)

Now

Ak(z) = 1 + a
(k)
1 z−1 + a

(k)
2 z−2 + · · ·+ a

(k)
k z−k (11.237)

Ak(z−1) = 1 + a
(k)
1 z + a

(k)
2 z2 + · · ·+ a

(k)
k zk (11.238)

z−kAk(z−1) = z−k + a
(k)
1 z−k+1 + a

(k)
2 z−k+2 + · · ·+ a

(k)
k (11.239)

B(z) = c0 + c1

{
z−1 + a

(1)
1

}
+ c2

{
z−2 + a

(2)
1 z−1 + a

(2)
2

}

+c3

{
z−3 + a

(3)
1 z−2 + a

(3)
2 z−1 + a

(3)
3

}

+ . . .

+ci

{
z−i + a

(i)
1 z−(i−1) + · · ·+ a

(i)
i−1z

−1 + a
(i)
i

}
(11.240)

and since

B(z) =

i∑

k=0

b
(i)
k z−k (11.241)

we have

b
(i)
0 = c0 + c1a

(1)
1 + c2a

(2)
2 + · · ·+ cia

(i)
i (11.242)

b
(i)
1 = c1 + c2a

(2)
1 + c3a

(3)
2 + · · ·+ cia

(i)
i−1 (11.243)

b
(i)
2 = c2 + c3a

(3)
1 + c4a

(4)
2 + · · ·+ cia

(i)
i−2 (11.244)

b
(i)
i = ci (11.245)

We conclude that

b
(i)
k =

i∑

m=k

c(i)m a
(m)
m−k, k = 0, 1, . . . , i. (11.246)
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b
(i)
k = c

(i)
k +

i∑

m=k+1

c(i)m a
(m)
m−k, k = 0, 1, . . . , i (11.247)

with the initial value b
(i)
i = c

(i)
i , which may also be rewritten

c
(i)
k = b

(i)
k −

i∑

m=k+1

c(i)m a
(m)
m−k, k = 0, 1, . . . , i (11.248)

with the initial value
c
(i)
i = b

(i)
i . (11.249)

Example 11.12 Write the equations relating the coefficients of a third order pole-zero IIR
filter in matrix form.

We have i = 3. The coefficients b
(3)
k are given by b

(3)
3 = c

(3)
3 and

b
(3)
0 = c

(3)
0 + c

(3)
1 a

(1)
1 + c

(3)
2 a

(2)
2 + c

(3)
3 a

(3)
3 (11.250)

b
(3)
1 = c

(3)
1 + c

(3)
2 a

(2)
1 + c

(3)
3 a

(3)
2 (11.251)

b
(3)
2 = c

(3)
2 + c

(3)
3 a

(3)
1 (11.252)

or in matrix form



b
(3)
0

b
(3)
1

b
(3)
2


 =



c
(3)
0

c
(3)
1

c
(3)
2


+



c
(3)
1 c

(3)
2 c

(3)
3

c
(3)
2 c

(3)
3

c
(3)
3







a
(1)
1

a
(2)
1

a
(3)
1

a
(2)
2

a
(3)
2

a
(3)
3




(11.253)

where the blanks signify zero-elements. These same equations defining the b
(3)
k coefficients

can be rewritten in a form defining the ck coefficients:

c
(3)
3 = b

(3)
3 (11.254)

c
(3)
0 = b

(3)
0 − c

(3)
1 a

(1)
1 − c

(3)
2 a

(2)
2 − c

(3)
3 a

(3)
3 (11.255)

c
(3)
1 = b

(3)
1 − c

(3)
2 a

(2)
1 − c

(3)
3 a

(3)
2 (11.256)

c
(3)
2 = b

(3)
2 − c

(3)
3 a

(3)
1 . (11.257)

The last three equations are solved in reverse order, that is, c
(3)
2 is deduced from c

(3)
3 , whence

c
(3)
1 , and finally c

(3)
0 . To this end we may reverse the order of the equations and obtain the

corresponding matrix form. We have



c
(3)
2

c
(3)
1

c
(3)
0


 =



b
(3)
2

b
(3)
1

b
(3)
0


−




c
(3)
3

c
(3)
2 c

(3)
3

c
(3)
1 c

(3)
2 c

(3)
3







a
(1)
1

a
(2)
1

a
(3)
1

a
(2)
2

a
(3)
2

a
(3)
3




. (11.258)
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Example 11.13 Let

H (z) =
1− 1.6z−1 + 1.18z−2 − 0.38z−3 + 0.04z−4

1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4
=
B4 (z)

A4 (z)
=

4∑

i=0

b
(4)
i z−i

1 +
4∑

i=1

a
(4)
i z−i

.

Show the lattice filter realization.

We note that the denominator polynomial is the same as that of the previous all-pole filter

example. As found above we have k4 = a
(4)
4 = 0.0945



a
(3)
1

a
(3)
2

a
(3)
3


 =

1

(1− k2
4)








a
(4)
1

a
(4)
2

a
(4)
3


− k4



a
(4)
3

a
(4)
2

a
(4)
1








=



−2.3507

1.8821
−0.5219


 (11.259)

k3 = a
(3)
3 = −0.5219 (11.260)

[
a
(2)
1

a
(2)
2

]
=

1

(1− k2
3)

{[
a
(3)
1

a
(3)
2

]
− k3

[
a
(3)
2

a
(3)
1

]}
=

[
−1.8806

0.9007

]
(11.261)

k2 = a
(2)
2 = 0.9007 (11.262)

[
a
(1)
1

]
=

1

(1− k2
2)

{[
a
(2)
1

]
− k2

[
a
(2)
1

]}
= −0.9894 = k1. (11.263)

We also have from the numerator polynomial of H (z)

b
(4)
0 = 1, b

(4)
1 = −1.6, b

(4)
2 = 1.18, b

(4)
3 = −0.38, b

(4)
4 = 0.04. (11.264)

The matrix form with i = 4 is written

c
(4)
4 = b

(4)
4 (11.265)




c
(4)
3

c
(4)
2

c
(4)
1

c
(4)
0


 =




b
(4)
3

b
(4)
2

b
(4)
1

b
(4)
0


−




c
(4)
4

c
(4)
3 c

(4)
4

c
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(1)
1

a
(2)
1
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(3)
1

a
(4)
1
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(2)
2
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(3)
2
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(4)
2
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(3)
3
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(4)
3
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(11.266)

i.e.
c
(4)
4 = b

(4)
4 = 0.04 (11.267)

c
(4)
3 = b

(4)
3 − c

(4)
4 a

(4)
1 = −0.38− 0.04 (−2.4) = −0.284 (11.268)
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c
(4)
2 = b

(4)
2 − c

(4)
3 a

(3)
1 − c

(4)
4 a

(4)
2 (11.269)

c
(4)
1 = b

(4)
1 − c

(4)
2 a

(2)
1 − c

(4)
3 a

(3)
2 − c

(4)
4 a

(4)
3 (11.270)

c
(4)
0 = b

(4)
0 − c

(4)
1 a

(1)
1 − c

(4)
2 a

(2)
2 − c

(4)
3 a

(3)
3 − c

(4)
4 a

(4)
4 . (11.271)

The following MATLAB program evaluates the lattice filter coefficients of the pole zero
filter. The first part of the program would evaluate the coefficients of an all-zero or all-pole
filter. The second part deals with the tapped delay line filter coefficients. The program deals
with a fourth order filter. It can be easily extended to a general filter order.

% Lattice filt pole-zero example M.CORINTHIOS

% The all-pole part

a14=-2.4

a24=2.06

a34=-0.744

a44=0.0945

k4=a44

a13=(1/(1-k4ˆ2))*(a14-k4*a34)

a23=(1/(1-k4ˆ2))*(a24-k4*a24)

a33=(1/(1-k4ˆ2))*(a34-k4*a14)

k3=a33

%

a12=(1/(1-k3ˆ2))*(a13-k3*a23)

a22=(1/(1-k3ˆ2))*(a23-k3*a13)

k2=a22

%

a11=(1/(1-k2ˆ2))*(a12-k2*a12)

k1=a11

% The tapped delay line part

b04=1

b14=-1.6

b24=1.18

b34=-0.38

b44=0.04

c44=b44

c34=b34-c44*a14

c24=b24-c34*a13-c44*a24

c14=b14-c24*a12-c34*a23-c44*a34

c04=b04-c14*a11-c24*a22-c34*a33-c44*a44

We obtain

c
(4)
4 = 0.04, c

(4)
3 = −0.284, c

(4)
2 = 0.43, c

(4)
1 = −0.227, c

(4)
0 = 0.2361

as can be seen in Fig. 11.34.

Example 11.14 Verify this last result by evaluating the numerator coefficients b
(i)
k .

For the case i = 4 we have
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FIGURE 11.34 Fourth order pole-zero lattice filter.
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2
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(4)
2
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.

We obtain

b
(4)
0 = 1, b

(4)
1 = −1.6, b

(4)
2 = 1.18, b

(4)
3 = −0.38, b

(4)
4 = 0.04

as expected, being the coefficients of the numerator polynomial B (z) of H (z).

Example 11.15 Evaluate the transfer function H(z) of the lattice filter shown in Fig. 11.35

z
-1

z
-1

z
-1

x n[ ]

y n[ ]

0.78

-0.78

-0.17

0.17

0.67

-0.67

4.75.294.21

FIGURE 11.35 A lattice filter structure.

a
(1)
1 = k1 = −0.78
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Since k2 = 0.17 we have
[
a
(2)
1

a
(2)
2

]
=

[
a
(1)
1

0

]
+ k2

[
a
(1)
1

1

]
=

[
−0.9126

0.17

]

or a
(2)
1 = −0.9126, a

(2)
2 = 0.17. With k3 = −0.67 we have


a
(3)
1

a
(3)
2

a
(3)
3


 =



a
(2)
1

a
(2)
2

0


+ k3



a
(2)
2

a
(2)
1

1


 =



−1.0265

0.7814
−0.67




The coefficients b
(3)
k are given by

b
(3)
0 = c

(3)
0 + c

(3)
1 a

(1)
1 + c

(3)
2 a

(2)
2 + c

(3)
3 a

(3)
3 (11.272)

b
(3)
1 = c

(3)
1 + c

(3)
2 a

(2)
1 + c

(3)
3 a

(3)
2 (11.273)

b
(3)
2 = c

(3)
2 + c

(3)
3 a

(3)
1 (11.274)

and b
(3)
3 = c

(3)
3 . We obtain b0 = 0.6178, b1 = 2.2385, b2 = 3.1735, b3 = 1. Hence

H(z) =
0.6178 + 2.2385z−1 + 3.1735z−2 + z−3

1− 1.0265z−1 + 0.7814z−2 − 0.67z−3

.

11.30 All-Pass Filter Realization

In a Kth order all-zero FIR lattice filter the transfer function between the input x [n] and
the lower output terminal eK [n] is

Hap (z) =
Ẽ (z)

X (z)
=
z−KAK

(
z−1

)

AK (z)
. (11.275)

Similarly, in a Kth order all-pole FIR lattice filter the transfer function between the input
x [n] and the lower terminal d̃K [n] is

Hap (z) =
D̃K (z)

X (z)
=
z−KAK

(
z−1
)

AK (z)
. (11.276)

We recall from Equation (6.187) that these are but general forms of allpass filters.

Example 11.16 Design an allpass lattice filter of transfer function Hap (z) of which the
denominator should equal AK (z) = 1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4

The required transfer function is

Hap (z) =
z−KAK

(
z−1
)

AK (z)
=

0.0945− 0.744z−1 + 2.06z−2 − 2.4z−3 + z−4

1− 2.4z−1 + 2.06z−2 − 0.744z−3 + 0.0945z−4

The same all-pole filter lattice filter obtained in the last example and shown in Fig. 11.32
may be employed, its transfer function denominator being the same as the present one. The
allpass filter has its input x [n], and its output taken as d̃4 [n], as shown in the figure.
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In the all-zero filter we found that

Hi (z) =
Yi (z)

X (z)
=
Ei (z)

X (z)
(11.277)

i.e.

Ei (z) = Hi (z)X (z) = Ai (z)X (z) . (11.278)

We also note that

H̃i (z) =
Ẽi (z)

X (z)
(11.279)

i.e.

Ẽi (z) = H̃i (z)X (z) = Ãi (z)X (z) = z−iAi

(
z−1

)
X (z) (11.280)

wherefrom, letting H12 (z) = Ei (z) /Ẽi (z) we have

H12 (z) =
Ei (z)

Ẽi (z)
=
ziAi (z)

Ai (z−1)
= zi

1 +

i∑

k=1

a
(i)
k z−i

1 +

i∑

k=1

a
(i)
k zi

. (11.281)

Letting z = ejΩ we have

H12

(
ejΩ
)

= ejiΩ

1 +

i∑

k=1

a
(i)
k e−jiΩ

1 +

i∑

k=1

a
(i)
k ejiΩ

. (11.282)

Writing

H12

(
ejΩ
)

= ejiΩ N(Ω)

D (Ω)
(11.283)

we note that D (Ω) = N∗ (Ω). Therefore
∣∣H12

(
ejΩ
)∣∣ = 1. The transfer function H12 (z)

relating Ei (z) and Ẽi (z) is therefore an allpass network.

11.31 Schur–Cohn Stability Criterion

The Schur–Cohn stability criterion states that a digital filter of system function

H (z) =
B (z)

A (z)
(11.284)

is stable if and only if the reflection coefficients kj associated with the denominator poly-
nomial A (z) are all of absolute value less than one, i.e.

|kj | < 1, for all j. (11.285)
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11.32 Frequency Transformations

FIGURE 11.36 Lowpass to bandpass and bandstop frequency transformation.

We have seen how to convert a prototype lowpass continuous-time filter into a bandpass,
bandstop and highpass filters. Corresponding discrete-time domain digital filters can be
obtained in general from the continuous-time domain filters by using the bilinear transform
approach as seen above.

Alternatively, as seen above, impulse invariance may be used to convert a continuous-
time bandpass filter into a bandpass digital filter. Impulse invariance, based on sampling
the continuous-time filter impulse response, cannot be used however to convert a highpass
or bandstop filter into discrete time filter counter part since aliasing would occur, however
high the sampling frequency.

Another distinct approach to designing discrete-time bandpass, bandstop and highpass
filters is to apply a direct transformation which converts a discrete-time lowpass system
function HLP (z) into the desired system function. Similarly to the continuous-time domain
where the variable s in the lowpass system function HLP (s) was replaced by a function
w(s), written

s −→ w(s) (11.286)

in the present context the variable z−1 in the prototype lowpass filter is replaced by a
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function w(z−1), written

z−1 −→ w(z−1). (11.287)

FIGURE 11.37 Lowpass to highpass frequency transformation.

Table 11.1 shows the appropriate transformation which would convert a lowpass IIR filter
into a lowpass filter of different cut-off frequency, into a bandpass filter, a bandstop filter
and a highpass filter, respectively. The frequency transformation that takes place can be
visualized by replacing the lowpass filter variable z−1 by e−jθ and replacing the resulting
filter variable z−1 by e−jΩ.

The resulting relation of θ versus Ω for the transformations to bandpass, bandstop, and
highpass filters are shown in Fig. 11.36(a-b) and Fig. 11.37, respectively.

In each of these figures is shown the lowpass filter frequency response HLP (ejθ) with a
cut-off frequency θc = θp and the resulting desired filter response H(ejΩ). The approach
is similar to the corresponding one we have seen in the context of continuous-time filters.
θc = θp

Example 11.17 Design a bandpass Chebyshev filter of order 3 of cut-off frequency 0.2π
and 0.6π and 0.5 dB ripple by starting from a prototype lowpass filter of cut-off frequency
Ωc = 0.5π and then converting it into the desired bandpass filter.

The simple MATLAB program
N = 3 % filter order.
R = 0.5 %0.5 dB ripple.
Wn = 0.5 % LP filter cut-off frequency 0.5π.
[A, B] = cheby1(N, R, Wn)

upon execution produces the coefficients vectors

B =
[
0.1589 0.4768 0.4768 0.1589

]

A =
[
1 -0.1268 0.5239 -0.1257

]

i.e.

HLP [z] =
0.1589 + 0.4768z−1 + 0.4768z−2 + 0.1589z−3

1− 0.1268z−1 + 0.5239z−2 − 0.1257z−3
.

With cut-off frequencies Ω1 = 0.2π and Ω2 = 0.6π of the desired bandpass filter and
a cut-off frequency θc = 0.5π of the lowpass prototype, the parameters α and γ given in
the table can be evaluated followed by the replacement of the variable z−1 in HLP (z) by
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TABLE 11.1 Frequency transformations of a lowpass filter

Desired
filter

Desired
cut-off

frequencies

Filter
parameters

z−1 replaced by

Lowpass Ωc α =
sin

“

θp−Ωc
2

”

sin
“

θp+Ωc
2

”

z−1−α
1−αz−1

Bandpass Ω1, Ω2 α =
cos(Ω2+Ω1

2 )
cos(Ω2−Ω1

2 )
−z−2+ 2αγ

γ+1 z−1− γ−1
γ+1

γ−1
γ+1 z−2− 2αγ

γ+1 z−1+1

γ = cot
(

Ω2−Ω1

2

)
tan

(
θp

2

)

Bandstop Ω1, Ω2 α =
cos(Ω2+Ω1

2 )
cos(Ω2−Ω1

2 )
z−2− 2α

1+γ z−1+ 1−γ
1+γ

1−γ
1+γ z−2− 2α

1+γ z−1+1

γ = tan
(

Ω2−Ω1

2

)
tan

(
θp

2

)

Highpass Ωc α =
cos

“

θp+Ωc
2

”

cos
“

θp−Ωc
2

”

−z−1−α
1+αz−1

the expression of the lowpass to bandpass transformation given in the table. To this end
Mathematica may be used producing the result

HBP [z] =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4 + b5z

−5 + b6z
−6

a0 + a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5 + a6z−6

where the numerator coefficient bi and denominator coefficient ai are given respectively by

bi = [0.0916, 0, −0.2749, 0, 0.2749, 0, −0.0916]

ai = [1, −1.4362, 1.5221, −1.2660, 1.1093, −0.5075, 0.2088] .

The results thus obtained are identical to those produced by MATLAB.
The simple MATLAB program:
N = 3 % filter order R = 0.5% 0.5 dB ripple.
W1 = 0.2 % First cut-off frequency 0.5π.
W2 = 0.6 % Second filter cut-off frequency 0.5π.
Wn =

[
W1 W2

]
.

[B2, A2] = cheby1(N, R, Wn)%
produces the same numerator and denominator coefficients, thus the same system function
HBP (z).

Example 11.18 Show a realization of an allpass system of the first order having a real pole
at z = p using one multiplier, and a realization of a second order system with a complex
pole z = p and its conjugate using two multipliers.

1. One real pole

H (z) =
z−1 − p
1− pz−1

=
−p+ z−1

1− pz−1
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FIGURE 11.38 Allpass filter prototypes.

which leads to a possible filter structure as that shown in Fig. 11.38(a).

2. Two conjugate poles

p = α+ jβ

H (z) =
z−1 − p∗
1− pz−1

z−1 − p
1− p∗z−1

=
z−2 − (p+ p∗) z−1 + |p|2

1− (p+ p∗) z−1 + |p|2 z−2

=
z−2 − 2αz−1 + α2 + β2

1− 2αz−1 + (α2 + β2) z−2
=

(
α2 + β2

)
− 2αz−1 + z−2

1− 2αz−1 + (α2 + β2) z−2
=

γ2 + γ1z
−1 + z−2

1 + γ1z−1 + γ2z−2

γ1 = −2α, γ2 = α2 + β2

realized as shown in Fig. 11.38(b).

11.33 Least Squares Digital Filter Design

We have seen how a digital filter may be obtained by applying the z-transform to a cor-
responding analog filter. We presently study methods wherein a digital filter is directly
specified and designed with no reference to the analog filter continuous-time domain. In
what follows, we study two methods in which the design is carried out in the time domain
and two where it is effected in the frequency domain and the z-domain, respectively.

11.34 Padé Approximation

In the Padé approximation approach the objective is to evaluate a filter transfer function
H (z) such that the filter impulse response h [n] = Z−1 [H (z)] best matches a given desired
impulse response hd [n] given as a sequence of numerical values. Writing

H (z) =

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz−k

=
B (z)

A (z)
=
∞∑

n=0

h [n] z−n (11.288)
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the objective is therefore to evaluate the filter coefficients ak and bk which would minimize
the sum-of-squares error

ε =

K∑

n=0

{h [n]− hd [n]}2 (11.289)

where K > M + N , that is, K may be equal to or greater than the number of unknown
coefficients ak and bk.

The minimization of the sum-of-squares error ε generally involves the solution of nonlinear
equations. If, on the other hand, we choose K = M +N the number of equations equals
the number of unknowns ak and bk.

We may then write

B (z) = A (z)H (z) (11.290)

bn = an ∗ h [n] , 0 6 n 6 M (11.291)

and note that bn = 0 for n < 0 and n > M , and an = 0 for n < 0 and n > N . We
may write

N∑

k=0

akh [n− k] =

{
bn, 0 6 n 6 M
0, n < 0, n > M.

(11.292)

h [n] = −a1h [n− 1]− a2h [n− 2]− . . .− aNh [n−N ] + bn, 0 6 n 6 M (11.293)

h [n] = −a1h [n− 1]− a2h [n− 2]− . . .− aNh [n−N ] , n < 0, n > M. (11.294)

If we let h [n] = hd [n] for 0 6 n 6 M +N we may write the last equation in matrix
form




hd[M ] hd[M − 1] . . . hd[M + 1−N ]
hd[M + 1] hd[M ] . . . hd[M + 2−N ]

...
...

. . .
...

hd[M +N − 1] hd[M +N − 2] . . . hd[M ]







a1

a2

...
aN


 = −




hd[M + 1]
hd[M + 2]

...
hd[M +N ]




We have M+N linear equations that should be linearly independent, leading to a unique
solution. Solving them we obtain the coefficients ak. Substituting into Equation (11.292)
we obtain with n replaced by k the values of the coefficients bk.

bk = h [k] + a1h [k − 1] + a2h [k − 2] + . . .+ aNh [k −N ] , k = 0, 1, . . . , M (11.295)

which can be written in the form




b0
b1
b2
...
bM




=




h [0] 0 0 . . . 0
h [1] h [0] 0 . . . 0
h [2] h [1] h [0] . . . 0

...
...

...
. . .

...
h [M ] h [M − 1] h [M − 2] . . . h [M −N ]







1
a1

a2

...
aN




(11.296)

A perfect match h [n] = hd [n] is thus obtained for n = 0, 1, . . . , M+N . For n > M+N
however, no condition is imposed on h [n] and the approximation may deviate considerably
from hd [n]. Such is the weakness of the Padé approximation.
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Example 11.19 Given the desired impulse response

hd [n] = {10 (0.75)
n

+ 20 (0.6)
n}u [n] (11.297)

deduce the coefficients of the filter transfer function H (z) such that h [n] = hd [n], using the
Padé approximation.

We note that with h [n] = hd [n] we have

H (z) =
10

1− 0.75z−1
+

20

1− 0.6z−1
=

10− 6z−1 + 20− 15z−1

(1− 0.75z−1) (1− 0.6z−1)

=
30− 21z−1

1− 1.35z−1 + 0.45z−2
=

b0 + b1z
−1

1 + a1z−1 + a2z−2
.

To verify that Padé approximation produces the same result we proceed as given above
with M = 1 and N = 2 so that K = M +N = 3

[
hd [1] hd [0]
hd [2] hd [1]

] [
a1

a2

]
= −

[
hd [2]
hd [3]

]
(11.298)

[
19.5 30

12.825 19.5

] [
a1

a2

]
= −

[
12.825
8.5388

]
. (11.299)

Solving, we obtain a1 = −1.350 and a2 = 0.45 as expected. Writing the matrix equation
in the form AX = B we may obtain the solution using the MATLAB function X = A\B.
This is a very useful MATLAB command, and particularly powerful when we are dealing
with systems of higher orders.

The coefficients bk are given by
[
b0
b1

]
=

[
h [0] 0
h [1] h [0]

] [
1
a1

]
(11.300)

=

[
30 0

19.5 30

] [
1

−1.35

]
=

[
30
−21

]
.

Example 11.20 Use the Padé approximation to evaluate the transfer function Hd (z) that
models a Chebyshev Type 1 filter of the fourth order with 1 dB pass-band ripple and a
pass-band edge frequency which is one quarter of the sampling frequency.

The filter transfer function is given by

H (z) =
0.05552 + 0.2221z−1 + 0.3331z−2 + 0.2221z−3 + 0.05552z−4

1− 0.7498z−1 + 1.073z−2− 0.5598z−3 + 0.2337z−4
. (11.301)

The impulse response h [n] is found as the inverse Z transform of H (z). We obtain

h [n] = {0.0555, 0.2637, 0.4713, 0.3237, −0.0726, −0.1994, (11.302)

−0.0006, 0.0971, −0.0212, −0.0738, 0.0219, 0.0610, . . .}
By setting the desired impulse response hd [n] equal to the system impulse response h [n]

we obtain the matrix equation AX = B where X is the vector of unknown ak coefficients.
With M = 4 and N = 4 we obtain




−0.0726 0.3237 0.4713 0.2637
−0.1994 −0.0726 0.3237 0.4713
−0.0006 −0.1994 −0.0726 0.3237
0.0971 −0.0006 −0.1994 −0.0726







a1

a2

a3

a4


 =




0.1994
0.0006
−0.0971
0.0212


 (11.303)
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Using MATLAB we write X = A\B obtaining the solution X with the coefficients
a1 = −0.7498, a2 = 1.0725, a3 = −0.5598 and a4 = 0.2337 as expected. The bk coefficients
are given by

B =




0.0555 0 0 0 0
0.2637 0.0555 0 0 0
0.4713 0.2637 0.0555 0 0
0.3237 0.4713 0.2637 0.0555 0
−0.0726 0.3237 0.4713 0.2637 0.0555







1
−0.7498
1.0725
−0.5598
0.2337




=




0.0555
0.2221
0.3331
0.2221
0.0555




where B is the vector of bk coefficients, as expected.

It is important to note that in this example we assumed knowledge of the number of zeros
M and poles N of the filter model. We were thus able to write M +N equations and obtain
an exact solution. If, on the other hand, we are given only the impulse response hd [n] and
no knowledge of the number of zeros and poles M and N , the number of equations would
not match those of the coefficients and the Padé approximation would not produce reliable
results.

5 10 15 20

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

h n[ ]

n

FIGURE 11.39 Desired impulse response.

Figure 11.39 shows the desired impulse response h [n]. The effect on the response of
assuming a number of zeros M = 5 and poles N = 5 is shown in Fig. 11.40. In this figure,
we see the true desired response h [n] together with the erroneous response ĥ [n] produced
by the Padé approximation. We see that a slight deviation from the true numerator and
denominator orders M and N of H (z) leads to unreliable results.
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h n   h n[ ], [ ]
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FIGURE 11.40 Desired filter response and erroneous Padé approximation.

11.35 Error Minimization in Prony’s Method

We have seen that a true minimization of the sum of squares error ε necessitates the solution
of nonlinear equations. To avoid such difficulty we note that with h [n] replaced by hd [n]
the condition in Equation (11.294) should be as closely as possible approximated; i.e. we
should aim for satisfying as closely as possible the condition

hd [n] + a1hd [n− 1] + a2hd [n− 2] + . . .+ aNhd [n−N ] = 0, n > M. (11.304)

We may view the approximation error as the sum of squares

ε =

∞∑

n=M+1

{
hd [n] +

N∑

m=1

amhd [n−m]

}2

. (11.305)

The coefficients ak are found by setting

∂ε

∂ak
= 0, k = 0, 1, . . . , N (11.306)

∂ε

∂ak
= 2

∞∑

n=M+1

{
hd [n] +

N∑

m=1

amhd [n−m]

}
{hd [n− k]} = 0 (11.307)

∞∑

n=M+1

{
hd [n] hd [n− k] +

N∑

m=1

amhd [n−m] hd [n− k]
}

= 0 (11.308)
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N∑

m=1

∞∑

n=M+1

hd [n−m] hd [n− k]am = −
∞∑

n=M+1

hd [n] hd [n− k] (11.309)

N∑

m=1

r [k, m] am = −r [k, 0] , k = 1, 2, . . . , N (11.310)

where r [k,m] is the autocorrelation

r [k,m] =

∞∑

n=M+1

hd [n−m] hd [n− k] . (11.311)

The result may be written in the matrix form




r [1, 1] r [1, 2] . . . r [1, N ]
r [2, 1] r [2, 2] . . . r [2, N ]

...
...

. . .
...

r [N, 1] r [N, 2] . . . r [N,N ]







a1

a2

...
aN


 = −




r [1, 0]
r [2, 0]

...
r [N, 0]


 (11.312)

The bk coefficients are then deduced using the values of the ak coefficients as was done
above. We have

bk = hd [k] +

k∑

i=1

aihd [k − i] , k = 0, 1, . . . , M (11.313)

which can be written in matrix form as seen above.

b0 = hd [0] (11.314)

b1 = hd [1] + a1hd [0] (11.315)

b2 = hd [2] + a1hd [1] + a2hd [2] (11.316)

. . .

bk = hd [k] + a1hd [k − 1] + a2hd [k − 2] + . . .+ aNhd [k −N ] . (11.317)

bM = hd [M ] + a1hd [M − 1] + a2hd [M − 2] + . . .+ aNhd [0] (11.318)

Shanks’ approach introduced in 1967 concerns the estimation of the bk coefficients. Let
Hp (z) be an all-pole filter

Hp (z) =
1

1 +

N∑

k=1

âkz−k

(11.319)

where the coefficients âk are those found as seen above. Let

Hz (z) =

M∑

k=0

bkz
−k (11.320)

and consider the cascade shown in Fig. 11.41.
Let the input to the cascade system be the unit pulse δ [n]. The output of the first system

is hp [n] as seen in the figure. The output y [n] of the second system should be as closely
as possible equal to the desired unit pulse response hd [n]. The objective is to evaluate the
coefficients bk leading to such approximation. We have

Y (z) = Hz (z) Hp (z) = Hp (z)

M∑

k=0

bkz
−k (11.321)
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d[ ]n h np[ ]
H zp( )

y n[ ]
H zz( )

FIGURE 11.41 A cascade of an all-pole and an all-zero filters.

y [n] = hp [n] ∗
M∑

k=0

bkδ [n− k] =

M∑

k=0

bkhp [n− k] (11.322)

e [n] = hd [n]− y [n] = hd [n]−
M∑

k=0

bkhp [n− k] (11.323)

ε =

∞∑

n=0

{
hd [n]−

M∑

m=0

bmhp [n−m]

}2

(11.324)

∂ε

∂bk
= 2

∞∑

n=0

{
hd [n]−

M∑

m=0

bmhp [n−m]

}
{−hp [n− k]} = 0. (11.325)

M∑

m=0

bm

∞∑

n=0

hp [n− k] hp [n−m] =
∞∑

n=0

hp [n− k] hd [n] . (11.326)

Let

rhphp [k,m] =
∞∑

n=0

hp [n− k] hp [n−m] (11.327)

rhphd
[k] =

∞∑

n=0

hp [n− k] hd [n] (11.328)

We have
M∑

m=0

bm rhphp [k,m] = rhphd
[k] , k = 0, 1, . . . , M (11.329)




rhphp [0, 0] rhphp [0, 1] . . . rhphp [0,M ]
rhphp [1, 0] rhphp [1, 1] . . . rhphp [1,M ]

...
...

. . .
...

rhphp [M, 0] rhphp [M, 1] . . . rhphp [M,M ]







b0
b1
...
bM


 =




rhphd
[0]

rhphd
[1]

...
rhphd

[M ]


 (11.330)

which may be solved for the coefficients bk.

Example 11.21 Using Prony’s method estimate the denominator coefficients ak, and then
the numerator coefficients bk, of a system transfer function to approximate a desired unit
pulse response of N = 256 points given by

hd [n] =
4∑

i=1

Aia
n
i cos(γn

i + θi)u[n]

where for n = 1, 2, 3, 4, respectively, Ai = 5, 10, 5, 8, ai = 0.9, 0.7, 0.6, 0.5, γi =
32π/N, 64π/N, 96π/N, 128π/N , and θi = π/3, π/5, π/4, 0.2π. Prony’s method receives
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the sequence hd[n] as a succession of N values but the analytical value of hd[n] is assumed
to be unknown. Prony’s method evaluates the parameters ak and bk of the transfer function

H (z) =

M∑

k=0

bkz
−k

1 +

N∑

k=1

akz−k

based solely on the those N = 256 values of hd[n].

A plot of the first seventy points of the sequence is shown in Fig. 11.42.

h n[ ]

n
10 20 30 40 50 60 70

-5

0

5

10

15

20

FIGURE 11.42 Given finite duration impulse response.

Applying Prony’s method we write




r [1, 1] r [1, 2] . . . r [1, N ]
r [2, 1] r [2, 2] . . . r [2, N ]

...
...

. . .
...

r [N, 1] r [N, 2] . . . r [N,N ]







a1

a2

...
aN


 = −




r [1, 0]
r [2, 0]

...
r [N, 0]







7.6779 7.4925 6.3322 4.4969 1.9237 −1.4702 −5.2506 −12.2434
7.4925 9.0091 9.7005 9.8727 9.3090 7.7721 5.8520 −1.4780
6.3322 9.7005 12.6716 15.5732 17.8545 19.0098 19.9176 12.1098
4.4969 9.8727 15.5732 22.0883 28.3718 33.4095 38.4848 29.9518
1.9237 9.3090 17.8545 28.3718 39.4833 49.5130 59.8786 52.1225
−1.4702 7.7721 19.0098 33.4095 49.5130 65.1775 81.6826 76.4534
−5.2506 5.8520 19.9176 38.4848 59.8786 81.6826 105.4543 102.4345
−12.2434 −1.4780 12.1098 29.9518 52.1225 76.4534 102.4345 116.1464







a1

a2

a3

a4

a5

a6

a7

a8




= −




−6.7315
−5.0701
−2.4731
0.8269
4.8133
9.4361
14.3999
20.4411
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We obtain the estimates of the coefficients a1, a2, . . . respectively, namely,

ak = {−3.1122, 4.7745, −4.7028, 3.3311, −1.7455, 0.6929, −0.1911, 0.0357}

and then obtain the estimates of the coefficients b0, b1, b2, . . ., namely,

bk = {16.5978, −54.9249, 83.0771, −78.9865, 51.9704, −24.3083, 7.6284, −1.4800}

The estimates are accurate with maximum percentage error of 2.3 × 10−7. MATLAB has
the function prony which performs this same evaluation.

11.36 FIR Inverse Filter Design

The problem of inverse filtering, also referred to as “deconvolution” is encountered, for
example, when an equalizer is sought to counteract the effect of a distorting filter. Let G (z)
be the transfer function of an linear time invariant (LTI) system and g [n] be its impulse
response. We seek a filter of transfer function H (z), as seen in Fig. 11.43, such that

H (z) = 1/G (z) (11.331)

and unit sample response h [n]. We note that G (z)H (z) = 1 implies that g [n] ∗ h [n] =
δ [n]. If G (z) has zeros outside the unit circle in the z-plane, the resulting inverse filter H (z)
is unstable. For a stable inverse filter the system G (z) should therefore be minimum-phase.

x n[ ]=d[ ]n g n[ ]
G z( )

y n[ ]=d[ ]n
H z( )

FIGURE 11.43 Cascade of a filter and its inverse.

Note, moreover, that if and only if G (z) is an all-pole filter, the resulting filter H (z)
may be realized as an FIR filter; otherwise an FIR filter realization would be at best an
approximation of the required true inverse filter.

With the inverse filter realized as an FIR filter of length N we obtain an approximation

g [n] ∗ h [n] = d [n] ≈ δ [n] . (11.332)

The error e [n] of the approximation, as seen in Fig. 11.44, is given by

e [n] = δ [n]− d [n] (11.333)

and

d [n] =

N−1∑

k=0

h [k] g [n− k] . (11.334)

The overall error is

ε =

∞∑

n=0

|e [n]|2 =

∞∑

n=0

{
δ [n]−

N−1∑

m=0

h [m] g [n−m]

}2

(11.335)
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g n[ ] d n[ ]
h n[ ]

d[ ]n

e n[ ]
+

-

FIGURE 11.44 Approximation error model.

∂ε

∂h [k]
= 2

∞∑

n=0

{
δ [n]−

N−1∑

m=0

h [m] g [n−m]

}
g [n− k] = 0 (11.336)

N−1∑

m=0

h [m]

∞∑

n=0

g [n−m] g [n− k] =

∞∑

n=0

g [n− k] δ [n] . (11.337)

Letting n−m = r, the left-hand side takes the form

N−1∑

m=0

h [m]

∞∑

r=0

g [r] g [r − k +m] =

N−1∑

m=0

h [m]

∞∑

n=0

g [n] g [n− k +m] =

N−1∑

m=0

h [m] rgg [k −m]

where

rgg [k] =
∞∑

n=0

g [n] g [n− k] = g[n] ∗ g[−n] (11.338)

is the autocorrelation of g [n]. The filter is thus obtained as the solution of the equation

N−1∑

m=0

h [m] rgg [k −m] =

∞∑

n=0

g [n− k] δ [n] =

{
g [0] , k = 0
0, k = 1, 2, . . . , N − 1

(11.339)

We may write in matrix form




rgg [0] rgg [1] . . . rgg [N − 1]
rgg [1] rgg [0] . . . rgg [N − 2]

...
...

. . .
...

rgg [N − 1] rgg [N − 2] . . . rgg [0]







h [0]
h [1]

...
h [N − 1]


 =




g [0]
0
...
0


 (11.340)

which are N linear equations in the n unknowns h [0], h [1], . . . , h [N − 1].
In practice, if a delay of K samples is allowed so that

g [n] ∗ h [n] ≈ δ [n−K] (11.341)

instead of g [n] ∗ h [n] ≈ δ [n] a better approximation may result. In this case the filter is
obtained by solving the equations

N−1∑

m=0

h [m] rgg [k −m] =

{
g [K − k] , k = 0, 1, . . . , K
0, k = K + 1, . . . , N

(11.342)

Example 11.22 Evaluate the least-squares FIR inverse filter, with length N = 16, of a
system with unit sample response

g [n] = an cosβn (11.343)
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where a = 0.5 and β = π/4. Evaluate the least sum of squares error of the approximation.

We solve the matrix equation Ah = y where A is the matrix of autocorrelations rgg [k]
shown in Table 11.2, and y = [g [0] , 0, 0, . . . , 0]

′
; the prime meaning transpose. The unit

sample response g [n] is shown in Fig. 11.45. The autocorrelation rgg [n] of g [n] is shown
in Fig. 11.46. We obtain the required unit sample response h [n], shown in Fig. 11.47,

h [n] = {0.99999, −0.35355, 0.12499, 0.04419, 0.01562, 0.00552, 0.00195,
0.00069, 0.00024, 0.00009, 0.00003, 0.00001, 0.000004, 0.000001,
−0.000001, 0.000005} .

(11.344)

2

4 6

8 10 12 140

1

g n[ ]

n

FIGURE 11.45 Given unit sample response.
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FIGURE 11.46 Autocorrelation rgg [n] of g [n].
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TABLE 11.2 Matrix of Correlations

1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001 -0.0004 -0.0003 -0.0001 0.0000 0.0000

0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001 -0.0004 -0.0003 -0.0001 0.0000

-0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001 -0.0004 -0.0003 -0.0001

-0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001 -0.0004 -0.0003

-0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001 -0.0004

-0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014 -0.0001

0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044 0.0014

0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069 0.0044

0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018 0.0069

0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225 0.0018

-0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711 -0.0225

-0.0004 -0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109 -0.0711

-0.0003 -0.0004 -0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294 -0.1109

-0.0001 -0.0003 -0.0004 -0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605 -0.0294

0.0000 -0.0001 -0.0003 -0.0004 -0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373 0.3605

0.0000 0.0000 -0.0001 -0.0003 -0.0004 -0.0001 0.0014 0.0044 0.0069 0.0018 -0.0225 -0.0711 -0.1109 -0.0294 0.3605 1.1373



798 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

The estimation error is given by

ε =

∞∑

n=0

|e [n]|2 =

∞∑

n=0

{
δ [n]−

N−1∑

m=0

h [m] g [n−m]

}2

= 2.52× 10−11. (11.345)
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h n[ ]

n

FIGURE 11.47 Required unit sample response.

11.37 Impulse Response of Ideal Filters

Figure 11.48 shows the frequency response of the ideal lowpass, highpass and bandpass
digital filters, namely, HLP

(
ejΩ
)
, HHP

(
ejΩ
)

and HBP

(
ejΩ
)
, respectively.

The impulse response hLP [n] of the ideal lowpass filter is given by the inverse Fourier
transform of HLP

(
ejΩ
)
, namely,

hLP [n] =
1

2π

ˆ Ωc

−Ωc

ejΩndΩ =
1

2π

{
ejΩcn − e−jΩcn

jn

}
=

1

π

sin (Ωcn)

n
=

Ωc

π
Sa (Ωcn)

which is depicted in Fig. 11.49. The frequency response HHP

(
ejΩ
)

of the highpass filter
may be written in the form

HHP

(
ejΩ
)

= 1−HLP

(
ejΩ
)
. (11.346)

Its impulse response hHP [n] may therefore be written in the form

hHP [n] = F−1
[
HHP

(
ejΩ
)]

= δ [n]− hLP [n] =






− Ωc

π
Sa (Ωc n) , n 6= 0

1− Ωc

π
, n = 0.

(11.347)
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FIGURE 11.48 Ideal filters frequency responses.

FIGURE 11.49 Ideal filter impulse responses.

The impulse response of the bandpass filter is given by

hBP [n] = F−1
[
HBP

(
ejΩ
)]

=
1

2π

{
ˆ −Ω1

−Ω2

ejΩndΩ +

ˆ Ω2

Ω1

ejΩndΩ

}

=
1

2π

{
ejΩ2n − e−jΩ2n

jn
− ejΩ1n − e−jΩ1n

jn

}
=

1

π

{
sin Ω2n

n
− sin Ω1n

n

}

=
1

π
{Ω2Sa (Ω2n)− Ω1Sa (Ω1n)} (11.348)

hBP [0] = (Ω2 − Ω1) /π. (11.349)

The impulse response hBS [n] of the bandstop filter is similarly found to be

hBS [n] = δ [n]− hBP [n] =

{
(1/π) {Ω1Sa (Ω1n)− Ω2Sa (Ω2n)} , n 6= 0
1− (Ω2 − Ω1) /π, n = 0.

(11.350)
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11.38 Spectral Leakage

We have seen in Fig. 11.49 the impulse response hLP [n] of the ideal lowpass filter. We
note that the impulse response is a two-sided infinite duration sequence. To obtain a finite
impulse response FIR filter realization we have to truncate the sequence hLP [n] obtaining
a finite-duration sequence. Such truncation may be viewed as multiplying the sequence
hLP [n] by a rectangular window w [n] so that the resulting FIR sequence may be written
in the form

h [n] = hLP [n]w [n] (11.351)

with the rectangular window w [n] given by

w [n] = ΠN [n] = u [n+N ]− u [n−N − 1] . (11.352)

We thus retain 2N + 1 points of the impulse response and discard the rest. The effect
is certainly deviation from the desired ideal filter response. In fact the multiplication of
hLP [n] by the window w [n] corresponds to the convolution of the desired lowpass frequency
response HLP

(
ejΩ
)

shown in Fig. 11.48(a) above, with the Fourier transform W
(
ejΩ
)

of
the rectangular sequence w [n], given by,

W
(
ejΩ
)

=
N∑

n=−N

e−jnΩ. (11.353)

Letting m = n+N , we have

W
(
ejΩ
)

=
2N∑

m=0

e−j(m−N)Ω = ejNΩ
2N∑

m=0

e−jmΩ = ejNΩ 1− e−j(2N+1)Ω

1− e−jΩ

=
sin [(2N + 1)Ω/2]

sin (Ω/2)
=△Sd2N+1 (Ω/2) . (11.354)

The convolution in the frequency domain means that the resulting frequency response is
given by

H
(
ejΩ
)

=
1

2π
HLP

(
ejΩ
)
∗W

(
ejΩ
)

=
1

2π

ˆ π

−π

HLP

(
ejΦ
)
W
[
ej(Ω−Φ)

]
dΦ. (11.355)

The spectrum W
(
ejΩ
)

is shown in Fig. 11.50

It is as expected composed of main and side lobes displaying a “ringing” phenomenon.
The convolution of the spectrum W

(
ejΩ
)

with the ideal lowpass responseHLP

(
ejΩ
)

results
therefore in overshoot and ripples that extend beyond the pass-band of the ideal lowpass
filter response.

If the rectangular truncating window is replaced by one that applies the truncation in a
progressive gradual transition, the result is a reduction of the side lobe peak ripple. Windows
such as Hamming, Hanning, Triangular-Bartlett, Blackman, and Kaiser are examples of such
windows that produce truncation with a softer transition than the rectangular window. In
the following, basic windows are defined and their spectra are evaluated and displayed.
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FIGURE 11.50 Transform of the rectangular sequence w[n].

11.39 Windows

Similarly to the Continuous-time domain the subject of Windows has its importance in re-
ducing spectral leakage, a phenomenon often encountered in analyzing truncated sinusoidal
signals. Simultaneous plots of common windows Bartlett, Hanning, Hamming, Blackman
and Kaiser with β = 7 are shown in Fig. 11.51. Amplitude spectra for Bartlett, Hanning,
Hamming, Blackman and Kaiser with β = 9 can be seen in Fig. 11.52. In what follows we
evaluate the spectra of common discrete-time windows.

11.40 Ideal Digital Filters Rectangular Window

The centered rectangular window has the transform

X
(
ejΩ
)

=

N∑

n=−N

e−jΩn = ejΩN 1− e−jΩ(2N+1)

1− e−jΩ

= ejΩN e−jΩ( 2N+1
2 )

e−jΩ/2

sin
[
Ω
(

2N+1
2

)]

sin(Ω/2)
=

sin
[
Ω
(

2N+1
2

)]

sin(Ω/2)
= Sd2N+1(Ω/2).

(11.356)

The causal rectangular window is given by

x[n] = RN [n] = u[n]− u[n−N ]. (11.357)

Its z-transform is given by

X (z) =
1− z−N

1− z−1
(11.358)

and its Fourier transform by

X
(
ejΩ
)

=
1− e−jΩN

1− e−jΩ
=
e−jΩN/2 sinNΩ/2

e−jΩ sin Ω/2
= e−jΩ(N−1)/2SdN (Ω/2) (11.359)

The rectangular window and its amplitude and phase spectra are shown in Fig. 11.53.
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FIGURE 11.51 Common windows.
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FIGURE 11.52 Common windows amplitude spectra.

11.41 Hanning Window

v[n] =
1

2

[
1− cos

2πn

N

]
RN [n] =

1

2
RN [n]− 1

4

{
ej 2πn

N + e−j 2πn
N

}
RN [n]. (11.360)

Let
x[n] = RN [n]←→ X

(
ejΩ
)

= e−jΩ(N−1)/2SdN (Ω/2) . (11.361)

We have
ej 2π

N nx[n]←→ X
[
ej(Ω−2π/N)

]
(11.362)
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FIGURE 11.53 Rectangular window and spectrum.

V
(
ejΩ
)

=
1

2
X
(
ejΩ
)
− 1

2
X
[
ej(Ω−2π/N)

]
− 1

2
X
[
ej(Ω+2π/N)

]
=

1

2
e−jΩ(N−1)/2SdN (Ω/2)

− 1

4
e−j(Ω−2π/N)(N−1)/2SdN [(Ω− 2π/N) /2]

− 1

4
e−j(Ω+2π/N)(N−1)/2SdN [(Ω + 2π/N) /2] . (11.363)

The Hanning window and its amplitude and phase spectra are shown in Fig. 11.54.

The Hanning window spectrum can be rewritten in the form

V (jω) =
4π2 sin (Tω/2)

4π2ω − T 2ω3
.

The Hamming window spectrum can be rewritten in the form

V (jω) =

(
0.16T 2ω2 − 4.32π2

)
sin (ωT/2)

T 2ω3 − 4π2ω
.

11.42 Hamming Window

w[n] =

{
0.54− 0.46 cos

2πn

N

}
RN [n]

= 0.54RN [n]− 0.23ej 2π
N nRN [n]− 0.23e−j 2π

N nRN [n]
(11.364)
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FIGURE 11.54 Hanning window and spectrum.

W
(
ejΩ
)

= 0.54X
(
ejΩ
)
− 0.23X

[
ej(Ω−2π/N)

]
− 0.23X

[
ej(Ω+2π/N)

]

= 0.54e−jΩ(N−1)/2SdN (Ω/2)− 0.23e−j(Ω/2−π/N)(N−1)SdN (Ω/2− π/N)

− 0.23e−j(Ω/2+π/N)(N−1)SdN (Ω/2 + π/N) .

The Hamming window and its amplitude and phase spectra are show in Fig. 11.55.

11.43 Triangular Window

Consider the case of a triangular window with a total width of N points, where N is odd.,
as can be seen in Fig. 11.56.

t[n] =

{
n, 0 ≤ n ≤ (N + 1) /2
N + 1− n, (N + 1) /2 ≤ n ≤ N. (11.365)

Let
s[n] = R(N+1)/2[n] ∗R(N+1)/2[n] (11.366)

t[n] = s[n− 1] (11.367)

S
(
ejΩ
)

=
[
F
{
R(N+1)/2[n]

}]2
(11.368)

F
{
R(N+1)/2[n]

}
= e−jΩ{(N+1)/2−1}/2Sd(N+1)/2 (Ω/2)
= e−jΩ(N−1)/4Sd(N+1)/2 (Ω/2)

= e−jΩ(N−1)/4 sin [(N + 1)Ω/4]

sin (Ω/2)

(11.369)
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FIGURE 11.55 Hamming window and spectrum.

S
(
ejΩ
)

= e−jΩ(N−1)/2Sd2
(N+1)/2 (Ω/2) = e−jΩ(N−1)/2 sin2 [(N + 1)Ω/4]

sin2 (Ω/2)
(11.370)

T
(
ejΩ
)

= S
(
ejΩ
)
e−jΩ = e−jΩ(N+1)/2 sin2 [(N + 1)Ω/4]

sin2 (Ω/2)
. (11.371)

The triangular or Bartlett window and its spectrum are shown in Fig. 11.56.

11.44 Comparison of Windows Spectral Parameters

Given a long duration sequence to evaluate the discrete Fourier transform (DFT), a trun-
cation may be applied to extract a finite duration sequence. In speech analysis for example,
given a long duration sequence we often need to analyze a short duration section thereof.
Truncation is therefore called for. To avoid spectral leakage a rectangular window is usually
replaced by a Hamming, Hanning, Bartlett or Kaiser Window.

The choice of an appropriate window constitutes usually a trade-off between different
parameters. Reducing the side lobe peak, for example, leads in general to a widening of the
main lobe, which when convolved with the ideal filter response leads to a wider transition
region than that obtained using a rectangular window. Table 11.3 lists the properties of
transition width, side lobe and stop-band attenuation of the different windows with N the
window length.

As mentioned in discussing FIR filters, in practice, to obtain a physically realizable filter
the impulse response should be made causal, by introducing a delay such that the impulse
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FIGURE 11.56 Triangular or Bartlett window and spectrum.

TABLE 11.3 Table of properties of some windows

Window
Transition
width ∆f Hz

Side lobe peak
relative to main
lob (dB)

Stop-band
attenuation
(dB)

Rectangular 0.9/N −13 −21
Hanning 3.1/N −31 −44
Hamming 3.3/N −41 −53
Blackman 5.5/N −57 −74

response starts at n = 0 and extends to n = N . Such delay has the effect of introducing
a linear phase in the frequency response. The window thus extends from n = 0 to n = N
and is symmetric about its middle point, i.e.

w [n] = w [N − n] . (11.372)

An increase in the window length N leads to sharper peaks and narrower lobes and, conse-
quently, to a narrower transition region between the pass-band and stop band. The relation
between the window length N and the transition width ∆f in Hz may be expressed in the
form

N∆f = C (11.373)

where C is a constant which depends on the window w [n], as shown in the table. The
transition width ∆f is about equal to the width of the main lobe.

Example 11.23 Evaluate the order and impulse response of a lowpass FIR Filter using
a suitable window with the following specifications: Attenuation at zero frequency is 0 dB.
The pass-band edge frequency is Ωp = 0.2π. The stop-band edge frequency is Ωs = 0.262π
such that in the stop band ∣∣H

(
eiΩ
)∣∣ ≤ 0.01.

We note that the stop-band attenuation is αs = 20 log10 0.01 = −40 dB. The Hanning
window suffices for such stop-band attenuation while having the least main lobe width. The
required transition width is ∆Ω = Ωs −Ωp = 0.062π, i.e. ∆f = 0.031 Hz. The filter order
N is given by

N =
3.1

∆f
=

3.1

0.031
= 100.
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The ideal impulse response of the filter should produce a cut-off frequency

Ωc =
Ωp + Ωs

2
=

0.462π

2
= 0.231π.

It should be delayed by N/2 = 50 samples before being multiplied by the Hanning window.
It is therefore given by

h [n] =
Ωc

π
Sa [Ωc (n− 50)] =

sin [0.231π (n− 50)]

π (n− 50)
, 0 ≤ n ≤ N.

Another type of window that concentrates most of the energy in the main lobe for a
given side lobe amplitude is the Kaiser window. In this regard the Kaiser window is nearly
optimal and is in fact a family of windows dependent on a parameter β that controls its
form. It is given by

w [n] =

I0

[
β

√
1− {(2n/N)− 1}2

I0 (β)
, 0 ≤ n ≤ N

where I0 denotes the zeroth order modified Bessel function of the first kind, which can be
evaluated using the power series expansion

I0 (x) = 1 +

∞∑

k=1

{
(x/2)

k

k!

}2

11.45 Linear-Phase FIR Filter Design Using Windows

Given a desired frequency response Hd(e
jΩ) a linear-phase FIR filter may be designed by

first evaluating the filter unit sample response

hd[n] = F−1[Hd(e
jΩ)] =

1

2π

ˆ π

−π

Hd(e
jΩ)ejΩndΩ . (11.374)

Since the unit sample response hd[n] is of infinite duration we have to truncate it to de-
duce the required filter’s finite impulse response h[n]. Such truncation may be effected by
multiplying hd[n] by a window w[n], so that

h[n] = hd[n]w[n] . (11.375)

The window w[n] may be a simple rectangular window, or another window selected to
reduce spectral leakage due to such truncation. Since the FIR filter should be causal and
of finite length of say, M samples, we should introduce a delay such that in the case of a
rectangular window for example w[n] = RM [n]

h[n] = hd[n]w[n] =

{
hd[n],

0,

n = 0, 1, . . . , M − 1

otherwise.
(11.376)

By choosing an appropriate window we can effect a trade-off between the amount of spectral
leakage ripple and the resulting frequency resolution.
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11.46 Even- and Odd-Symmetric FIR Filter Design

We have seen that if the unit sample response h[n] of an FIR filter is symmetric about
its middle point, the resulting frequency response has linear phase. We now study a class
of filters referred to as generalized linear phase filters. Consider the case of an FIR filter
of length M , of which the unit sample response h[n] has even or odd symmetry about its
middle point. The unit sample response satisfies the relation

h[n] = ±h[M − 1− n], n = 0, 1, . . . , M − 1. (11.377)

as illustrated for the cases of M odd and even in Fig. 11.57.

h n[ ]

0 1 2 3 4 5 6

M

M

= 7

=( 1)/2k -

k M 1-
n

h n[ ]

0 1 2 3

4 5 6

M = 7

k

M 1-

n

(b)

h n[ ]

0 1 2 3 4 5 6

M = 8

= 3.5k

k M 1-
n7

h n[ ]

0 1 2 3

4 5 6

M = 8

k

M 1-

n

7

(a)

(c) (d)

FIGURE 11.57 FIR filter impulse response with (a) Type I, odd order, even symmetry;
(b) Type II, even order, even symmetry; (c) Type III, odd order, odd symmetry; and (d)
Type IV, even order, odd symmetry.

The filter transfer function is given by

H(z) =
M−1∑

n=0

h[n]z−n = h[0] + h[1]z−1 + . . .+ h[M − 1]z−(M−1) (11.378)

Let κ = (M − 1)/2 be the middle point as shown in the figure. We may write, using the
fact that κ−M + 1 = −κ

H(z) = z−κ
{
h[0]zκ + h[1]z(κ−1) + . . .+ h[M − 1]zκ−M+1

}

H(ejΩ) = e−jκΩ
{
h[0]ejκΩ + h[1]ej(κ−1)Ω + . . .+ h[M − 2]e−j(κ−1)Ω + h[M − 1]e−jκΩ

}
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For the case of Type I, even symmetry and M odd,

H(ejΩ) = e−jκΩ

{
2

κ−1∑

n=0

h[n] cos[(κ− n)Ω] + h[κ]

}
. (11.379)

For Type II, even symmetry, h[n] = h[M − 1− n], and M even we have

H(ejΩ) = 2e−jκΩ





(M−2)/2∑

n=0

h[n] cos[(κ− n)Ω]



 . (11.380)

For Type III, odd symmetry, h[n] = −h[M − 1− n], and M odd we have

H(ejΩ) = j2e−jκΩ

{
κ−1∑

n=0

h[n] sin[(κ− n)Ω]

}
(11.381)

and for Type IV, odd symmetry and M even, we may write

H(ejΩ) = j2e−jκΩ






(M−2)/2∑

n=0

h[n] sin[(κ− n)Ω]




 . (11.382)

As noted in Section 11.13 the impulse response symmetry condition leads to groups of
zeros in the z-plane. In particular, the condition h[n] = ±h[M − 1− n] implies that

H(z) = ±z−(M−1)H(z−1). (11.383)

leading to a pattern of zeros in the z-plane as seen above in Fig. 11.13. The values of H(z)
at z = 1 and z = −1 can be readily established for Types II, III and IV. For Type II FIR
filter we have

H(−1) = (−1)−(M−1)H(−1) = −H(−1) (11.384)

i.e. H(ejπ) = H(−1) = 0. Similarly, for a Type III filter H(ej0) = H(1) = 0 and H(ejπ) =
H(−1) = 0, and for a Type IV filter, H(ej0) = H(1) = 0, as can be seen in Fig. 11.58.

(a) (b) (c)

FIGURE 11.58 Linear phase FIR filter zeros at Ω = 0 and Ω = π: (a) Type II; (b) Type
III; (c) Type IV.
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11.47 Linear Phase FIR Filter Realization

The approach to realizing linear phase FIR filters starts by evaluating the desired filter
impulse response hd[n] from the given desired frequency response Hd(e

jΩ). We have

Hd(e
jΩ) =

∞∑

n=−∞
hd[n]e−jΩn (11.385)

and

hd[n] =
1

2π

ˆ π

−π

Hd(e
jΩn)ejΩndΩ. (11.386)

Since the theoretical impulse response is two sided and of infinite duration, a realization
as an FIR filter necessitates truncating the impulse response to M points and applying the
shift of κ = (M − 1)/2 samples as discussed above.

The truncation of the unit sample response hd[n] leads to spectral leakage in the form
of ripples and side lobes as stated in the context of continuous-time signals. To reduce the
size of lobes a window other than the rectangular one may be used. The effect however is to
increase the width of the main lobe, which results in lower resolution and a wider transition
range between the pass-band and the stop band. In the following we study the properties
of well-known windows, which are important in reducing spectral leakage.

11.48 Sampling the Unit Circle

In uniform sampling of the z-plane unit circle into M uniformly spaced points, four cases
merit consideration. There are the two possibilities of M even and M odd. Moreover, with
the same sampling interval along the unit circle of ∆Ω = 2π/M , the first sample may be
taken at Ω = 0 or at Ω = ∆Ω/2 = π/M . In other words the values of z in the z-plane are
in the first case

z = 1, ej2π/M , ej4π/M , . . . , ej(M−1)2π/M (11.387)

and in the second case

z = ejπ/M , ej3π/M , . . . , ej(2M−1)π/M . (11.388)

The sampling points are therefore

zk = ej2π(k+µ)/M (11.389)

where µ = 0 in the first case and µ = 1/2 in the second. The four sampling possibilities, M
even and odd, µ = 0 and µ = 1/2, are illustrated in Figs. 11.59 and 11.60. In particular,
Fig. 11.59(a-b) shows the case of M even, M = 8, with µ = 0 and µ = 1/2, respectively.
Fig. 11.60(a-b) shows the case of M odd, M = 7, and with µ = 0 and µ = 1/2, respectively.

We have seen that there are four types of linear-phase FIR filter unit sample response,
namely, Types I to IV. With a given number of points M of the unit sample response the
unit circle is sampled into the same M points but with an initial rotation of µ = 0 or
µ = 1/2. In all therefore we have eight cases to consider. We may refer to the first as Type
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M = 8

m = 0

M = 8

m = 1/2

(a) (b)

FIGURE 11.59 Unit circle sampling with an even number of M samples: (a) µ = 0, (b)
µ = 1/2.

M = 7

m = 0

(a) (b)

M = 7

m = 1/2

FIGURE 11.60 Unit circle sampling with an odd number of M samples: (a) µ = 0, (b)
µ = 1/2.

I-1 and Type I-2 for the two cases µ = 0 and µ = 1/2 of Type I filter. Similarly, for Types
II, III and IV, we have the sub-types Type II-1, II-2, Type III-1, III-2 and Type IV-1, IV-2,
corresponding to the two cases µ = 0 and µ = 1/2, respectively.

In the following the symmetry in the time and frequency domains is used to reduce
the computations needed to evaluate the filter impulse response h[n] from samples of the
frequency response.

To design a linear-phase FIR filter given a desired frequency response H(ejΩ) we may
start by sampling the unit circle uniformly into M points. We thus obtain the DFT

H [k] = H(ejΩ)|Ω=2πk/M = H(ej2πk/M ). (11.390)

Since

H [k] =

M−1∑

n=0

h[n]e−j2πkn/M (11.391)

we can do an inverse DFT obtaining the unit sample response

h[n] =
1

M

M−1∑

k=0

H [k]ej2πkn/M. (11.392)

As seen above, we may start the sampling at Ω = π/M , which is the case µ = 1/2, instead
of Ω = 0, the case of µ = 0. The sampling frequencies are therefore Ωk = (k + µ)2π/M . In
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the case µ = 1/2 we have

H [k + 1/2] = H(ejΩ)|Ω=π/M+2πk/M (11.393)

= H(ej(k+1/2)π/M ). (11.394)

We may write

H [k + 1/2] =

M−1∑

n=0

h[n]e−j(2k+1)nπ/M . (11.395)

Multiplying both sides of this equation by ej2πkr/M and effecting the summation over k we
obtain

M−1∑

k=0

ej2πkr/MH [k + 1/2] =

M−1∑

k=0

ej2πkr/M
M−1∑

n=0

h[n]e−j(k+1/2)2nπ/M (11.396)

=

M−1∑

n=0

h[n]

M−1∑

k=0

ej 2π
M (kr−kn− n

2 ) (11.397)

=

M−1∑

n=0

h[n]e
−jπn

M

M−1∑

k=0

ej(2π/M)(r−n)k (11.398)

= Mh[r]e−jπr/M (11.399)

h[r] =
1

M
ejπr/M

M−1∑

k=0

ej2πkr/MH [k + 1/2] =
1

M

M−1∑

k=0

H [k + 1/2]ej2π(k+1/2)r/M .

Replacing r by n

h[n] =
1

M

M−1∑

k=0

H [k + 1/2]ej2π(k+1/2)n/M . (11.400)

The fast Fourier transform (FFT) and the symmetry properties can be used to improve
computation efficiency.

We note that an interpolation formula producing H(z) for a given H [k + 1/2] can be
easily deduced. We have

H(z) =

M−1∑

n=0

h[n]z−n (11.401)

=

M−1∑

n=0

1

M

M−1∑

k=0

H [k + 1/2]ej2π(k+1/2)n/Mz−n (11.402)

=
1

M

M−1∑

k=0

H [k + 1/2]

M−1∑

n=0

ej2π(k+1/2)n/M z−n (11.403)

=
1

M

M−1∑

k=0

H [k + 1/2]
1− ejπz−M

1− ej2π(k+1/2)/M z−1
(11.404)

=
1

M
(1 + z−M )

M−1∑

k=0

H [k + 1/2]

1− ej2π(k+1/2)/M z−1
(11.405)
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FIGURE 11.61 FIR filter unit circle sampling structure: (a) the case µ = 1/2, (b) µ = 0.

For the case µ = 1/2 the filter can therefore be realized as shown in Fig. 11.61(a). For
the case µ = 0 the interpolation formula is

H(z) =
1

M
(1− z−M )

M−1∑

k=0

H [k]

1− ej2πk/M z−1
(11.406)

and may be realized as seen in Fig. 11.61(b). By combining each pair of complex conjugate
poles using the spectrum symmetry we can obtain a structure using real, instead of complex,
multiplications.

It should be noted that the transfer function has coincident poles and zeros on the unit
circle. With cumulative computation errors instability may occur. Such a problem may be
avoided by sampling the transfer function H(z) on a circle of radius r that is slightly less
than unity. For the case µ = 0, for example, the interpolation formula takes the form

H(z) =
1

M
(1 − rMz−M )

M−1∑

k=0

Hr[k]

1− rej2πk/M z−1
(11.407)

where
Hr[k] = H(rej2πk/M ), (11.408)

and a similar expression applies for the case of filter Types 2 and 3. The circuit realization
is modified accordingly.

As noted, the z-plane unit circle may be sampled in the usual DFT pattern, into M points

zk = ej 2π
M k (11.409)

or into the shifted by half a sample spacing points

zk = ej 2π
M ej 2π

M k = ej 2π
M (k+1/2). (11.410)
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The unit circle is therefore sampled at the points

zk = ej 2π
M (k+µ) (11.411)

where µ = 0, or µ = 1/2. The sampling produces the discrete spectrum

H [k + µ] = H(ej2π(k+µ)/M ) =
M−1∑
n=0

h[n]e−j2π(k+µ)n/M , k = 0, 1, . . . , M − 1(11.412)

and the unit sample response is given by

h[n] = 1
M

M−1∑
k=0

H [k + µ]ej2π(k+µ)n/M , n = 0, 1, . . . , M − 1 . (11.413)

The filter may be realized, as seen above, by interpolation from the unit circle to the
general z-plane. We may also do an interpolation along the unit circle itself to deduce
H(ejΩ). We may write

H(z) =

M−1∑

n=0

h[n]z−n

=

M−1∑

n=0

1

M

M−1∑

k=0

H [k + µ]ej2π(k+µ)n/M z−n

H(ejΩ) =
1

M

M−1∑

k=0

H [k + µ]
1− e−jΩM+j2π(k+µ)M/M

1− e−jΩej2π(k+µ)/M

=
1

M

M−1∑

k=0

H [k + µ]e−j[Ω−2π(k+µ)/M ](M−1)/2 sin [{Ω− 2π(k + µ)/M} /M/2]

sin [{Ω− 2π(k + µ)/M} /2]

=
1

M

M−1∑

k=0

H [k + µ]e−j[{Ω−2π(k+µ)/M}/M/2]SdM [{Ω− 2π(k + µ)/M} /2]

The filter frequency response as a function of the continuous variable Ω may thus be deduced.

11.49 Impulse Response Evaluation from Unit Circle Samples

In what follows we evaluate the impulse response of linear phase FIR filters using symmetry
properties in the time and frequency domains.

11.49.1 Case I-1: Odd Order, Even Symmetry, µ = 0

Referring to Fig. 11.57(a) and Fig. 11.59(a) we may obtain

h[n] =
2

M
{
(M−1)/2∑

k=0

|H [k]| cos [(2πkn/M) + arg [H [k]]]}, n = 0, . . . , (M − 1)/2.

and h[n] = h[M − 1− n], n = 0, 1, . . . , M − 1.
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11.49.2 Case I-2: Odd Order, Even Symmetry, µ = 1/2

Referring to Fig. 11.57(a) and Fig. 11.59(b) we may write

h[n] =
1

M


2

(M−3)/2∑

k=0

|H [k + 1/2]| cos{2π(k + 1/2)n/M + arg[H [k + 1/2]]}+ (−1)nH [M/2]




for n = 0, 1, . . . , (M − 1)/2 and h[n] = h[M − 1− n], n = 0, 1, . . . , M − 1.

11.49.3 Case II-1

In the case of FIR filter Type II-1, that is, even order, even symmetry with µ = 0, referring
to Fig. 11.57(b) and Fig. 11.59(a) we may write

h[n] = 1
M

M−1∑
k=0

H [k]ej2πkn/M , n = 0, 1, . . . , M − 1

=
1

M

[
H [0] +

{
H [1]ej2πn/M +H [M − 1]ej2π(M−1)n/M

}

+
{
H [2]ej2π2n/M +H [M − 2]ej2π(M−1)2n/M

}

+ . . .

+
{
H [M/2− 1]ej2π(M/2−1)n/M +H [M/2 + 1]ej2π(M/2+1)n/M

}]

having noted that

H [M/2] =

M−1∑

n=0

h[n]e−jπn =

M−1∑

n=0

(−1)nh[n] = 0.

We may therefore write

h[n] =
1

M




H [0] + 2

M/2−1∑

k=1

|H [k]| cos [(2πkn/M) + arg [H [k]]]




 , n = 0, 1, . . . , M/2− 1.

and h[n] = h[M − 1− n], n = 0, 1, . . . , M − 1.

11.49.4 Case II-2: Even Order, Even Symmetry, µ = 1/2

Referring to Fig. 11.57(b) and Fig. 11.59(b), we may write

H [k + 1/2] = H(ej2π(k+1/2)/M ) =
M−1∑
n=0

h[n]e−j2π(k+1/2)n/M , k = 0, 1, . . . , M − 1.

The unit sample response is given by

h[n] = 1
M

M−1∑
k=0

H [k + 1/2]ej2π(k+1/2)n/M , n = 0, 1, . . . , M − 1. (11.414)

Combining conjugate terms we obtain

h[n] =
2

M

M/2−1∑

k=0

|H [k+1/2]| cos
[
2π(k + 1/2)n/M + arg

[
H [k + 1/2]

]]
, n = 0, 1, . . . , M/2−1

and h[n] = h[M − 1− n], n = 0, 1, . . . , M − 1.
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11.49.5 Case III-1: Odd Order, Odd Symmetry, µ = 0

Referring to Fig. 11.57(c) and Fig. 11.59(a), we have

h[n] =
2

M
{
(M−1)/2∑

k=0

|H [k]| cos [(2πkn/M) + arg [H [k]]]}, n = 0, . . . , (M − 3)/2.

and h[n] = −h[M − 1− n], n = 0, 1, . . . , M − 1.

11.49.6 Case III-2: Odd Order, Odd Symmetry, µ = 1/2

Referring to Fig. 11.57(c) and Fig. 11.59(b), we have

h[n] =
2

M




(M−3)/2∑

k=0

|H [k + 1/2]| cos{2π(k + 1/2)n/M + arg[H [k + 1/2]]}]





for n = 0, 1, . . . , (M − 3)/2 and h[n] = −h[M − 1− n], n = 0, 1, ..., M − 1.

11.49.7 Case IV-1: Even Order, Odd Symmetry, µ = 0

Referring to Fig. 11.57(d) and Fig. 11.59(a), we have

h[n] =
1

M



2

M/2−1∑

k=1

|H [k]| cos{2πkn/M + arg[H [k]]}+ (−1)nH [M/2]





for n = 0, 1 . . . , M/2− 1 and h[n] = −h[M − 1− n], n = 0, 1, . . . , M − 1.

11.49.8 Case IV-2: Even Order, Odd Symmetry, µ = 1/2

Referring to Fig. 11.57(d) and Fig. 11.59(b), we have

h[n] =
2

M

M/2−1∑

k=0

|H [k+1/2]| cos
[
2π(k + 1/2)n/M + arg

[
H [k + 1/2]

]]
, n = 0, 1, . . . , M/2−1

and h[n] = −h[M − 1− n], n = 0, 1, . . . , M − 1.

Example 11.24 Consider a sequence x[n] of length M = 64 defined by

x[n] =

{
1.2n, n = 0, 1, . . . , 31

−1.2n, n = 32, 33, . . . , 63
(11.415)

Evaluate the transform X [k] defined by

x[k] = x(ej2π(k+1/2)/M ), k = 0, 1, . . . , M − 1 (11.416)

Using the symmetries in the time and frequency domain show how to evaluate efficiently
the unit sample response h[n] from the transform X [k] and obtaining h[n] = x[n].

Evaluating the inverse transform of X [k] using the Case III-2 equation of h[n] we obtain the
values of x[n] for n = 0 to 31. Applying the symmetry condition x[n] = −x[M − 1−n], n =
0, 1, . . . , M−1 we obtain the required unit pulse response h[n] which is equal to the negation
of the given sequence x[n] for n = 0, 1, . . . , M − 1 as expected.
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Example 11.25 Consider Case I-2 FIR filter of order M = 8. Let impulse response be

h[n] = [1 2 3 4 4 3 2 1].

Show how to deduce its µ = 1/2-shifted DFT H [k + 1/2] from its DFT H [k]. Show how to
deduce the impulse response from the shifted DFT H [k + 1/2].

The DFT of the sequence h[n] is H [k], k = 0, 1, . . . M−1. The samples on the unit circle
of H [k] start at frequency Ω = 0 and are spaced by the interval ∆Ω = 2π/M , as usual. The
shifted spectrum H [k+ 1/2] corresponds to sampling the unit circle with the same sampling
interval but starting at the angle Ω0 = π/M . To deduce the values of the shifted spectrum
from H [k] we may apply zero padding to h[n] obtaining the sequence

hz[n] = [1 2 3 4 4 3 2 1 0 0 0 0 0 0 0 0].

Such zero padding affects interpolation along the unit circle revealing the values of H [k]
half way between its samples. The DFT Hz [k] of hz[n] is the same as H [k] for even k,
and is the interpolations between the samples of H [k] for odd k. The odd samples of Hz[k]
are the shifted by µ = 1/2 samples of the spectrum of h[n]. The spectrum Hz[k] has in
addition, however, its even samples which are those at frequencies multiple of the usual
interval Ω0 = 2π/M .

We may now conserve the values of only the odd samples of Hz [k] and reset to zero the
even ones. We thus construct the spectrum B[k] = Hz [k], k odd, B[k] = 0, k even. Note
that such suppression of the even samples on the unit circle is in fact a multiplication by
a comb filter of frequency response G[k] = [0 1 0 1 0 1 . . .]. From the above remarks on
the two-spiked sequence we note that the suppression of the even samples in the frequency
domain corresponds to a convolution in the time domain of the sequence h[n] with the two-
spiked sequence

x[n] = 0.5[1 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0]

producing the sequence

v[n] = 0.5[1 2 3 4 4 3 2 1 − 1 − 2 − 3 − 4 − 4 − 3 − 2 − 1]

and we note that
h[n] = 2[v[n], n = 0, 1, . . . ,M ].

The value of h[n] is therefore two times the inverse DFT of H [k + 1/2]. Since h[n] is
symmetric, we need only evaluate the first M/2 values and deduce the second half of h[n]
by symmetry.

These remarks illustrate the relations between the linear phase FIR filter impulse re-
sponse, its DFT, the DFT of its zero-padded extension, its µ = 1/2-shifted spectrum and
the 2M -point inverse DFT obtained after interlacing the samples of the M -point shifted
spectrum with zeros.

11.50 Problems

Problem 11.1 Given the difference equation

y [n]− 0 · 8y [n− 1] + 0 · 15y [n− 2] = −x [n] + 0 · 7x [n− 1] .
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a) Evaluate the transfer function H (z) of a filter described by this equation.
b) Show a canonical-form structure of the filter using a minimum number of delay ele-

ments.
c) Show a parallel realization of the filter.

Problem 11.2 Show the structure of an IIR filter having the impulse response

h [n] = n 3−n/2u [n] .

Problem 11.3 Show the structure of a digital filter of impulse response

h [n] = u [n]− u [n− 8] .

Problem 11.4 A digital filter has a causal impulse response h [n] and is described by the
difference equation

y [n] = 0.2y [n− 2] + 0.1y [n− 1] + 2x [n] + 0.5x [n− 1]

where x [n] is its input and y [n] its output.
a) Evaluate the filter system function H (z).
b) Is this filter stable? Why?
c) Show an IIR realization of the filter, which uses a minimum number of delay elements.
d) Evaluate the filter impulse response h [n].
e) Show a finite impulse response realization of the filter which utilizes N = 8 delay

elements. Indicate the values of the filter coefficients in this realization.

Problem 11.5 In the sampling-filtering-reconstruction system shown in the Fig. 11.62 the
input continuous-time signal x (t) is sampled by the A/D converter at a frequency of 100
kHz.

a) The objective is to evaluate H (z), the transfer function of the highpass digital filter
shown in the figure. The filter should have a gain of 0 dB at Ω = π and −3 dB at Ω = 3π/8.
Show how H (z) can be found by applying the bilinear transform to the highpass analog filter
of transfer function

Ha (s) =
1

s+ 1

∣∣∣∣
s−→ω/s

.

b) If x (t) is a sinusoid of amplitude 1 volt and frequency 18.75 kHz, what is the system
output y (t)?

FIGURE 11.62 Signal sampling, filtering, and reconstruction.

Problem 11.6 In a system shown in Fig. 11.63 a signal x (t) is sampled by an A/D con-
verter at a frequency of fs = 32 kHz. The converter output x [n] is applied to a digital
filter of impulse response h [n]. Its output y [n] is fed to a D/A converter to effect an ideal
reconstruction, producing an output y (t).
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FIGURE 11.63 A/D conversion, filtering, and D/A conversion.

The impulse response h [n] of the digital filter is given by

h [n] =

{
3− n, 0 ≤ n ≤ 3
0, otherwise.

a) Evaluate the transfer function H (z) of the digital filter.
b) Deduce the difference equation describing the digital filter and sketch the filter structure.
c) Given that the input signal x (t) is a sinusoid of amplitude 1 volt and frequency 8 kHz,

describe the output signal y (t) (form, frequency, amplitude).

Problem 11.7 In the A/D conversion system shown in Fig. 11.64, the transfer function
H (z) of the digital filter is given by

H (z) =
z

4z + 3

a) Given that the digital filter of which the transfer function is H (z) is causal specify the
ROC of H (z).

b) Evaluate the frequency response H
(
ejΩ
)

of the digital filter and find the filter 3-dB
cut-off frequency Ωc.

c) Assuming xc (t) = sin 5πt, −∞ < t < ∞ and the sampling frequency is 10 Hz
evaluate the filter input x [n], its output y [n] and the D/A converter output y (t).

FIGURE 11.64 Signal sampling, filtering and D/A conversion.

Problem 11.8 A finite impulse response (FIR) filter has the impulse response h [n], n = 0,
1, 2. The filter receives as input a sequence x [n] which is the result of sampling a signal
xc (t) at a frequency of 1 kHz. The filter output y [n] is fed to a D/A converter producing
the corresponding continuous-time signal yc (t) .

Given that the signal yc (t) should have the same average value as xc (t) and that it should
contain no component of frequency 60 Hz, evaluate the filter impulse response.

Problem 11.9 Consider a digital filter of a structure shown in Fig. 11.65, where

a = −2, b = −1, c = 1, d = 0.2.

a) Redraw the filter structure minimizing the number of delay elements (z−1).
b) Write the difference equation describing the filter structure as shown in the figure.
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c) Evaluate the filter impulse response h [n].

d) Given that the average value of the input sequence x [n] is equal to 1, what is the
average value of the output y [n]?

e) Redraw the filter structure as a cascade of first-order filters.

FIGURE 11.65 A digital filter structure.

Problem 11.10 A signal xc (t), band-limited to 5 kHz, is contaminated by an additive noise
in the form of a sinusoid of amplitude 1 volt and frequency 7 kHz. The sum vc (t) is applied
to an A/D converter operating at a sampling frequency of fs = 16 kHz, producing the
output v [n] = vc [nT ], where T = 1/fs. To reduce the effect of noise the sequence v [n] is
fed to a digital filter of transfer function

H (z) = H (s)|
s−→ 2

T
1−z−1

1+z−1

, T = 1/16000

where

H (s) =
1

s+ 1

∣∣∣∣
s−→s/(104π)

.

Evaluate the resulting attenuation of the noise component.

Problem 11.11 A digital filter has the structure shown in Fig. 11.66.

a) Evaluate the transfer function H (z) and the difference equation describing the filter.

b) Given that x [n] = x1 [n]− 4, where x1 [n] is a sinusoidal sequence of amplitude 2 and
frequency Ω0 = π/2, evaluate y[n].

FIGURE 11.66 A digital filter structure.

Problem 11.12 A system is described by the difference equation

y [n]− 0.5y [n− 1] + 0.06y [n− 2] = −x [n] + 0.4x [n− 1] .
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a) Evaluate the system transfer function H (z) and show the filter structure using a min-
imum of delay elements.

b) Evaluate the system impulse response h [n]. Show an FIR filter realization using the
first N = 7 points of h [n].

c) Given that the discrete time system is obtained by sampling a continuous-time system
with a sampling frequency of 10 samples/sec, evaluate the impulse response hc (t) of the
corresponding continuous-time system.

Problem 11.13 A system has the transfer function

H (z) =
z2 + 2az + a2

z2 + a2

where a is a real variable, a > 0.
a) Evaluate the zeros and poles of H (z) and its different possible regions of convergence.
b) Assuming the filter is causal, evaluate its impulse response h [n] as a sum of real

expressions.
c) What values of a ensure that the causal system is stable?
d) Assuming a = 0.5 find the 3-bB cut-off frequency of the system frequency response∣∣H
(
ejΩ
)∣∣. What sampling frequency is needed so that this cut-off frequency should corre-

spond to a continuous-time frequency of 100 Hz?

Problem 11.14 A Butterworth digital filter of first order should be obtained from a
continuous-time filter using impulse invariance. The sampling period is T = 0.1 sec. The
digital filter should have a gain of 10 dB at Ω = 0 and 9 dB at Ω = 0.2. Evaluate the
transfer function Hc (s) and H (z) of the continuous-time and digital filter, respectively.

Problem 11.15 Consider the digital filter transfer function

H (z) =
z2 + β2

z2 − 0.25

where β is real and β > 0.
a) Evaluate and sketch the poles and zeros of H (z).
b) What is the ROC of H (z) if the filter is i) realizable, ii) unstable, iii) stable.
c) Draw the filter structure using a minimum number of delay elements.
d) Evaluate the filter impulse response h [n] assuming the filter is causal.
e) Evaluate and sketch the frequency response H (jω) assuming it exists and β = 1. Does

this filter behave as a lowpass, bandpass, highpass, or another type of filter? Explain.
f) What is the value of β that would lead to a filter d-c gain of 4? If this is the case, what

is the 3-dB frequency?

Problem 11.16 Consider the discrete-time rectangular, triangular and Kaiser windows.
Using the MATLAB commands for these windows plot the first three lobes of their spectra
normalized so that they have the same value of the peak.

Repeat the above for the Hanning and Hamming windows. Deduce from the plots which
of the windows has the narrowest and which the widest main lobe at the 3 dB point. Which
window produces the highest first side lobe peak?

Repeat the above, plotting now the spectra in decibels versus frequency.

Problem 11.17 Consider the causal system represented by the flow diagram shown in Fig.
11.67 where a = 1/8, b = 1, c = 3, k = 4, m = 3.

a) Evaluate the system transfer function between its input x [n] and output y [n].
b) Evaluate the system impulse response.
c) Show a realization of the system employing a single delay element.
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FIGURE 11.67 System flow diagram.

Problem 11.18 Consider the system given by the flow diagram shown in Fig. 11.68. With
a = 2, b = 3, c = 0.5, d = 1, e = −2, f = 0.25, g = 5, h = 0.2, k = 5, m = 2.

a) Evaluate the system transfer function.
b) Show a realization of the same filter using a minimum number of delay elements.

FIGURE 11.68 Digital filter structure.

Problem 11.19 Evaluate the transfer function H (z) of a lowpass digital Chebyshev filter.
The sampling frequency is 400 Hz with the following specifications

Frequency Magnitude
0Hz 0Hz
40Hz > −1dB
70Hz 6 −20dB

Derive first the lowpass analog prototype then show the conversion to the digital filter using
a) impulse invariance and b) the bilinear transformation. Show how to use MATLAB to
verify the results.

Problem 11.20 Design a lattice filter having the transfer function

H (z) =
12− 5z−1 + 1.5z−2 − 0.5z−3

1− 0.5z−1 + 0.25z−2 − 0.125z−3
.

Verify the design by evaluating the transfer function of the lattice filter.

Problem 11.21 Design a lattice filter having a transfer function

H (z) = 27 + 9z−1 + 3z−2 + z−3.

Verify the design by evaluating the lattice filter transfer function.
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Problem 11.22 Evaluate the transfer function between the input x [n] and the output y [n],
and that to the second output w [n]. With the input x [n] and output y [n] is the filter mini-
mum phase?

Problem 11.23 A continuous-time linear system has the impulse response

hc (t) = 2−10tu (t) .

A digital filter is constructed by impulse invariance where the impulse response is sampled
at frequency of 10 Hz.

a) Evaluate the digital filter impulse response h [n] and its transfer function H (z).
b) The digital filter receives the input signal x [n] and produces the response y [n]. Evaluate

the response y [n] if the input is
(i) x [n] = cos (πn/8) .
(ii) x [n] = u [n].

Problem 11.24 A system has an impulse response h [n] given by

h [n] =





1, n = 0
2, n = 1
3, n = 2
2, n = 3
0, otherwise.

a) Express h [n] for −∞ ≤ n ≤ ∞ as a sum of scaled and shifted versions of the unit
step sequence u [n]. Recall that the unit step sequence u [n] is equal to 1 for n ≥ 0 and zero
otherwise.

b) Evaluate the system transfer function H (z) and its frequency response H
(
ejΩ
)
.

c) Evaluate the four-point discrete Fourier transform H [k] of the sequence h [n]. Represent
H [k] graphically for 0 ≤ k ≤ 8.

d) Draw the structure of a filter that has h [n] as its impulse response, in the form of a
block diagram showing adders, multipliers and delay elements.

Problem 11.25 Consider a causal system given by the difference equation

y [n]− y [n− 1]− y [n− 2] = x [n] .

a) Evaluate the system transfer function H (z) and impulse response h [n].
b) Draw the structure of a filter having the same transfer function and using a minimum

of delay elements.
c) Evaluate the system response y [n] if the input is x [n] = δ [n− 1].
d) Is this system stable?
e) Does the Fourier transform of the system impulse response h [n] exist? If yes, evaluate

the system frequency response. If not state why not?

Problem 11.26 Show the structure of a lattice filter having the transfer function

H (z) =
1 + 2z−1 + 3z−2 + 2z−3 + z−4

1 + 1.63z−1 + 1.75z−2 + 1.53z−3 + 0.5z−4
.

Problem 11.27 Evaluate the order and the impulse response of a realizable FIR filter by
choosing an appropriate window to obtain the following specifications:

– Attenuation at zero frequency: 0 dB.
– Pass-band and stop-band edge frequencies Ωp = 0.2π, Ωs = 0.233π.
– Stop band frequency response

∣∣H
(
ejΩ
)∣∣ ≤ 0.005.
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Problem 11.28 Design a first order Butterworth lowpass digital filter with a 3-dB cut-off
frequency of Ωc = 0.125π using the Bilinear transform.

Problem 11.29 A continuous-time signal xa (t) is limited in frequency to 2 kHz. It is
sampled at the rate of 5000 samples/sec to produce the sequence x [n] = xa (n/5000) which
is applied to the input of a digital filter. The filter output y [n] is in turn applied to the input
of a D/A converter, producing the continuous-time signal ya (t).

The objective is to evaluate the required digital filter transfer function H (z) so that the
signal ya (t) would correspond to filtering of the signal xa (t) by a lowpass first order But-
terworth filter, with ε = 1, cut-off frequency 200 Hz and maximum gain 0 dB.

a) Evaluate H (z) using impulse invariance.
b) Evaluate H (z) using the bilinear transformation.
Sketch the filter structure in both cases, using a minimal number of delay elements.

Problem 11.30 A signal xa (t), band limited in frequency to 5 kHz, is sampled at the rate
of 10 kHz. The resulting sequence x [n] is applied to the input of a digital filter. The filter
output y [n] is applied to the input of a D/A converter, producing the continuous-time signal
ya (t). It is required that the signal ya (t) be the result of filtering of the signal xa (t) by a
lowpass first order Chebyshev filter, with pass-band ripple of Rp = 1 dB, cut-off frequency
500 Hz and maximum gain 0 dB. Evaluate the filter transfer function H (z)

a) Using impulse invariance.
b) Using the bilinear transform.
Sketch the filter structure in both cases, using a minimal number of delay elements.

Problem 11.31 Evaluate the transfer function H(z) of a digital filter satisfying the fol-
lowing requirements.

– Lowpass
– Cut-off frequency 0.2
– Maximum response 15 dB
– Minimum attenuation at cut-off frequency 14 dB
a) Use the impulse invariance approach on a Butterworth filter of the first order to obtain

the transfer function H(z) and sketch the filter structure.
b) A sequence x [n] is obtained by sampling an analog signal xa (t) at a rate of 50000 sam-

ples/s, so that x [n] = xa (n/50000). If the sequence x [n] is applied to the input of the digital
filter of transfer function H(z) what is the effective cut-off frequency that has been applied
to the analog signal xa (t).

Problem 11.32 A signal xa (t), band-limited in frequency to 20 kHz, is sampled at a rate
of 48000 samples/s to form the sequence x [n] = xa (n/48000). This sequence is applied
to the input of a digital filter, of which the output y [n] is applied to the input of a D/A
converter at the same rate 48000 samples/s producing the analog signal output ya (t).

The signal ya (t) should correspond to the filtering of the signal xa (t) by a highpass first
order Butterworth (ε = 1) filter which should have a gain of 17 dB at a cut-off frequency
of 2 kHz.

Evaluate the digital filter transfer function H (z) using the bilinear transform, and sketch
the filter structure using a minimum number of delay elements.

Problem 11.33 A signal xa (t) band-limited in frequency to 45 kHz is sampled at a rate of
100×103 samples/s to produce the sequence x [n] = xa

(
n/105

)
. The sequence x [n] is applied

to the input of a digital filter of which the output y [n] is applied at the same rate 100×103

values/s to the input of a D/A converter producing the output ya (t). The signal ya (t) should
correspond to the filtering of the signal xa (t) by a lowpass first order Butterworth (ε = 1)
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filter, which should have a maximum gain of 0 dB and a cut-off frequency of 5 kHz. Evaluate
the digital filter transfer function H (z) using

a) Impulse invariance

b) The bilinear transform

Sketch in both cases the filter structure using a minimum of delay elements.

Problem 11.34 Evaluate the transfer functions of the digital filters obtained by applying
the bilinear transform to the following analog filters.

a) Butterworth (ε = 1) highpass first order, cut-off frequency π/2, maximum gain 0 dB.

b) Butterworth (ε = 1) highpass first order, cut-off frequency π/8, maximum gain 0 dB.

c) Butterworth (ε = 1) highpass, second order, cut-off frequency π/2, maximum gain 0
dB.

For each case sketch the filter structure using a minimum of delay elements.

Problem 11.35 The transfer function of a digital filter is obtained using the bilinear trans-
formation by writing

H (z) = Ha (s)|
s=

2(1−z−1)
T(1+z−1)

where T = 0.25× 10−3 sec, and

Ha (s) =
1

s2 +
√

2 s+ 1

∣∣∣∣
s−→2000π/s

.

Evaluate

a) The maximum gain of the digital filter and the frequency at which it occurs

b) The minimal gain of the digital filter and the frequency at which it occurs

c) The frequency at which the filter gain is 3 dB below the maximum gain

Problem 11.36 Let g [n] and h [n] be the impulse responses of two digital filters. The trans-
fer function H (z) has linear phase. If g [n] = h [n−N ], where N is an integer value, does
the filter characterized by g [n] produce linear phase? Justify your answer.

Problem 11.37 An FIR digital filter should have the impulse response

h [n] = δ [n]− 0.5δ [n− 1] + 0.4δ [n− 2]− 0.25δ [n− 3]

a) Show the structure of a direct implementation of the filter.

b) Evaluate the reflection coefficients and sketch the lattice structure implementation of
the filter.

Problem 11.38 a) For a Bessel Type 1 filter of order 2, specify the transfer function and
evaluate the group delay and the value of its delay at frequency ω = 1 relative to its
zero-frequency delay. Evaluate the filter order so that the delay at frequency ω = 5 will be
greater than or equal to half its value at zero frequency.

b) Evaluate the transfer function and poles of a Type 1 Bessel filter of the second order
producing an attenuation of 0 dB at ω = 0. Evaluate the filter impulse response h(t).

c) Convert this filter to a digital one with a sampling interval of 0.1 sec, using impulse
invariance. Determine the value of the digital filter transfer function and draw the filter
structure using a minimal number of delay elements.
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Problem 11.39 The objective is to design by impulse invariance a digital Butterworth
lowpass filter of which the magnitude spectrum response is 0 dB at zero frequency. The
attenuation is 3 dB at ω = 1 and at least 18 dB at ω = 2.

a) Evaluate the minimum order of the corresponding analog filter to meet these specifi-
cations.

b) Deduce the analog filter transfer function Ha (s).
c) Evaluate the analog filter impulse response ha (t).
d) Evaluate the corresponding digital filter impulse response h [n] as obtained by impulse

invariance and assuming a sampling period T = 1 sec.
e) Evaluate the digital filter transfer function H (z).

Problem 11.40 Design a highpass Chebyshev digital filter having a maximum frequency
response of 0 dB, maximum ripple of 1 DB in the frequency band 0.3π ≤ Ω ≤ π and such
that 0 ≤ |H(ejΩ)| ≤ 0.1, in the band 0 ≤ Ω ≤ 0.1π, using the bilinear transform. Verify
the result by plotting the frequency response and evaluating the response at Ω = 0.1π and
Ω = 0.3π.

Problem 11.41 Design a highpass Chebyshev digital filter with a frequency response that
has a maximum of 0 dB and such that 0.9 ≤ |H(ejΩ)| ≤ 1, in the band 0.4π ≤ Ω ≤ π, and
an attenuation of at least 19 dB in the frequency range 0 ≤ Ω ≤ 0.14π, using the bilinear
transform. Verify the result by plotting the frequency response and evaluating the response
at Ω = 0.14π and Ω = 0.4π.

Problem 11.42 Show that if an N + 1-point impulse response h[n], n = 0, 1, . . . , N ,
where N is even, satisfies the condition

h[n] = h[n−N ], 0 ≤ n ≤ N

then its frequency response may be written in the form

H(ejΩ) = e−jNΩ/2

N/2∑

n=0

b[n] cos[nΩ]

where b[n] = 2h[N/2− n], n = 1, 2, . . . , N/2 and b[0] = h[N/2].

Problem 11.43 Show that if an N + 1-point impulse response h[n], n = 0, 1, . . . , N ,
where N is even, satisfies the condition

h[n] = −h[n−N ], 0 ≤ n ≤ N

then its frequency response may be written in the form

H(ejΩ) = je−jNΩ/2

N/2∑

n=1

b[n] sin[nΩ]

where b[n] = 2h[N/2− n], n = 1, 2, . . . , N/2.

Problem 11.44 Show that if an N + 1-point impulse response h[n], n = 0, 1, . . . , N ,
where N is odd, satisfies the condition

h[n] = h[n−N ], 0 ≤ n ≤ N
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then its frequency response may be written in the form

H(ejΩ) = e−jNΩ/2

(N+1)/2∑

n=1

b[n] cos[(n− 1/2)Ω]

where
b[n] = 2h[(N + 1)/2− n], n = 1, 2, . . . , (N + 1)/2.

Problem 11.45 Show that if an N + 1-point impulse response h[n], n = 0, 1, . . . , N ,
where N is odd, satisfies the condition

h[n] = −h[n−N ], 0 ≤ n ≤ N

then its frequency response may be written in the form

H(ejΩ) = je−jNΩ/2

(N+1)/2∑

n=1

b[n] sin[(n− 1/2)Ω]

where
b[n] = 2h[(N + 1)/2− n], n = 1, 2, . . . , (N + 1)/2.

Problem 11.46 Use the Padé approximation to evaluate the parameters of

H(z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2

which would approximate the desired impulse response

hd[n] = 10× 0.5n(cos πn/5 + sinπn/5)u[n].

Problem 11.47 Use the Padé approximation to evaluate the parameters of

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

which would approximate the desired impulse response

hd[n] = Arn cos(γn)u[n] +BArn−1 cos[γ(n− 1)]u[n− 1]

where A = 10, B = 2, r = 0.5, γ = 0.2π.

Problem 11.48 Use the Padé approximation to evaluate the parameters of

H(z) =

M∑

k=0

bkz
−k

1 +
N∑

k=1

akz−k

with M = 3 and N = 4, to approximate the desired impulse response

hd[n] =

4∑

k=1

rn
mu[n]

where r1 = 0.4, r2 = 0.5, r3 = 0.7, r4 = 0.9.
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11.51 Answers to Selected Problems

Problem 11.1 See Fig. 11.69

FIGURE 11.69 Figure for Problem 11.1.

Problem 11.2 See Fig. 11.70.

FIGURE 11.70 Figure for Problem 11.2.

Problem 11.3 See Fig. 11.71.

FIGURE 11.71 Figure for Problem 11.3.

Problem 11.4 d) h[n] = (5/3)0.5nu[n] + (1/3)(−0.4)nu[n]. e) The filter coefficients are
listed in the following table:

n 0 1 2 3 4 5 6 7
h[n] 2 0.7000 0.4700 0.1870 0.1127 0.0487 0.0274 0.0125
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Problem 11.5

H (z) =
2
(
1− z−1

)

3.336− 0.664 z−1

b) The output is a sinusoid of frequency 18.75 kHz and amplitude 0.707 volt .

Problem 11.6
b) See Fig. 11.72.
c) The output y (t) is a sinusoid of amplitude 2.828 volts and frequency 8 kHz.

FIGURE 11.72 Figure for Problem 11.6.

Problem 11.7
c) y [n] = 0.2 sin (0.5πn+ 0.6435) , y (t) = 0.2 sin (5πt+ 0.6435).

Problem 11.8

h [2] = h [0] = 7.117, h [1] = −13.235

Problem 11.9 See Figs. 11.73 and 11.74.
c) h [n] = −2 (0.2)

n
u [n]− (0.2)

n−1
u [n− 1] + (0.2)

n−2
u [n− 2].

d) y [n] = x [n]H
(
ej0
)

= 1 (−2.5) = −2.5.

e) H (z) =
(1+z−1)(−2+z−1)

1−0.2z−1 .

x n[ ] y n[ ]

c

z
-1

z
-1

b

d

a

FIGURE 11.73 Figure for Problem 11.9.

x n[ ] y n[ ]

z
-1

z
-1

0.2

-2

FIGURE 11.74 Figure for Problem 11.9.

Problem 11.10
The disturbance frequency ω = 2π × 7000 corresponds to the discrete-domain frequency
Ω = ωT = 7π/8. The frequency Ω = 7π/8 in the digital filter corresponds to a frequency
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ω = 32× 103 tan (7π/16) in the Continuous-time domain, and to a normalized frequency of
5.12 in the normalized filter. The attenuation level is 14.35 dB.

Problem 11.11
b) y [n] = y1 [n]− 8, where y1 [n] is a sinusoid of amplitude = 7.07, and frequency π/2.

Problem 11.12 See Figs. 11.75 and 11.76.

x n[ ] y n[ ]
-1

z
-1

z
-1

-0.06

0.4

0.5

FIGURE 11.75 Figure for Problem 11.12.

z
-1

h[0]

h[1] h[2]

y n[ ]

x n[ ]

h[3] h[4]

h[6]

h[5]

z
-1

z
-1

z
-1

z
-1

z
-1

FIGURE 11.76 Figure for Problem 11.12.

c) hc (t) = −2 (0.2)
t/T

u (t)+(0.3)
t/T

u (t) = −2
(
1.024× 10−7

)t
u (t)+

(
5.905× 10−6

)t
u (t).

Problem 11.13 T = 2.895× 10−3 sec, The sampling frequency is fs = 1/T = 345.443
samples/sec.

Problem 11.14
H (z) = 2.486/(1− 0.456z−1)

Problem 11.15 See Fig. 11.77 and Fig. 11.78.

y n[ ]

z
-2

0.25 b
2

x n[ ]
1

XX
0.5-0.5

-jb

jb

(a) (b)

FIGURE 11.77 Figure for Problem 11.15.
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64/9

0-p p

|H(e )|
j W 2

W

16

0-p p

| |H(e )
j W 2

W

FIGURE 11.78 Figure for Problem 11.15.

e) H
(
ejΩ
)

= (ej2Ω + β2)/(ej2Ω − 0.25).

The filter acts as a bandstop filter.f) β =
√

2 , Ω = ±0.5589, ±2.5826.

Problem 11.17

H (z) = (13 + 5z−1)/(1− 1
4z
−1).

Problem 11.18

See Fig. 11.79 and Fig. 11.80.

FIGURE 11.79 Figure for Problem 11.18.

FIGURE 11.80 Figure for Problem 11.18.
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Problem 11.19

H (z) =
0.0114747 + 0.0344z−1 + 0.0344z−2 + 0.0115z−3

1− 2.1378z−1 + 1.7694z−2− 0.5398z−3

Problem 11.20 k3 = −0.125, k2 = 0.1905, k1 = −0.4.

Problem 11.21 k3 = 1/27, k2 = 0.0989, k1 = 0.3,

Problem 11.22 H(z) = 0.9 + 1.159z−1 + 1.14z−2 + z−3 . The filter is minimum phase.

Problem 11.23
ii) y[n] = 2u[n]− 2−nu[n].

Problem 11.24

d) Y (z) =
[
1 + 2z−1 + 3z−2 + 2z−3

]
X (z), y [n] = x [n]+2x [n− 1]+3x [n− 2]+2x [n− 3].

Problem 11.26 k4 = 0.5 k3 = 0.9533 k2 = 0.7373 k1 = 0.2593 c4 (4) = 1 c4 (3) = 0.37
c4 (2) = 0.8233, c4 (1) = −0.3325, c4 (0) = −0.3735.

Problem 11.27 N = 200, h [n] = 0.2165 Sa [0.2165π (n− 100)] , 0 ≤ n ≤ 200.

Problem 11.28 H(z) = (0.1659(1 + z−1))/(1− 0.6682z−1).

Problem 11.29 H (z) = Ha (s)|
s=

2(1−z−1)
1+z−1

=
0.112(1+z−1)
1−0.776z−1 .

Problem 11.31
a) H (z) = 2.209/(1− 0.675z−1).
b) The digital frequency Ω = 0.2 corresponds to the analog frequency f = 0.2×50000/ (2π) =
1592 Hz.

Problem 11.32 See Fig. 11.81. H (z) =
8.84(1−z−1)
1−0.768z−1 ..

FIGURE 11.81 Figure for Problem 11.32.

Problem 11.33
a) H (z) = 0.314/(1− 0.730z−1).

b) H (z) = 0.137
(
1 + z−1

)
/(1− 0.727z−1). See Fig. 11.82.

FIGURE 11.82 Figure for Problem 11.33.
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Problem 11.34 See Fig. 11.83.
a) H (z) = 1− z−1/2.

H (z) =
0.834

(
1− z−1

)

1− 0.668z−1
,

0.29− 0.59z−1 + 0.29z−2

1 + 0.17z−2
,

0.29− 0.59z−1 + 0.29z−2

1 + 0.17z−2
.

FIGURE 11.83 Figure for Problem 11.34.

Problem 11.35 b) The minimum gain of the analog filter is 0 and occurs at ω = 0 since
this is a highpass filter. The minimum gain of the digital filter is thus 0 dB and occurs at
Ω = 0.
c) The cut-off frequency (-3 dB point) of the analog filter is ω = 2000π. The bilinear
transform converts this point to the digital frequency Ω = 2 arctan

(
1
2 × 2000πT

)
= 1.33.

Problem 11.36 G
(
ejΩ
)

= H
(
ejΩ
)
e−jΩN =

∣∣H
(
ejΩ
)∣∣ e−jΩ[n0+N ]

Problem 11.37
The lattice structure is shown in Fig. 11.84

FIGURE 11.84 Figure for Problem 11.37.

Problem 11.40 H(z) = 0.511389(1− z−1)2/(1− 0.8773z−1 + 0.4178z−2).

Problem 11.41 H(z) = 0.412687(1− 2z−1 + z−2)/1− 0.49503z−1 + 0.33914z−2.
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Problem 11.46 b0 = 10, b1 = −1.1062, a1 = −0.809, a2 = 0.25.

Problem 11.47 b0 = 10, b1 = 15.9549, b2 = −80902, a1 = −0.809, a2 = 0.25.

Problem 11.48 b0 = 4, b1 = −7.5, b2 = 4.54, b3 = −0.8870, a1 = −2.5, a2 = 2.27, a3 =
−0.887, a4 = 0.1260.
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Energy and Power Spectral Densities

In this chapter we study energy and power spectra and their relations to signal duration,
periodicity and correlation functions.

12.1 Energy Spectral Density

Let f (t) be an electric potential in volts applied across a resistance of R = 1 ohm. The
total energy dissipated in such a resistance is given by

E =

ˆ ∞

−∞

{
f2 (t) /R

}
dt. (12.1)

Since the resistance value is unity the dissipated energy may be also be referred to as
normalized energy. In what follows we shall refer to it simply as the dissipated energy, with
the implicit assumption that it is the energy dissipated into a resistance of 1 ohm.

We recall Parseval’s theorem which states that if a function f (t) is generally complex
and if F (jω) is the Fourier transform of f (t) then

ˆ ∞

−∞
|f (t)|2dt =

1

2π

ˆ ∞

−∞
|F (jω)|2dω. (12.2)

The energy in the resistance may therefore be written in the form

E =

ˆ ∞

−∞
f2 (t) dt =

1

2π

ˆ ∞

−∞
|F (jω)|2dω. (12.3)

The function |F (jω)|2 is called the energy spectral density, or simply the energy density, of
f (t). It is attributed the special symbol εff (ω), that is,

εff (ω)=△ |F (jω)|2 . (12.4)

We note that its integral is equal to 2π times the signal energy

E =
1

2π

ˆ ∞

−∞
εff (ω) dω (12.5)

hence the name “spectral density.”
Given two signals f1 (t) and f2 (t), where f1 (t) represent a current source and f2 (t) the

voltage that the current source produces across a resistance R of 1 ohm, the normalized
cross-energy or simply cross-energy is given by

Ef1f2 =

ˆ ∞

−∞
f1 (t)f2 (t) dt. (12.6)

835
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Parseval’s or Rayleigh’s theorem is written
ˆ ∞

−∞
f1 (t) f2 (t) dt =

1

2π

ˆ ∞

−∞
F1 (−jω)F2 (jω) dω. (12.7)

If f1 (t) and f2 (t) are real

F1 (−jω) = F ∗1 (jω) , F2 (−jω) = F ∗ (jω) . (12.8)

the cross-energy is therefore given by

Ef1f2 =

ˆ ∞

−∞
f1 (t) f2 (t) dt =

1

2π

ˆ ∞

−∞
F ∗1 (jω)F2 (jω) dω. (12.9)

The function
εf1f2 (ω)=△F

∗
1 (jω)F2 (jω) (12.10)

is called the cross-energy spectral density. The cross-energy of the two signals is then given
by

E =
1

2π

ˆ ∞

−∞
εf1f2 (ω)dω. (12.11)

Example 12.1 Consider the ideal lowpass filter frequency response shown in Fig. 12.1.

FIGURE 12.1 Ideal lowpass filter frequency response.

We have
H (jω) = AΠΩ/2 (ω) = A {u (ω + Ω/2)− u (ω − Ω/2)} .

The filter’s impulse response is given by

h (t) = F−1 [H (jω)] =
AΩ

2π
Sa (Ω t/2) .

The energy spectral density of h (t) is given by

εhh (ω) = |H (jω)|2 = A2ΠΩ/2 (ω) .

We may evaluate the energy of h (t) in a finite band of frequency, say, Ω/4 < |ω| < Ω/2,
as shown in Fig. 12.2.

E (Ω/4, Ω/2) =
2

2π

ˆ Ω/2

Ω/4

A2dω =
A2Ω

4π
. (12.12)

The total energy of h (t) is given by

E =

ˆ ∞

−∞
h2 (t)dt =

A2

4π2
Ω2

ˆ ∞

−∞
Sa2 (Ωt/2)dt. (12.13)
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FIGURE 12.2 A frequency band of lowpass filter response.

It is easier, however, to evaluate the energy using Rayleigh’s theorem. We write

E =
2

2π

ˆ Ω/2

0

εhh(ω)dω =
A2Ω

2π
. (12.14)

We note in passing that we have thus evaluated the integral of the square of the sampling
function. In particular, we found that

E =
A2Ω2

4π2

ˆ ∞

−∞
Sa2 (Ωt/2)dt =

A2Ω

2π
. (12.15)

Substituting Ωt/2 = x, we have

ˆ ∞

−∞
Sa2 (x)dx = π. (12.16)

Example 12.2 Let

v (t) = A cosωct

and

vT (t) = v (t) ΠT/2 (t) = v (t) {u (t+ T/2)− u (t− T/2)} .
Evaluate the energy spectral density of this truncated sinusoid shown in Fig. 12.3.

FIGURE 12.3 Truncated sinusoid.

We have

ΠT/2 (t)
F←→ T Sa (ωT/2)

VT (jω)=△F [vT (t)] =
AT

2
{Sa [(ω − ωc)T/2] + Sa [(ω + ωc)T/2]}
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wherefrom the energy spectral density is given by

εvT vT (ω) = |VT (jω)|2 = (A2T 2/4)
{
Sa2 [(ω − ωc)T/2]

+Sa2 [(ω + ωc)T/2] + 2Sa [(ω − ωc)T/2]Sa [(ω + ωc) T/2]
}

and is shown graphically in Fig. 12.4.

FIGURE 12.4 Energy spectral density.

12.2 Average, Energy and Power of Continuous-Time Signals

The average normalized power, or simply average power, of a signal f (t) is defined by

f2(t)=△ lim
T−→∞

1

2T

ˆ T

−T

|f(t)|2dt. (12.17)

The energy E, as seen above, is given by

E =

ˆ ∞

−∞
f2(t)dt =

1

2π

ˆ ∞

−∞
|F (jω)|2dω. (12.18)

A signal that has a finite energy E has an average power f2 (t) of zero. Such a signal is
called an energy signal.

A power signal is one that has infinite energy and finite non-nil average power, i.e. 0 <
f2 (t) < ∞. A periodic signal is a power signal. Its average power P is evaluated as its
power over one period.

Let f (t) be periodic of period T0. Its average normalized power, or simply average power,
is given by

P = f2(t) =
1

T0

ˆ T0/2

−T0/2

|f(t)|2 dt =
1

T0

ˆ T0/2

−T0/2

f(t)f∗(t)dt. (12.19)

From Parseval’s relation for periodic functions

1

T0

ˆ T0/2

−T0/2

|f(t)|2dt =
∞∑

n=−∞
|Fn|2 . (12.20)
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The average power of a periodic signal is thus given by the sum

P = f2(t) =

∞∑

n=−∞
|Fn|2 . (12.21)

12.3 Discrete-Time Signals

For discrete-time signals the energy and average power are similarly defined. If a sequence
f [n] has finite energy, defined as

E =

∞∑

n=−∞
f2 [n] (12.22)

it is called an energy signal. If it has a finite average power, defined as

P = lim
M−→∞

1

2M + 1

M∑

n=−M

f2[n] (12.23)

it is called a power signal.
If the sequence is periodic with period M its average power over one period is

P =
1

M

M−1∑

n=0

f2 [n] . (12.24)

An impulsive signal

f (t) =

∞∑

n=−∞
fnδ (t− nT ) (12.25)

such as the one shown in Fig. 12.5, and that can be an ideal sampling of a continuous-time
signal, is considered to be an energy signal if its average power defined as

lim
M−→∞

1

2MT

M∑

n=−M

|fn|2 (12.26)

is zero, otherwise it is a power signal.

FIGURE 12.5 Impulsive signal.
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12.4 Energy Signals

Let f (t) and g (t) be two real energy signals. We show that the Fourier transform of their
cross-correlation function rfg (t) is equal to the cross-spectral density εfg (ω).

We have already seen that correlation can be written as a convolution

rfg (t) =

ˆ ∞

−∞
f (t+ τ ) g (τ) dτ = f (t) ∗ g (−t) (12.27)

rfg (−t) = rgf (t) . (12.28)

The Fourier transform of rfg (t) is therefore given by

Rfg (jω) = F (jω)G∗ (jω) = εfg (ω) (12.29)

i.e. the Fourier transform of the cross-correlation function of two energy signals is equal to
their cross-energy spectral density.

Moreover, we note that if the functions f (t) and g (t) are complex then

rfg (t) =

ˆ ∞

−∞
f (t+ τ) g∗ (τ) dτ (12.30)

Rfg (jω)=△F [rfg (t)] = F (jω)G∗ (jω) = εfg (ω) . (12.31)

and
rfg (−t) = r∗fg (t) . (12.32)

12.5 Autocorrelation of Energy Signals

The Fourier transform of the autocorrelation function rff (t) of an energy signal f (t) is
given by

Rff (jω) = F [rff (t)] = F (jω)F ∗ (jω) = |F (jω)|2 = ǫff (ω) (12.33)

i.e.
rff (t)

F←→ |F (jω)|2 = εff (ω) (12.34)

εff (ω) = Rff (jω) (12.35)

so that the Fourier transform of the autocorrelation function of an energy signal is equal to
the energy spectral density of the signal.

We note that the Fourier transform F (jω) of a complex function f (t) is not in gen-
eral symmetric about origin, that is, F (−jω) 6= F ∗ (jω). The energy spectral density

εff (ω)=△ |F (jω)|2 is real but not symmetric about the origin. Being real, however, its
inverse transform is symmetric, that is, rff (−t) = r∗ff (t), as already established.

We note on the other hand that if the function f (t) is real then F (−jω) = F ∗ (jω)

wherefrom the function εff (ω) = |F (jω)|2 is even and its inverse transform rff (t) is real
(and even); rff (−t) = rff (t).

Let f (t) be generally complex. Writing

rff,R (t)=△ℜ [rff (t)] , rff,I (t) =△ℑ [rff (t)] (12.36)
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rff,R (t) = rff,R (−t) (12.37)

rff,I (t) = −rff,I (−t) (12.38)

εff (ω) =

ˆ ∞

−∞
rff (t)e−jωtdt

=

ˆ ∞

−∞
[rff,R (t) + jrff,I (t)] (cosωt− j sinωt) dt

= 2

ˆ ∞

0

(rff,R (t) cosωt+ rff,I (t) sinωt)dt (12.39)

rff (t) =
1

2π

ˆ ∞

−∞
εff (ω) ejωtdω

=
1

2π

{
ˆ ∞

−∞
εff (ω) cosωt dω + j

ˆ ∞

∞
εff (ω) sinωt dω

}
(12.40)

i.e.

rff, R (t) =
1

2π

ˆ ∞

−∞
εff (ω) cosωt dω (12.41)

rff,I (t) =
1

2π

ˆ ∞

−∞
εff (ω) sinωt dω. (12.42)

We note that

rff (0) =
1

2π

ˆ ∞

−∞
εff (ω)dω. (12.43)

If the function f (t) is real we have

rff (−t) = rff (t) , rff,I (t) = 0 (12.44)

εff (ω) = |F (jω)|2 = 2

ˆ ∞

0

rff (t) cosωt dt (12.45)

rff (t) =
1

π

ˆ ∞

0

εff (ω) cosωt dω (12.46)

and
rff (t) ≤ rff (0) = E (12.47)

E being the energy of f (t).

Example 12.3 Show that Rff (jω) = εff (ω) for the rectangular window

f (t) = ΠT (t) = u (t+ T )− u (t− T ) .

The transform of f (t) is
F (jω) = 2T Sa (Tω) .

The spectral density is given by

εff (ω) = |F (jω)|2 = 4T 2Sa2 (Tω) .

The autocorrelation of f (t) is the triangle

rff (t) = (2T − |t|) Π2t (t)=△2TΛ2T (t)

where, we recall, Λx (t) is a centered triangle of height unity and total base width 2x. Its
Fourier transform is

Rff (jω)=△F [rff (t)] = εff (ω) .

The spectral density and autocorrelation function are shown in Fig. 12.6.
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FIGURE 12.6 A rectangle, spectral density and autocorrelation function.

12.6 Energy Signal through Linear System

Let an energy signal f (t) be the input to a linear time invariant (LTI) system of impulse
response h (t), as shown in Fig. 12.7.

h t( )f t( ) y t( )

FIGURE 12.7 Linear system with input and output.

Let rff (t) and ryy (t) be the autocorrelation of f (t) and of y (t), respectively. We have

Rff (jω) = F [rff (t)] = |F (jω)|2 (12.48)

Ryy (jω) = F [ryy (t)] = |Y (jω)|2 . (12.49)

Now

Y (jω) = F (jω)H (jω) (12.50)

wherefrom

Ryy (jω) = |F (jω)|2 |H (jω)|2 (12.51)

i.e.

Ryy (jω) = Rff (jω) |H (jω)|2 = Rff (jω)H (jω)H∗ (jω) . (12.52)

Hence

εyy (ω) = εff (ω) |H (jω)|2 . (12.53)

Moreover

F−1 [H∗ (jω)] = h (−t) (12.54)

we have

ryy (t) = rff (t) ∗ h (t) ∗ h (−t) (12.55)

i.e. the autocorrelation of the system response is the convolution of the input signal auto-
correlation with the convolution h (t) ∗ h (−t).
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12.7 Impulsive and Discrete-Time Energy Signals

Let fs (t) be a signal formed of equidistant impulses such as the signal

fs (t) = . . .+ f [−1] δ (t+ T ) + f [0] δ (t) + f [1] δ (t− T ) + . . . (12.56)

=
∞∑

n=−∞
f [n] δ (t− nT ) (12.57)

shown in Fig. 12.8(a).

FIGURE 12.8 Signal with equidistant impulses and discrete-time signal counterpart.

We may view the impulsive signal fs (t) as the result of sampling a continuous-time signal
fc (t) with a sampling interval of T seconds.

fs (t) = fc (t)

∞∑

n=−∞
δ (t− nT ) =

∞∑

n=−∞
fc (nT ) δ (t− nT ) . (12.58)

Associated with fc (t) and fs (t) we also have a discrete-time function, namely, the se-
quence f [n] = fc (nT ) shown in Fig. 12.8(b). The energy of the signal fs (t) as well as
that of f [n] are defined by the summation

E =
∞∑

n=−∞
|f [n]|2 . (12.59)

If the energy is finite then the signal fs (t) and the sequence f [n] are energy signals. The
autocorrelation of the signal fs (t) can be obtained by evaluating the autocorrelation rff [n]
of the corresponding sequence f [n]. In fact the autocorrelation of fs(t) is given by
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rfsfs (t) =

ˆ ∞

−∞
fs (τ) fs (t+ τ ) dτ

=

ˆ ∞

−∞

∞∑

m=−∞
f [m] δ (τ −mT )

∞∑

i=−∞
f [i]δ (t+ τ − iT ) dτ

=

ˆ ∞

−∞

∑

m

∑

i

f [m]f [i] δ (τ −mT ) δ (t+ τ − iT ) dτ

=
∑

m

∑

i

f [m]f [i]

ˆ ∞

∞
δ (τ −mT )δ (t+ τ − iT ) dτ

=

∞∑

m=−∞

∞∑

i=−∞
f [m]f [i] δ (t− (i−m)T ) .

Letting i−m = n we have

rfsfs (t) =

∞∑

m=−∞

∞∑

n=−∞
f [m]f [m+ n] δ (t− nT ) . (12.60)

Interchanging the order of summations

rfsfs (t) =
∞∑

n=−∞

∞∑

m=−∞
f [m] f [m+ n] δ (t− nT ) =

∞∑

n=−∞
ρnδ (t− nT ) (12.61)

where

ρn =

∞∑

m=−∞
f [m]f [m+ n] . (12.62)

On the other hand the discrete autocorrelation of the corresponding sequence f [n] is given
by

rff [n] =

∞∑

m=−∞
f [m]f [n+m] . (12.63)

Hence
ρn = rff [n] . (12.64)

The autocorrelation rfsfs(t) is represented graphically in Fig. 12.9.

FIGURE 12.9 Autocorrelation of an impulsive signal.

The autocorrelation of the impulsive signal fs (t) is therefore a one-to-one correspondence
to the discrete autocorrelation of the corresponding discrete-time-sequence f [n]. It can be
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evaluated by simply effecting a discrete autocorrelation of the discrete sequence f [n], fol-
lowed by converting the resulting sequence rff [n] into the corresponding impulsive function,
which is the autocorrelation function rfsfs (t) of the function fs (t). The same approach can
be used for evaluating the cross-correlation of two impulsive functions fs (t) and gs (t).

The Fourier transform of fs (t) is given by

Fs (jω) = F
[ ∞∑

n=−∞
f [n] δ (t− nT )

]
=

1

T

∞∑

n=−∞
Fc

(
jω + j

2πn

T

)
. (12.65)

This is equal to the Fourier transform F
(
ejΩ
)

of the discrete-time counterpart, the se-
quence f [n] with Ω = ωT .

F
(
ejΩ
)

=
∞∑

n=−∞
f [n]e−jΩn = Fs (jω)

∣∣
ω=Ω/T = Fs

(
j
Ω

T

)
. (12.66)

The energy density εfsfs (ω) of the signal fs (t) is given by

εfsfs (ω) = |Fs (jω)|2 (12.67)

and is therefore periodic of a period 2π/T . Similarly the energy density of the sequence
f [n] is given by

εff (Ω) =
∣∣F
(
ejΩ
)∣∣2 (12.68)

and is periodic with a period 2π. The autocorrelation rfsfs (t) may be written as the con-
volution:

rfsfs (t) = fs (t) ⋆ fs (t) = fs (t) ∗ fs (−t) (12.69)

Rfsfs (jω) = Fs (jω)F ∗s (jω) = |Fs (jω)|2 = εfsfs (ω) (12.70)

rff [n] = f [n] ⋆ f [n] = f [n] ∗ f [−n] (12.71)

Rff

(
eiΩ
)

= F
(
ejΩ
)
F
(
e−jΩ

)
=
∣∣F
(
ejΩ
)∣∣2 = εff (Ω) . (12.72)

The transform of the energy spectral density is therefore given by

εfsfs (ω) = Rfsfs (jω) = F
[ ∞∑

n=−∞
ρnδ (t− nt)

]
=

∞∑

n=−∞
ρne
−jωnT (12.73)

and

εff (Ω) = Rff

(
ejΩ
)

=

∞∑

n=−∞
rff [n]e−jΩn. (12.74)

Since f (t) is real we have rff [−n] = rff [n] and rfsfs (−t) = rfsfs (t), i.e., ρ−n = ρn.

εfsfs (ω) = ρ0 + 2
∞∑

n=1

ρn cosnTω = rff [0] + 2
∞∑

n−1

rff [n] cosnTω (12.75)

and

εff (Ω) = rff [0] + 2
∞∑

n=1

rff [n] cosnΩ. (12.76)
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FIGURE 12.10 Impulsive signal and its autocorrelation.

Example 12.4 Let

fs (t) = δ (t− T ) + 2δ (t− 2T ) .

The signal is shown in Fig. 12.10(a).
Its autocorrelation is shown in Fig. 12.10(b). The autocorrelation may be found by eval-

uating the autocorrelation of the corresponding sequence f [n] = δ[n − 1] + 2δ[n − 2]. We
have

ρn = rff [n] =

∞∑

n=−∞
f [n+m]f [m] = 2δ[n+ 1] + 5δ[n] + 2δ[n− 1].

The sequence f [n] and its autocorrelation rff [n] = ρn are shown in Fig. 12.11.

FIGURE 12.11 A sequence and its autocorrelation.

rfsfs (t) = 5δ (t) + 2δ (t+ T ) + 2δ (t− T )

εfsfs (ω) = Rfsfs (jω) = 5 + 2ejωT + 2e−jωT = 5 + 4 cosTω.

Alternatively, we have

Fs (jω) = e−jωt + 2e−jωt = (cosωT + 2 cos 2ωT )− j (sinωT + 2 sin 2ωT )

εfsfs (ω) = |Fs (jω)|2 .
Similarly εff (Ω) = Rff

(
ejΩ
)

= 5 + 4 cosΩ.

Example 12.5 Let

fc (t) =

{
t/10, 0 ≤ t ≤ 30
6− t/10, 30 ≤ t ≤ 60.
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Evaluate the sampled function fs (t), the discrete-time function f [n] and their autocorrela-
tions, assuming a sampling interval of T = 10 sec. We have

fs(t) = δ (t− T ) + 2δ (t− 2T ) + 3δ (t− 3T ) + 2δ (t− 4T ) + δ (t− 5T )

f [n] = fc (nT ) = fc (10n) =

{
n, 0 ≤ n ≤ 3
6− n, 3 ≤ n ≤ 6

ρn = rff [n] = δ [n+ 4] + 4 δ [n+ 3] + 10 δ [n+ 2] + 16 δ [n+ 1]

+ 19 δ [n] + 16 δ [n− 1] + 10 δ [n− 2] + 4 δ [n− 3] + δ [n− 4] .

The sequence f [n] and its autocorrelation ρ[n] = rff [n] are shown in Fig. 12.12.

FIGURE 12.12 Sequence f [n] and its autocorrelation.

The corresponding impulsive autocorrelation function rfsfs (t) is deduced thereof to be

rfsfs (t) = δ (t+ 4T ) + 4δ (t+ 3T ) + 10δ (t+ 2T ) + 16δ (t+ T )

+ 19δ (t) + 16δ (t− T ) + 10δ (t− 2T ) + 4δ (t− 3T ) + δ (t− 4T )

εfsfs (ω) = Rfsfs (jω)

= 19 + 32 cos Tω + 20 cos 2Tω + 8 cos 3Tω + 2 cos 4Tω

= 19 + 32 cos 10ω + 20 cos 20ω + 8 cos 30ω + 2 cos 40ω

εff (Ω) = Rff

(
eiΩ
)

= 19 + 32 cosΩ + 20 cos2Ω + 8 cos 3Ω + 2 cos 4Ω.

The energy spectral density εff (Ω) of the sequence f [n] is shown in Fig. 12.13.
Alternatively,

Fs (jω) = e−jωT + 2e−j2ωT + 3e−j3ωT + 2e−j4ωT + e−j5ωT

εfsfs (ω) = |Fs (jω)|2 = Fs (jω)F ∗s (jω) .

Letting
z = ejωT , z∗ = e−jωT = z−1.

We have, with z = ejΩ,

εfsfs (ω) =
(
z−1 + 2z−2 + 3z−3 + 2z−4 + z−5

)
(
z + 2z2 + 3z3 + 2z4 + z5

)

= 19 + 16z−1 + 10z−2 + 4z−3 + z−4 + 16z + 10z2 + 4z3 + z4

= 19 + 32 cosωT + 20 cos 2ωT + 8 cos 3ωT + 2 cos 4ωT = Rfsfs (jω)

εff (Ω) = 19 + 32 cosΩ + 20 cos2Ω + 8 cos 3Ω + 2 cos 4Ω = Rff

(
ejΩ
)
.
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FIGURE 12.13 Energy spectral density.

12.8 Power Signals

We have seen that a power signal has a finite average power

0 < f2 (t) <∞, (12.77)

where

f2 (t) = lim
T−→∞

1

2T

ˆ T

−T

|f (t)|2dt (12.78)

and that a periodic signal is a power signal having an average power evaluated over one
period

P = f2 (t) =
1

T

ˆ T/2

−T/2

|f (t)|2dt =

∞∑

n=−∞
|Fn|2 . (12.79)

In the following the cross- and autocorrelations of such signals are defined.

12.9 Cross-Correlation

Let f (t) and g (t) be two real power signals. The cross-correlation rfg (t) is given by

rfg (t) = lim
T−→∞

1

2T

ˆ T

−T

f (t+ τ)g (τ) dτ (12.80)

rfg (−t) = rgf (t) (12.81)

as is the case for energy signals. If f (t) and g (t) are complex then

rfg (t) = lim
T−→∞

1

2T

ˆ T

−T

f (t+ τ) g∗ (τ) dτ (12.82)

rfg (−t) = r∗gf (t) (12.83)

rff (t) = lim
T−→∞

1

2T

ˆ T

−T

f (τ)f (t+ τ ) dτ (12.84)

rff (−t) = rff (t) (12.85)
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and

rff (0) = lim
T−→∞

1

2T

ˆ T

−T

|f (t) |2dt = f2 (t) . (12.86)

12.9.1 Power Spectral Density

For a real power signal f (t) the power spectral density denoted by Sff (ω) is by definition
the Fourier transform of the autocorrelation function.

Sff (ω) = F [rff (t)] = Rff (jω). (12.87)

and the power is

P = f2 (t) =
1

2π

ˆ ∞

−∞
Sff (ω)dω. (12.88)

Since rff (t) is real and even its transform Sff (ω) is real and even. We have

Sff (ω) = 2

ˆ ∞

0

rff (t) cosωt dt (12.89)

and

rff (t) =
1

π

ˆ ∞

0

Sff (ω) cosωt dω. (12.90)

Let
fT (t) = f (t)ΠT (t) = f (t) {u (t+ T )− u (t− T )} (12.91)

i.e. fT (t) is a truncation of f (t).
We have

FT (jω) = F [fT (t)] =

ˆ T

−T

f (t)e−jωtdt. (12.92)

The average power density over the interval (−T, T ) is the energy over the interval divided
by the duration 2T . Denoting it by ST (ω) we have

ST (ω)=△
1

2T
|FT (jω)|2 . (12.93)

It can be shown that Sff (ω) is the limit as T tends to infinity of ST (ω)

Sff (ω) = lim
T−→∞

ST (ω) = lim
T−→∞

1

2T
|FT (jω)|2 . (12.94)

In fact

Sff (ω) = F [rff (t)] = F
[

lim
T−→∞

1

2T

ˆ T

−T

fT (t+ τ) fT (τ) dτ

]

= lim
T−→∞

1

2T

ˆ ∞

−∞

ˆ T

−T

fT (t+ τ ) fT (τ)dτ e−jωtdt

= lim
T−→∞

1

2T

ˆ T

−T

fT (τ)

ˆ ∞

−∞
fT (t+ τ ) e−jωtdt dτ. (12.95)

Let
t+ τ = x (12.96)
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Sff (ω) = lim
T−→∞

1

2T

ˆ T

−T

fT (τ)

ˆ ∞

−∞
fT (x) e−jω(x−τ)dx dτ

= lim
T−→∞

1

2T

ˆ T

−T

fT (τ)ejωτFT (jω) dτ

= lim
T−→∞

1

2T
FT (jω)

ˆ T

−T

f (τ)ejωτdτ = lim
T−→∞

1

2T
FT (jω)F ∗T (jω)

= lim
T−→∞

1

2T
|FT (jω)|2 = lim

T−→∞
ST (ω) . (12.97)

12.10 Power Spectrum Conversion of a Linear System

Let f (t) be a power signal applied to the input of a linear time invariant LTI system the
impulse response of which h (t) is an energy signal. The system response may be written

y (t) = f (t) ∗ h (t) =

ˆ ∞

−∞
f (τ)h (t− τ) dτ. (12.98)

Let rff (t) and Sff (ω) be the autocorrelation and spectral density respectively of the
input f (t). The autocorrelation of the output signal y (t) is given by

ryy (t) = lim
T−→∞

1

2T

ˆ T

−T

y (τ)y (t+ τ ) dτ

= lim
T−→∞

1

2T

ˆ T

−T

h (u)f (τ − u) du
ˆ ∞

−∞
h (x)f (t+ τ − x) dx dt.

(12.99)

Interchanging the order of integration

ryy (t) = lim
T−→∞

1

2T

ˆ ∞

−∞
h (u)

ˆ ∞

−∞
h (x)

ˆ T

−T

f (τ − u)f (t+ τ − x) dτ dx du

= lim
T−→∞

1

2T

ˆ ∞

−∞
h (u)

ˆ ∞

−∞
h (x)

ˆ T−u

−T−u

f (α)f (α+ u+ t− x) dτ dx du

=

ˆ ∞

−∞
h (u)

ˆ ∞

−∞
h (x)rff (u+ t− x) dx du. (12.100)

We note that the second integral is a convolution. Writing

z (u+ t) =

ˆ ∞

−∞
h (x)rff (u+ t− x) dx = h(t) ∗ rff (u + t) (12.101)

i.e.

z (t) = h (t) ∗ rff (t) (12.102)

we have

ryy (t) =

ˆ ∞

−∞
h (u)z (u+ t) du = rzh(t) = z(t) ∗ h(−t) = rff (t) ∗ h (t) ∗ h (−t) . (12.103)
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We conclude that the system response y (t) is a power signal the autocorrelation ryy (t)
of which is the convolution of the input signal autocorrelation rff (t) with the function
h (t) ∗ h (−t) that is, the convolution of h (t) with its reflection. Moreover,

Syy (ω) = F [ryy (t)] = F [rff (t)] ·H (jω)H∗ (jω) = Sff (ω) |H (jω)|2 . (12.104)

We conclude that the time domain convolution y(t) = f(t) ∗ h(t) leads to the power
spectral density transformation

Syy (ω) = Sff (ω) |H (jω)|2 (12.105)

and that more generally, the convolution y(t) = f(t) ∗ x(t) of a power signal f(t) and an
energy signal x(t) leads to the power spectral density transformation

Syy (ω) = Sff (ω) |X (jω)|2 . (12.106)

In the case of input white noise, for example

Sff (ω) = 1 (12.107)

wherefrom rff (t) = δ (t) and Syy (ω) = |H (jω)|2, i.e. the power density of the system
response is equal to the energy density of the impulse response h (t).

Example 12.6 Let f (t) = K, where K is a constant. The autocorrelation of f (t) given
by

rff (t) = lim
T−→∞

1

2T

ˆ T

−T

K2dt = K2

is a constant, and
Sff (ω) = F [rff (t)] = Rzzjω = 2πK2δ (ω)

as shown in Fig. 12.14.

FIGURE 12.14 A constant, autocorrelation and power spectral density.

The power by direct evaluation is P = K2 and, alternatively,

P = f2 (t) =
1

2π

ˆ ∞

−∞
Sff(ω)dω = K2.

Note that functions that are absolutely integrable such e−tu (t) have finite energy and thus
represent energy signals, whereas functions such as the step function and unity represent
power signals.
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Example 12.7 Evaluate the autocorrelation and spectral density of the signal

f (t) = Ku (t) .

The signal is shown in Fig. 12.15(a).

FIGURE 12.15 Unit step function, autocorrelation and power spectral density.

rff (t) = lim
T−→∞

K2

2T

ˆ T

−T

u (τ) u (t+ τ) dτ.

Consider the integral

I =

ˆ T

−T

u(τ)u (t+ τ) dτ

and the case t > 0. We have

I =

ˆ T

o

dτ = T

and

rff (t) = lim
T−→∞

K2

2T
I =

K2

2
, t > 0.

For t < 0 we can use the symmetry property

rff (−t) = rff (t) = K2/2

wherefrom
rff (t) = K2/2, ∀t

and
Sff (ω) = Rff (jω) = πK2δ (ω) .

The autocorrelation and spectral density are shown in Fig. 12.15(b) and (c), respectively.

12.11 Impulsive and Discrete-Time Power Signals

Let f (t) be the impulsive function

fs (t) =
∞∑

n=−∞
f [n]δ (t− nT ) . (12.108)
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If the average power of f (t) is finite and not zero, that is,

0 < lim
N−→∞

1

2N

N−1∑

n=−N

|f [n]|2 <∞ (12.109)

then f (t) is a power signal. As noted earlier fs (t) may be the result of ideal sampling of a
continuous-time function fc (t)

fs (t) =
∞∑

n=−∞
fc (nT )δ (t− nT ) . (12.110)

The discrete-time representation of the same signal is the sequence f [n] defined by f [n] =
fc (nT ). The autocorrelation of fs (t) is given by

rfsfs (t) = lim
T−→∞

1

2T

ˆ T

−T

fs (τ) fs (t+ τ ) dτ. (12.111)

As in the case of impulsive and discrete-time energy signals it can be shown that

rfsfs (t) =
∞∑

n=−∞
ρnδ (t− nT ) (12.112)

where

ρn = lim
M−→∞

1

2MT

M−1∑

m=−M

f [m]f [m+ n] . (12.113)

The power density is given by

Sfsfs (ω) = F [rfsfs (t)] =△Rfsfs (jω) = F
[ ∞∑

n=−∞
ρnδ (t− nT )

]

=

∞∑

n=−∞
ρne
−jnTω = ρ0 + 2

∞∑

n=1

ρn cosnTω. (12.114)

For the sequence f [n] the autocorrelation is given by

rff [n] = lim
M−→∞

1

2M

M−1∑

m=−M

f [m]f [n+m] (12.115)

so that

ρn =
1

T
rff [n] (12.116)

Sff (Ω) = F [rff [n]] = Rff (ejΩ) =
∞∑

n=−∞
rff [n]e−jΩn

= rff [0] + 2
∞∑

n=1

rff [n] cosΩ n. (12.117)
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12.12 Periodic Signals

Let a real signal f (t) be periodic of period T . Its autocorrelation rff (t) is periodic defined
by

rff (t) =
1

T

ˆ T

0

f (τ)f (t+ τ ) dτ =
1

T

ˆ T

0

f (τ)

∞∑

n=−∞
Fne

jnω0(t+τ)dτ

=
1

T

∞∑

n=−∞
Fne

jnω0τ

ˆ T

0

f (τ)ejnω0τdτ =

∞∑

n=−∞
Fne

jnω0tF ∗n (12.118)

i.e.

rff (t) =

∞∑

n=−∞
|Fn|2 ejnω0t, ω0 = 2π/T (12.119)

which has the form of a Fourier series expansion having as coefficients |Fn|2. We can therefore
write

|Fn|2 =
1

T

ˆ

T

rff (t)e−jnω0tdt (12.120)

rff (t) =

∞∑

n=−∞
|Fn|2 cosnω0 t (12.121)

rff (t) = |F0|2 + 2

∞∑

n=1

|Fn|2 cosn ω0t. (12.122)

The power spectral density is given by

Sff (ω) = Rff (jω) = 2π

∞∑

n=−∞
|Fn|2δ (ω − nω0) . (12.123)

The average power of f (t) is given by

P = f2 (t) = rff (0) =
1

2π

ˆ ∞

−∞
Rff (jω)dω =

1

2π

ˆ ∞

−∞
Sff (ω)dω. (12.124)

Moreover,

P =
1

T

ˆ

T

f2 (t) dt =
∞∑

n=−∞
|Fn|2 . (12.125)

Example 12.8 Evaluate the power, the spectral density and autocorrelation function of the
signal f (t) = A cosω0t where ω0 = 2π/T . We have

P =
1

T

ˆ T

0

A2 cos2ω0t dt =
A2

T
× 1

2

ˆ T

0

(cos 2ω0t+ 1)dt = A2/2.

The evaluation of the average power of a sinusoid is often needed. It is worthwhile remem-
bering that the average power of a sinusoid of amplitude A is simply A2/2.

We also note that the Fourier series coefficients of the expansion

f (t) =
∞∑

n=−∞
Fne

jnω0t
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are given by

Fn =

{
A/2, n = ±1
0, otherwise

wherefrom

P = f2 (t) =
∑
|Fn|2 = 2×A2/4 = A2/2

Sff (ω) = 2π
∑
|Fn|2δ (ω − nω0) = π

A2

2
{δ (ω − ω0) + δ (ω + ω0)}

P =
1

2π

ˆ ∞

−∞

πA2

2
{δ (ω − ω0) + δ (ω + ω0)} dω = A2/2

rff (t) = |F0|2 + 2

∞∑

1

|Fn|2 cosn ω0t = (A2/2) cosω0t.

We note, moreover, that

Rff (jω) =
πA2

2
{δ (ω − ω0) + δ (ω + ω0)} = Sff (ω) .

12.12.1 Response of an LTI System to a Sinusoidal Input

Let x(t) = sin(βt+θ) be the input to an LTI system. We evaluate the power spectral density
at the input and output of the system.

The power spectral density of the input is

Sxx (ω) = 2π

∞∑

n=−∞
|Xn|2δ (ω − nω0) (12.126)

where ω0 = β. The power spectral density of the output is

Syy (ω) = 2π

∞∑

n=−∞
|Yn|2δ (ω − nω0) == 2π

∞∑

n=−∞
|Xn|2|H(jnβ)|2δ (ω − nβ) . (12.127)

The average power of the input x(t) is

P = x2 (t) =

∞∑

n=−∞
|Xn|2 = A2/2 (12.128)

and that of the output is

P = y2 (t) =
∞∑

n=−∞
|Yn|2 = (A2/2)|H(jnβ)|2. (12.129)

Example 12.9 The signal x(t) = A sin(βt), with A = 1 and β = π, is applied to the input
of an LTI system of impulse response h(t) = Π0.5(t). Is the system response y(t) an energy
or power signal? Evaluate the energy and power, and the spectral density at the system input
and output. The input signal x(t) and response y(t) have infinite energy and are hence power
signals since their energy is infinite. The spectral densities are

Sx(ω) = (π/2)[δ(ω − π) + δ(ω + π)]



856 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

and

Sy(ω) = Sx(ω)|H(jω)|2 =
π

2
Sa2(π/2)[δ(ω − π) + δ(ω + π)] = 0.637[δ(ω− π) + δ(ω + π)].

The input power is

Px = x2 (t) =
1

2π

ˆ ∞

∞
Sx(ω)dω = 0.5.

The output power is

Py = y2 (t) =
1

2π

ˆ ∞

∞
Sy(ω)dω = 0.203.

Alternatively, note that the input sinusoid Amplitude is A = 1 and its power is Px =
x2 (t) = A2/2 = 0.5. The output is y(t) = A|H(jπ)| sin(βt + arg[H(jπ)]) = B sin(πt + θ),
where B = 0.6366 and θ = −π/2, and its power is Py = y2 (t) = B2/2 = 0.203.

12.13 Power Spectral Density of an Impulse Train

Consider the impulse train shown in Fig. 12.16(a).

FIGURE 12.16 Impulse train, autocorrelation and power spectral density.

x (t) = ρT (t)=△
∞∑

n=−∞
δ (t− nT ) . (12.130)

To evaluate the power spectral density of the impulse train we may proceed by applying
the correlation definition directly over one period.

rxx (t) =
1

T

ˆ T/2

−T/2

δ (τ)δ (t+ τ ) dτ =
1

T
δ (t) , −T/2 ≤ t ≤ T/2 (12.131)

that is, rxx (t) is an impulse train of period T and impulses of intensity 1/T

rxx (t) =
1

T

∑
δ (t− nT ) =

1

T
ρT (t) . (12.132)

The power spectral density with ω0 = 2π/T is given by

Sxx (ω) = Rxx (jω) =
1

T
ω0ρω0 (ω) =

2π

T 2

∞∑

n=−∞
δ (ω − nω0) . (12.133)
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Alternatively, Xn = 1/T and

Sxx (ω) = 2π

∞∑

n=−∞
|Xn|2δ (ω − nω0) =

2π

T 2

∞∑

n=−∞
δ (ω − nω0) . (12.134)

Example 12.10 Let v (t) be the periodic ramp shown in Fig. 12.17. Evaluate the power
spectral density.

FIGURE 12.17 Periodic ramp.

We have found in Chapter 2 that the Fourier series coefficients are

Vn =

{
A/2, n = 0
jA/(2πn), n 6= 0

where A = 1 and ω0 = 2π. Hence

Svv (ω) = 2π

∞∑

n=−∞
|Vn|2 δ (ω − nω0) =

(
πA2/2

)
δ (ω) +

∞∑

n=−∞
n6=0

A2

2πn2
δ (ω − nω0)

rvv (t) = V 2
0 + 2

∞∑

n=1

|Vn|2 cosnω0t = 1/4 +

∞∑

n=1

(
1

2π2n2

)
cosnω0t.

A direct evaluation of the periodic autocorrelation of the periodic ramp v(t) by the usual
shift-multiply-integrate process as shown in Fig. 12.18, we obtain

rvv (t) =

ˆ 1−t

0

(t+ τ ) τ dτ+

ˆ 1

1−t

(t+ τ−1) τ dτ, 0 < t < 1

= (1/6)
(
2− 3t+ 3t2

)
, 0 < t < 1.

A Fourier series expansion of rvv(t) as a verification produces the trigonometric coefficients

an = 2

ˆ 1

0

(1/6)
(
2− 3t+ 3t2

)
cosn2πt dt =

1

2π2n2
, n ≥ 1

and a0 = 1/2 as expected. The functions Svv (ω) and rvv (t) are shown in Fig. 12.19 and
Fig. 12.20, respectively.
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FIGURE 12.18 Periodic ramp and its shifting in time.

FIGURE 12.19 Power spectral density.

FIGURE 12.20 Autocorrelation of a periodic function.

Example 12.11 Let
v (t) = A cos (mω0t+ θ) , m integer

where ω0 = 2π/T . Evaluate Svv (ω) and rvv(t).
We have

Vn =

{
(A/2) ejθ, n = ±m
0, otherwise

Svv (ω) = 2π
{
|Vm|2 δ (ω −mω0) + |V−m|2 δ (ω +mω0)

}

=
πA2

2
{δ (ω −mω0) + δ (ω +mω0)}

rvv (t) = 2
{
(A2/4) cosmω0t

}
= (A2/2) cosmω0t.
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12.14 Average, Energy and Power of a Sequence

As noted in Chapter 1 the average value of a sequence x[n] is

x[n] = lim
M−→∞

1

2M + 1

M∑

n=−M

x [n]. (12.135)

A real sequence x[n] is an energy sequence if it has a finite energy which can be defined as

E =

∞∑

n=−∞
x [n]

2
. (12.136)

A real aperiodic sequence x[n] is a power sequence if it has a finite average power

P = x[n]2 = lim
M−→∞

1

2M + 1

M∑

n=−M

x [n]2. (12.137)

If the sequence is periodic of period N its average power would be

P = x[n]2 =
1

N

N−1∑

n=0

x [n]2. (12.138)

Example 12.12 Let the sequence x [n] = 3−n u [n]. Evaluate its energy.

E =

∞∑

n=0

3−2nu [n] =

∞∑

n=0

9−nu [n] =
1

1− 9−1
=

9

8
.

Example 12.13 Evaluate the power of the signal

x [n] = 10 cos (πn/8) .

The period N is deduced from

x [n+N ] = x [n]

10 cos (πn/8) = 10 cos [π (n+N) /8] = 10 cos (πn/8 + πN/8) .

N is the least value satisfying

(π/8)N = 2π, 4π, 6π, . . .

N = 16

P̄ =
1

16

{
100

15∑

n=0

cos2 (πn/8)

}
=

100

16
× 2

7∑

n=0

cos2 (πn/8)

=
25

2
(1 + 0.8536 + 0.5 + 0.1464 + 0 + 0.1464 + 0.5 + 0.8536) = 50.
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12.15 Energy Spectral Density of a Sequence

The energy of a sequence x [n]is given by

E =

∞∑

n=−∞
|x [n]|2.

The energy spectral density is given by εx (Ω) =
∣∣X
(
ejΩ
)∣∣2.

Parseval’s relation states that

∞∑

n=−∞
|x [n]|2 =

1

2π

ˆ ∞

−∞

∣∣X
(
ejΩ
)∣∣2dΩ =

1

2π

ˆ ∞

−∞
ε (Ω)dΩ.

12.16 Autocorrelation of an Energy Sequence

The autocorrelation of a real energy sequence is given by

rxx [n] =
∞∑

n=−∞
x [n+m]x [m] = x [n] ∗ x [−n].

Its Fourier transform is

Rxx

(
ejΩ
)

= X
(
ejΩ
)
X∗
(
ejΩ
)

=
∣∣X
(
ejΩ
)∣∣2 .

12.17 Power Density of a Sequence

The power of a sequence is given by

P = x2 [n] = lim
N→∞

1

2N + 1

N∑

n=−N

|x [n]|2.

The autocorrelation of a power sequence x [n] is given by

rxx [n] = lim
N→∞

1

2N + 1

N∑

k=−N

x [n+ k]x [k] .

The power spectral density is given by

Sx (Ω) = F [rxx [n]] = Rxx

(
ejΩ
)
.

Parseval’s relation takes the form

P = x2 [n] = lim
N→∞

1

2N + 1

N∑

n=−N

|x [n]|2 =
1

2π

ˆ ∞

−∞
Sx (Ω)dΩ.
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12.18 Passage through a Linear System

Let x [n] be the input and y [n] the output of a linear time-invariant discrete-time system.

If x [n] is an energy sequence its energy spectral density is εx (Ω) =
∣∣X
(
ejΩ
)∣∣2 and that

of the output is

εy (Ω) =
∣∣Y
(
ejΩ
)∣∣2 =

∣∣X
(
ejΩ
)∣∣2 ∣∣H

(
ejΩ
)∣∣2 .

If x [n] is a power sequence its energy spectral density is Sx (Ω) and that of the output is

Sy (Ω) = Sx (Ω)
∣∣H
(
ejΩ
)∣∣2 .

12.19 Problems

Problem 12.1 A system has the impulse response

h (t) = sinπtΠT (t) = sinπt {u (t)−u (t− T )} .

The system receives the ideal impulse train ρT (t) as input

x (t) = ρT (t) =
∞∑

n=−∞
δ (t− nT ) .

a) Evaluate the output y (t) of the system if
i) T = 11 sec
ii) T = 12 sec

Evaluate its Fourier transform Y (jω) and its Fourier series expansion with analysis
interval T .

b) With T = 12 sec evaluate the energy and power spectral densities of h (t) and y (t).
Write the expressions describing the autocorrelation of h (t) and y (t) in terms of their
spectral densities.

Problem 12.2 A signal f (t) has a Fourier transform

F (jω) = 14πδ (ω) + j6πδ
(
ω − 2π × 103

)
− j6πδ

(
ω + 2π × 103

)

+ 2πδ
(
ω − 8π × 103

)
+ 2πδ

(
ω + 8π × 103

)
.

a) Is the signal f (t) an energy or power signal?
b) Evaluate the spectral density of f (t).
c) What is the average power of f (t)?
d) What is the energy of the signal over an interval of 10−3 sec?
e) The signal f (t) is filtered by an ideal bandpass filter with a pass-band 1000π < |ω| <

6000π r/s and gain K. Evaluate the filter output g (t). What is the average power of g (t)?

Problem 12.3 Let
x (t) = f (t) + g (t)

where
f (t) = A1 sin (ω1t+ θ1)
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g (t) = A2 sin (ω2t+ θ2)

where ω2 > ω1.
a) Evaluate Sx (ω) the power spectral density of x (t).
b) What is the average power of the component of x (t) of frequency ω2? A signal y (t)

is generated as
y (t) = f (t) g (t) .

c) Evaluate the power spectral density Sy (ω).
d) The signal y (t) is fed to a filter of frequency response

H (jω) = K Πω2 (ω) .

Evaluate the power spectral density at the filter output z (t).

Problem 12.4
a) Evaluate the function f (t) that is the inverse Laplace transform of the function

F (s) =
{
1− e−(s+1)

}
/ (s+ 1) .

b) Evaluate the autocorrelation rff (t) of the function f (t) and its Fourier transform
Rff (jω).

c) Can the Fourier transform F (jω) of f (t) be evaluated from F (s) by letting s = jω?
Justify your answer.

d) Evaluate |F (jω)|2 and compare it with Rff (jω).
e) Is f (t) a power or energy signal?
Evaluate the energy or power spectral density of f (t). Evaluate the energy / power of

f (t).
f) Let H (s) = F (s) be the transfer function of a linear system. Let the input to the

system be the signal

x (t) =

∞∑

n=−∞
δ (t− n) .

Evaluate the power spectral density of the system response y (t). Evaluate the average power
of y (t) in the frequency band 0 < f < 1.5 Hz.

Problem 12.5 Consider a signal x (t) of which the autocorrelation function is given by

rxx (t) = e−|t|, −∞ < t <∞.

a) Evaluate εxx (ω) the energy spectral density of x (t).
b) Evaluate the total energy of x (t).
c) The signal x (t) is fed as the input of a filter of frequency response

H (jω) =

{
A, 2 < |ω| < 4
0, otherwise.

Evaluate the total energy of the signal y (t) at the filter output.

Problem 12.6 In the system shown in Fig. 12.21 the transfer function G (s) is that of a
causal system and is given by

G (s) = 100π/(s+ 100π).
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FIGURE 12.21 System block diagram.

a) Evaluate the system impulse response between the input x (t) and the output y (t)
b) Given that the input is

x (t) = 1 + cos 120πt

evaluate the average normalized power of the output y (t). Evaluate the power spectral density
of y (t).

Problem 12.7 Consider the signals

x (t) =
∞∑

n=−∞
{u (t− 2n)− u (t− 1− 2n)}

y (t) = e−tu (t)

which represent voltage potentials in volts as functions of time t in seconds.
a) For each of the two signals evaluate the total normalized energy and the average nor-

malized power.
b) The signals z (t) and v (t) are given by z (t) = x (t) y (t) and v (t) = x (t) ∗ y (t). For

each of these signals state whether the signal is an energy or power signal, explaining why.

Problem 12.8 The frequency transformation

s −→ (s2 + 1)/s

is applied to a second order lowpass Butterworth filter prototype.
a) Write down the transfer functions HLP (s) and HBP (s) of the lowpass and bandpass

filters.
b) Evaluate the central frequency ω0 and the low- and high-edge frequencies ωL and ωH

of the bandpass filter.
c) Rewrite the values of HLP (s) and HBP (s) so that the filter maximal gain be 14 dB. Let

the input to this bandpass filter be x (t) = 10 + 7 sinω0t. Evaluate the average normalized
power of the output y (t).

Problem 12.9 For each of the following signals, which are expressed in volts as function
of time in seconds, state whether it is an energy or power signal and evaluate its total
normalized energy or average normalized power.

a) v (t) = 3 sin [1000π (t+ 0.0025)] + 2 cos (1500πt+ π/5) .

b) w (t) =

{
0.25 (t− 2) , 2 < t < 6
0, otherwise.

c) x (t) =
10∑

n=0

w (t− 10n) .

d) y (t) =

∞∑

n=−∞
w (t− 5n) .
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Problem 12.10 Let x (t) be a function, X (jω) its Fourier transform and

|X (jω)| = 1/
√

1 + ω2 + π/2 {δ (ω − β) + δ (ω + β)} .

a) What is the average value of x (t)?
b) Is x (t) periodic? If yes what is its period? If not why?
c) The signal x (t) is applied as the input to a filter of frequency response H (jω), where

|H (jω)| = Π2β (ω) , arg [H (jω)] = −πω/ (4β) .

Sketch the amplitude spectrum |Y (jω)| of the filter output y (t).
d) Let z (t) = x (t) + 0.5 sin (2.5βt) + 0.5. Sketch the amplitude spectrum |Z (jω)| of the

signal z (t).

Problem 12.11 For each of the following signals evaluate the signal total energy and the
average normalized power and deduce whether it is an energy or power signal:

a) v (t) = A sin (2000π + π/3) .
b) w (t) = A sin (2000π + π/3)R0.001 (t), where

R0.001 (t) = u (t)− u (t− 0.001) .

c) x (t) =

∞∑

n=−∞
e−(t−5n) {u (t− 5n)− u (t− 5− 5n)} .

d) z (t) = A.

Problem 12.12 A system of transfer function

H (s) =
K

s+ 1

∣∣∣∣
s −→ s/ωc

receives an input x (t) and produces an output y (t). Assuming x (t) = A cosω0t, where
A = 5 volts and ω0 = 2πf0 = 2π × 500 Hz.

a) With K = 1 and ωc = 500π r/s, evaluate the average power of the signal y (t).
b) With K = 1 find the value of ωc so that the average power of y (t) be 5 watts.
c) With ωc = 1000π r/s evaluate K so that the average power of y (t) be 5 watts.

Problem 12.13 Given the signals v (t) = x (t) y (t) and f (t) = x (t) ∗ z (t), where

x (t) = 5R3 (t) = 5 [u (t)− u (t− 3)]

y (t) = 2Π0.5 (t) = 2 [u (t+ 0.5)− u (t− 0.5)]

z (t) = 1 + cos (πt+ π/3) .

a) Evaluate V (jω) and F (jω), the Fourier transforms of v (t) and f (t) as well as the
Fourier series coefficients Fn of f (t).

b) State whether each of the signals v (t) and f (t) is an energy or power signal, evaluating
the energy or power spectral density, the total energy or the average normalized power in
each case.

Problem 12.14 A signal f (t) of average value f (t) = 15 is applied to the input of a
linear system of impulse response

h (t) = 5e−7t sin 5πt u (t) .

What is the average value y (t) of the system output y (t)?
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Problem 12.15 A signal x (t) has a Fourier transform

X (jω) = 2π Sa (ω/400) e−jω/100
∞∑

n=−∞
δ (ω − 100πn) .

The signal is applied to the input of a filter of frequency response H (jω) and output y (t),
where

|H (jω)| =
{

1− [(ω − 300π) / (200π)]2 , 100π < |ω| < 500π
0, otherwise

arg [H (jω)] =

{
−π/2, ω > 0
π/2, ω < 0.

a) Evaluate the exponential Fourier series coefficients Xn of x (t) with an analysis interval
of 0.02 sec.

b) Sketch the frequency response |H (jω)|.
c) Evaluate the Fourier series coefficients Yn of the output y (t) over the same analysis

period.
d) Evaluate the output y (t) and the normalized average power of each components of

y (t).

Problem 12.16 A system receives an input x (t) and produces an output y (t) that is the
sum of x (t) and a delayed version x (t− τ) where τ = 0.4 × 10−3 sec. The signal x (t) is
a sinusoid of amplitude 5 volts and frequency 1 kHz.

a) Draw the block diagram describing the system.
b) Evaluate the impulse response h (t) and frequency response H (jω) of the system

between its input x (t) and output y (t).
c) Evaluate and sketch the power spectral density Sx (ω) of the signal x (t), expressed in

terms of the Fourier series coefficients Xn of x (t).
d) Evaluate and sketch the power spectral density Sy (ω) and the average power y2 (t) of

the output y (t).

Problem 12.17 The signal x (t) = e−7tu (t) is applied to the input of a filter of frequency
response H (jω) given by

H (jω) =

{
5, 1.1 6 |ω| 6 3
0, otherwise

Evaluate the energy spectral density εx (ω) of x (t) and εy (ω) of y (t).

Problem 12.18 A filter of frequency response

H (jω) =
(
1− ω2/W 2

)
ΠW (ω)

receives an input v (t) and produces an output y (t).
Assuming that the input v (t) has an autocorrelation rvv (t) = cos (Wt/4) evaluate

the power spectral densities Svv (ω) and Syy (ω) of the signals v (t) and y (t), respectively.
Evaluate the normalized average power of y (t).

Problem 12.19 Consider the signal

v (t) = 10 sinβtΠT/2 (t)

where β = 4π/T .
a) Sketch the signal v (t). Evaluate its energy and normalized average power and corre-

sponding spectral density if any.
b) What is the result of integrating the evaluated spectral density?
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Problem 12.20 A signal is given by

v(t) = 10 cos [β(t− 1)] + 5 sin [4β(t− 2)] + 8 cos[10β(t− 3)]

where β = 2π/T and T = 1 sec.
a) Evaluate the exponential Fourier series coefficients of v(t) with an analysis interval

of one second.
b) Evaluate the signal power spectrum.

Problem 12.21 A spectrum analyzer displays the amplitude spectrum in volts and phase
spectrum in degrees as the Fourier series coefficients Fn versus the frequency in Hz of a
function f(t) as shown in Table 12.1 and with F−n = F ∗n .

TABLE 12.1 Amplitude and phase spectra

Frequency kHz 0 10 20 30 40 ≥ 50
|Fn|volt 2 2.5 3.5 2 1 0

arg[Fn] deg. 0 −10 −20 −30 −40 −

a) What is the period τ and the average value of the function f(t)?
b) Write the value of the function f(t) as a sum of real expressions.
c) The signal f(t) is fed to a filter of frequency response H(jω) where

|H(jω)| = ΠB(ω)

where B = 50000π rad/sec, arg [H(jω)] = −(10−3/180)ω rad/sec and the filter output
g(t) is modulated by the carrier cos(40000πt) producing an output y(t). Sketch the Fourier
transforms G(jω) and Y (jω) of g(t) and y(t).

d) What is the average power of the output signal y(t)?

Problem 12.22 Consider the signal:

v(t) = u(t+ t0)− u(t− b+ t0)

where b > t0 > 0.
a) Evaluate the autocorrelation rvv(t) of v(t).
b) Evaluate the Fourier transform Rvv(jω) of rvv(t).
c) Evaluate the Fourier transform V (jω), the energy spectral density and deduce therefrom

the total energy of v(t). Compare the result with Rvv(jω).

Problem 12.23 Evaluate the energy spectral density for each of the following signals:
a) x (t) = et [u (t)− u (t− 1)] .
b) y (t) = e−t sin (t)u (t) .

Problem 12.24 Given the signal v (t) = e−tu (t)
a) Evaluate the energy of the signal v (t).
b) Evaluate the energy of the signal contained in the frequency range 0 to 1 Hz.

Problem 12.25 Given the signal v (t) = e−tu (t) .
a) Show that v(t) is an energy signal.
b) Evaluate the energy spectral density of v(t).
c) Evaluate the normalized energy contained in the frequency range 0 to 1 r/s.
d) Evaluate the normalized energy contained in the frequency range 0 to 1 Hz.
e) Evaluate the autocorrelation function rvv (t) of v(t).
f) Show how from rvv (t) you can deduce the energy spectral density of v(t).
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Problem 12.26 The signal v (t) = 4e−2tu (t) is applied to the input of a filter of frequency
response H (jω).

a) What is the total normalized energy Ev of v(t)?
b) What is the total normalized energy Ey of the signal y(t) at the filter output in the

case where the filter is an ideal lowpass filter of unit gain and cut-off frequency 2 r/s?
c) What is the total normalized energy Ey of the signal y(t) at the filter output in the

case where the filter is an ideal bandpass filter of unit gain and pass-band extending from 1
to 2 Hz?

d) What is the total normalized energy Ey of the signal y(t) at the filter output in the
case where the filter transfer function is H (s) = 1/ (s+ 2)?

e) What is the total normalized energy Ey of the signal y(t) at the filter output in the
case where the filter frequency response is H (jω) = e−jωT , where T is a constant?

Problem 12.27 Each of the following signals is given in volts as a function of the time t
in seconds. For each signal evaluate the total energy if it is an energy signal or the average
power if it is a power signal.

a) xa (t) = 3 [u (t− Ta)− u (t− 6Ta)], where Ta > 0.
b) xb (t) = xa (t) cos (2πt/Tb), where Tb = Ta.

c) xc (t) =
+∞∑

n=−∞
xb (t− nTc), where Tc = 15Ta.

d) xd (t) = xa (t) + 1.

Problem 12.28 Consider the three signals x(t), y(t) and z(t):

x (t) = u (t)− u (t− 1) , y (t) = u (t+ 0.5)− u (t− 0.5) , z (t) = sin (πt) .

a) Is the sum v (t) = x (t) + y (t) an energy or power signal? Depending on the signal
type, evaluate the total normalized energy or the average normalized power, respectively.

b) Is the convolution s (t) = x (t) ∗ z (t) an energy or power signal? Depending on the
signal type, evaluate the energy spectral density or the power spectral density, respectively.

Problem 12.29 Evaluate the power spectral density and the average power of the following
periodic signals:

a) v (t) = 5 cos (2000πt) + 3 sin (500πt) .
b) x (t) = [1 + sin (100πt)] cos (2000πt) .
c) y (t) = 4 sin2 (200πt) cos (2000πt) .

d) z (t) =

+∞∑

n=−∞
104

(
t− 10−3n

) {
u
(
t− 10−3n

)
− u

(
t− 10−3 [n+ 1]

)}
.

Problem 12.30 Let x(t) be a periodic signal having a period 5× 10−2 sec. Its exponential
Fourier series expansion with an analysis interval equal to its period has the Fourier series
coefficient

Xn =





1, n = 0, ±4
±j, n = ±1
0, otherwise.

Let y(t), be a signal having the Fourier transform Y (jω) = 150/ (125 + jω).
a) Let z (t) be the convolution z (t) = x (t) ∗ y (t). Evaluate the average power z2(t) of

z(t).
b) Let v (t) = x (t) + y (t). Evaluate the average power v2(t) of v(t).
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Problem 12.31 Let x (t) = 3 cos (ω1t) + 4 sin (ω2t), where ω1 = 120π and ω2 =
180π. The signal x(t) is applied to the input of a filter of transfer function H(s) =
1/ (1 + 120π/s) .

Evaluate the power spectra density Sy (ω) of the the signal y(t) at the filter output. Eval-

uate the average power y2(t) of y(t).

Problem 12.32 A filter that has a transfer function H (s) = K/ (1 + s/ωc) receives an
input signal x (t) = A cos (2πf0t), where A = 5 volts and f0 = 500 Hz, and produces an
output signal y(t).

a) Let K = 1 and ωc = 500π r/s. Evaluate the average signal power at the filter output.
b) Let K = 1. Determine the value of ωc so that the average power of the output signal

y(t) is 5 watts.
c) Let ωc = 1000π r/s. Determine the value of K so that the average power of the

output signal y(t) is 5 watts.

Problem 12.33 The periodic signal v (t) =
∞∑

n=−∞
(−1)n ΛT/4 (t− nT/2) is applied to the

input of filter of frequency response H (jω) = 4Λ12 (ω) and output y(t). Evaluate
a) The average power of the signal v(t)
b) The average power of y(t) if T = 2π/3
c) The average power of y(t) if T = π/6

Problem 12.34 A voltage vE (t) is applied to the input of a first order lowpass RC filter
with RC = 1, of which the output is vS (t). For each of the following cases evaluate the
average power of the input and output signal vE (t) and vS (t), respectively.

a) The power spectral density of vE (t) is SvE (ω) = A [δ (ω + 1) + δ (ω − 1)].
b) The power spectral density of vE (t) is SvE (ω) = u (ω + 1)− u (ω − 1).
c) The power spectral density of vE (t) is SvE (ω) = A.

Problem 12.35 The signal x (t) = sin (4πt) is applied to the input of a filter of transfer
function H (s) = 1/ (s+ 1) and output y (t).

a) Evaluate the power spectral density Sx (ω) of the signal x (t).
b) Evaluate the average power of the signal x (t).
c) Evaluate the normalized energy of one period of the signal x (t).
d) Evaluate the power spectral density Sy (ω) of the signal y (t) at the filter output.

e) Evaluate the average power y2 (t) of the filter output signal y (t).

Problem 12.36 The signal v (t) =
∞∑

n=−∞
δ (t− 12n) is applied to the input of a linear

system of impulse response h (t) = sin (πt) [u (t)− u (t− 12)]. Evaluate the power spectral
density of the filter output signal y (t).

Problem 12.37 Let x(t) be a periodic signal of period 5×10−3 sec and exponential Fourier
series coefficients Xn, evaluated with an analysis interval equal to its period, given by

Xn =





1, n = ±1
±j/5, n = ±2
(1∓ 2j)/10, n = ±4
0, otherwise.

The properties of the message m (t) are m(t) = 0 volt , m2(t) = 2 watts, |m(t)|max = 5
volts .
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M (f) = 0 for |f | > 7.5× 103 Hz.
For each of the five possible frequency responses of the bandpass filter, evaluate the max-

imum amplitude of the modulated signal y(t).
Defining the harmonic distortion rate (HDR) as

HDR =
Ph

PT
× 100%

where Ph is the average power of the signal harmonics other than the fundamental and PT

is the total signal average power.
a) Evaluate the HDR of the signal x(t).
b) The signal x(t) is applied to the input of a filter the transfer function of which is given

by

H (s) =
1

s+ 1

∣∣∣∣
s−→s/(400π)

.

Evaluate the HDR of the filter output signal y(t).

Problem 12.38 Let x (t) = v (t) + a v (t− t0), where v (t) is a power signal and t0 is a
constant.

Show that x2 (t) =
(
1 + a2

)
v2 (t) + 2a rv (t0), where x2 (t) is the average power of x (t),

v2 (t) is that of v (t) and rv (t0) is the autocorrelation function of v (t) evaluated at t = t0.

12.20 Answers to Selected Problems

Problem 12.1 a)

i) y (t) =
∞∑

n=−∞
sinπ (t− 11n) {u (t− 11n)− u (t− 11n− 11)}

Y (jω) = 2π
∞∑

n=−∞
Hnδ (ω − nω0)

= −jπ
∞∑

n=−∞

[
e−jnπ+jβT/2Sa (nπ − βT/2)− e−jnπ−jβT/2Sa (nπ + βT/2)

]
δ (ω − nω0)

Y (jω) =

jπ
∞∑

n=−∞

[
e−jnπ+j11π/2Sa (nπ − 11π/2)− e−jnπ−j11π/2Sa (nπ + 11π/2)

]
δ (ω − n2π/11)

ii) Y (jω) = −jπ {δ (ω − π)− δ (ω + 6)}

Yn =

{
∓j/2 , n = ±6
0 , n 6= ±6

}

b) h (t) = sinπt {u (t)− u (t− 12)}.

εh (t) = (T 2/4)
∣∣e−j(ω−π)T/2 Sa {(ω − π) T/2} − e−j(ω+π)T/2Sa {(ω + π)T/2}

∣∣2

y (t) = sinπt, Sy (ω) = (π/2) {δ (ω − π) + δ (ω + π)} .
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Problem 12.2
a) The signal, having an impulsive spectrum, is periodic.

b)
Sf (ω) = 98πδ (ω) + 18π

{
δ
(
ω − 2π × 103

)
+ δ

(
ω + 2π × 103

)}

+2π
{
δ
(
ω − 8π × 103

)
+ δ

(
ω + 8π × 103

)} .

c) P = f2 (t) =
∞∑

n=−∞
|Fn|2 = 49 + 2× 9 + 2× 1 = 69.

d) P = 1
T E, E = TP = 2π

ω0
× 69 = 69× 10−3.

e) Gn =

{
±j 3K, n = ±1
0, n 6= ±1

, g2 (t) =
∞∑

n=−∞
|Gn|2 = 2× 9 K2 = 18 K2.

Problem 12.5
a) εxx (ω) = 2/(1 + ω2)
b) E = 1
c) E = 0.4373A2/π

Problem 12.6

Yn =

{ ∓jβ
2(100 π±jβ) , n = ±1

0 , otherwise

Sy (ω) = 2π

∞∑

n=−∞
|Yn|2δ (ω − nω0) = 2π × 0.1475 {δ (ω − β) + δ (ω + β)}

y2 (t) = 0.295

Problem 12.7 See Fig. 12.22

0

1

t

y t( )

0

1

t

y t( )

0

1

1 2 3 4 5-1-2-3-4

e
-t

1 2 3 4 5

x t( )

t

(a) (b)

(c)

FIGURE 12.22 Figure for Problem 12.7.

a) Ex =∞Ey (t) = 1/2 joules.

b) The average normalized powers are x2 (t) = (1/2) · 1 = 1/2 Watt.
y2 (t) = 0.
y (t) is an energy signal since Ey <∞, z (t) is periodic since x (t) is periodic. The signal

z (t) is therefore a power signal.
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Problem 12.8
a) HLP (s) = K

s2+1.4142 s+1 , HBP (s) = K s2

(s2+1)2+1.4142 s(s2+1)+s2 , K = 1..

b) ωL = 1.6180
c) |HBP (jω0)| = 5.01
y (t) a sinusoid of amplitude A = 35.07, average normalized power 614.95 watts.

Problem 12.9
a) v2 (t) = 6.5 watts.
b) *Energy signal, being of finite duration

Ew =
´ 4

0

(
t2/16

)
dt = 1.333 joules

c) Ex = 11 Ew = 14.63 joules
d) y2 (t) = 1

5Ew = 0.267 watts.

Problem 12.10
a) x (t) = 0 since X (jω) has no impulse at the origin ω = 0.
b) x (t) is not periodic. To be periodic the spectrum has to be composed solely of impulses.
c) See Fig. 12.23

FIGURE 12.23 Figure for Problem 12.10.

Problem 12.11
a) Total Energy =A2

/
2 watt. Power signal

b) Total Energy =A2
/
2000 joule. Average normalized power = 0. Energy signal [equal to

a single period of v (t)].
c) x2 (t) = 1

6

(
1− e−6

)
= 0 · 15. Power signal. Energy = ∞

d) z2 (t) = A2, Power signal. Total Energy =∞.

Problem 12.12
a) y2 (t) = 2.5 watts.
b) Note that the average power of a sinusoid of Amplitude A is A2/2 ωc = 2565.1 r/s.
c) K = 0.8944.

Problem 12.13
a) V (jω) = 5 Sa (0.25ω) e−j0.25ω. F (jω) = 30πδ (ω)−10e−j7π/6δ (ω − π)+10ej7π/6δ (ω + π).

Fn






15, n = 0

∓ (5/π) e∓j7π/6, n = ±1
0, otherwise

b) εv (ω) = |V (jω)|2 = 25 Sa2 (0.25ω), P = f2 (t) = 230.07 watts.

Problem 12.14
y (t) = f (t) H (0) = 15 25π

72+(5π)2
= 3.984.
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Problem 12.15
a) Xn = 1, −0.9, 0.636, −0.301, 0, 0.18 for n = 0, ±1, ±2, ±3, ±4, ±5 respectively,
and Xn = 0, otherwise.
b) See Fig. 12.24.

FIGURE 12.24 Amplitude and phase of frequency response, Problem 12.15.

c) Y2 = ∓j0.4775, Y3 = ±j0.3001, Y5 = ∓j0.135, Yn = 0, otherwise.
d) y (t) = 0.955 sin200πt− 0.6 sin 300πt+ 0.27 sin500πt.
Problem 12.16 See Fig. 12.25 and Fig. 12.26.

x t( ) ( )y t+

Delay

t

FIGURE 12.25 Figure for Problem 12.16.

b) h (t) = δ (t) + δ (t− τ) , H (jω) = 1 + e−jωτ .
c) Sx (ω) = 2π

{
2.52δ (ω − 2000π) + 2.52δ (ω + 2000π)

}
.

d) Sy (ω) = 2π × 2.387 {δ (ω − 2000π) + δ (ω + 2000π)} , y2 (t) = 1
2π

´∞
−∞ Sy (ω) dω =

2× 2.387 = 4.775 watts.

FIGURE 12.26 Figure for Problem 12.16.

Problem 12.17
a) εx (ω) = 1/(ω2 + 49).
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b) εy (ω) =

{ 25

ω2 + 49
, 1.1 6 ω 6 1.3

0, otherwise
.

Problem 12.18
Svv (ω) = π [δ (ω −W/4) + δ (ω +W/4)], Syy (ω) = (15π/16) [δ (ω −W/4) + δ (ω +W/4)] ,

y2 (t) = 15/16 = 0.9375 watt.
Problem 12.19 See Fig. 12.27

FIGURE 12.27 Figure for Problem 12.19.

a) E = 50T , P = 0, εv (ω) = |V (jω)|2.

εv (ω) = 25T 2
{
Sa2 [T (ω − β/2)]− 2Sa [T (ω − β/2)]Sa [T (ω + β) /2]

}

+25T 2
{
Sa2 [T (ω + β) /2]

}
.

b) 100πT

Problem 12.20

Vn =






5, n = ±1
∓j2.5, n = ±4
4, n = ±10

Sn = |Vn|2 =






25, n = ±1
6.25, n = ±4
16, n = ±10

Problem 12.22
a) For −t0 ≤ −t + b − t0 ≤ b − t0 i.e. 0 ≤ t ≤ b rvv(t) = −t + b − t0 + t0 = b − t. For
−t0 ≤ −t− t0 ≤ b− t0 i.e. −b ≤ t ≤ 0 rvv(t) = b− t0 + t+ t0 = b+ t
b) Rvv(jω) = b2Sa2(bω/2)
c) ε(ω) = Rvv(jω)., E = b joules.

Problem 12.23
a) |X (jω)|2 =

(
1− 2e cos (ω) + e2

)
/
(
1 + ω2

)

b) |Y (jω)|2 = 1
ω4+4

Problem 12.24
a) Energy :

´ +∞
0

(e−t)
2
dt = 0.5.

b) V (jω) 1/
(
1 + ω2

)

Energy= 1
2π

´ +2π

−2π
1

1+ω2 dω = 1
2π

[
tan−1 (ω)

]+2π

−2π
= 0.45

Problem 12.25
a) Energy signal.
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b) The energy spectral density is 1/
(
1 + ω2

)

c) 0.25.
d) 0.45.
e) rvv = 0.5e−tu (t) + 0.5e+tu (−t)
f) F {rvv (t)} = 1/

(
1 + ω2

)

Problem 12.26
a) Ev = 4
b) Ey = 2
c) Ey = 0.383
d) Ey = 0.5
e) Ey = 4

Problem 12.27
a) E = 45Ta joules.
b) E = 22.5Ta joules. P = 22.5Ta/15Ta = 1.5 watts
c) P = 1 watts.

Problem 12.28
a) E = 0.5 + (4× 0.5) + 0.5 = 3.
b) Ss (ω) = 0.637 [δ (ω + π) + δ (ω − π)].

Problem 12.29
a) P = 17
b) P = 0.75
c) P = 3
d) P = 33.33.

Problem 12.30
a) z2 (t) = 3. b) v2 (t) = 5.
Problem 12.31

Sy (ω) = 2π × (9/8) [δ (ω + 120π) + δ (ω − 120π)]

+2π × (36/13) [δ (ω + 180π) + δ (ω − 180π)]

y2 (t) = 7.8.

Problem 12.32
a) x2 (t) = 2.5.
b) y2 (t) = 0.4. ωc = 2565 r/s.
c) y2 (t) = 0.4.K = 0.894.



13

Introduction to Communication Systems

In this chapter we study the basic principles of some communication systems. We begin by
studying different methods of modulation of continuous-time signals. Sampled and discrete-
time signal communication systems are subsequently explored.

13.1 Introduction

In a communication system, a signal is normally encoded and emitted by a transmitter,
travels across a communication channel, and is detected and decoded by a receiver. The
simultaneous communication of a group of signals along the same communication channel
may be effected using time-domain or frequency-domain multiplexing. Frequency-domain
multiplexing may be obtained using modulation by different carrier frequencies. Signals thus
occupy distinct frequency bands and can each be recovered through filtering.

Modulation, moreover, serves another important purpose. Transmission of a signal in
free space is effected through radiation by antennas. Such radiation necessitates that the
transmitted signal be of a wave length comparable to the antenna dimensions. The relation
between the wave length λ and the frequency f is given by

λf = c (13.1)

where c is the speed of light

c ≈ 3× 105 km/s. (13.2)

For an audio signal of frequency f = 1 kHz. The wave length is λ = 300 km, an impractical
length for an antenna. If, on the other hand, the signal is translated to a frequency of 10
MHz the corresponding wave length would be 30 m, an antenna of a few meters length would
thus suffice for its radiation. It should also be noted that the effective signal bandwidth is
affected by modulation. For example, an audio signal bandwidth may extend from say, 50
Hz to 10 kHz.

The higher frequency limit is therefore 200 times the lower one. If this signal is translated
to a frequency of 1 MHz the ratio of these two frequencies is reduced to 1.01/1.00005≈ 1.01.
An antenna designed for a 1 MHz signal would thus function efficiently for the entire signal
bandwidth. In what follows we study different approaches to amplitude modulation, also
known as linear modulation and to frequency modulation.

875
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13.2 Amplitude Modulation (AM) of Continuous-Time Signals

Amplitude modulation is commonly used in radio broadcasting. For continuous-time signals,
several systems of amplitude modulation are currently in use. Among these can be found
double side-band (DSB), single side-band (SSB) and Vestigial Side-Band (VSB) systems.

13.2.1 Double Side-Band (DSB) Modulation

Let m (t) be a signal representing a message to be transmitted. If the signal is multiplied
by a carrier Ac cosωct the result is a modulated signal y(t) = Acm(t) cosωct, having a
spectrum

Y (jω) = 0.5Ac{M [j(ω − ωc)] +M [j(ω + ωc)]}. (13.3)

Such a DSB signal may thus be transmitted and after reception demodulated by multiplying
the received signal by a the carrier followed by filtering.

An alternative approach used in practice, which leads to a simpler demodulator, adds a
bias to the signal m(t), obtaining the signal e(t) = 1 +m (t) which modulates the carrier.
The modulated signal fm(t) is written

fm (t) = e(t)Ac cosωct = Ac [1 +m (t)] cosωct. (13.4)

We note, therefore, that the carrier is effectively added to the usual modulated signal
Acm (t) cosωct. A signal thus modulated is shown in Fig. 13.1.

FIGURE 13.1 A signal and its modulation.

The spectrum of fm (t) is given by

Fm (jω) = Acπ [δ (ω − ωc) + (ω + ωc)] +
Ac

2
[M {j (ω − ωc)}+M {j (ω + ωc)}] (13.5)

where

M (jω)=△F [m (t)] . (13.6)

The demodulation, or detection, of the signal fm (t) may be effected using an electric circuit
such as that shown in Fig. 13.2. The circuit output is an approximation of the envelope
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Ace(t) = Ac [1 +m (t)], wherefrom the signal m (t) can be simply recovered. We note that
for such a demodulator to function properly the envelope

Ac [1 +m (t)] (13.7)

must be greater than or equal to zero, i.e. m (t) ≥ −1. If m (t) is a sinusoid

m (t) = Am cosωmt (13.8)

then this condition implies that Am ≤ 1.

FIGURE 13.2 Demodulation.

13.2.2 Double Side-Band Suppressed Carrier (DSB-SC) Modulation

As just noted, the addition of a bias to the message before modulation leads to a signal
that adds the carrier to the modulated signal. If the transmitter’s carrier frequency is
reliably stable and if the receiver has an oscillator that generates a stable and precise
carrier frequency then there is no need to transmit the carrier together with the modulated
signal. A system that eliminated the carrier before transmission is called double side-band
suppressed carrier (DSB-SC) system.

FIGURE 13.3 Double side-band suppressed carrier modulation.

A balanced modulator, which suppresses the carrier, is shown in Fig. 13.3. In this figure, the
signal y1 (t) at the upper amplitude modulator (AM) output is given by

y1 (t) = Ac [1 +m (t)] cosωct (13.9)
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and that of the lower modulator output is

y2 (t) = Ac [1−m (t)] cosωct. (13.10)

The output of the balanced modulator is given by

y (t) = y1 (t)− y2 (t) = 2Ac cosωct m (t) (13.11)

and with M (jω) = F [m (t)]

Y (jω) = Ac [M {j (ω − ωc)}+M {j (ω + ωc)}] . (13.12)

Note the absence of the carrier. The suppression of the carrier implies less power needed to
transmit the signal.

FIGURE 13.4 Modulation and demodulation of a DSB-SC signal.

Demodulating a DSB-SC signal can be implemented by multiplying the modulated signal
by a sinusoid, namely, Ad cosωct, where Ad = 1/Ac, as shown in Fig. 13.4. The figure also
shows the spectrum Y (jω) assuming, for illustration, a message m(t) of a triangular-shaped
spectrum M (jω). The demodulator output is given by

z (t) = y (t)Ad cosωct = 2Ac cos2 ωctAdm (t) = (1 + cos 2ωct)m (t) (13.13)

Z (jω) = M (jω) + 1/2 [M {j (ω − 2ωc)}+M {j (ω + 2ωc)}] (13.14)

as shown in the figure. If the signal m (t) is band limited to the frequency ω = ωm r/s
then it can be reconstructed from z (t) using an ideal lowpass filter of bandwidth B such
that ωm < B < 2ωc − ωm. The filter output is then m (t).
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It should be noted that such a receiver should employ a carrier oscillator that is well
synchronized with that of the transmitter. A constant phase difference between the two
oscillator outputs can be accounted for in the demodulation operation. Unpredictable phase
variations, on the other hand, would lead to distortion of the received signal.

13.2.3 Single Side-Band (SSB) Modulation

Since the Fourier spectrum of a physical signal f (t) has conjugate symmetry, i.e.,

F (−jω) = F ∗ (jω) (13.15)

the power required for the transmission of a modulated signal may be reduced by suppressing
the mirror image of the spectrum. The resulting transmitted signal, in addition, occupies
half the bandwidth of the original modulated signal. Such a system is called single side-band
(SSB) modulation. The principle is illustrated in Fig. 13.5.

FIGURE 13.5 Single side-band modulation.

The figure shows the spectrum M (jω) of a signal, its DSB-SC version and the SSB
signal obtained by suppressing the upper-half spectrum. The lower half could be suppressed
instead. Let y (t) be the DSB-SC signal as described above.

Y (jω) = Ac [M {j (ω − ωc)}+M {j (ω + ωc)}] . (13.16)

Let z (t) be the SSB signal. We have

Z (jω) = F [z (t)] = Y (jω) Πωc (ω)
= Ac [M {j (ω − ωc)}+M {j (ω + ωc)}] {u (ω + ωc)− u (ω − ωc)} . (13.17)

The signal z (t) is thus obtained by filtering the signal y (t) using an ideal lowpass filter of
bandwidth ωc, as shown in Fig. 13.6. In the time domain we can write

z (t) = y (t) ∗ h (t) (13.18)
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FIGURE 13.6 Filtering a DSB-SC signal.

where h (t) is the filter impulse response

h (t) = F−1 [Πωc (ω)] =
ωc

2π
Sa (ωct) . (13.19)

The signal z (t) also can be written using the Hilbert transform. In fact, as will be studied
in more detail in the next chapter the “Hilbert transformer” imparts a 90o phase lag on
sinusoidal signals; hence on all signal frequency components.

FIGURE 13.7 Generating an SSB-SC signal.

As shown in Fig.13.7, using a Hilbert transformer-type filter of frequency response

H (jω) = −jsgn (ω) =

{
−j, ω > 0
j, ω < 0

(13.20)

which means an impulse response h(t) = 1/(πt), the Hilbert transformer output w(t) has
the spectrum

W (jω) = M (jω)H (jω) =

{
−jM (jω) , ω > 0
jM (jω) , ω < 0.

(13.21)

The transformer is followed by a multiplication by Ac sinωct, producing a signal s(t) =
w(t)Ac sinωct and the corresponding spectrum

S (jω) = − (j/2)Ac {W [j (ω − ωc)]−W [j (ω + ωc)]} (13.22)

as can be seen in Fig. 13.8. The system total output z(t) = s(t) + y(t) has the spectrum
shown in the figure and can be seen to be the required SSB signal.

The demodulation of an SSB signal may be effected by multiplying the received modulated
signal by a carrier, followed by filtering, as shown in Fig. 13.9. Let x(t) be the multiplier
output. We have

x(t) = z(t)Ad cosωct (13.23)

and

X (jω) =
Ad

2
[Z {j (ω − ωc)}+ Z {j (ω + ωc)}] (13.24)

as can be seen in the figure. With v (t) denoting the filter output, we have

V (jω) = F [v (t)] = X (jω)Πωc (ω) = 0.25AcAdM (jω) . (13.25)
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FIGURE 13.8 Generating an SSB-SC signal.

FIGURE 13.9 SSB demodulation.
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If Ad = 4/Ac we have the demodulated signal

v (t) = m (t) . (13.26)

13.2.4 Vestigial Side-Band (VSB) Modulation

We have seen that the suppression of the carrier necessitates a synchronization between the
carrier generator at the receiver with that at the transmitter. We have also noted that in an
SSB modulation system the suppression of one half of the spectrum calls for filtering of the
received signal at precisely the carrier frequency ωc. A slight deviation from this frequency
could lead to the loss of part of the signal spectrum.

In the communication of audio signals such requirements are not critical, since the signal
spectrum does not extend down to zero frequency. Television signals, on the other hand,
extend down to very low frequencies and can thus be adversely affected by such slight
frequency deviations. To avoid the need for a synchronous demodulator in every TV receiver
a VSB modulation is employed in present-day commercial TV systems. In this approach
the half band is gradually attenuated rather than simply cut off at the frequency ωc. Such
VSB-type modulation is illustrated in Fig. 13.10.

FIGURE 13.10 VSB modulation.

In this figure the spectrum Y (jω) of the VSB modulated signal is the result of modulating
the signal m (t) by a carrier, and filtering the modulated signal using a lowpass filter with
a gradual attenuation to the frequency ωc.

The VSB modulation and demodulation of a signal is shown in Fig. 13.11.

13.2.5 Frequency Multiplexing

Frequency multiplexing may be used to communicate a set of signals on a single communi-
cation channel. The overall communication channel bandwidth is partitioned into frequency
bands, which are assigned successively to the signals to be transmitted. Each signal is thus
assigned a carrier frequency that corresponds to the frequency band it should occupy. At
the receiver a bank of filters is used for demultiplexing the messages.

Such a frequency multiplexing system is shown in Fig. 13.12.
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FIGURE 13.11 Modulation and demodulation of a received VSB signal.
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FIGURE 13.12 Frequency multiplexing system.

13.3 Frequency Modulation

Different types of modulation approaches are illustrated in Fig. 13.13. The left side of the
figure shows a case where the modulating signal m(t) is a triangle, while the right side
shows the case where the modulating signal is a sinusoid. Part (a) of the figure depicts
the carrier signal. Part (b) shows the modulating signal m(t). Parts (c), (d) and (e) show
the result of amplitude modulation, phase modulation and frequency modulation of the
carrier, respectively. In general, frequency modulation is effective in noise suppression at
the expense of wider frequency band requirements.

In one of several frequency modulation systems the angle φ (t) of the sinusoidal carrier

f (t) = A cosφ (t) (13.27)
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is modulated by the message signal denoted by m(t).

FIGURE 13.13 (a) Carrier, (b) two messages, (c) amplitude modulation, (d) phase mod-
ulation, (e) frequency modulation.

In the absence of modulation the carrier is the usual constant frequency pure sinusoid

f(t) = A cos(ωct+ θ). (13.28)

Modulation of the carrier angle φ (t) = (ωct+ θ) is also known as angle modulation. If the
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phase θ is nil, the function f (t) = A cosωct can be written in the form

f (t) = ℜ
[
Aejωct

]
(13.29)

and may be represented as a vector of length A and angle γ = ωct, a vector which as t
increases rotates around the origin with a speed γ̇ = ωc, which is the usual radian frequency
of f(t). If the system of coordinates turns with the same speed the vector would appear
stationary. If a phase θ (t) is added and made to vary slowly the vector representing

f (t) = ℜ
[
Aej(ωct+θ(t))

]
(13.30)

will not remain stationary. Instead, its angle will vary similarly to the phase θ (t). The
angular velocity of the vector is thus modulated and is given by

ω = d [ωct+ θ (t)] /dt (13.31)

This is the effective instantaneous angular frequency of the signal f (t). Denoting it by the
symbol ωi we have

ωi(t) = dφ(t)/dt (13.32)

and conversely,

φ(t) =

ˆ t

0

ωi(τ)dτ (13.33)

and if θ(t) is a constant then ωi = ωc as expected. The instantaneous frequency in Hz of
f (t) is

fi =
1

2π

d

dt
[ωct+ θ (t)] =

ωc

2π
+

1

2π

dθ

dt
= fc +

1

2π

dθ

dt
. (13.34)

The carrier phase angle θ (t) can be rendered proportional to the modulating signal m (t).

f (t) = A cos [ωct+ k m (t)] . (13.35)

This is phase modulation.
Alternatively, the instantaneous angular frequency ωi can be made linearly proportional

to the message signal m(t), such that

ωi = ωc + kf m (t) . (13.36)

where kf is known as the modulation constant. This implies that the carrier angle should
equal

φ(t) =

ˆ t

0

ωi(τ)dτ = ωct+ kf

ˆ t

0

m(τ)dτ (13.37)

wherefrom

f (t) = A cos

[
ωct+ kf

ˆ t

0

m (t) dt

]
. (13.38)

Such direct modulation of the carrier angle is known as frequency modulation.
Frequency modulation is nonlinear, in contrast with amplitude modulation which, being

linear, permits the application of the principle of superposition. To evaluate the spectrum
of a frequency modulated signal let

m (t) = Am cosωmt. (13.39)
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We have

φ(t) = ωct+ kfAm

ˆ t

0

cosωmτdτ = ωct+ (kfAm/ωm) sinωmt (13.40)

f (t) = Ac cos (ωct+ β sinωmt) (13.41)

where β = (kfAm/ωm). We may write

f (t) = ℜ
[
x (t) ejωct

]
(13.42)

where x (t) = Ace
jβ sin ωmt is the complex envelope of the signal f (t). The value β is thus

the maximum phase deviation and is known as the modulation index. The signal x (t) is

periodic of fundamental frequency ωm, i.e. of period 2π/ωm, since x

(
t+ k

2π

ωm

)
= x (t),

k integer. We can expand x (t) in a Fourier series

x (t) =

∞∑

n=−∞
Xne

jnωmt (13.43)

Xn =
ωm

2π
Ac

π/ωm
ˆ

−π/ωm

ejβ sin ωmte−jnωmtdt. (13.44)

Let

θ = ωmt. (13.45)

We have

Xn = Ac

ˆ π

−π

ej(β sin θ−nθ)/(2π)dθ. (13.46)

The integral on the right-hand side is the nth order Bessel function of the first kind denoted
Jn (β). We can therefore write Xn = AcJn (β) and

x (t) = Ac

∞∑

n =−∞
Jn (β) ejnωmt. (13.47)

The Bessel functions Jn (β) for different values of n are shown in Fig. 13.14.
Moreover

f (t) = ℜ
[
Ac

∞∑

n=−∞
Jn (β)ej(nωm+ωc)t

]
= Ac

∞∑

n=−∞
Jn (β) cos [(nωm + ωc) t] . (13.48)

The spectrum of f (t) is thus given by

F (jω) = πAc

∞∑

n=−∞
Jn (β) {δ [ω − ωc − nωm] + δ [ω + ωc + nωm]} . (13.49)

We note that the spectrum of f (t) has spectral lines at ωc, ωc ± ωm, ωc ± 2ωm, . . .. A
single pure sinusoid cosωmt thus produces an infinite number of spectral lines. Theoretically
the transmission of an FM signal thus requires an infinite bandwidth. In practice, a finite
bandwidth is utilized while ensuring that the distortion resulting from such bandwidth
truncation is within acceptable limits.
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FIGURE 13.14 Bessel functions of different orders.

13.4 Discrete Signals

We have studied in Chapter 4 different sampling systems such as ideal, natural and instan-
taneous systems. In this section we focus the attention on these and other discrete-time
signal communication systems.

13.4.1 Pulse Modulation Systems

The transmission of a set of messages along a single communication channel may be effected
by time multiplexing the successive messages. As we shall shortly see, one sample is taken
from the first message followed by a sample from the second message and so on until
the last message, and the whole process repeated over and over as needed. Ideal, natural
and instantaneous sampling systems studied in Chapter 4 are known as pulse amplitude
modulation (PAM) systems.

A system represented in Fig. 13.15 employs time multiplexing of PAM produced messages.
Such a system is also referred to as a time division multiplexing (TDM) system.

FIGURE 13.15 Time multiplexing of PAM produced messages.
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A communication channel of a cut-off frequency ωc = 2πfc may be viewed as an ideal
filter of bandwidth B = ωc. The input f (t) to the communication channel can pass through
without distortion if the signal cut-off frequency is at most B = ωc. If the signal f (t) is
ideally sampled

fs (t) = f (t)

∞∑

n=−∞
δ (t− nT ) (13.50)

its Fourier transform is given by

Fs (jω) =
1

T

∞∑

n=−∞
F

[
j

(
ω − 2πn

T

)]
. (13.51)

If the channel bandwidth is fc Hz, the bandwidth of each signal should not exceed (fc/n).
The channel capacity, i.e. the channel bandwidth, has to be n times the bandwidth of an
individual channel.

At the receiver end demultiplexing is effected to separate the impulses, thus associating
each one successively with its original message. Each demultiplexer output represents there-
fore a sampled individual message. Each output, successively, is applied to the input of a
lowpass filter to reconstruct the original continuous-time signal as shown in Fig. 13.16.

f ( )t1

f ( )t2

f ( )tn

Received
signal

BP Filter

BP Filter

FIGURE 13.16 Demultiplexing received signal.

13.5 Digital Communication Systems

13.5.1 Pulse Code Modulation

In pulse code modulation (PCM) a signal is sampled and the samples are then quantized so
that their values are converted to binary (or in general M-ary) code as is the conversion to
binary effected by an A/D converter. Parity and other synchronization bits may be added.
The bits thus generated are transmitted serially (or in parallel). At the receiving end a D/A
conversion is performed, thus generating the original continuous-time signal.

PCM sampling with 3-bit 8-level quantization of a signal is shown in Fig. 13.17. As the
figure shows, the 8-level quantization corresponding to a 3-bit code implies that at the
sampling instants the signal values are approximated to the nearest integer value between
0 and 7.

For the signal shown in the figures, the successive quantized levels of the successive
samples are given by 5, 7, 4, 2, 1. The corresponding 3-bit binary codes are: 101, 111, 100,
010 and 001.
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FIGURE 13.17 PCM sampling with 3-bit quantization.

The figure shows three different approaches of coding these binary values by rectangular
pulses. In the first, designated RZ for return to zero code, a binary 1 is a positive pulse,
which returns to zero before the generation of the subsequent bit. A binary zero is simply
coded by a zero voltage.

In the second system shown in the figure, the no return to zero (NRZ) code, binary 1 is
coded as a wide rectangle that occupies the whole bit time (bit-slot). As the figure shows,
a 1 is coded as a “high” voltage level, a 0 as a “low” voltage level.

The figure shows a third pulse coding scheme which is bipolar. In this system a 1 is a
positive rectangular pulse; a 0 is a negative pulse.

There are other variations, where for example the 1 is coded as in the RZ system we have
just seen, but where the zero-bit is coded as the reversal (in time or polarity) of the 1-bit
pulse code. This is shown in the figure as an example of a biphase pulse code.

Parity bits are added for error detection and correction. TDM is normally used to sample
multiple channels, quantize each channel into PCM code and multiplex the signals of the
successive channels. A synchronization framing bit is transmitted at the beginning of each
new cycle where the channels are reaccessed starting with the first and sampled.

Figure 13.18 shows three signals — f1(t), f2(t) and f3(t) — on three channels, and the
TDM signal fm(t) obtained by multiplexing them. The sampling multiplexing operation is
represented schematically for a system with four channels in Fig. 13.19.

The samples in fm(t) are quantized into PCM code as seen above. The figure shows a low-
pass filter LPF included in each channel to ensure that the sampled signals are bandlimited,
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thus avoiding spectral aliasing.

FIGURE 13.18 TDM signal generation.

Sampling
and
PCM

f1( )t
LPF

f2( )t
LPF

f3( )t
LPF

f4( )t
LPF

f1( )t
LPF

f2( )t
LPF

f3( )t
LPF

f4( )t
LPF

FIGURE 13.19 Sampling multiplexing.

13.5.2 Pulse Duration Modulation

In pulse duration modulation (PDM) also called pulse width modulation (PWM) the
continuous-time signal is sampled uniformly and at each sampling interval a rectangular
pulse is generated of constant height but of a width that is proportional to the value of the
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signal at the sampling instant.

As depicted in Fig. 13.20, this type of modulation can be viewed as starting with an
ideal sampling at constant sampling interval T . Each impulse f(k T )δ(t− k T ) at sampling
instant t = k T triggers a rectangular pulse of constant height but of width τk that is
proportional to the intensity f(k T ).

FIGURE 13.20 Pulse duration modulation.

As shown in Fig. 13.21 the modulation system may be modeled as consisting first of an
ideal sampling step where the signal f(t) is multiplied by the impulse train ρT (t) producing
the sampled signal

fs(t) = f(t)ρT (t) =

∞∑

k=−∞
f(k T )δ(t− k T ). (13.52)

FIGURE 13.21 Model of pulse duration modulation generation.

The sampled signal fs(t) is then applied to an impulse intensity to width converter system
which is described in Fig. 13.22.

As shown in the figure, an impulse of intensity A, representing any of the samples of fs(t)
applied as the input x(t) in the figure produces a rectangular pulse of unit height and of a
width proportional to A. The output y(t) thus has the form

y (t) = Rτ (t) = u (t)− u(t− τ) (13.53)

where

τ = C (1 +mA). (13.54)



892 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 13.22 Impulse intensity to width conversion.

At the instant t = k T the impulse intensity is f (k T ) as shown in Fig. 13.20 and the
corresponding pulse has a width given by

τ (k) = C [1 +mf(k T )]. (13.55)

We note that the constant C is the pulse width at zero modulation, that is, with f(k T ) = 0.
The value m is so chosen that the pulse width is greater than zero and less than the sampling
interval T .

13.5.3 Pulse Position Modulation

In pulse position modulation (PPM) represented schematically in Fig. 13.23, the position
of a pulse is modulated in proportion to the function value at each sampling interval. The
PPM function fp(t) may be viewed as obtained by first sampling the continuous-time signal
f(t) ideally with a sampling interval T . An impulse of intensity A then triggers a unit height
constant width narrow pulse which is delayed by an amount given by

τ = C(1 +mA). (13.56)

Corresponding to sampling instant t = k T the function value f(k T ) is thus used to adjust
the pulse delay to

τ (k) = C[1 +mf (k T )]. (13.57)

FIGURE 13.23 Pulse position modulation.

We can see the similarity with and slight difference from the PWM system.
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13.6 PCM-TDM Systems

Time division multiplexing (TDM) may be used for the communication of a set of PCM
signals. Assuming n signals x1 (t), x2 (t), . . ., xn (t), each signal is sampled and each sample
is quantized to m bits, say m = 8, which are transmitted serially. The multiplexer accesses
successively the n channels, so that each m-bit word that is the quantization of a signal
sample is transmitted serially.

The system thus transmits onem-bit word after another, each corresponding to a channel,
for a total of m × n bits in one scan of the multiplexer of the n channels, and the process
repeated.

13.7 Frequency Division Multiplexing (FDM)

We have already seen that in pulse modulation time division multiplexing (TDM) samples
of different signals are accessed sequentially in time, one sample from each signal at a time,
and the cycle repeated. Within one cycle each signal is assigned a time-slot. Frequency
division multiplexing (FDM) is a similar concept but where the roles of time and frequency
are reversed.

In FDM the spectrum of each signal occupies a specified frequency slot of the overall
spectrum through modulation by a distinct frequency. Given n data signals x1 (t), x2 (t),
. . ., xn (t), each signal is modulated by its assigned “subcarrier” frequency. The set of signals
is thus modulated by the set of subcarrier frequencies fsc1, fsc2, . . ., fscn, as shown in Fig.
13.24.

Subcarrier

fsc1

Modulator

Sampler

# 1

Sampler

# 2

Sampler

# n

Subcarrier

fsc2

Modulator

Subcarrier

fscn

Modulator

RF Carrier

Modulator

antenna

x2( )t

x1( )t

xn( )t

FIGURE 13.24 Modulation by a set of subcarrier frequencies.

The modulated signals thus generated are summed producing the composite signal of
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multiplexed spectra. The overall spectrum of the composite signal at the adder output is
shown in Fig.13.25.

X f( )

fsc1 ffsc2 fscn

FIGURE 13.25 Composite signal spectrum.

The subcarrier frequencies are so chosen as to leave guard bands between the succes-
sive spectra. The composite signal is subsequently radio-transmitted after modulation by a
higher frequency radio frequency (RF) carrier suitable for electromagnetic radiation.

At the receiver side shown in Fig. 13.26 the input signal is the RF signal is demodulated
by the RF carrier frequency and the result is applied to a bank of bandpass (BP) filters.

The filters’ outputs are applied, respectively, to detectors at the subcarrier frequencies
fsc1, fsc2, . . ., fscn Hz to recover the original data signals.
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FIGURE 13.26 Demodulation by RF carrier frequency and a filter bank.

13.8 Problems

Problem 13.1 A signal f (t), modulated by a carrier cosωct, is transmitted. The modulated
signal

g (t) = f (t) cosωct
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is captured by a receiver and is multiplied by cosωct. Assuming that the Fourier transform
F (jω) of f (t) can be approximated as

F (jω) =






1, −B/2 6 ω 6 B/2
2 (1− |ω|/B) , B/2 6 |ω| 6 B
0, elsewhere.

a) Evaluate and sketch the spectra

G (jω) = F [g(t)]

and

X (jω) = F [x(t)]

where

x (t) = g (t) cosωct.

b) Suggest a method of reconstructing the signal f (t) from the signal x (t). Justify your
answer. Is there a lower limit of the carrier frequency ωc for the reconstruction to be possible?

Problem 13.2 A signal x (t) is limited in bandwidth to a frequency B r/s, having the
Fourier spectrum

X (jω) =






1, |ω| ≤ B/2
2− 2 |ω| /B, B/2 ≤ |ω| ≤ B
0, |ω| > B.

This signal is modulated by the carrier cosωct with ωc = B/2.

Sketch the spectra X (jω) of x (t) and Y (jω) at the modulator output.

Problem 13.3 A signal has the Fourier spectrum

X (jω) =

{
1− |ω| /2, |ω| 6 2
0, |ω| > 2

is the input of an ideal lowpass filter of frequency response

H (jω) = Π1 (ω) = u (ω + 1)− u (ω − 1) .

a) Sketch the frequency response of the filter output y (t) .

b) The filter output y (t) is modulated by the carrier cos t. Sketch the frequency response
of the modulator output z (t) .

c) Evaluate the energies of the signals x (t) and z (t).

Problem 13.4 In a communication system, two band-limited signals f1 (t) and f2 (t) are
modulated by the two carriers cosωct and sinωct, respectively. The sum g (t) of the two
modulated signals is transmitted. At the receiver’s end the same signal g (t) is applied to the
inputs of two separate multipliers where it is multiplied by cosωct and sinωct, respectively.
Show that, by filtering, the two signals f1 (t) and f2 (t) can be recovered. Sketch the spectra
of the different signals to justify the answer, assuming two abstract but distinct band-limited
spectra F1 (jω) and F2 (jω).

See Fig. 13.27



896 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 13.27 Communication system.

Problem 13.5 The receiver shown in Fig. 13.28 has as input the signal s0 (t) and produces
the output s3 (t) where

s0 (t) = [1 +m (t)] cos 2πfct

s1 (t) = s0 (t) cos [2π (fc + fi) t]

s3 (t) = s2 (t) cos 2πfit

with
m (t) = 0.5 cos 2πf1 t+ 0.5 cos 2πf2t

fc = 103 kHz, fi = 455 kHz, f1 = 2 kHz, f2 = 4 kHz.

FIGURE 13.28 Component of a communication system.

Assuming the frequency response H (jω) shown in Fig. 13.29, evaluate and sketch the
spectra of the signal s0 (t) , s1 (t) , s2 (t) and s3 (t).

FIGURE 13.29 Ideal bandpass filter response.

Problem 13.6 Let

x (t) = Πτ/2 (t) = u (t+ τ/2)− u (t− τ/2)
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y (t) =

∞∑

n=−∞
x (t− nT )

where T > τ.
a) Evaluate Y (jω) .
b) Let z (t) = y (t) cos (2kπt/T ) , k integer.
Evaluate Z (jω).

Problem 13.7 In a communication system the input signal x (t) is modulated by a carrier
cosωct. The result v1 (t) = x (t) cosωct is fed to a filter of frequency response H (jω).
The filter output v2 (t) is modulated by a carrier sinωct. The result is the signal v3 (t). In a
parallel path the same signal x (t) is modulated by the carrier sinωct and the resulting signal
w1 (t) = x (t) sinωct is fed to a filter of the same frequency response H (jω). The filter
output is modulated by the carrier cosωct producing the signal w3 (t). The system output is
y (t) = w3 (t)− v3 (t). The filter frequency response H (jω) is defined by

H (jω) = j sgn (ω) .

Evaluate the Fourier transforms of the signals v1 (t) , v2 (t) , v3 (t) , ω1 (t) , ω2 (t) , ω3 (t)
and y (t) as functions of X (jω), the transform of x (t). Deduce the value of y (t).

Problem 13.8 An impulse train ρT (T ) =

∞∑

n=−∞
δ (t− nT ) is modulated by a sinusoid

sinβt. The modulated impulse train r (t) = sinβt ρT (t) is used to sample a signal x (t).
The sampled signal xs (t) = x (t) r (t) is then filtered with the objective of producing a signal
y (t) = x (t) sin (4π/T + β) t. Assuming that the signal x (t) is band-limited to the frequency
range −β < ω < β and that 2π/T > 4β, evaluate and sketch the Fourier transform
Xs (jω) of xs (t) and deduce the required filter frequency response H (jω). Assume X (jω)
to be a triangle of base extending from −β to β and of height equal to one.

Problem 13.9 A signal v (t) is multiplied by the train of rectangular pulses

r (t) =

∞∑

n=−∞
r0 (t− n)

where
r0 (t) = Π0.1 (t) .

The resulting signal f (t) = v (t) r (t) is transmitted. The same signal f (t) is received and
fed to a filter by a receiver, the filter having a frequency response H (jω) and output y (t).

a) Evaluate the Fourier transform F (jω) of f (t) as a function of V (jω).
b) Given that

V (jω) =
(
1− ω2/B2

)
ΠB (ω)

sketch R (jω) and V (jω). What condition should be satisfied to avoid spectral aliasing and
allow the receiver to reconstruct the original signal v (t)? Sketch F (jω) for the critical
condition after which aliasing would occur.

c) Assuming that the condition in part b) is satisfied, ensuring the absence of aliasing,
specify the filter frequency response H (jω) so that the filter output be given by

y (t) = v (t) sin (4πt) .



898 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

Problem 13.10 The signal

v (t) = B Sa (Bt/2)

is modulated by the carrier

x (t) = cosBt.

The result

v1 (t) = v (t)x (t)

is ideally sampled by the impulse train

ρT (t) =

∞∑

n=−∞
δ (t− nT )

and the sampled signal

v2 (t) = v1 (t) ρT (t)

is fed to a filter of impulse response

h (t) = RT (t) = u (t)− u (t− T ) .

a) Plot v (t), x (t) and v1 (t).
b) Evaluate and sketch V (jω), V1 (jω) and V2 (jω).
c) What is the maximum value Tmax of T to avoid spectral aliasing?
d) Let T = 0.25Tmax. Sketch the signals v2 (t) and the filter output y (t). Evaluate and

sketch V2 (jω) and |Y (jω)|.

Problem 13.11 In a sampling-communication system four signals xi (t), i = 1, 2, 3, 4,
are each sampled by an ideal impulse train

ρT (t) =

∞∑

n=−∞
δ (t− nT )

and the result vi (t) is fed to a filter of impulse response hi (t), i = 1, 2, 3, 4, respectively
as shown in Fig. 13.30.

FIGURE 13.30 A sampling system.

The system output is the sum of the four filters outputs yi (t), i = 1, 2, 3, 4. Given that

RT (t) =△u (t)− u (t− T ) , T = 1/80 sec

h1 (t) = RT (t) , h2 (t) = RT (t− 0.025) ,

h3 (t) = RT (t− 0.05) , h4 (t) = RT (t− 0.075) .
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a) Sketch the system output y (t) =

4∑

i=1

yi (t) for 0 6 t < 0.6, given that

x1 (t) = cos (4πt) , x2 (t) = 3, x3 (t) = 0, x4 (t) = 2.

b) Explain in a few words the advantage of adopting this approach in the communication
of a set of signals.

Problem 13.12 The two signals v (t) = sin (200πt) and x (t) = cos (250πt) are sampled
by the two trains of rectangular pulses p (t) and p

(
t− 0.5× 10−3

)
, respectively, where

p (t) =
∞∑

n=−∞
p0

(
t− 10−3n

)

and

p0 (t) = Π5×10−5 (t) .

The two thus sampled signals

vs (t) = v (t) p (t) and xs (t) = x (t) p
(
t− 0.5× 10−3

)

are added together and the result y (t) are transmitted along a communication channel.
a) Sketch the sampled signal vs (t) and xs (t) and the signal y (t).
b) This same system is used to transmit two signals v (t) and x (t) of finite frequency bands

extending from 0 to 550 Hz and 300 Hz, respectively. The sum y (t) of the two sampled signals
vs (t) and xs (t) is transmitted. At the receiving end a demultiplexer is used to separate the
two sampled signals.

To reconstruct the original signals v (t) and x (t) the two sampled signals are applied to
two lowpass filters of frequency responses H1 (jω) and H2 (jω), respectively. Specify H1 (jω)
and H2 (jω) if such reconstruction is possible. If not, state the reason.

Problem 13.13 As shown in Fig. 13.31(a), a signal x (t) is modulated by a carrier of
frequency ωc = 6000π. The result y (t) is applied to the input of an ideal lowpass filter of
frequency response H (jω) = Π6000π (ω). The filter output z (t) is transmitted. As shown
in Fig. 13.31(b), the same signal z (t) arrives at the receiver, is modulated by a carrier of
the same frequency ωc and applied to an ideal lowpass filter of same frequency response
and output v (t). Assuming the signal x (t) is a sinusoid of frequency f0 Hz where 300 <
f0 < 3400, sketch the spectra X (jω), Y (jω), Z (jω), W (jω) and V (jω) of x (t), y (t),
z (t), w (t) and v (t) respectively. Deduce whether or not the form and frequency of the final
output v (t) are the same as those of x (t).

FIGURE 13.31 A communication system.
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Problem 13.14 The Fourier transforms of two band-limited signals f1 (t) and f2 (t) may
be approximated as the two abstract forms

F1 (jω) = Πω1 (ω) and F2 (jω) = 2
(
1− ω2/ω2

2

)
Πω2 (ω) ,

where ω1 is greater than ω2.
The two signals are modulated by the carriers cosωct and sinωct, respectively. The sum

g (t) of the modulated signals is transmitted. At the receiver the same signal

g (t) = f1 cosωct+ f2 sinωct

is received and modulated by the same two carriers. The results

y1 (t) = g (t) cosωct and y2 (t) = g (t) sinωct

are applied to the inputs of two filters of frequency responses H1 (jω) and H2 (jω), in order
to reconstruct the two original signals f1 (t) and f2 (t), respectively.

a) Evaluate G (jω) = F [g (t)], expressed as a function of F1 (jω) and F2 (jω). Sketch
G (jω).

b) Evaluate Y1 (jω) and Y2 (jω), expressed as functions of F1 (jω) and F2 (jω). Sketch
Y1 (jω) and Y2 (jω).

c) Deduce the frequency responses H1 (jω) and H2 (jω) needed to reconstruct f1 (t) and
f2 (t).

Problem 13.15 The system shown in Fig. 13.32(a) is used for transmitting a stereo audio
signal composed of a left signal xl (t) and a right one xr (t), limited in frequency to 15 kHz.
The stereo coder and decoder are shown in Fig. 13.32(b) and (c), respectively. The following
observations were made during a system verification:

The decoder input signal is assumed to be the same as the coder output signal v(t).

The frequency divider of the coder (box marked ‘f ÷2’) is ideal, producing no phase shift,
such that an input sin (2πf0t) produces an output sin (πf0t).

The frequency multiplier (box ‘f × 2’) produces a phase shift of π/4 radian such that if
the multiplier input signal is sin (πf0t) its output is sin (2πf0t− π/4).

a) Evaluating the decoder outputs yl(t) and yr(t) in terms of the coder inputs xl(t) and
xr(t) deduce the effect of the phase distortion observed at the multiplier output. To this end
express the 38 kHz coder sinusoid in the form sin (2πf0t), where f0 = 38× 103.

b) Would it be possible to eliminate the effect of phase distortion by reducing the gain
of one of the two decoder’s lowpass filters? If yes, state which filter and the required gain;
otherwise show why not?

Problem 13.16 The AM modulator shown in Fig 13.33 has weighting coefficients A1, A2, A3,

A4. It receives the signal m (t) and the carrier p (t) = cos(2πfct). The signal m(t) which
has a zero average value is band-limited to a frequency fm, which is much smaller than the
carrier frequency fc.

a) Evaluate the output signal yAM (t) as a function of m(t), fc, A1, A2, A3 et A4.
b) Given that in the output signal the “useful” term that carries the information about

the input signal m(t) is that which is proportional to m (t) cos(2πfct) evaluate the quality
factor of the modulator, defined as η = pu/pt, where pu = power of the useful component
and pv = power of the useful component/total power. Simplify the expression, eliminating
any terms that have no influence on the value of η.
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FIGURE 13.32 (a) A stereo signal communication system, (b) coder, (c) decoder.

Problem 13.17 To effect amplitude modulation it is proposed to employ a nonlinear system
which generates intermodulation and harmonic distortion.

The message m(t) is band-limited to a frequency of 7 kHz. It has a zero average d-c value
and an average power of 2 watts.

Assuming that the output of the nonlinear system shown in Fig. 13.34 is related to its
input x(t) by the equation y (t) = x (t) + 0.2x2 (t) deduce the needed linear system S1

shown in the figure so that a signal z (t) that is an amplitude modulation of m (t) with an
average power of 50 watts may be obtained.

Problem 13.18 Two alternative schemes using nonlinearity, shown in Fig. 13.35(a-b), are
proposed for demodulating the signal

w (t) = m (t) cos (2πfct) .

Assuming that m(t) = 0 volt, m2(t) = 0.2 Watt, |m (t)|MAX = 1.2 volts. The Fourier
transform as a function of the frequency f of m (t) is such that M (f) = 0 for |f | < 50 Hz
and |f | > 15× 103 Hz (15 kHz). The nonlinear systems are identical. A nonlinear system
receiving an input x (t) would produce the output v (t) = x (t) + 0.2x2 (t).

The modulating carrier frequency is fc = 20 × 106 Hz (20 MHz). Verify for both pro-
posed systems if demodulation is properly effected. Justify your conclusion and specify the
frequency response of the lowpass filter which should produce the demodulated signal m (t).
If you conclude that demodulation is not properly achieved, explain why.
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FIGURE 13.33 AM modulator with weighting coefficients.

FIGURE 13.34 Proposed modulation using a nonlinear system.

Problem 13.19 You are required to generate a sinusoidal signal of a frequency that varies
linearly in time from 1 kHz to 10 kHz in the time interval t = 0 to t = 5 seconds. The
signal should be produced using a frequency modulator, Fig. 13.36, which has the properties

i) Average output power 12.5 Watt.
ii) Frequency of the unmodulated carrier 5 kHz.

a) For 0 ≤ t ≤ 5, specify m(t), the signal that needs be applied to the FM modulator.
b) Evaluate y(t), the signal produced by the FM modulator.

Problem 13.20 The output of an FM modulator denoted yFM(t) is given by

yFM (t) = Ac cos

(
2πfct+ 2πkf

ˆ

m(t)dt

)

where Ac = 7.5, fc = 100 MHz, kf = 17×103 Hz/volt, and m(t) is a sinusoid of amplitude
5 volts and frequencey 10 kHz.

Determine the bandwidth of the signal yFM(t) as the width of the signal spectrum after
eliminating the components that are below 40 dB relative to the unmodulated carrier.

Problem 13.21 A signal m(t), limited in frequency to 10 kHz, is transmitted as shown in
Fig. 13.37.

In the receiver, at the output of the bandpass filter the signal y(t− t0) is observed, where
t0 is the propagation delay between the transmitter and receiver antennas. The delay may be
evaluated by noticing that the distance between them is 7162 m and that wave propagation
speed is 3× 108 m/s. It is noted that the demodulation carrier is out of phase by an angle θ
relative to the modulation carrier. The receiver’s lowpass filter has a gain of 2 and a cut-off
frequency of 10 kHz.

a) Express the signal x(t) as a function of m(t) and θ (all other parameters have to be
evaluated).

b) In one transmission it is noted that x(t) ≈ 0. It is proposed to displace the receiver
closer or farther away from the transmitter in order ot maximize the receiver output signal
power. Evaluate the required displacement (within 5 m if possible).
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Nonlinear

Nonlinear

Nonlinear

FIGURE 13.35 Two proposed modulation systems.

FIGURE 13.36 An FM modulator.

FIGURE 13.37 A communication system.

Problem 13.22 A signal x (t) limited in frequency to 4 MHz should be transmitted by linear
modulation over a communication channel wherein a frequency band of 90 MHz (20 MHz to
110 MHz) is assigned to it and no signal trace is allowed outside this frequency band. The
modulator is represented in Fig. 13.38.

Specify the allowable values f0 for the case:

a) p (t) = 2 sin (2πf0t+ π/8) .

b) p (t) = 4 sin (2πf0t+ 3π/4) + 3 sin (6πf0t− 11π/16) .

c) p (t) is a periodic triangular signal of frequency f0 and amplitude 5 volts.

Problem 13.23 The system shown in Fig. 13.39 is used to produce a modulated signal of
which the carrier frequency can be fixed by setting the filter’s pass-band central frequency to
the required value.

The properties of the message m (t) are m(t) = 0 volt, m2(t) = 2 Watt, |m(t)|max = 5
volts. M (f) = 0 for |f | > 7.5× 103 Hz.

For each of the five possible frequency responses of the bandpass filter evaluate the maxi-
mum amplitude of the modulated signal y(t).
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FIGURE 13.38 Modulator.

FIGURE 13.39 An AM modulator with weighting coefficients.

13.9 Answers to Selected Problems

Problem 13.1 See Fig. 13.40.

1/2

1/4

wc
wc+Bwc-BB-B-wc

X j( )w

w

FIGURE 13.40 Figure for Problem 13.1

Problem 13.2 See Fig. 13.41.
Problem 13.3 See Fig. 13.42.

c) For 0 < ω < 2, X (jω) = − 1
2 (ω − 2).

E1 = 1
2π 2

´ 2

0
1
4 (ω − 2)

2
dω = 2

3π .The energy at the output z (t) is E2 = 7/(24π).
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(a) (b)
B B/2 B 3 2B/w wB/2

FIGURE 13.41 Figure for Problem 13.2
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w -1 1

1 H j( )w

-1 1

1 Y j( )w
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-1 1

1/2
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w

1

2-2
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w-2 2

1/4

2-2

|Z j( )|w 2

w

(a) (b) (c)

(d) (e) (f)

FIGURE 13.42 Figure for Problem 13.3

Problem 13.6
Zn = (0.5τ/T ) {Sa [(n−K) πτ/T ] + Sa [(n+K)πτ/T ]}
Z(jω) = 2π

∞∑
n=−∞

Znδ(ω − 2nπ/T ).

Problem 13.9 b) See Fig. 13.43.
Problem 13.11 See Fig. 13.44.

Problem 13.12
v (t) cannot be constructed without distortion. For x (t), reconstruction is possible. One

choice is H3 (jω) = Π1000π (ω). See Fig. 13.45.

Problem 13.13
See Fig. 13.46 and Fig. 13.47. The first figure shows the spectra X (jω), Y (jω), Z (jω),

W (jω) and V (jω) for the case 2π × 300 < ω0 < 2π × 3000. The second figure shows the
same spectra for the case 2π × 3000 < ω0 < 2π × 3400. y (t) is a sinusoid of frequency
6000π−ω0; z (t) is the same as y (t). w (t) is a sinusoid of frequency ω0 and v (t) is the same
as w (t). In the second case, shown in the second figure, the frequency of y (t) is ω0−6000π.
The frequency of z (t) is the same. The frequency of w (t) is 12000π − ω0 and that of v (t)
is the same as that of w (t).

Problem 13.14 See Fig. 13.48.
a) G (jω) = 0.5 {F1 [j (ω − ωc)] + F1 [j (ω + ωc)]} − (j/2) {F2 [j (ω − ωc)]− F2 [j (ω + ωc)]} .
See Fig. 13.49.
b) See Fig. 13.50.
c) H1 (jω) and H2 (jω) are ideal lowpass filters with cut-off frequencies B1 and B2 rad/sec,
respectively where ω1 < B1 < 2ωc − ω1 and ω2 < B2 < 2ωc − ω1.
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FIGURE 13.43 Figure for Problem 13.9

Problem 13.15
a) yr (t) = xl (t) [1− cos (π/4)]+xr (t) [1 + cos (π/4)] Complete signal separation not achieved.
b) Complete separation.

Problem 13.16
a) yAM (t) = A3A4 cos (2πfct) +A1A2A4m(t) cos (2πfct) b)

η =
A2

1A
2
2m

2(t)

A2
3 +A2

1A
2
2m

2(t)

Problem 13.17
Pass-band width 14 kHz central frequency 1 MHz, gain 8.7.

Problem 13.18
For first system:

v (t) = [m (t) + 1] cos (2πfpt) + 0.1 [m (t) + 1]
2
+ 0.1 [m (t) + 1]

2
cos (4πfpt)

The only low frequency term is 0.1 [m (t) + 1]
2
, and is not proportional to m(t). Modulation

is thus not correctly obtained.
For the second system:

v3 (t) = 0.4m (t)

Demodulation is achieved. The lowpass filter should have a gain of 2.5 and a cut-off frequency
of 15 kHz.

Problem 13.19
a) Instantaneous frequency of the FM signal: fi(t) = 5000+800m (t). To obtain the relation
fi(t) = 1000 + 1800t for 0 ≤ t ≤5, we should set m (t) = 2.25t− 5, for 0 ≤ t ≤5
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FIGURE 13.44 Figure for Problem 13.11.

b) y (t) = Ap cos(2π
´

[1000 + 1800t] dt), where A2
p/2 = 12.5

y (t) = 5 cos
(
2000πt+ 1800πt2

)

Problem 13.20
The bandwidth of the signal yFM (t) is B = 240 kHz.

Problem 13.21
a) Bandpass filter output
x (t) = m

(
t− 23.873× 10−6

)
cos (3000 + θ)

b) Maximum receiver power obtained if the receiver is displaced by the distance 3.75 m
farther from, or closer to, the transmitter.
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FIGURE 13.45 Figure for Problem 13.12.

Problem 13.22
a) 24× 106 ≤ f0 ≤ 106× 106

b) 24× 106 ≤ f0 ≤ 35.3× 106

c) No solution exists

Problem 13.23

|y(t)|max =





|(2/3) Sa (π/3)| × 5 = 2.76 , if f0 = 106 Hz
|(2/3) Sa (2π/3)| × 5 = 1.38 , if f0 = 2× 106 Hz

0 , if f0 = 3× 106 Hz
|(2/3) Sa (4π/3)| × 5 = 0.689 , if f0 = 4× 106 Hz
|(2/3) Sa (5π/3)| × 5 = 0.551 , if f0 = 5× 106 Hz

cos( )wct

x t( ) z t( )y t( )
X H j( )w

w pc=6000

cos( )wct

v t( )w t( )
X H j( )w

w pc=6000

z t( )

(a) (b)

FIGURE 13.46 Figure for Problem 13.13.
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FIGURE 13.47 Figure for Problem 13.13.

FIGURE 13.48 Figure for Problem 13.14.

w
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FIGURE 13.49 Figure for Problem 13.14
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FIGURE 13.50 Figure for Problem 13.14 b)
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Fourier-, Laplace- and z-Related Transforms

In this chapter we study Fourier-, Laplace- and z-related transforms, and in particular
Walsh, Hilbert, Hartley, Mellin and Hankel transforms.

14.1 Walsh Transform

In what follows, we study the Walsh–Hadamard and generalized Walsh transforms. We
start by learning about Walsh functions and related nonsinusoidal orthogonal functions.
Subsequently, we focus our attention on the discrete-time domain Walsh transforms.

14.2 Rademacher and Haar Functions

Rademacher functions, introduced in 1922, are an incomplete set of orthogonal functions.
The Rademacher function of index m, denoted rad(m, t), is a train of rectangular pulses
with 2m−1 cycles in the half-open interval [0, 1), alternating between the values +1 and −1.
The zero-index function rad(0, t) is a constant of 1 on the same interval as can be seen in
Fig. 14.1(a). Outside this interval the Rademacher functions repeat periodically so that

rad(m, t) = rad(m, t + 1) (14.1)

They can be generated recursively using the relations

rad(m, t) = rad(1, 2m−1t)

rad(1, t) =

{
1 , 0 ≤ t < 1/2

−1 , 1/2 ≤ t < 1

Haar functions date back to 1912. Denoted har(n,m, t) they are a periodic and complete
set of orthonormal functions. A set of N Haar functions can be generated recursively using
the following relations, which apply for 0 ≤ t < 1 and with N = 2n,

har(r,m, t) =






2r/2 , (m− 1)/2r ≤ t < (m− 1/2)/2r

−2r/2 , (m− 1/2)/2r ≤ t < m/2r

0 , otherwise

har(0, 0, t) = 1,

where 0 ≤ r < n and 1 ≤ m ≤ 2r, as can be seen in as can be seen in Fig. 14.1(b) where
N = 8. A Haar transform matrix denoted H∗(n) may be constructed by sampling the

911



912 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

successive Haar functions. For example sampling the functions shown in the figure produces
the Haar transform matrix.

H∗(3) =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2
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har(2,3, )t

0
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2

-2

har(2,4, )t

0
1 t

2
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¾½ ¾

(a) (b)

FIGURE 14.1 Orthonormal functions, (a) Rademacher, (b) Haar functions.

14.3 Walsh Functions

The incomplete set of Rademacher functions was completed by J.L. Walsh in 1923. There
are three types of ordering of Walsh functions, namely, the natural or Hadamard ordering,
the dyadic or Paley ordering, and the sequency or Walsh ordering. We may view each of
these orderings by either plotting their forms or, equivalently, by writing the value of their
transform matrix which is but a sampling of the waveforms. As an illustration, the N = 8
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natural ordering Walsh functions are shown in Fig. 14.2(c). Sampling of these waveforms
produces the natural-order Hadamard transform matrix.

The name sequency is the corresponding term to the word frequency used in the Fourier
sinusoidal functions domain. Sequency is the number of zero crossings of a waveform. It
therefore increases with the number of times that the waveform alternates in sign.

H8,nat =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




14.4 The Walsh (Sequency) Order

1
0

-1
wal (0, )w t

wal (1, )w t

wal (7, )w t

wal (2, )w t

wal (3, )w t

wal (4, )w t

wal (5, )w t

wal (6, )w t

0 ¼ ½ ¾ 1

1
0

-1
wal (0, )p t

wal (1, )p t

wal (7, )p t

wal (2, )p t

wal (3, )p t

wal (4, )p t

wal (5, )p t

wal (6, )p t

0 ¼ ½ ¾ 1

1
0

-1
wal  (0, )h t

wal  (1, )h t

wal  (7, )h t

wal  (2, )h t

wal  (3, )h t

wal  (4, )h t

wal  (5, )h t

wal  (6, )h t

0 ¼ ½ ¾ 1
(a) (b) (c)

FIGURE 14.2 Walsh–Hadamard functions in (a) Sequency, (b) Paley, (c) Natural orders.

The sequency-ordered (Walsh-ordered) Walsh functions walw(i, t) appear as in Fig. 14.2(a)
for N = 8. We may refer to this set for short as the set Sw where the subscript stands for
Walsh-ordered. We write

Sw = {walw(i, t) , i = 0, 1, ... , N − 1} (14.2)

where N = 2n, n integer ≥ 1. The sequency si of the waveform walw(i, t) is given simply
by si = i. Corresponding to the cos and sin functions we have cal and sal functions defined
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by

cal(si, t) = walw(i, t), i even

sal(si, t) = walw(i, t), i odd

14.5 Dyadic (Paley) Order

The dyadic (Paley) ordered Walsh functions walp(i, t) appear as in Fig. 14.2(b). We may
refer to them as

Sp = {walp(i, t) , i = 0, 1, . . . , N − 1} (14.3)

The set of Paley-ordered functions are related to the Walsh-ordered ones by the equation

walp(i, t) = walw[b(i), t] (14.4)

where b(i) represents the Gray code to binary conversion of i. For N = 8, for example, with
i = 0, 1, 2, . . . , 7 the binary representation being

{000, 001, 010, 011, 100, 101, 110, 111}, (14.5)

the Gray code
b(i) = {000, 001, 011, 010, 111, 110, 100, 101} (14.6)

so that

walp(0, t) = walw(0, t); walp(1, t) = walw(1, t);

walp(2, t) = walw(3, t); walp(3, t) = walw(2, t);

walp(4, t) = walw(7, t); walp(5, t) = walw(6, t);

walp(6, t) = walw(4, t); walp(7, t) = walw(5, t).

14.6 Natural (Hadamard) Order

The natural (Hadamard) ordered Walsh functions walh(i, t) appear as in Fig. 14.2(c). We
may refer to them as

Sh = {walh(i, t) , i = 0, 1, ... , N − 1} (14.7)

They are related to the Walsh (sequency)-ordered functions by the equation

walh(i, t) = walw[b(< i >), t] (14.8)

where < i > stands for the bit-reversed representation of i and b(< i >) is the Gray code
to binary conversion of < i >. For example, for i = 0, 1, . . . , 7 we have

< i >= {000, 100, 010, 110, 001, 101, 011, 111} (14.9)
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and

b(< i >) = {000, 111, 011, 100, 001, 110, 010, 101} (14.10)

i.e., in decimal the order is {0, 7, 3, 4, 1, 6, 2, 5}, so that

walh(0, t) = walw(0, t); walh(1, t) = walw(7, t);

walh(2, t) = walw(3, t); walh(3, t) = walw(4, t);

walh(4, t) = walw(1, t); walh(5, t) = walw(6, t);

walh(6, t) = walw(2, t); walh(7, t) = walw(5, t).

The Gray code is a reflective binary code wherein two successive values differ in only one
bit. The 3-bit Gray code for example has the successive values shown in Fig. 14.3.

x

y

x

y

FIGURE 14.3 Gray code showing reflective structure.

Note the reflection of the upper code each time a 1 is added to the left, as seen in crossing
the axes x−−−x and y−−− y in the figure. The Gray code is used in labeling the axes of
Karnaugh Maps. They have applications in error correction in digital communication such
as digital terrestrial television and cable TV systems.

To convert binary code to Gray code, let the binary number be the n-bit word (bn−1 . . . b1b0)
and the corresponding Gray code be (gn−1 . . . g1g0). The bits gi are given by

gi = bi ⊕ bi+1, gn−1 = bn−1 (14.11)

where ⊕ means exclusive OR. With bit bn set to 0 we can therefore represent the operation
graphically as in the example shown in Fig. 14.4, where the binary code (11010110) is
converted to the Gray code (10111101).

g7 g6 g5 g4 g3 g2 g1 g0

b7 b6 b5 b4 b3 b2 b1 b0

FIGURE 14.4 Binary to Gray code conversion.

The inverse operation, converting from Gray code to binary, is effected by starting at the
MSB (at the leftmost bit) and moving to the right toward the LSB setting bi = gi if the
number of 1’s to the left of gi is even; otherwise set bi = ḡi. For the above example the
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reverse operation produces
g7 g6 g5 g4 g3 g2 g1 g0
1 0 1 1 1 1 0 1
b7 b6 b5 b4 b3 b2 b1 b0
1 1 0 1 0 1 1 0

14.7 Discrete Walsh Transform

The Walsh matrices can be evaluated as samples of the Walsh functions in the three or-
derings. We can also directly evaluate the elements of these matrices. In particular, for

the Walsh-ordered (sequency ordered) matrix Hw, the (rs)th element h
(w)
rs may be directly

evaluated. Let r be represented in binary notation as

r ≃ (rn−1 . . . r1r0) (14.12)

that is, ri is the ith bit of r. Similarly, let

s ≃ (sn−1 . . . s1s0). (14.13)

The element h
(w)
rs is given by

h(w)
rs = (−1)p, r, s = 0, 1, . . . , N − 1 (14.14)

where

p =

n−1∑

i=0

ρi(r)si (14.15)

ρ0(r) = rn−1, ρ1(r) = rn−1 + rn−2, ρ2(r) = rn−2 + rn−3, . . . , ρn−1(r) = r1 + r0. (14.16)

For example, with N = 8, n = 3 the elements along row 4 are found by substituting
r = 4 = (100)2 and s = {000, 001, . . . , 111}2. We obtain

p = ρ0(4)s0 + ρ1(4)s1 + ρ2(4)s2 = 1× s0 + 1× s1 + 0× s2 = s0 + s1

h
(w)
4,s = [ 1 −1 −1 1 1 −1 −1 1 ]

and those along row 7 are

h
(w)
7,s = (−1)s0+2s1+2s2 = [ 1 −1 1 −1 1 −1 1 −1 ]

For the dyadic (or Paley) order Walsh matrix, the elements are given by

h(p)
r,s = (−1)q, r, s = 0, 1, . . . , N − 1 (14.17)

where

q =

n−1∑

i=0

rn−1−isi. (14.18)

The matrix elements of the natural (or Hadamard) order Walsh matrix are given by

h(h)
rs = (−1)

Pn−1
i=0 risi , r, s = 0, 1, . . . , N − 1. (14.19)

We shall see in what follows that the Walsh matrix in the three orders can be alternatively
evaluated using the Kronecker product of matrices.
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14.8 Discrete-Time Walsh Transform

In as much as the discrete Fourier transform (DFT) is a sampling of the continuous-
time domain Fourier transform, the discrete Walsh transform (DWT) is a sampling of
the continuous-time domain Walsh transform. The base-2 DWT is known as the Walsh–
Hadamard transform [2]. The general-base Walsh transform is known as the generalized
Walsh transform [20], [25], [41]. We shall see that the generalized Walsh transform may be
viewed as a generalization of the DFT.

14.9 Discrete-Time Walsh–Hadamard Transform

We presently consider the base-2 Walsh transform. This transform operates on N = 2n-
point vectors and will be referred to as the “Walsh–Hadamard” transform. In a following
section we study the generalized Walsh transform, which is a generalization to a general
base p of this transform and which operates on vectors of length N = pn.

The Walsh–Hadamard core matrix of order 2, denoted H2, is the 2× 2 DFT matrix, that
is, the Fourier transformation matrix for a two-point vector

H2 =

[
w0 w0

w0 w1

]
=

[
1 1
1 -1

]
(14.20)

where w = e−j2π/2 = −1. We now consider the three ordering classes of Walsh functions
cited above, in the present context of discrete-time functions. We see in particular how to
directly generate the Walsh matrices of these three orderings using the Kronecker product
of matrices.

14.9.1 Natural (Hadamard) Order

Given an input vector x of four points the Walsh–Hadamard matrix H4 in natural or
Hadamard order is given by the Kronecker product of H2 by itself, i.e.

(H4)nat = H2 ×H2 =




w0 w0 w0 w0

w0 w1 w0 w1

w0 w0 w1 w1

w0 w1 w1 w0


 =




1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1




0
3
1
2

(14.21)

# of sign changes

The sequency of each row is the number of sign changes of the elements along the row and
is indicated to the right of the matrix. The sequencies are, respectively, 0, 3, 1 and 2. For
an eight-point vector x the natural order Walsh transformation matrix is given similarly by
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(H8)nat = (H4)nat ×H2 = H2 ×H2 ×H2 =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




0
7
3
4
1
6
2
5

(14.22)

# of sign changes

and the sequencies of the successive rows can be seen to be given by 0, 7, 3, 4, 1, 6, 2 and
5, respectively. The natural order Walsh–Hadamard transform of the vector x is given by

Xnat = H8,natx (14.23)

14.9.2 Dyadic or Paley Order

Premultiplying the naturally ordered Hadamard matrix by the bit-reverse order matrix
yields the dyadic or Paley ordered matrix. With input vector length N = 4 the bit
reversed ordering matrix, denoted K4 selects elements in the order:

K4
bit-rev

: (0, 2, 1, 3) (14.24)

Hence the dyadic or Paley ordered matrix is given by Hence the dyadic or Paley ordered
matrix is given by

(H4)dyad =




1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1




0
1
3
2

(14.25)

# of sign changes

With input vector length N = 8 the bit reversed ordering matrix, denoted K8 selects
elements in the order:

K8 : (0, 4, 2, 6, 1, 5, 3, 7) (14.26)

so that

(H8)dyad =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1




0
1
3
2
7
6
4
5

(14.27)

# of sign changes
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14.9.3 Sequency or Walsh Order

The dyadic ordered matrix needs be operated upon by the Gray code-to-binary conversion
matrix to produce the Sequency or Walsh Order matrix. The conversion from the binary
order {00, 01, 10, 11} to Gray code is obtained according to the relation: bi ⊕ ai+1 = ai,
resulting in the order {00, 01, 11, 10}The sequency (Walsh) ordered matrix for N = 4 is
therefore

The dyadic ordered matrix needs be operated upon by the Gray code-to-binary conversion
matrix to produce the Sequency or Walsh Order matrix. The conversion from the binary
order {00, 01, 10, 11} to Gray code is obtained according to the relation: bi ⊕ ai+1 = ai,
resulting in the order {00, 01, 11, 10}The sequency (Walsh) ordered matrix for N = 4 is
therefore

(H4)seq =




1 1 1 1
1 1 -1 -1
1 -1 -1 1
1 -1 1 -1




0
1
2
3

(14.28)

# of sign changes

and the sequency ordered matrix for N = 8 is given by

(H8)seq =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1




0
1
2
3
4
5
6
7

(14.29)

# of sign changes

14.10 Natural (Hadamard) Order Fast Walsh–Hadamard
Transform

The Hadamard transform for the natural (or Hadamard) ordering is obtained by successive
Kronecker multiplication of the core matrix H2. Thus

HN,nat = HN/2,nat ×H2 = HN/4,nat ×H2 ×H2 = [H2]
[n] , (14.30)

where [.] in the exponent means a Kronecker product. In what follows in this section, we
shall drop the subscript nat. We may write

HN =

[
HN/2 HN/2

HN/2 -HN/2

]
=

[
HN/2

HN/2

] [
IN/2 IN/2

IN/2 -IN/2

]

= (HN/2 × I2)(IN/2 ×H2). (14.31)

Expressing HN/2 in terms of HN/4, we have

HN/2 = (HN/4 × I2)(IN/4 ×H2). (14.32)
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In general, if we write k = 2i (i = 0, 1, 2, . . . , n− 1), then

HN/k = (HN/(2k) × I2)(IN/(2k) ×H2). (14.33)

Carrying this iterative procedure to the end,

HN = {[. . . {[{[. . . {[{[(H2 × I2) (I2 ×H2)]× I2} (I4 ×H2)]× I2} . . .]× I2}
· (IN/2k ×H2)]× I2} . . . (IN/4 ×H2)]× I2}(IN/2 ×H2). (14.34)

Using the property

(A, B, C, . . .)× I = (A× I)(B × I)(C × I) . . . (14.35)

we obtain

HN = (H2 × IN/2)(I2 ×H2 × IN/4) . . . (IN/2k ×H2 × Ik) . . .

· (IN/4 ×H2 × I2)(IN/2 ×H2). (14.36)

This equation can be written in the form

HN =

n∏

i=1

[I2(i−1) ×H2 × I2(n−i) ] . (14.37)

Similarly to the case of the DFT matrix, we express the factorization in terms of the matrix

CN = (IN/2 ×H2) (14.38)

using the property
P−k

N (IN/2 ×H2)P
k
N = IN/2k+1 ×H2 × I2k (14.39)

where PN is the base-2 perfect shuffle matrix for N points. We obtain

HN =

n∏

i=1

PNCN . (14.40)

The matrix CN = C is the same as the matrix S of the fast Fourier transform (FFT)
factorization. It is optimal in the sense that it calls for operating on elements that are
farthest apart. In very large scale integrated VLSI design this means the possibility of
storing data as long queues in long registers, eliminating the need for addressing. In fact
the same wired-in base-2 FFT processor can implement this Walsh transform.

14.11 Dyadic (Paley) Order Fast Walsh–Hadamard Transform

The dyadic-ordered Hadamard matrix HN,D can be obtained from the naturally ordered
matrix by permultiplying the latter with the bit-reversed ordering permutation matrix. This
permutation matrix can be expressed using the perfect shuffle matrix, as noted above in
connection with the radix-2 FFT factorization,

KN =

n∏

i=1

P2(n−i+1) × I2(i−1) (14.41)
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i.e.

HN,D =

n∏

i=1

P2(n−i+1) × I2(i−1)

n∏

i=1

[I2(i−1) ×H2 × I2(n−i) ] . (14.42)

Using the property

Pk(Ak/2 × I2)P−1
k = I2 ×Ak/2 (14.43)

we obtain after some manipulation

HN,D =

n∏

i=1

(I2(n−i) × P2i)CN =

n∏

i=1

JiCN (14.44)

where

Ji = (I2(n−i) × P2i). (14.45)

14.12 Sequency Ordered Fast Walsh–Hadamard Transform

The Sequency or (Walsh) ordered Walsh–Hadamard matrix may be written in the form

HN,s = PNH
′
N = PN

[
HN/2,s DN/2HN/2,s

HN/2,s −DN/2HN/2,s

]
. (14.46)

The DN/2 is a diagonal matrix the elements of which alternate between +1 and −1, for
example D8 = diag(1, −1, 1, −1, 1, −1, 1, −1). We can write

HN,s = PN (IN/2 ×H2)D
′
N (HN/2,s × I2) (14.47)

where D′N is a diagonal matrix of which the top left half is the identity matrix IN/2 and
the lower right half is DN/2,

D′N =

[
IN/2

DN/2

]
= quasidiag(IN/2, DN/2). (14.48)

We obtain

HN,s = P2n






n∏

i=1,2,3,...

P−1
2n riCdi




P−1
2n . (14.49)

where

ri = I2(i−1) × P2(n−i+1) (14.50)

di = I2(i−1) ×D′2(n−i+1) . (14.51)

As will be seen in Chapter 15, the same wired-in machine obtained for radix-2 FFT im-
plementation can be used for the implementation of both the natural and dyadic order
Walsh–Hadamard transforms. A slight addition in the form of a gating switch needs be
added to implement the sequency ordered transform.
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14.13 Generalized Walsh Transform

The base-p generalized Walsh transform operates on a vector of N = pn elements. The
generalized Walsh core matrix is the p× p DFT matrix

Wp =




w0 w0 ... w0

w0 w1 ... wp−1

...
w0 wp−1 ... w1


 (14.52)

where w = e−j2π/p. In the literature the matrix Wp is sometimes similarly defined but is
multiplied by a normalizing factor 1/

√
p. To simplify the presentation we start by consid-

ering the example of a base p = 3 and N = p2 = 9. The core matrix is given by

W3 =



w0 w0 w0

w0 w1 w2

w0 w2 w1


←→




0 0 0
0 1 2
0 2 1


 (14.53)

where on the right the matrix is rewritten in exponential notation for abbreviation, so that

an element k stands for a true value wk. In what follows the matrix P
(p)
N = P (p) = P stands

for the base-p perfect shuffle permutation matrix defined above in Equation (7.220). As
with the base-2 Walsh–Hadamard transform there are three orderings associated with the
base-p transform. In what follows to simplify the presentation we start by illustrating the
transform in the three orderings on an example of N = 9 and p = 3.

14.14 Natural Order

The natural order base-p generalized Walsh transform of an N -point input vector x, where
N = pn, is given by

XWa,nat = WN,natx (14.54)

where WN,nat is the base-p generalized Walsh transform matrix formed by the Kronecker
product of Wp by itself n times, denoted

WN,nat = Wp ×Wp × . . .×Wp=△W
[n]
p . (14.55)
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14.15 Generalized Sequency Order

The generalized sequency is the sum of distances between successive eigen values wk divided
by (p− 1). The distance between wr and ws is s− r if s ≥ r; otherwise it is p+ (s− r).

W32 = W3 ×W3 =




0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2




0
8/2=4

16/2=8
2/2=1

10/2=5
12/2=6
4/2=2
6/2=3

14/2=7

(14.56)

where the generalized sequencies appear to the right of the matrix.

14.16 Generalized Walsh–Paley (p-adic) Transform

The generalized Walsh–Paley (GWP) matrix is the base-p generalization of the base-2
Walsh–Hadamard dyadic order. The digit-reversed ordering matrix N = 32 = 9 produces
the order

a1 a0 b1 b0
0 0 0 0 0 0
1 0 1 1 0 3
2 0 2 2 0 6
3 1 0 0 1 1
4 1 1 1 1 4
5 1 2 2 1 7
6 2 0 0 2 2
7 2 1 1 2 5
8 2 2 2 2 8

The generalized sequency of the generalized Walsh–Paley is given by:

0, 1, 2, 4, 5, 3, 8, 6, 7.

14.17 Walsh–Kaczmarz Transform

The generalized Walsh–Kaczmarz (GWK) matrix is the base-p generalization of the Walsh–
Hadamard sequency matrix. It is obtained by applying the base-p to Gray code permutation
matrix to the generalized Walsh–Paley matrix

The base-p to Gray code conversion is written:

ki ◦ ai+1 = ai, where ◦ = addition mod p
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and the inverse is written
Inverse: from g to p
p1 = g1
p0 = g0 ◦ p1, pi = gi ◦ pi+1.

a1 a0 k1 k0

p1 p0 g1 g0
0 0 0 0 0 0
1 0 1 0 1 1
2 0 2 0 2 2
3 1 0 1 2 5
4 1 1 1 0 3
5 1 2 1 1 4
6 2 0 2 1 7
7 2 1 2 2 8
8 2 2 2 0 6

The generalized sequencies of the successive rows of the Walsh–Kaczmarz matrix are as
expected:

0, 1, 2, 3, 4, 5, 6, 7, 8.

Fast generalized Walsh algorithms leading to wired-in or virtually-wired-in parallel general
radix processors have been proposed [20] [25]. A general-radix parallel processor for gen-
eralized spectral analysis and in particular higher radix FFT and fast generalized Walsh
transform has been constructed and referred to in Chapter 15.

14.18 Generalized Walsh Factorizations for Parallel Processing

Three basic forms of the generalized Walsh GW transform in three different orderings are
given in what follows [20].

14.19 Generalized Walsh Natural Order GWN Matrix

We have seen that the natural order base-p generalized Walsh transformation matrix for an
N -point input vector x, where N = pn, is given by

WN,nat = Wp ×Wp × . . .×Wp=△W
[n]
p . (14.57)

In what follows in this section, we shall drop the subscript nat. Similarly to the base-2
transform we obtain

WN = WN/p ×Wp =




WN/p WN/p . . . WN/p

WN/p w1WN/p . . . wp−1WN/p

... . . . . . . . . .
WN/p wp−1WN/p . . . w1WN/p


 (14.58)

where we have used the fact that w(p−1)2 = w1. We may write

WN = (WN/p × Ip)(IN/p ×Wp). (14.59)
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Expressing WN/p in terms of WN/(2p), we have

WN/p = (WN/(2p) × Ip)(IN/2p ×Wp). (14.60)

In general, if we write k = pi (i = 0, 1, 2, . . . , n− 1), then

WN/k = (HN/(kp) × Ip)(IN/(kp) ×Wp). (14.61)

Similarly to the general base FFT as well as the base-2 Walsh matrix factorization we obtain

WN =

n∏

i=1

[
Ip(i−1) ×Wp × Ip(n−i)

]
. (14.62)

Proceeding similarly to the factorization of the DFT matrix, we express the factorization
in terms of the matrix

CN = (IN/p ×Wp). (14.63)

using the property
P−k

N (IN/p ×Wp)P
k
N = Ipn−k−1 ×Wp × Ipk (14.64)

After some manipulation we obtain

TN =
n∏

i=1

PNCN . (14.65)

The matrix CN is the same as the matrix S of the general-base FFT factorization. It is
optimal in the sense that it calls for operating on elements that are farthest apart for a
given data record size N = pn. In VLSI design this means the possibility of storing data as
long queues in long registers, eliminating the need for addressing. In fact the same wired-in
base-p FFT processor can implement this Walsh transform.

14.20 Generalized Walsh–Paley GWP Transformation Matrix

The generalized Walsh transform in the Walsh–Paley order, which may be reeferred to as
GWP transform is related to the transform in natural order by a digit-reverse ordering.

The general-base digit reverse ordering matrix K
(p)
N can be factored using the general-base

perfect shuffle permutation matrix P (p) and Kronecker products as seen above in factoring
the DFT, Equation (7.267). We may write,

K
(p)
N =

n−1∏

i=0

(
P

(p)

p(n−i) × Ipi

)
. (14.66)

The GWP matrix WN,WP can thus be written in the form

WN,WP = K
(p)
N WN,nat =

n−1∏

i=0

(
P

(p)

p(n−1) × Ipi

) n∏

i=1

[
Ip(i−1) ×Wp× Ip(n−i)

]
. (14.67)

Similarly to the base-2 dyadic Walsh–Hadamard transform we obtain

WN,WP =

n∏

i=1

(Ip(n−i) × Ppi)CN =

n∏

i=1

J
(p)
i CN (14.68)

where
J

(p)
i = (Ip(n−i) × Ppi). (14.69)
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14.21 GWK Transformation Matrix

The GWK transformation matrix is related to the GWP matrix through a p-ary to Gray

transformation matrix G
(p)
N .

WN,WK = G
(p)
N WN,WP . (14.70)

Let PN=△P
(p)
N . The matrix can be rewritten in the form

WN,WK = PNP
−1
N WN,WK = PNW

′
N . (14.71)

Similarly to general base FFT matrix, this matrix has a recursive form, namely,

WN/k = PN/k(IN/(kp) ×Wp)D
′
N/K(WN/(kp) × Ip) (14.72)

where for m = 1, 2, . . . n

D′pm = quasidiag
(
Ipm−1 , Dpm−1 , D2

pm−1 , . . . , D
(p−1)
pm−1

)
(14.73)

Di
pm−1 = Di

p × Ipm−2 (14.74)

Dp = diag
(
w0, w−1, w−2, . . . , w−(p−1)

)
. (14.75)

With some manipulation we obtain

WN,WK =
n∏

i=1

(
Ppn−i+1 × Ipi−1

)(
Ipn−i ×Wp × Ip × Ipi−1

)
(D′pn−i+1 × Ipi−1 ) (14.76)

which can be rewritten in terms of the matrix CN in the form

WN,WK = P

{
n−1∏

i=0

P−1HiCNEi

}
P−1. (14.77)

where
Hi = Ipi × Ppn−i , Ei = Ipi ×D′pn−i (14.78)

14.22 High Speed Optimal Generalized Walsh Factorizations

As can be seen in [20], using a similar approach to that seen above in relation to the shuffle-
free, labeled high speed FFT factorization, the following generalized Walsh factorizations
are obtained. The corresponding parallel processor architecture is presented in Chapter 15.

14.23 GWN Optimal Factorization

As seen above, the GWN transformation matrix has the form

WN,nat =

n−1∏

i=0

PNCN =

n−1∏

i=0

PN

(
IN/p ×Wp

)
. (14.79)
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We can rewrite the matrix in the form

WN,nat = P

{
n−1∏

n=0

CP

}
P−1 = P

{
n−1∏

n=0

F

}
P−1 (14.80)

C ≡ CN = Ipn−1 ×Wp (14.81)

and F = CP .

14.24 GWP Optimal Factorization

The GWP matrix has been factored in the form

WN,WP =

n−1∏

i=0

JiCN (14.82)

where
Ji =

(
IP n−i−1 × Ppi+1

)
= Hn−i−1 (14.83)

and Hk = Ipk × Ppn−k . Letting

Qi = CNJi+1 = CNHn−i−2, i = 0, 1, . . . , n− 2 (14.84)

Qn−1 = CN (14.85)

we obtain

WN,WP =

n−1∏

i=0

Qi (14.86)

where each matrix Qi, i = 0, 1, . . ., n−2, is p2-optimal, meaning that the minimum distance
between data points is N/p2, while Qn−1 is p-optimal, meaning that the minimum distance
is N/p [20].

14.25 GWK Optimal Factorization

The GWK matrix factorization was obtained in the form

WN,WK = P

{
n−1∏

i=0

P−1HiCNEi

}
P−1. (14.87)

We may write

WN,WK = P

{
n−1∏

i=0

P−1HiGi

}
P−1 (14.88)

where
Gi = CNEi. (14.89)
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Letting
Si = P−1HiP =

(
Ipi−1 × Ppn−i × Ip

)
(14.90)

we have

WN,WK = P 2

{
n−1∏

i=0

P−1GiSi+1

}
P−1 (14.91)

with
Sn−1 = Sn = IN . (14.92)

The factorization can also be rewritten in the form

WN,WK = P

{
n−1∏

i=0

Γi

}
P−1 (14.93)

where

Γi = P−1GiSi+1 = P−1Gi

(
Ipi × Ppn−i−1 × Ip

)
, i = 1, 2, . . . , n− 1

Γ0 = G0S1.

These are optimal shuffle-free constant-topology algorithms for massive parallelism [25].
Constant topology refers to the fact that in all iterations, the data to be operated upon are
throughout equidistant, as can be seen in Fig. 14.5 and Fig. 14.6. They can be implemented
by massive parallelism processors in a multiprocessing structure. The level of parallelism
in processing vectors of length N = pn, where p is the base, in the form of M = pm base-
p processors, can be chosen by varying m between 0 and n − 1. A base-p operates on p
operands simultaneously. The Fast Fourier transform factored to a general base p is but
a special case of the class of generalized Walsh transform that are implemented by such
processors. This topic will be discussed further in Chapter 15.

14.26 Karhunen Loève Transform

An optimum transform A of a vector x is one which produces a vector y having uncorrelated
coefficients. Thus we seek a transform which, applied to the vector x with covariance matrix
Cx produced a covariance matrix Cy which is diagonal. Such transformation allows signal
extraction from noise using diagonal filters and results in what is called scalar filtering in
contrast with vector filtering that is encountered when the matrix Cy contains off diagonal
elements.

From matrix theory, we recall that if a nonsingular matrix C has distinct eigenvalues with
corresponding eigenvectors written as the columns of a matrix U then U−1CU is a diagonal
matrix containing the eigenvalues of C as its elements.

The eigenvalues of the matrix Cx are obtained as the roots of the characteristic equation

det(Cx − λIN ) = 0.

Let these eigenvalues be denoted as λi, i = 0, 1, . . . , N−1. Corresponding to each eigenvalue
λi there is an eigenvector v(i) which satisfies

Cxv
(i) = λiv

(i).
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Q C J0 1= Q C J1 2=

FIGURE 14.5 Generalized Walsh–Paley (GWP) transform two-iterations with N =
27 points.
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Q C2= G2

FIGURE 14.6 Generalized Walsh–Paley (GWP) transform third iteration, and a Walsh–
Kaczmarz iteration.
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Thus if U is the matrix

U = [v(0)v(1) . . . v(N−1)]

then

CxU = [Cxv
(0)Cxv

(1) . . . Cxv
(N−1)]

= [λ0v
(0)λ1v

(1) . . . λN−1v
(N−1)]

= UΛ

where

Λ = diag(λ0, λ1, . . . , λN−1)

We thus deduce that

U−1CxU = Λ

That is, the matrix Cx is diagonalized by the matrix U . Now, since

Cy = ACxA
∗T

we see that for Cy to be diagonal we should have

A∗T = A−1 = U

Such an optimal transform is called the Karhunen Loève (KL) transform. Its matrix A is
given the symbol K. We thus have

K = U−1

K∗T = K−1 = U = [v(0)v(1) . . . v(N−1)]

i.e.

K = [v(0)∗v(1)∗ . . . v(N−1)∗]
T

That is, the rows of K are the conjugates of the eigenvectors of CX .

The KL transform is thus an optimal transform that works in general for any class of
signal statistics. It is formed from those statistics, however, requiring knowledge of the
covariance matrices of the analyzed signals, computation of their eigenvectors, and calls for
N2 multiplication for its direct application to the input vector. It is for these reasons that
transforms which are optimal only for a certain class of statistics, and which are known to
be asymptotically optimal, such as Fourier and Walsh transforms, are more commonly used
for generalized spectral analysis.

14.27 Hilbert Transform

The Hilbert transform of a function f(t) is by convention a function g(t) given by

g(t) =
1

π

ˆ ∞

−∞

f(τ)

t− τ dτ. (14.94)



932 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

The integral divergence at the point t = τ is avoided by taking the principal value of the
integral. We note that the “Hilbert transform” g(t) of a function f(t) is but the convolution
of f(t) with the function 1/(πt)

g (t) = f (t) ∗ 1

πt
. (14.95)

This is a transformation from the time domain to the time domain.

We note that sgn (t)
F←→ 2

jω
. Hence by duality

2

jt

F←→ 2πsgn (−ω) = −2πsgn (ω), i.e.

1

πt

F←→ −jsgn (ω) and

g (t)
F←→ G(jω) = F (jω)F

[
1

πt

]
= −jsgn (ω)F (jω) . (14.96)

We can therefore adopt an equivalent representation by stating that the Hilbert transform
of a signal f(t) is a transformation from the time domain to the frequency-domain function
G (jω) = F [g (t)] = −jsgnωF (jω).

We may use the notation

f(t)
Ht←→ g(t) (14.97)

and
f(t)

Hω←→ G(jω) (14.98)

to denote transformation from the time domain to the time domain and to the frequency
domain, respectively. Similarly, we write Ht [f (t)] = g (t) and Hω [f (t)] = G (jω).

The Hilbert transform g(t) of a function f(t) may thus be evaluated by effecting the
convolution of f(t) with the function 1/(πt) or by evaluating the inverse Fourier transform
of G (jω).

Example 14.1 Evaluate the Hilbert transform of f(t) = cosβt. We have F (jω) =
π {δ (ω − β) + δ (ω + β)}

G (jω) = −jsgn (ω)π {δ (ω − β) + δ (ω + β)} = −jπ {δ (ω − β)− δ (ω + β)}

g(t) = sinβt.

Similarly it can be shown that Ht [sinβt] = − cosβt.

Example 14.2 Evaluate the Hilbert transform of f(t) = ΠT (t). We have g(t) = f(t)∗ 1

πt
.

Referring to Fig. 14.7 we have for t− T > 0 i.e. t > T

g (t) =
1

π

ˆ t+T

t−T

dτ

τ
=

1

π
ln τ

∣∣∣∣
t+T

t−T

=
1

π
ln
t+ T

t− T .

For t > 0 and t− T < 0 i.e. 0 < t < T by symmetry the convolution integral over the
interval t− T < τ < T − t is zero; hence

g(t) =
1

π

ˆ t+T

T−t

dτ

τ
=

1

π
ln τ

∣∣∣∣
t+T

T−t

=
1

π
ln
t+ T

T − t .

We may therefore write for t > 0

g(t) =
1

π
ln

t+ T

|t− T | .
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FIGURE 14.7 Hilbert transform of a rectangle through convolution.

By symmetry we have g(−t) = −g(t) so that

g(t) =
1

π
ln
|t+ T |
|t− T | .

See Fig. 14.8 for plot of
1

π
ln
|t+ T |
|t− T |

FIGURE 14.8 Plot of a centered rectangle and
1

π
ln
|t+ T |
|t− T | .

Example 14.3 Evaluate the Hilbert transform of f(t) = Sa (Bt).

We have

F (jω) =
π

B
ΠB (ω)
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G (jω) = −jsgn (ω)
π

B
ΠB (ω) =






−j π
B
, 0 < ω < B

j
π

B
, −B < ω < 0

0, |ω| > B

= −j π
B

ΠB/2 (ω −B/2) + j
π

B
ΠB/2 (ω +B/2) .

See Fig. 14.9

FIGURE 14.9 Spectra F (jω) and G(jω).

Note that

Sa [(B/2) t]←→ 2π

B
ΠB/2 (ω)

and
Sa [(B/2) t] sin (B/2) t←→ −j π

B

[
ΠB/2 (ω −B/2)−ΠB/2 (ω +B/2)

]
.

Hence

g (t) = Sa [(B/2) t] sin (B/2) t =
sin2 (B/2) t

(B/2) t
=

1− cosBt

Bt
.

14.28 Hilbert Transformer

We have found that
cosβt

Ht←→ sinβt = cos (βt− π/2) (14.99)

sinβt
Ht←→ − cosβt = sin (βt− π/2) . (14.100)

We conclude that the Hilbert transform imparts a 90◦ phase lag on sinusoidal signals. A
signal f(t) having a Fourier spectrum F (jω) is Hilbert transformed to a signal having a
spectrum G (jω) = −jsgnωF (jω). A “Hilbert transformer” is therefore equivalent to a
filter of frequency response

H (jω) = −jsgnω =

{
−j, ω > 0
j, ω < 0

(14.101)

as depicted in Fig. 14.10.
We note that

arg [H (jω)] =

{
−π/2, ω > 0
π/2, ω < 0

(14.102)
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j

-j

w

H j( )w

FIGURE 14.10 Hilbert transformer frequency response.

implying a 90◦ phase lag on input signals’ positive frequencies and a 90◦ phase lead on
negative ones. Referring to Chapter 13, a Hilbert transformer can therefore be employed in
producing single side-band (SSB) amplitude modulated signals.

The Hilbert transformer’s impulse response is given by

h(t) = F−1 [H (jω)] = 1/ (πt) . (14.103)

14.29 Discrete Hilbert Transform

Similarly to the continuous-time Hilbert transform, the discrete Hilbert transform of a
sequence x [n] is a sequence y [n] given by

y [n] = x [n] ∗ h [n] (14.104)

where

h [n] =

{
0, n even
2

πn
, n odd.

(14.105)

The “discrete Hilbert transformer” has the frequency response

H
(
ejΩ
)

=

{
−j, 0 < Ω < π
j, −π ≤ Ω < 0

(14.106)

as depicted in Fig. 14.11

FIGURE 14.11 Discrete Hilbert transformer frequency response.
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We note that the inverse transform of the frequency response is the impulse response

h [n] =
1

2π

{
ˆ 0

−π

jejΩndΩ+

ˆ π

0

−jejΩndΩ

}
=

j

2π

{
ejΩn

jn

∣∣∣∣
0

−π

− ejΩn

jn

∣∣∣∣
π

0

}

=
1

2π

{
1− e−jπn

n
− ejπn − 1

n

}
=

1− cos (πn)

πn
=

{
0, n even
2

πn
, n odd

(14.107)

as stated.

14.30 Hartley Transform

Proposed by R.V.L. Hartley in 1942, the Hartley transform is closely related to the Fourier
transform. It has the advantage that it transforms real functions into real functions and it
is identical to its inverse.

The Hartley transform of a function f(t) which we may denote FHa (jω), being a special
type of a Fourier transform and due to a generalization to FHa (s) in Laplace domain
recently proposed, [27], is given by

FHa (jω) =

ˆ ∞

−∞
f(t)cas (ωt) dt (14.108)

where
cas (ωt) = sinωt+ cosωt. (14.109)

The inverse Hartley transform is given by

f(t) =
1

2π

ˆ ∞

−∞
FHa (jω) cas (ωt) dt. (14.110)

As with Fourier transform, the forward transform may be multiplied by the factor 1/(
√

2π),
in which case the same factor 1/(

√
2π) would appear in the inverse transform. Such sym-

metry has the advantage that the forward and inverse transforms have the same form. A
particular advantage of the Hartley transform is that the transform of a two-dimensional
signal, such as an image, is simply a two-dimensional signal, that is, an image that can be
readily visualized. This is in contrast with the Fourier transform, of which only the ampli-
tude or the phase (or the real or the imaginary) spectrum can be displayed, but not the
entire combined spectrum as the image of the transform.

We note that if f(t) is an even function i.e. f(−t) = f(t) then the Hartley transform is
given by

FHa (jω) =

ˆ ∞

−∞
f(t) {cosωt+ sinωt} dt =

ˆ ∞

−∞
f(t) cosωt dt (14.111)

which is the same as the Fourier transform

F (jω) =

ˆ ∞

−∞
f(t)e−jωtdt =

ˆ ∞

−∞
f(t) cosωt dt. (14.112)

For even functions, therefore, the Hartley transform is equal to the Fourier transform.
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If f(t) is an odd function, i.e. f(−t) = −f(t) then

FHa (jω) =

ˆ ∞

−∞
f(t) sinωt dt (14.113)

and

F (jω) =

ˆ ∞

−∞
f(t) (−j sinωt) dt = −j

ˆ ∞

−∞
f(t) sinωt dt (14.114)

so that
FHa (jω) = jF (jω) . (14.115)

The following examples illustrate the evaluation of the Hartley transform.

Example 14.4 Evaluate the Hartley transforms of the functions a) δ(t), b) 1, c) cosβt, d)
sinβt

a) We have f(t) = δ(t)

FHa (jω) =

ˆ ∞

−∞
δ(t)cas(ωt)dt =

ˆ ∞

−∞
δ(t)dt = 1

which is the same as the Fourier transform as expected since f(t) is even.
b) f(t) = 1

FHa (jω) =

ˆ ∞

−∞
(cosωt+ sinωt) dt

=
1

2

ˆ ∞

−∞

[
ejωt + e−jωt − j

(
ejωt − e−jωt

)]
dt.

Recall that

F [1] =

ˆ ∞

−∞
e−jωtdt = 2πδ (ω) .

We may write

FHa (jω) =
1

2
{2πδ (−ω) + 2πδ (ω)− j2πδ (−ω) + j2πδ (ω)} = 2πδ (ω) = F (jω)

as expected
c) f(t) = cosβt

FHa (jω) = F (jω) = π {δ (ω − β) + δ (ω + β)} .

d) f(t) = sinβt.
Since f(t) is odd we have

FHa (jω) = jF (jω) = π {δ (ω − β)− δ (ω + β)}

as shown in Fig. 14.12.

We may also write

FHa (jω) =

{
ˆ ∞

−∞
f(t) cosωt dt+

ˆ ∞

−∞
f(t) sinωt dt

}
(14.116)

F (jω) =

ˆ ∞

−∞
f(t) cosωt dt− j

ˆ ∞

−∞
f(t) sinωt dt (14.117)

i.e.
FHa (jω) = {ℜ [F (jω)]−ℑ [F (jω)]}. (14.118)



938 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

FIGURE 14.12 Hartley transform of sinβt.

Example 14.5 Let f(t) = e−αtu(t), α > 0

F (s) =
1

s+ α
, F (jω) =

1

jω + α

F (jω) =
α− jω
α2 + ω2

FHa (jω) =
α

α2 + ω2
+

ω

α2 + ω2
=

α+ ω

α2 + ω2
.

Table 14.1 lists Hartley transform of basic functions.

TABLE 14.1 Hartley transform of
some basic functions

f(t) FHa (jω)

δ (t) 1
1 2πδ (ω)

cosβt π {δ (ω − β) + δ (ω + β)}
sinβt π {δ (ω − β)− δ (ω + β)}
ΠT (t) 2T Sa (Tω)
e−α|t| 2α/(ω2 + α2)
sgn(t) 2/ω
u(t) πδ (ω) + 1/ω

14.31 Discrete Hartley Transform

The discrete Hartley transform (DHT) was introduced by R. N. Bracewell in 1983. It is
related to the continuous-time domain Hartley transform in the same way the DFT is
related to the continuous-time domain Fourier transform.

Given a sequence of N values x [0], x [1], . . ., x [N − 1] the DHT denoted XHa [k] is
given by

XHa [k] =

N−1∑

n=0

cas (kn2π/N)x [n] =

N−1∑

n=0

{cos (kn2π/N) + sin (kn2π/N)}x [n] . (14.119)
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The inverse DHT is given by

x [n] =
1

N

N−1∑

n=0

cas (kn2π/N)XHa [k] . (14.120)

We note that the DFT of x [n] is given by

X [k] =

N−1∑

n=0

e−j 2π
N nkx [n] =

N−1∑

n=0

{
cos

(
2π

N
nk

)
− j sin

(
2π

N
nk

)}
x [n] . (14.121)

With x [n] real we may write

XHa [k] = ℜ{X [k]} − ℑ{X [k]} . (14.122)

If x [n] has even symmetry, i.e.

x [N − n] = x [n] , n = 1, 2, . . . , N − 1. (14.123)

then X [k] is real and
XHa [k] = X [k] (14.124)

and if x [n] has odd symmetry, i.e. x [N − n] = −x [n] , n = 1, 2, ..., N − 1 and x [0] = 0.
then X [k] is pure imaginary and

XHa [k] = jX [k] . (14.125)

Example 14.6 Evaluate the DHT of the sequences, where b = 2πm/N and m integer.
a) δ [n], b) 1, c) cos (bn), d) sin (bn) .
a) x [n] = δ [n] is an even function since x [N − n] = x [n] , n = 1, 2, . . ., N − 1

XHa [k] = X [k] = 1.

b) x [n] = 1, XHa [k] = X [k] =

{
N, k = 0
0, k = 1, . . . , N − 1.

c) x [n] = cos (bn), XHa [k] =

{
N/2, k = m, N −m
0, otherwise.

d) x [n] = sin (bn), X [k] =

{
∓jN/2, k = m, N −m
0, otherwise

XHa [k] =

{
±N/2, k = m, N −m
0, otherwise.

Evaluating the DHT of a sequence can thus be directly deduced from its DFT.

14.32 Mellin Transform

The Mellin transform of a function is defined by the integral

FM(s) =

ˆ ∞

0

f(x)xs−1dx. (14.126)
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In what follows we shall occasionally refer to the Mellin transform of f (x) asM [f (x)].
Let

x = e−t (14.127)

dx = −e−tdt (14.128)

xs−1 = e−t(s−1) = e−tset (14.129)

FM(s) = −
ˆ −∞

∞
f(e−t)e−stdt =

ˆ ∞

−∞
f(e−t)e−stdt = L[f(e−t)]. (14.130)

This is a bilateral Laplace transform. We note in passing that in Chapter 18 recent develop-
ments are shown to considerably expand the domains of existence of bilateral Laplace and
z-transform and consequently Mellin transform.

Example 14.7 Let
f(x) = u(x− a), a > 0

f
(
e−t
)

= 1 iff. e−t > a, i.e. t < − lna

= u (− ln a− t)

FM(s) =

ˆ ∞

−∞
u (− lna− t) e−stdt =

ˆ − ln a

−∞
e−stdt =

e−st

s

∣∣∣∣
−∞

− ln a

=
0− es ln a

s
=
−as

s
, σ < 0.

Example 14.8 For
f(x) = u(a− x), a > 0

f(e−t) = u
(
a− e−t

)
= u (t+ ln a)

FM(s) =

ˆ ∞

−∞
u (t+ ln a) e−stdt =

ˆ ∞

− ln a

e−stdt =
e−st

s

∣∣∣∣
− ln a

∞

=
es ln a

s
=
as

s
, σ > 0.

Example 14.9 Let
f(x) = xnu(x− a), a > 0

f(e−t) = e−ntu
(
e−t − a

)
= e−ntu (− lna− t)

FM(s) =

ˆ ∞

−∞
e−ntu (− ln a− t) e−stdt =

ˆ − ln a

−∞
e−(s+n)tdt

=
e−(s+n)t

(s+ n)

∣∣∣∣
−∞

− ln a

= −a
(s+n)

s+ n
, σ < −n.

For the case
f(x) = e−αx, α > 0. (14.131)

We have, directly,

FM(s) =

ˆ ∞

0

f (x) xs−1dx =

ˆ ∞

0

e−αxxs−1dx = α−sΓ (s) , σ > 0, α > 0. (14.132)
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We note the definition of the Gamma Function:

Γ (z) =

ˆ ∞

0

tz−1e−tdt, Re [z] > 0

= kz

ˆ ∞

0

tz−1e−ktdt, Re [z] > 0, Re [k] > 0. (14.133)

Let f(x) = e−x2

FM(s) =

ˆ ∞

0

e−x2

xs−1dx. (14.134)

Let x2 = v, 2xdx = dv

FM(s) =

ˆ ∞

0

e−vv(1/2)(s−1) dv

2v1/2
=

1

2

ˆ ∞

0

e−vv(1/2)s−1dv =
1

2
Γ (s/2) . (14.135)

14.33 Mellin Transform of ejx

The Mellin transform of f (x) = ejx is given by

FM (s) =

ˆ ∞

0

ejxxs−1dx. (14.136)

To evaluate this integral consider the contour integral
‰

C

z2s−1ejz2

dz (14.137)

where C is the closed contour in the z-plane shown in Fig. 14.13.

FIGURE 14.13 Contour of integration in z-plane.

The contour is so chosen as to avoid the singularity at z = 0. We have

I=△
‰

C

z2s−1ejz2

dz = 0. (14.138)
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On the real axis we write z = x, dz = dx. On the circle of radius R we write z = Rejθ,
dz = Rjejθdθ. On the line of slope π/4 we have z = r ejπ/4, dz = ejπ/4dr,

I =

ˆ R

ε

x2s−1ejx2

dx+

ˆ π/4

0

(
Rejθ

)2s−1
ejR2ej2θ

Rjejθdθ

+

ˆ ε

R

(
r ejπ/4

)2s−1

e−r2

ejπ/4dr +

ˆ 0

π/4

(
εejθ

)2s−1
ejε2ej2θ

εjejθdθ

= 0 = I1 + I2 + I3 + I4. (14.139)

Writing s = σ + jω we note that the fourth integral I4 has an absolute value of

ε2se−ε2 sin 2θ (14.140)

which tends to zero as ε −→ 0 if σ > 0. The second integral I2 has the absolute value

R2se−R2 sin 2θ. (14.141)

FIGURE 14.14 Inequality of the sine function.

From the well-known inequality illustrated in Fig. 14.14, namely,

sinu ≥ (2/π)u, 0 ≤ u ≤ π/2 (14.142)

we have u = 2θ
R2se−R2 sin 2θ ≤ R2se−R2(2/π)2θ, 0 ≤ θ ≤ π/4 (14.143)

i.e.

|I2| ≤
ˆ π/4

0

R2σe−R2 sin 2θdθ ≤
ˆ π/4

0

R2σe−(4/π)R2θdθ

= R2σ e−(4R2/π)θ

−4R2/π

∣∣∣∣∣

π/4

0

=
π

4
R2σ−2

(
1− e−R2

)
(14.144)

which tends to zero as R −→∞ if and only if σ < 1.
We may therefore write, as ε −→ 0 and R −→∞,

ˆ ∞

0

x2s−1ejx2

dx = ej(π/2)s

ˆ ∞

0

r2s−1e−r2

dr. (14.145)
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Letting x2 = u, 2xdx = du, r2 = v, 2r dr = dv we have with 0 < σ < 1
ˆ ∞

0

u(2s−1)/2eju (1/2)u−1/2du = ej(π/2)s

ˆ ∞

0

v(2s−1)/2e−v (1/2) v−1/2dv (14.146)

i.e.
ˆ ∞

0

us−1ejudu = ej(π/2)s

ˆ ∞

0

us−1e−vdv, 0 < σ < 1 (14.147)

deducing that
FM (s) = ej(π/2)sΓ (s) = jsΓ (s) . (14.148)

If f(x) = ejωx we let ωx = u obtaining

FM(s) = ejπs/2ω−sΓ(s) (14.149)

and thereof
M
[
e−jωx

]
= e−jπs/2ω−sΓ(s).

For the case
f(x) = sinx (14.150)

FM(s) =

ˆ ∞

0

sinxxs−1dx =

ˆ ∞

0

ejx − e−jx

2j
xs−1dx

=
1

2j

(
M
[
ejx
]
−M

[
e−jx

])
= −j0.5Γ(s)

{
e+j(π/2)s − e−j(π/2)s

}

= sin[(π/2)s]Γ(s). (14.151)

Similarly if
f(x) = cosx (14.152)

then

FM(s) =

ˆ ∞

0

cosxxs−1dx = cos
(π

2
s
)

Γ(s). (14.153)

As will be elaborated upon in Chapter 18, we note that from knowledge of Mellin trans-
forms we can extend Laplace transforms. For example, we know that if f(x) = e−ax then
FM(s) = a−sΓ(s).

This implies that a−sΓ(s) is the bilateral Laplace transform of f(e−t) = e−ae−t

. In other

words L[e−ae−t

] = a−sΓ(s).
If f(x) = sgn(− lnx) then f(e−t) = sgnt

FM(s) = L[sgnt] =
2

s
. (14.154)

14.34 Hankel Transform

The Hankel transform is suitable for transforming a two-dimensional signal f (x, y) which
has symmetry about the origin of the x − y plane so that its value is simply a function
of the distance r =

√
x2 + y2 from the origin. To obtain perfect symmetry we write the

two-dimensional Fourier transform of the signal f (x, y) in the form

F (f1, f2) =

ˆ ∞

−∞

ˆ ∞

−∞
f (x, y) e−j2π(f1x+f2y)dx dy. (14.155)
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so that the inverse transform is given by

f (x, y) =

ˆ ∞

−∞

ˆ ∞

−∞
F (f1, f2) e

j2π(f1x+f2y)df1 df2. (14.156)

We may write

g(r) = f (x, y) (14.157)

and, using polar coordinates,

x = r cos θ, y = r sin θ (14.158)

and in the transform domain

f1 = ρ cosφ, f2 = ρ sinφ (14.159)

f1x+ f2y = rρ {cos θ cosφ+ sin θ sinφ} = rρ cos (θ − φ) (14.160)

dA = dx dy = rdr dθ (14.161)

F (f1, f2) =

ˆ 2π

0

ˆ ∞

0

g(r)e−j2πrρ cos(θ−φ)rdr dθ. (14.162)

Letting θ − φ = λ we may write

ˆ 2π

0

e−j2πrρ cos(θ−φ)dθ =

ˆ −φ+2π

−φ

e−j2πrρ cos λdλ

=

ˆ 2π

0

e−j2πrρ cos λdλ = 2πJ0 (2πrρ) (14.163)

using the Bessel function integral form [1]

J0 (z) =
1

2π

ˆ 2π

0

e−jz cos γdγ. (14.164)

The transform of g(r), denoted G(ρ), is therefore

G(ρ)=△F (f1, f2) = 2π

ˆ ∞

0

rg(r)J0(2πρr)dr. (14.165)

This is known as the Hankel transform, and the inverse transform is given by

g(r) =
1

2π

ˆ ∞

0

ρG(ρ)J0(2πrρ)dρ. (14.166)

Example 14.10 A circular plateau g (r) of radius a centered at the origin of the x − y
plane may be viewed as a rotation about the origin of a rectangle. We may write it in the
form

g (r) = Πa (r) =

{
1, 0 ≤ r < a
0 r > a.

Its Hankel transform is given by

G (ρ) = 2π

ˆ a

0

r J0 (2πrρ) dr = (a/ρ)J1 (2πaρ)
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Example 14.11 The Hankel transform of g (r) = e−r is

G (ρ) = 2π

ˆ ∞

0

r e−rJ0 (2πrρ) dr = 2π/
(
4π2ρ2 + 1

)3/2

using the integrals of Bessel functions.

Example 14.12 A ring of radius a formed by the Dirac-delta impulse, namely, g (r) =
δ (r − a) has the Hankel transform

G (ρ) = 2π

ˆ ∞

0

rδ (r − a)J0 (2πrρ) dr = 2πa J0 (2πaρ) .

Example 14.13 With g (r) = 1/r we have

G (ρ) = 2π

ˆ ∞

0

J0 (2πrρ) dr = 1/ρ

and with g (r) = e−r/r,

G (ρ) = 2π

ˆ ∞

0

e−rJ0 (2πrρ) dr = 2π/
√

4π2ρ2 + 1

Other transforms are listed in Table 14.2.

TABLE 14.2 Hankel basic transforms

g (r) G (ρ)

Π1 (r) J1 (2πρ) /ρ

1/r 1/ρ

δ (r − a) 2πa J0 (2πaρ)

e−r 2π/
(
4π2ρ2 + 1

)3/2

e−r/r 2π/
√

4π2ρ2 + 1

1/
√

1 + r2 e−2πρ/ρ

1/
(
1 + r2

)3/2
2πe−2πρ

14.35 Fourier Cosine Transform

We have studied properties of half-range expansion in Chapter 2. We have noted that if a
given function f(t) is reflected about the t = 0 axis, the resulting even function has real
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spectrum. This same property is the basis of a special form case of the Fourier transform
referred to as the Fourier cosine transform (FCT).

Given a one-sided function f(t) defined for t ≥ 0 if we reflect the function about the
t = 0 axis we obtain an even function fe(t) such that

fe (t) = f (|t|) = f (t) , t ≥ 0 (14.167)

fe (−t) = fe (t) (14.168)

and its Fourier transform is given by

Fe (jω) =

ˆ ∞

−∞
fe (t) e−jωt =

ˆ ∞

−∞
fe (t) (cosωt− j sinωt)dt

= 2

ˆ ∞

0

fe (t) cosωt = 2

ˆ ∞

0

f (t) cosωt dt. (14.169)

The FCT Fc (jω) is by definition

Fc (jω) =

ˆ ∞

0

f (t) cosωt dt, ω ≥ 0 (14.170)

which is half the transform of the even function fe (t)

Fc (jω) = Fe (jω) /2. (14.171)

The inverse FCT is given by

f (t) =
2

π

ˆ ∞

0

Fc (jω) cosωt dω, t ≥ 0. (14.172)

The FCT is preferred in analyzing causal signals and when the evaluation of real expressions
is preferred to complex ones.

A Fourier sine transform (FST) is similarly defined by a half range expansion based on
an odd reflection of the function about the t = 0 axis. In this case the spectrum is purely
imaginary.

The FST transform is written

Fs (jω) =

ˆ ∞

0

f (t) sinωt dt, ω > 0 (14.173)

and the inverse transform is

f (t) =
2

π

ˆ ∞

0

Fs (jω) sinωt dω, t ≥ 0. (14.174)

14.36 Discrete Cosine Transform (DCT)

The discrete cosine transform is the discrete time counterpart of the FCT.
Given the (2N − 2)-elements sequence x [0], x [1], . . ., x [2N − 3], with even symme-

try about n = N − 1, such as that shown in Fig. 14.15, i.e. x [1] = x [2N − 3], x [2] =
x [2N − 4] , ..., x [N − 2] = x [N ], and of which the elements x [0] and x [N − 1] are unique.
We may write
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FIGURE 14.15 Even symmetry.

X [k] =

2N−3∑

n=0

x [n] e−j 2π
2N−2nk =

2N−3∑

n=0

x [n] e−j π
N−1nk

= x [0] + x [N − 1] e−j π
N−1 (N−1)k +

N−2∑

n=1

x [n] e−j π
N−1nk

= x [0] + (−1)
k
x [N − 1] + x [1]

{
e−j π

N−1k + ej π
N−1k

}

+ x [2]
{
e−j π

N−12k + ej π
N−12k

}
+ . . .

+ x [N − 2]
{
e−j π

N−1 (N−2)k + ej π
N−1 (N−2)k

}
(14.175)

X [k] = x [0] + (−1)
k
x [N − 1] + 2

N−2∑

n=1

x [n] cos
π

N − 1
nk (14.176)

X [k] has the same symmetry as x [n].

x [n] =
1

2N − 2

2N−3∑

k=0

X [k] ej π
N−1nk

=
1

2 (N − 1)

{
X [0] +X [N − 1] ej π

N−1 (N−1)n +
2N−2∑

k=1

X [k] ej π
N−1nk

}

=
1

2 (N − 1)

{
X [0] + (−1)nX [N − 1] + 2

N−2∑

k=1

X [k] cos
π

N − 1
nk

}
(14.177)

Example 14.14 let x [n] = 3, 2, 1, 2. We may write

X [k] = x [0] + (−1)
k
x [N − 1] + 2

N−2∑

n=1

x [n] cos
π

N − 1
nk

= 3 + (−1)
k × 1 + 2

{
2 cos

π

2
k
}

= 3 + (−1)
k

+ 4 cos
π

2
k

X [0] = 3 + 1 + 4 = 8, X [1] = 3− 1− 4× 0 = 2, X [2] = 3 + 1 + 4× (−1) = 4− 4 = 0,

X [3] = 3− 1 + 4 cos 3
π

2
= 2 + 0 = 2

x [n] =
1

4

{
X [0] + (−1)

n
X [N − 1] + 2

N−2∑

k=1

X [k] cos
π

N − 1
nk

}
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x [0] =
1

4
(8 + 0 + 2X [1]) =

8 + 2× 2

4
= 12/4 = 3

x [1] =
1

4

(
8− 0 + 2× 2 cos

π

2

)
= 8/4 = 2

x [2] =
1

4

(
8 + 0 + 2× 2 cos

π

2
× 2
)

=
8− 4

4
= 4/4 = 1

x [3] =
1

4

(
8− 0 + 2× 2× cos

π

2
× 3
)

= 8/4 = 2

confirming that

x [n] =
1

2 (N − 1)

[
X [0] + (−1)

n
X [N − 1] + 2

N−2∑

k=1

X [k] cos
π

N − 1
nk

]
.

We can equivalently write the DCT in the form

XDC [k] = 2

N−1∑

n=0

x [n] ξ [n] cos
π

N − 1
nk, k = 0, 1, . . . , N − 1

where

ξ [n] =

{
1, n = 1, 2, . . . , N − 2
1/2, n = 0, N − 1

and the inverse DCT in the form

x [n] =
1

N − 1

N−1∑

k=0

XDC [k] ξ [k] cos
π

N − 1
nk, n = 0, 1, . . . , N − 1.

14.37 Fractional Fourier Transform

The fractional Fourier transform is given by

Fa (jω) =

ˆ ∞

−∞
Aαe

jπ[cot αω2/(4π2)−2 csc α(ω/2π)t+cotαt2]f (t) dt (14.178)

i.e.

Fa (jω) = Aαe
j cotαω2/(4π)

ˆ ∞

−∞
e−j csc αωt+jπ cotαt2f (t) dt (14.179)

where
Aα =

√
1− j cotα (14.180)

Alternatively, with ω = 2πf

Fa (f) = Aαe
jπ cot αf2

ˆ ∞

−∞
e−j2π csc αft+jπ cot αt2f (t) dt (14.181)

If α = π/2 the fractional transform is the usual Fourier transform.
For example, let f (t) = 1. We may write

x = cotα, ξ = cscαf (14.182)
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Fa (f) = Aαe
jπ cot αf2

ˆ ∞

−∞
ejπ(xt2−2ξt)dt (14.183)

Fa (f) =
√

1− j cotαejπ cot αf2 1√
cotα

ejπ/4e−jπ(csc α)2f2/ cot α (14.184)

having used the relation
ˆ ∞

−∞
ejπ(xu2±2ξu)du =

1√
x
ejπ/4e−jπξ2/x. (14.185)

With
ξ real, x > 0 (14.186)

ˆ

e−jπ(xu2±2ξu)du =
1√
x
e−jπ/4ejπξ2/x (14.187)

we have
ˆ ∞

−∞
ejπ(xt2+2yt)dt =

1 + j√
2

e−jπy2/x

√
x

(14.188)

Fa (f) = Aα

ˆ ∞

−∞
ejπ(cot αf2−2 csc αft+cot αt2)f (t) dt (14.189)

Aα =
√

1− j cotα (14.190)

Fa (f) = Aαe
jπ cot αf2

ˆ ∞

−∞
ejπ(cot αt2−2 csc αft)f (t) dt (14.191)

Fa (f) = Aαe
jπ cot αf2

ˆ ∞

−∞
ejπ(xt2−2ξt)dt

= Aαe
jπ cot αf2 1√

cotα
ejπ/4e−jπ(csc α)2f2/ cot α

=

√
1− j cotα

cotα

√
j ejθ =

√
j
√

tanα− jejθ =
√

1 + j tanαejθ

(14.192)

θ = π cotαf2 − π f2

sin2 α
sin α
cos α = −π tanαf2 (14.193)

so that
Fa (f) =

√
1 + j tanα e−jπ tan αf2

(14.194)

Example 14.15 With f (t) = δ (t− t0)

Fa (f) = Aαe
jπ cotαf2 ´∞

−∞ δ (t− t0) ejπ(cot αt2−2 csc αft)dt

= Aαe
jπ cot αf2

ejπ(cot αt20−2 csc αft0)

=
√

1− j cotα ej cot αf2

ejπ(cot αt20−2 csc αft0)

Fa (f) =
√

1− j cotα ejπ(cotαf2−2 csc αft0+cot αt20)

Example 14.16 Consider f (t) = ejω0t = ej2πf0t

Fa (f) = Aαe
jπ cot αf2 ´∞

−∞ e
jπ(cot αt2−2 csc αft+2f0t)dt

= Aαe
jπ cotαf2 ´

ejπ{cot αt2+2(f0−csc αf)t}dt
= Aαe

jπ cotαf2 1√
cotα

√
je−jπ(f0−csc αf)2/ cot α

=
√

1−j cot α
cot α

√
jejθ =

√
1 + j tanαejθ
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jθ = jπ
{
cotαf2 +

[
2 cscαff0 − f2

0 − csc2 αf2
]
/ cotα

}

= −jπ
{
− cotαf2 − 2

f f0
cosα

+ f2
0 tanα+

f2

sinα cosα

}

= −jπ
{
− cotαf2 − 2 secαf f0 + f2

0 tanα+
f2

sinα cosα

}

= −jπ
{
Cf2 − 2 secαf f0 + f2

0 tanα
}

where

C = − cotα+
1

sinα cosα
=

1

sinα cosα
− cosα

sinα
=

1− cos2 α

sinα cosα
=

sin2 α

sinα cosα
= tanα

Hence
Fa (f) =

√
1 + j tanα e−jπ{tan αf2−2 sec αf f0+f2

0 tan α}

Example 14.17 Consider f (t) = cosβt = 0.5
(
ejβt + e−jβt

)

Fa (f) = 0.5
√

1 + j tanα
[
e−jπ{tan αf2−2 sec αf0f+f2

0 tan α} +e−jπ{tan αf2+2 sec αf0f+f2
0 tan α}]

= 0.5
√

1 + j tanα e−jπ{tan αf2+f2
0 tan α} {ej2π sec αf0f + e−j2π sec αf0f

}

=
√

1 + j tanα e−jπ tan α(f2+f2
0 ) cos 2πf0 secαf.

Table 14.3 lists fractional transforms of some basic functions. In deriving the transform
of f(t) = e−πγt2 use is made of the the relation

ˆ ∞

−∞
ejπ(xt2+2yt)−πγt2dt =

1√
γ − jxe

−jπy2/(x+jγ). (14.195)

14.38 Discrete Fractional Fourier Transform

The discrete fractional Fourier transform is given by

Xb [k] =

N−1∑

n=0

x [n] e−j 2π
N b n k (14.196)

and may be evaluated using Mathematicar.

14.39 Two-Dimensional Transforms

Operations on two-dimensional sequences, including z transformation, convolution and cor-
relation have been studied in Chapter 6. We have seen that the concept is a straightforward
extension to two variables of the one-dimensional, one-variable transform.

The definitions of several two-dimensional transforms are given in what follows.
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TABLE 14.3 Fractional Fourier transforms of some common functions

f (t) Fa (f)

δ (t)
√

1− j cotα ejπf2 cot α

δ (t− t0)
√

1− j cotα ejπ(f2 cot α−2ft0 csc α+t20 cot α)

1
√

1 + j tanα e−jπf2 tan α

ej2πf0t
√

1 + j tanα e−jπ(f2 tan α−2f0f sec α+f2
0 tan α)

ejπγt2
√

(1 + j tanα) / (1 + γ tanα) ejπf2[γ−tan α]/[1+γ tan α]

ejπ(γt2+2f0t)
√

(1 + j tanα) / (1 + γ tanα)

ejπ[f2(γ−tan α)+2f0f sec α−f2
0 tan α]/[1+γ tan α]

e−πt2 e−πf2

e−πγt2
√

(1− j cotα) / (γ − j cotα) ejπf2[cot α(γ2−1)]/[γ2+cot2 α]

e−πγf2 csc2 α/(γ2+cot2 α)

e−π(γt2+2f0t)

√
1−j cot α
γ−j cot α ejπ cot α[(γ2−1)f2+2γf0 sec αf+f2

0 ]/[γ2+cot α]

e−π csc2 α[γf2+2f0 cos αf−γf2
0 sin2 α]/[γ2+cot α]

14.40 Two-Dimensional Fourier Transform

The 2-D Fourier transform of the two-dimensional function f (x, y) is given by

F (jω1, jω2) =

ˆ ∞

−∞

ˆ ∞

−∞
f (x, y) e−j(ω1x+ω2y)dx dy. (14.197)

The inverse transform is given by

f (x, y) =
1

4π2

ˆ ∞

−∞

ˆ ∞

−∞
F (jω1, jω2) e

j(ω1x+ω2y)dω1 dω2. (14.198)

As an example, the Fourier transform of the two-dimensional weighted Gaussian function

f(x, y) = (xy)6e−(x2+y2)

is given by

F (u, v) = e−(u2+v2)/4(−120 + 180u2 − 30u4 + u6)(−120 + 180v2 − 30v4 + v6)/8192.

and can be seen in Fig. 14.16.
The Fourier transform of a 2-D sequence x [m, n] is defined by

X
(
ejΩ1 , ejΩ2

)
=

∞∑

m=−∞

∞∑

n=−∞
x [m, n]e−j(Ω1m+Ω2n). (14.199)

and the inverse transform is given by

x [m, n] =
1

4π2

ˆ π

−π

ˆ π

−π

X
(
ejΩ1 , ejΩ2

)
ej(Ω1m+Ω2n)dΩ1 dΩ2. (14.200)
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FIGURE 14.16 Fourier transform of a two-dimensional weighted Gaussian function.

Two-Dimensional DFT

The two-dimensional DFT of the N ×N point 2-D sequence x [m, n] is given by

X [r, s] =

N−1∑

m=0

N−1∑

n=0

x [m, n]e−j(2π/N)(rm+sn) (14.201)

x [m, n] =
(
1/N2

)N−1∑

r=0

N−1∑

s=0

X [r, s] ej(2π/N)(rm+sn). (14.202)

The two-dimensional DFT of a matrix representing an image can be found by first eval-
uating the one-dimensional DFT of each row of the matrix, followed by applying a one-
dimensional DFT to each successive column of the resulting matrix. The transform can also
be found by transforming the columns followed by transforming the rows of the resulting
matrix.

As an example, the two-dimensional DFT amplitude spectrum of the portrait of Niels
Henrik Abel (1802-1829), which appears in the biography section of Chapter A, can be seen
as an image and as a three-dimensional surface in Fig. 14.17(a) and (b), respectively.

The two-dimensional DCT transform of the same Abel portrait can be seen in Fig.
14.18(a).

The two-dimensional Walsh–Hadamard transform, in natural order, of the same Abel
portrait can be seen in Fig. 14.18(b). The function hadamard(N) of MATLABr gener-
ates the Walsh–Hadamard matrix in natural order.

The functions fft2 and DCT2 of MATLAB evaluate the two-dimensional DFT and DCT
of an image, respectively.
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Fourier amplitude spectrum of Abel portrait.
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FIGURE 14.17 Amplitude spectrum of Abel’s portrait, a) as an image, and b) as a
three-dimensional surface.

14.41 Continuous-Time Domain Hilbert Transform Relations

Let h (t) be a real causal system impulse response. We have

H (jω) = F [h (t)] = HR (jω) + jHI (jω) (14.203)

H (s) = L [h (t)] . (14.204)

In what follows we show that H (jω) may be deduced from either HR (jω) or HI (jω). Let
H (jω) be a rational function. In this case we have

H (s) =
N (s)

D (s)
. (14.205)

Since H (s) is analytic there are no poles in the right-half plane, i.e. D (s) has no zeros
for Re (s) > 0, D (s) is called a “Hurwitz” polynomial. In the following, we study the case
where there are no poles on the jω axis followed by the case of poles on the axis.

14.42 HI(jω) versus HR(jω) with No Poles on Axis

In what follows we assume a causal impulse response h(t) and no poles of the system
function H(s) on the imaginary axis. We show that given HR (jω), we can evaluate H (s)
and HI (jω). We may write

H (jω) = HR (jω) + jHI (jω) (14.206)

H (−jω) = HR (jω)− jHI (jω) (14.207)



954 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

(a) (b)

FIGURE 14.18 Two-dimensional transforms: (a) DCT, (b) Walsh–Hadamard.

HR (jω) = (1/2) [H (jω) +H (−jω)] (14.208)

jHI (jω) = (1/2) [H (jω)−H (−jω)] (14.209)

HR (s) = (1/2) [H (s) +H (−s)] (14.210)

HR (jω) being even has only even powers of ω. Hence HR (s) has even powers of s. Hence
we may write

HR (s) =
P
(
s2
)

Q (s2)
=

1

2
[R (s) +R (−s)] (14.211)

where R (s) is a ratio of two polynomials in s, with the numerator polynomial assumed to
be of order less than or equal to that of the denominator. Let s2 = q. A partial fraction
expansion of HR (s) leads to the form

HR (s) =
P (q)

Q (q)
= K +

n∑

i=1

ri
q − qi

(14.212)

where q1, q2, . . . , qn are the zeros of Q (q). Now with qi = s2i and si the poles in the
left half plane, we have

ri
q − qi

=
ri

s2 − s2i
=
ri/ (2si)

s− si
− ri/ (2si)

s+ si
(14.213)

HR (s) =
P
(
s2
)

Q (s2)
=

{
K/2 +

n∑

i=1

ri/ (2si)

s− si

}
+

{
K/2 +

n∑

i=1

ri/ (2si)

−s− si

}
. (14.214)

We note that the second term is the same as the first with s replaced by −s. We conclude
that

H (s) = K +

n∑

i=1

ri/ (si)

s− si
. (14.215)
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Similarly, if HI (jω) is known we can evaluate H (s). We have

jHI (s) = (1/2) [H (s)−H (−s)] . (14.216)

Since this is an odd function we may write

jHI (s) =
sP
(
s2
)

Q (s2)
(14.217)

where the order of the polynomial P
(
s2
)

is less than that of the denominator Q (s). With
s2 = q we may write

P (q)

Q (q)
=

n∑

i=1

ρi

q − qi
(14.218)

jHI (s) =
sP
(
s2
)

Q (s2)
=

n∑

i=1

sρi/ (2si)

s− si
−

n∑

i=1

(−s) ρi/ (2si)

−s− si
(14.219)

where again the second term is the same as the first but with s replaced by (−s). We
conclude that

H (s) =
n∑

i=1

sρi/si

s− si
+ C (14.220)

where C is an arbitrary constant. Knowing HI (jω) we can therefore evaluate H (s) only
within an arbitrary constant. Thus knowing HR (jω) we can evaluate H (s) and thereof
HI (jω). Knowing HI (jω) we can evaluate H (s) and HR (jω) within a constant. The fol-
lowing example illustrates the approach.

Example 14.18 Given

HR (jω) =
−4ω4 − 2ω2 − 2

ω6 + ω4 + ω2 + 1

evaluate H (s) and HI (jω).

We write

HR (s) = 0.5 [H (s) +H (−s)] =
4s4 − 2s2 + 2

s6 − s4 + s2 − 1
.

Using a partial fraction expansion with the poles given by

s1 = ej3π/4, s2 = −1, s3 = e−j3π/4, s4 = −s1, s5 = −s2, s6 = −s3

as seen in Fig. 14.19, we obtain

HR (s) = 0.5

[{
r1

s− s1
+

r2
s− s2

+
r3

s− s3

}

+

{
r1

−s− s1
+

r2
−s− s2

+
r3

−s− s3

}]

where r1 = e−j3π/4 = 1/s1, r2 = −2 = 2/s2, r3 = ej3π/4 = 1/s3. Since the poles s1,
s2 and s3 are in the left half of the s plane we have

H (s) =
r1

s− s1
+

r2
s− s2

+
r3

s− s3
=
−3.414s2 − 4.242s− 2

s3 + 2.414s2 + 2.414s+ 1
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FIGURE 14.19 Poles in s plane.

H (jω) =
3.414ω2 − j4.243ω− 2

(jω)3 − 2.414ω2 + j2.414ω+ 1

HI (jω) =
3.414ω5 + 0.585ω

ω6 + ω4 + ω2 + 1
.

Example 14.19 Given that the imaginary part of H (jω) is

HI (jω) =
3.414ω5 + 0.585ω

ω6 + ω4 + ω2 + 1

evaluate H (s) and HR (jω).

We have

jHI (s) = (1/2)[H (s)−H (−s)] =
−3.414s5 − 0.585s

s6 − s4 + s2 − 1
.

Using a partial fraction expansion of jHI (s) we obtain the form

jHI (s) =

3∑

i=1

ri
s− si

−
3∑

i=1

ri
−s− si

wherefrom

H (s) =

3∑

i=1

ri
s− si

+K

where K is a constant. We obtain

H (s) =
−3.414s2 − 4.242s− 2

s3 + 2.414s2 + 2.414s+ 1

as expected, and

H (jω) =
3.414ω2 − j4.243ω− 2

−jω3 − 2.414ω2 + j2.414ω+ 1

HR (jω) =
−4ω4 − 2ω2 − 2

ω6 + ω4 + ω2 + 1
.
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14.43 Case of Poles on the Imaginary Axis

We now consider the case where the poles are on the imaginary axis. Let

H (s) =
a+ jb

s− jβ (14.221)

h (t) = (a+ jb) ejβtu (t) (14.222)

H (jω) = a

{
1

j (ω − β)
+ πδ (ω − β)

}
+ jb

{
1

j (ω − β)
+ πδ (ω − β)

}

HR (jω) = πaδ (ω − β) +
b

ω − β (14.223)

HI (jω) =
−a
ω − β + bπδ (ω − β) . (14.224)

We conclude that in the case of poles on the jω axis if HR (jω) is given by the first of the
these equations we can deduce directly the corresponding term of HI (jω) as in the second
equation and vice versa. Moreover, the system function can be directly deduced as

H (s) = (a+ jb) / (s− jβ) . (14.225)

Example 14.20 Given

HR (jω) =
−6ω4 + 42ω2 + 84

(ω2 − 1) (ω2 − 4) (ω2 + 9)

evaluate HI (jω). Using partial fraction expansion we have

HR (jω) =
−2

ω − 1
+

2

ω + 1
+

1

ω − 2
− 1

ω + 2
− 6

ω2 + 9
.

The first four terms lead to impulses in HI (jω) and in particular

2 [−πδ (ω − 1) + πδ (ω + 1)] + [πδ (ω − 2)− πδ (ω + 2)] .

The fifth term which may be denoted HR,2 (jω) is given by

HR,2 (jω) =
−6

ω2 + 9
=

j

ω − j3 −
j

ω + j3
= (1/2) [H2 (jω) +H2 (−jω)]

H2 (jω) =
j2

ω − j3
i.e.

H2 (s) =
j2

−js− j3 =
−2

s+ 3

and

H2 (jω) =
j2 (ω + j3)

ω2 + 9
=
−6 + j2ω

ω2 + 9

so that its imaginary part is

H2,I (jω) =
2ω

ω2 + 9
wherefrom

HI (jω) = 2π [−δ (ω − 1) + δ (ω + 1)] + π [δ (ω − 2)− δ (ω + 2)] +
2ω

ω2 + 9
.
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14.44 Hilbert Transform Closed Forms

Consider a causal impulse response h (t), having no impulse at t = 0. The above relations
between the real and imaginary of the spectrum of a causal impulse response can be put into
closed forms known as Hilbert transform relations. In fact, the Hilbert transform relations
state that

HI (jω) = − 1

π

ˆ ∞

−∞

HR (jy)

ω − y dy (14.226)

HR (jω) =
1

π

ˆ ∞

−∞

HI (jy)

ω − y dy. (14.227)

Proof Let he and ho be the even and odd parts of h (t). Referring to Fig. 14.20,

FIGURE 14.20 Even-odd decomposition of a causal function.

h (t) = he + ho (14.228)

he =

{
(1/2)h (t) , t > 0
(1/2)h (−t) , t < 0

(14.229)

ho =

{
(1/2)h (t) , t > 0
−(1/2)h (−t) , t < 0

(14.230)

ho (t) = he (t) sgn t (14.231)

he (t) = ho (t) sgn t (14.232)

wherefrom

jHI (jω) =
1

2π
F [he (t)] ∗ F [sgn t] =

1

2π
HR (jω) ∗ 2

jω

=
1

jπ

ˆ ∞

−∞
HR (jy)× 1

(ω − y)dy
(14.233)

as stated. Similarly the second transformation can be verified.

Example 14.21
HR (jω) = δ (ω)

HI (jω) =
−1

π

ˆ

δ (y)
1

ω − ydy =
−1

π

1

ω
.
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14.45 Wiener–Lee Transforms

Alternative expressions relating the real and imaginary spectral components, referred to as
Wiener–Lee transforms, are obtained by writing

ω = − tan
Ω

2
(14.234)

H (jω) = H

(
−j tan

Ω

2

)
= HR

(
−j tan

Ω

2

)
+ jHI

(
−j tan

Ω

2

)
. (14.235)

Referring to Fig. 14.21, let X (Ω) = HR (j tan Ω/2) and Y (Ω) = HI (j tan Ω/2). We
have

H (−j tan Ω/2) = X (Ω)− jY (Ω) . (14.236)

FIGURE 14.21 Wiener–Lee spectral transformation.

Expanding the even function X (Ω) and the odd function Y (Ω), of period 2π each into
trigonometric Fourier series we have

X (Ω) = a0 + a1 cosΩ + . . .+ an cosnΩ + . . . (14.237)

Y (Ω) = b1 sin Ω + b2 sinΩ + . . .+ bn sinnΩ + . . . (14.238)
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an =
1

π

ˆ π

−π

X (Ω) cosnΩ dΩ (14.239)

bn =
1

π

ˆ π

−π

Y (Ω) sinnΩ dΩ. (14.240)

It can be shown that if h (t) is causal then

bn = −an (14.241)

wherefrom, knowing HR (jω), to evaluate HI (jω) we may find X (Ω), then its Fourier
series coefficients an and thence bn = −an. The function Y (Ω) is thus deduced, followed
by HI (jω).

If HI (jω) is known we evaluate the coefficients bn and thence an = −bn, except for
a0 which stays as an arbitrary constant. The real component HR (jω) is thus determined
within an arbitrary constant.

Example 14.22 Given
HR (jω) = cos

(
2n tan−1 ω

)
.

Evaluate HI (jω) and h (t).
We have

HR (jω) = cosnΩ

X (Ω) = HR (j tan Ω/2) = HR (−jω) = cosnΩ.

Hence the Fourier series coefficients of its expansion are given by

an = cosnΩ

and those of Y (Ω) are bn = −an so that

Y (Ω) = HI (j tan Ω/2) = HI (−jω) = − sinnΩ

i.e.
HI (jω) = sinnΩ

H (jω) = X (Ω)− jY (Ω) = cosnΩ + j sinnΩ = ejnΩ.

We note that
1− jω
1 + jω

= ej2 tan−1 ω = ejΩ.

Hence

HI (jω) =

(
1− jω
1 + jω

)n

H (s) =

(
1− s
1 + s

)n

.

Using the binomial expansion

H (s) =

(
2

s+ 1
− 1

)n

=

n∑

k=0

(
n

k

)(
2

s+ 1

)k

(−1)
n−k

= (−1)
n

n∑

k=0

(
n

k

)( −2

s+ 1

)k

= (−1)
n

{
1 +

n∑

k=1

(
n

k

)
(−2)

k

(s+ 1)
k

}

1

sk
←→ tk−1

(k − 1)!
u (t)

h (t) = (−1)
n

{
δ (t) +

n∑

k=1

(
n

k

)
(−2)

k
e−t tk−1

(k − 1)!
u (t)

}
.
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14.46 Discrete-Time Domain Hilbert Transform Relations

Similarly, in the discrete-time domain, we can decompose a sequence into even and odd
parts

h [n] = he [n] + ho [n] (14.242)

he [n] = (1/2) [h [n] + h [−n]] (14.243)

ho [n] = (1/2) [h [n]− h [−n]] . (14.244)

FIGURE 14.22 Even and odd parts of a causal sequence.

If the sequence h[n] is causal, as in Fig. 14.22, we have

he [0] = (1/2) {h [0] + h [−0]} = h [0] (14.245)

he [n] =





(1/2)h [n] , n > 0
(1/2)h [−n] , n < 0
h [0] , n = 0

(14.246)

and

h [n] =





2he [n] , n > 0
he [n] , n = 0
0, n < 0

(14.247)
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and

ho [n] =






(1/2)h [n] , n > 0
−(1/2)h [−n] , n < 0
0, n = 0

(14.248)

and

h [n] =

{
2ho [n] , n > 0
0, n < 0

(14.249)

h (0) cannot be determined from ho (n). Fourier transforming the relation h [n] = he [n] +
ho [n] we have

H(ejΩ) = F [h [n]] =△HR

(
ejΩ
)

+ jHI

(
ejΩ
)

= He

(
ejΩ
)

+Ho

(
ejΩ
)

(14.250)

where He

(
ejΩ
)

= F [he [n]] and Ho

(
ejΩ
)

= F [ho [n]], wherefrom

He

(
ejΩ
)

= HR

(
ejΩ
)

(14.251)

Ho

(
ejΩ
)

= jHI

(
ejΩ
)
. (14.252)

Knowing HR

(
ejΩ
)

we can therefore deduce HI

(
ejΩ
)
. From HR

(
ejΩ
)

= He

(
ejΩ
)

we

can deduce he [n], and thence ho [n], Ho

(
ejΩ
)
; hence HI

(
ejΩ
)

or from he [n] deduce h [n],

wherefrom H
(
ejΩ
)
. If we know only HI

(
ejΩ
)

we have Ho

(
ejΩ
)
; hence ho [n]. We need to

know h [0] to be able to deduce he [n] or h [n]. Knowing h [0] we can deduce HR

(
ejΩ
)

from

HI

(
ejΩ
)
.

For real, causal and stable h [n], knowing HR

(
ejΩ
)

we can evaluate H (z) for |z| > 1.

Knowing HI

(
ejΩ
)

and h [0] we can deduce H (z) for |z| > 1.
We can write

h [n] = he [n] {δ[n] + 2u[n− 1]} (14.253)

H (z) = Z [h[n]] = Z [he [n] {δ[n] + 2u[n− 1]}] (14.254)

which equals the convolution of He (z)=△Z [he [n]] with

Z [{δ[n] + 2u[n− 1]}] = 1 +
2z−1

1− z−1
=

1 + z−1

1− z−1
, |z| > 1 (14.255)

i.e.

H (z) =
1

2πj

‰

He (v)
1 + (z/v)

−1

1− (z/v)
−1 v

−1dv

=
1

2πj

‰

He (v)
z + v

z − v v
−1dv, |z| > 1.

(14.256)

If the contour of integration is the unit circle v = ejθ then He (v) = HR (v) so that

H (z) =
1

2πj

‰

HR (v)
z + v

z − v v
−1dv, |z| > 1. (14.257)

Example 14.23 Given

HR

(
ejΩ
)

=
a2 cosΩ− a

a2 − 2a cosΩ + 1
, |a| > 1,

evaluate H (z).

HR

(
ejΩ
)

=
a2
(
ejΩ + e−jΩ

)
/2− a

(aejΩ − 1) (ae−jΩ − 1)
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Referring to Fig. 14.23

H (z) =
1

2πj

‰

a2
(
v + v−1

)
/2− a

(av − 1) (av−1 − 1)

z + v

z − v
dv

v

=
1

2πj

‰

a
(
v2 + 1

)
/2− v

− (v − 1/a) (v − a)
z + v

z − v
dv

v

= − a
2

+
a
(
1/a2 + 1

)
/2− 1/a

− (1/a− a)
z + a−1

z − a−1
a

= − a
2

+
a

2

z + a−1

z − a−1
=

z−1

1− a−1z−1
.

FIGURE 14.23 Evaluation of residues in v plane.

Line integral form:
Letting v = ejθ we have

H
(
rejΩ

)
=

1

2π

ˆ π

−π

HI

(
ejθ
)
Pr (θ − Ω) dθ +

j

2π

ˆ π

−π

HR

(
ejθ
)
Qr (θ − Ω) dθ (14.258)

where

Pr (θ) = Re

[
1 + r−1ejθ

1− r−1ejθ

]
=
(
1− r−2

)
/
[
1− 2r−1 cos θ + r−2

]
(14.259)

Qr (θ) = Im

[
1 + r−1ejθ

1− r−1ejθ

]
= 2r−1 sin θ/

[
1− 2r−1 cos θ + r−2

]
. (14.260)

The functions Pr (θ) and Qr (θ) are known as the Poisson Kernel and its conjugate,
respectively.

HR

(
rejΩ

)
=

1

2π

ˆ π

−π

HI

(
ejθ
)
Pr (θ − Ω) dθ (14.261)

HI

(
rejΩ

)
=

1

2π

ˆ π

−π

HR

(
ejθ
)
Qr (θ − Ω) dθ. (14.262)

Similarly, we obtain

H (z) =
1

2π

‰

unit circle

HI (v) (z + v)

(z − v) v dv + h (0) , |z| > 1 (14.263)
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HR

(
rejΩ

)
= − 1

2π

ˆ π

−π

HI

(
ejθ
)
Qr (θ − Ω) dθ + h (0) (14.264)

HI

(
rejΩ

)
=

1

2π

ˆ π

−π

HR

(
ejΩ
)
Pr (θ − Ω) dθ, r > 1. (14.265)

To obtain a relation between HR

(
ejΩ
)

and HI

(
ejΩ
)

(on the unit circle r = 1) the integrals
have to be evaluated using the Cauchy principal values since

lim
r−→1

Qr (θ) =
2 sin θ

2 (1− cos θ)
= cot (θ/2) (14.266)

wherefrom Qr (θ − Ω) has a singularity at θ = Ω. The relations take therefore the form:

HI

(
ejΩ
)

=
1

2π
PV

ˆ π

−π

HR

(
ejθ
)
cot

(
θ − Ω

2

)
dθ (14.267)

HR

(
ejΩ
)

= h (0)− 1

2π
PV

ˆ π

−π

HI

(
ejθ
)
cot

(
θ − Ω

2

)
dθ. (14.268)

These are Poisson’s formulas, also known as Hilbert transforms.

Example 14.24 Let

HR

(
ejΩ
)

=
cosΩ− a

1− 2a cosΩ + a2
, a > 0.

To find H (z)

HR

(
ejΩ
)

=

(
ejΩ + e−jΩ

)
/2− a

(1− ae−jΩ) (1− aejΩ)
.

Substituting ejΩ = v we have

H (z) =
1

2πj

‰

(
v + v−1

)
/2− a

(1− av−1) (1− av)
z + v

z − v dv

=
1

2πj

‰

(
v2 + 1

)
/2− av

(v − a) (1− av)
z + v

z − v
dv

v

=
∑

res. at v = 0 and v = a

=
1/2

−a +

(
a2 + 1

)
/2− a2

1− a2

z + a

z − a
1

a

=
1

a

[
−1

2
+
a2/2 + 1/2− a2

1− a2

z + a

z − a

]

=
1

a

[
−1

2
+

1

2

z + a

z − a

]
=

1

z − a .

14.47 Problems

Problem 14.1 a) With base p = 5, a three digit number takes on the successive values
000, 001, 002, 003, 004, 010, 011, 012, . . . , 444. Show the corresponding Gray code for the
first 27 values, i.e. the values 000, 001,002,. . . ,101.
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b) Let N = 27 and p = 3. Write, in exponential notation, if preferred, the 10th, 11th

and 12th row of the generalized Walsh transform in natural order. Evaluate the generalized
sequency (GS) of each of the three rows.

c) Let A be a matrix of dimension N ×N where N = 32 = 2n having the structure

A =




a0,0 a0,1 .... a0,31

a1,0 a1,1 .... a1,31

...

a31,0 a31,1 .... a31,31



.

Let

B = A
{
P (2)

}3

where P (2) is the base-2 perfect shuffle permutation matrix.
Evaluate the matrix B, showing its structure. It suffices to show a few elements of the

first row/columns as well as the last row/column, to specify the matrix structure.

Problem 14.2 a) For N = pn with p = 2 and n = 4 write the Walsh–Hadamard
matrices in the three different well-known orders. Show how to obtain each matrix from the
one preceding it.

b) Repeat a) with now p = 3 and n = 2.
c) Write a “fast” factorization for the general case N = pn of the generalized Walsh

transform. It suffices to write and precisely define the component matrices. To justify it
suffices to precisely cite the source wherefrom the factorization can be found.

Problem 14.3 Show that the Hilbert transform of f(t) = 1/(t2 + 1) is g(t) = t/(t2 + 1).

Problem 14.4 Evaluate the Hilbert transform of f(t) = δ(t− 3).

Problem 14.5 Given

HR

(
ejΩ
)

=
a2 − a cosΩ

a2 − 2a cosΩ + 1
, |a| > 1,

evaluate HI

(
ejΩ
)
.

Problem 14.6 Given

HR (jω) =
2β

ω2 − β2
+ π {δ (ω − β) + δ (ω + β)} ,

evaluate HI (jω).

Problem 14.7 Given

HR (jω) =
1

1 + ω4
,

evaluate HI (jω).

Problem 14.8 Given

HI (jω) =
ω + ω3

1 + ω4
,

evaluate HR (jω).
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Problem 14.9 Evaluate the fractional Fourier transform of f(t) = e−πγt2 .

Problem 14.10 Let

T3 =



w0 w0 w0

w0 w1 w2

w0 w2 w1




where w = e−j2π/3, j =
√
−1

a) Evaluate
T9 = T3 × T3

where “×” denotes the Kronecker product.
b) Show that T9 can be written as a simple product of factors containing Kronecker prod-

ucts of only T3 and the identity matrix I3. Show how to subsequently obtain a factorization
of T9 containing only the matrix C9 = I3 × T3 and the perfect shuffle matrix P9 destined
toward a wired-in processor architecture with a minimum of memory partitions.

c) Simplify, with N = 310 and radix r = 3,

TN = P 4
N (I34 × T3 × I35) (I32 × T3 × I37) (T3 × I39) (I39 × T3) P

−4
N

to obtain a factorization of TN as a function of only C = ( I39 × T3) and P i
N ; i integer.

Problem 14.11 a) Write the Walsh–Hadamard (base 2) matrix in natural order for the
cases N = 2, N = 4, N = 8 and N = 16.

b) For the case N = 16 deduce thereof the dyadic and then the sequency transformation
matrices, listing on the right of each matrix the number of sign changes (the sequency) of
each row.

c) Let A be a matrix of dimension N ×N , where N = 32 = 2n having the structure

A =




a0,0 a0,1 .... a0,31

a1,0 a1,1 .... a1,31

...

a31,0 a31,1 .... a31,31



.

Let

B = A
{
P (2)

}3

where P (2) is the perfect shuffle matrix with radix 2. What operation should be applied to the
rows or columns of the matrix A to obtain the matrix B? Evaluate the matrix B by showing
its structure in terms of the elements of A. It suffices to show the first four elements of
the first four rows/columns of the matrix as well as the last row/column, thus specifying its
structure.

Problem 14.12 a) Using the radix p = 5, three-digit numbers can be written in the normal
ascending order 000, 001, 002, 003, 004, 010, 011, 012, . . ., 444. Show the corresponding
Gray code order for the first 27 values, i.e. corresponding to the values 000, 001, 002, . . .,
101.

b) With a radix p = 3 and N = 9, write the generalized Walsh matrix in natural order
W9. With N = 27, write the expression which produces W27 as a function of W9 in the
same natural order. Write the values of the rows 0, 12, 13 and 14 of the matrix W27 in
natural order. Evaluate the generalized sequency of each of the four rows.
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Problem 14.13 a) A matrix Y is related to a given matrix X of dimension N×N , where
N = 32, through a permutation operation. With radix r = 2 and

ρ = Ir2 × P (r)
N/r2

P
(r)
N being the radix-2 N ×N perfect shuffle matrix, evaluate the matrix Y in the two cases

(i) Y = ρ X and (ii) Z = X ρ.
b) Let P16 be the perfect shuffle matrix of 16 points with radix r = 2,

T2 =

[
1 1
1 −1

]

and
S = I8 × T2

Evaluate PSP−1, P 2SP−2 and P 3SP−3.

Problem 14.14 For N = 9 points and radix p = 3
a) Write the generalized Walsh transform matrix in the natural order.
b) Write the permutation matrix that converts the natural order matrix to the Walsh–

Paley order. Write the Walsh–Paley order matrix thus obtained.
c) Write the permutation matrix that converts the Walsh–Paley order matrix to the

Walsh–Kaczmarz order matrix. Write the Walsh–Kaczmarz matrix thus obtained.
d) For each of these matrices write the closed form of a fast transformation factorization

leading to a wired-in processor and sketch the processor structure.

14.48 Answers to Selected Problems

Problem 14.1
a) Gray code gi = bi − bi+1. See Table 14.4
b)

W33 [9] = 000 000 000 111 111 111 222 222 222, G.S. = 2/2 = 1
W33 [10] = 012 012 012 120 120 120 201 201 201 G.S. = 2/2 = 14
W33 [11] = 021 021 021 102 102 102 210 210 210 G.S. = 2/2 = 24

c) 


a0,0 a0,8 a0,16 a0,24 a0,1 a0,9 ...
a1,0 a1,8 a1,16 a1,24 a1,1 a1,9

a2,0 a2,8 a2,16

a3,0 a3,8 a3,16

...

a31,0 a31,8 a31,16 a31,24 a31,1 a31,9
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TABLE 14.4 Answer to Problem 14.1

p2p1p0 g2g1g0
0 000 000 0
1 001 001 1
2 002 002 2
3 003 003 3
4 004 004 4
5 010 014 9
6 011 010 5
7 012 011 6
8 013 012 7
9 014 013 8
10 020 023 13
11 021 024 14
12 022 020 10
13 023 021 11
14 024 022 12
1... ... ... ...
32 112 101 26
33 113 102 27
34 114 103 28

Problem 14.2
a)

H8 =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




The sequencies are: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
The Gray binary order is {0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8}, producing the Kacz-
marz matrix with sequencies {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
b)

T9 =




0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2




0
4
8
1
5
6
2
3
7

c) For T9 Walsh–Paley, the generalized sequencies are {0, 1, 2, 4, 5, 3, 8, 6, 7}. The binary
Gray code gives the order {00, 01, 02, 12, 10, 11, 21, 22, 20} i.e. the order {0, 1, 2, 5, 3, 4, 7, 8, 6}.
The Kaczmarz matrix has the generalized sequencies {0, 1, 2, 3, 4, 5, 6, 7, 8}.
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Problem 14.4

g(t) = 1/[π(t− 3)].

Problem 14.5

H (z) =
z

z − a−1

Problem 14.6

HI (jω) =
−2ω

ω2 − β2
+ π {δ (ω − β) − δ (ω + β)} .

Problem 14.7

HI (jω) =
−(ω/

√
2)(1 + ω2)

1 + ω4

Problem 14.8

HR (jω) =

√
2 ω4

1 + ω4
+ C

If there is a pole on the jω axis, say at s = jω0 we have

HR (jω) = πδ (ω − ω0)

H (s) =
1

s− jω0
and HI (jω) =

1

ω0 − ω
If HI (jω) = πδ (ω − ω0) then

H (s) =
j

s− jω0
and HR (jω) =

1

ω − ω0

Problem 14.10
a) In exponential notation

T9 =




0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2




b)

T9 = PS9PS9

S9 = (I3 × T3)
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c) With C = T3 × I39

TN = P 4
NP

4CP−4P 2CP−2CP 9CP−9P−4

= P 8CP−2CP−2CP 9CP−3.

Problem 14.12
a)

B G S

000 000 0
001 001 1
002 002 2
003 003 3
004 004 4
010 014 9
... ... ...

100 140 45
101 141 46

b)

W9 = W3 ×W3 =



0 0 0
0 1 2
0 2 1


×



0 0 0
0 1 2
0 2 1


 =




0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2




W27 = W3 ×W9 =




0 0 0
0 1 2
0 2 1



×




0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2




W27 [13] =
[
000 111 222 111 222 000 222 000 111

]

W27 [14] =
[
012 120 201 120 201 012 201 012 120

]

W27 [15] =
[
021 102 210 102 210 021 210 021 102

]

The sequencies of the lines are
S [13] = 10/2 = 5
S [14] = 30/2 = 15
S [15] = 38/2 = 19

Problem 14.13
a)

ρ −→ {(0, 1, 2, 3) , (16, 17, 18, 19) , (4, 5, 6, 7) ,
(20, 21, 22, 23) , (8, 9, 10, 11) , (24, 25, 26, 27) ,
(12, 13, 14, 15) , (28, 29, 30, 31)}
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i)
Y = ρX

Let xi be the row vectors of X . The row vectors of Y are

x0, x1, x2, x3 ; x16, x17, x18, x19 ;
x4, x5, x6, x7 ; x20, x21, x22, x23 ;
x8, x9, x10, x11 ; x24, x25, x26, x27 ;
x12, x13, x14, x15 ; x28, x29, x30, x31 ;

ii) Let Z = Xρ

ρ −→ {0, 1, 2, 3 ; 8, 9, 10, 11 ; 16, 17, 18, 19 ; 24, 25, 26, 27 ;
4, 5, 6, 7 ; 12, 13, 14, 15 ; 20, 21, 22, 23 ; 28, 29, 30, 31}

The column vectors of Z are

x0, x1, x2, x3 ; x8, x9, x10, x11 ; x16, x17, x18, x19 ;
x24, x25, x26, x27 ; x4, x5, x6, x7 ; x12, x13, x14, x15 ;
x20, x21, x22, x23 ; x28, x29, x30, x31

b)
PSP−1 = (T2 × I8)

P 2SP−2 = (I2 × T2 × I4)
P 3SP−3 = (I4 × T2 × I2)

Problem 14.14
c)

WN,Walsh–Kaczmarz =
1

3




0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 2 1 2 1 0 1 0 2
0 2 1 0 2 1 0 2 1






This page intentionally left blank 



15

Digital Signal Processors: Architecture, Logic Design

15.1 Introduction

The logic of computer arithmetic constitutes the foundation of computer architecture and
logic design. In the first part of this chapter we study the fundamentals of digital computer
arithmetic. We start by studying some systems of representation of numbers and follow them
by methods for effecting basic computer arithmetic operations. Examples of the architec-
tures of parallel processors follow. Texas Instruments TMS320C6713B Floating-PointTM

digital signal processor (DSP) is subsequently introduced, and its programming for real-
time applications studied in some detail.

15.2 Systems for the Representation of Numbers

A number X can be represented using many possible forms. A basic form that is well
established uses a radix, or base, r and is called positional notation. The usual decimal
system that we use everyday is a positional notation system using a radix, also referred to
as base, r = 10. When we write X = 7294.15, we implicitly assume that a radix r = 10
is used. To denote this explicitly we should write X = 7294.1510 or X = (7294.15)10
meaning that

X = 7× 103 + 2× 102 + 9× 101 + 4× 100 + 1× 10−1 + 5× 10−2. (15.1)

More generally we write a number with a radix r as

X = (dn−1dn−2 . . . d1d0 . d−1d−2 . . . d−m)r

= dn−1 × rn−1 + dn−2 × rn−2 + . . .+ d1r + d0 + d−1r
−1 + . . . =

n−1∑

i=−m

dir
i.

The digits di have values ranging between 0 and r− 1; that is, 0 ≤ di ≤ r− 1. In a decimal
system, r = 10 and 0 ≤ di ≤ 9. In a binary system r = 2 and di = 0 or 1, while in a
ternary system r = 3 and 0 ≤ di ≤ 2. The ternary number X = 2101.223 has a value
equal to

X = 2× 33 + 1× 32 + 0 + 1 + 2× 3−1 + 2× 3−2

= 3−2
(
2× 35 + 34 + 32 + 2× 3 + 2

)
= 584/9 = (64.888 . . .)10 . (15.2)

Higher radix systems include quaternary (r = 4), quinary (r = 5), octal (r = 8), duodecimal
(r = 12), hexadecimal (r = 16) . . .. In a hexadecimal system, (r = 16), the digits di when
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greater than 9 are given alphabetic symbols to avoid the double-digit values 10 to 15. The
digits di take on the values 0, 1, 2, . . ., 9, A, B, C, D, E, F . The digit F thus denotes the
value (15)10. In what follows the radix subscript appended to a number will be specified
when necessary and omitted when clear from the context or when the representation is
decimal. The left-most digit of a number is called the most significant digit (MSD). The
right-most digit is the least significant digit (LSD).

In a binary system where binary digits are called bits the left- and right-most bits are
denoted MSB and LSB respectively. A binary number can be converted readily into an octal
or hexadecimal number, respectively. To convert to octal we proceed from the LSB toward
the MSB grouping each 3 bits into their octal equivalent. To convert to hexadecimal we do
the same but grouping each 4 bits into their hexadecimal equivalent. The binary number
1 0111 0100 1100 11102 can thus be written as 2723168 and (174CE)16. A binary coded
decimal (BCD) number is one where each decimal digit is coded in binary. The number
719510 is thus coded as (0111 0001 1001 0101), each 4 bits representing the corresponding
decimal digit.

15.3 Conversion from Decimal to Binary

Given a decimal number N it may be converted to binary by successive divisions by 2. The
successive remainders obtained after each division are the successive bits of the equivalent
binary number. For example, with N = 27, dividing by 2 we obtain 13 with remainder
r (1) = 1. Dividing 13 by 2 we obtain 6 and r (2) = 1. Dividing 6 by 2 we obtain 3 and
r (3) = 0. Repeating we obtain ⌊3/2⌋ = 1 and r (4) = 1 and finally ⌊1/2⌋ = 0 and
r (5) = 1.

The value in binary is {r (1) , r (2) , r (3) , r (4) , r (5)} i.e. (11011)2.

15.4 Integers, Fractions and the Binary Point

Equation (15.1) above describes a decimal number that has an integer part, composed of n
digits: d0, d1, . . ., dn−1, a decimal point and a fractional part composed of m digits, d−1,
d−2, . . ., d−m. Similarly, a binary number (bn−1bn−2 . . . b1b0.b−1b−2 . . . b−m)2 is composed
of an integer part of n bits and a fractional part of m bits, both parts separated by a binary
point.

In designing and describing arithmetic operations in a digital computer it is found con-
venient to view a given number as wholly integer or wholly fractional. A wholly integer
number has the form (bn−1bn−2 . . . b1b0.)2 with the binary point located on the right. Such
a convention of viewing all numbers as integers is called “integer or integral number rep-
resentation” (INR). In contrast, “fractional number representation” (FNR) is a convention
where all numbers are viewed as fractions, having the form (. b−1b−2 . . . b−m)2, with the
binary point situated on the left of the fractional bits. In the floating point representa-
tion of numbers, as we shall see later on, a number is represented by a mantissa and an
exponent. In one convention the mantissa is a fraction. The exponent is an integer. It is
therefore advisable to be familiar with both types of notation, the integral and fractional
representations of numbers.
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We note that the fractional number (. 101101) has a value(
2−1 + 2−3 + 2−4 + 2−6

)
= 2−6

(
25 + 23 + 22 + 20

)
= 45

(
2−6
)
.

This same number in the integer-number representation would be viewed as (101101 .),
having a value of 45. The fractional value of the number is therefore 2−6× its integer value.
This is generally the case: Given a number of k bits, say, its value in fractional representation
is the same as its value in integer representation except for a factor of 2−k. We can therefore
evaluate the number as an integer (with the binary point on the right) and multiply it by
2−k to give its value in fractional notation.

In what follows, as is usually the convention, the binary point will often be omitted when
its position is clear from the context. A number such as 110101101 will thus be understood
to have a binary point on its right in the case of integral number representation INR, and
on its left in the case of FNR. Having 9 bits the latter representation gives a value for the
number equal to 2−9× the value given by the integer representation, that is, 429

(
2−9
)
.

If we multiply the two integers 110010 and 101101 the result is the integer 50 × 45 =
225010. Viewed as fractions the result would be 50

(
2−6
)
× 45

(
2−6
)

= 2250 × 2−12, that
is, the same result except with the factor 2−12 associated with it. In either case, however,
whether numbers are viewed as integers or fractions, the logic circuits are the same. In
the literature, some books adopt integer number representation, others adopt fractional
representation. Both types of number representation and their formalism are dealt with in
this book.

15.5 Representation of Negative Numbers

There are three common approaches to representing negative numbers in binary. These
are: (1) sign and magnitude notation, (2) 1’s complement notation and (3) 2’s complement
notation. We now consider each of these in turn.

15.5.1 Sign and Magnitude Notation

In sign and magnitude notation, the negative number appears identically to the positive
number except for a sign bit; which is normally zero for a positive number and one for the
corresponding negative number. The representation of a number composed of n magnitude
bits would thus occupy n+ 1 bits, the additional bit being the sign bit.

Assuming integer number representation INR and n = 5 magnitude bits, a signed number
is stored in a 6-bit register, the left-most bit of which is the sign bit. The decimal value
+23 is thus represented as (0, 10111 .), while the value −23 is represented as (1, 10111 .).
We note that the comma, separating the sign bit from the magnitude bits, and the binary
point on the right, signifying that the number in question is an integer, are added here only
for clarity and are not stored in the register containing the number. The actual content of
the register for +2310 is 010111, and for −2310 is 110111.

We adopt the notation

+23
S&M←−−−→ (0, 10111), −23

S&M←−−−→ (1, 10111) (15.3)

where S&M denotes sign and magnitude notation.
Consider now the sign and magnitude notation in the context of fractional number rep-

resentation FNR. Note that in this notation the binary number (10111) has the decimal
value +23

(
2−5
)
. To represent this value and its negation in sign and magnitude notation
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we may write

+23
(
2−5
) S&M←−−−→ (0; 10111), −23

(
2−5
) S&M←−−−→ (1; 10111). (15.4)

The semicolon here serves to delimit the sign bit and, meanwhile, indicate that the number
is a fraction.

The notation just proposed specifies whether integer or fractional representation is used
and meanwhile delimits the sign bit from the other magnitude bits. In what follows, however,
we shall at times for the sake of notational simplicity only delimit the sign bit by a point
and not indicate explicitly the location of the binary point. We will do this when the binary
point location is clear from the context.

15.5.2 1’s and 2’s Complement Notation

Consider a number x = (xn−1xn−2 . . . x1x0 . x−1x−2 . . . x−m)r of radix r, that is, a number
represented with n integer bits and m fraction bits. The r’s complement of x, which will be
denoted x[r] is given by

x[r] = rn − x. (15.5)

The ( r − 1)’s complement of x is given by

x[r−1] = rn − x− r−m. (15.6)

In a decimal system, r = 10, the 10’s complement of x is given by

x[10] = 10n − x (15.7)

and the 9’s complement by
x[9] = 10n − x− 10−m. (15.8)

For example, if x = 937.25 then x[10] = 1000− 937.25 = 62.75 and x[9] = 62.75− 0.01 =
62.74.

Similarly in the binary system representation the 2’s complement of x is given by

x[2] = 2n − x (15.9)

and the 1’s complement
x[1] = 2n − x− ε (15.10)

where ε = 2−m. Since m = 0 in INR and n = 0 in FNR the 2’s and 1’s complement
representations in INR are respectively

x[2] = 2n − x (15.11)

and
x[1] = 2n − x− 1 (15.12)

and in FNR
x[2] = 1− x (15.13)

and
x[1] = 1− x− 2−m. (15.14)

In what follows we shall also use the notation x and x to denote the 1’s and 2’s complement
respectively. We will focus our attention primarily on binary systems; hence on 1’s and 2’s
complement. We note that in integral (integer) notation, where all numbers are integers,
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we have m = 0. For example, with x = 1101011 we have n = 7 and the 2’s complement
is given by

10000000 2n

− 1101011 x

0010101 ¯̄x ≡ x[2].

Similarly, the 1’s complement is found by subtracting x from (2n − 1). Let M = 2n − 1.
We note that M = 1111111, the maximum possible value that x may have in a 7-bit
register.

The 1’s complement is thus given by

1111111 M = 2n − 1
− 1101011 x

0010100 x̄ ≡ x[1].

We note that the 1’s complement x[1] of x can be written directly by complementing each
bit of x. Moreover, that the 2’s complement x[2] can be evaluated by adding 1 to the 1’s
complement x[1], that is,

x[2] = x[1] + 1. (15.15)

We can thus deduce x[2] by complementing each bit of x to obtain x[1] and then adding 1
to x[1].

Alternatively, the 2’s complement of a number x may be obtained by starting at the right-
most bit copying each bit 0 as is, until the first bit 1 is met and copied as is. Thenceforth
each bit is complemented to the end of x. For example, given x = 0110101100 the 2’s
complement is x[2] = 1001010100.

Now let us consider fractional number representation FNR. In this notation, where num-
bers are fractions with the binary point on the left, we have n = 0 so that the 2’s
complement of x is given by

x[2] = 1− x (15.16)

and the 1’s complement by

x[1] = 1− x− ε = 1− x− 2−m. (15.17)

The above example would then read as

1.0000000 1
− .1101011 x

.0010101 ¯̄x ≡ x[2]

and
.1111111 M = 1− ǫ = 1− 2−m

− .1101011 x
.0010100 x̄ ≡ x[1]

where the smallest positive number is ε = 2−m and where M = 1− ε = (.1111111) is the
maximum number that can be represented without causing over-flow of the 7-bit register.
Henceforth if INR is used, we shall assume that any given positive number A of magnitude
a is by default n bits long and written as an.an−1an−2 . . . a1a0, stored in a register of length
N = n + 1 bits. The dot serves as a delimiter, separating the sign bit an = 0 from the
magnitude bits. The binary point is implied to be to the right of the LSB a0. If FNR is
used it will have the form a0.a−1a−2 . . . a−n, where the binary point is between the sign
bit a0 = 0 and the left-most magnitude bit a−1.
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15.6 Integer and Fractional Representation of Signed Numbers

In what follows a signed number will be denoted using an upper case letter and its magnitude
using lower case. A number A may be positive or negative, and its absolute value is a = |A|.
The INR is shown in Fig. 15.1, where an implied binary point is seen on the right.

FIGURE 15.1 Integer number representation (INR).

The (FNR) has the form shown in Fig. 15.2, where the implied binary point is seen to be
on the left of the most significant of the magnitude bits.

FIGURE 15.2 Fractional number representation (FNR).

As shown in these figures, in integer number representation the bits of the number are
a0 to an where an is the sign bit, while in FNR the bits of a number are labeled a0 to a−n,
with a0 the sign bit and the binary point situated between a0 and a−1.

In INR we write:

A = ±a S&M←−−−→ A[0] =





n−1∑

i=0

ai2
i

1 +

n−1∑

i=0

ai2
i

(15.18)

where we write A[0] to imply that the number is represented in S&M notation.

In FNR we write

A = ±a S&M←−−−→ A[0] =





n∑

i=1

a−i2
−i

1 +

n∑

i=1

a−i2
−i

(15.19)

noting that in INR an = 0 for A = +a and an = 1 for A = −a and in FNR a0 = 0
for A = +a and a0 = 1 for A = −a.

The representations of numbers A = 90 and A = −90 in S&M notation are shown in
Fig. 15.3 and Fig. 15.4. The corresponding representations in FNR are shown in Fig. 15.5
and Fig. 15.6, respectively.
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FIGURE 15.3 Positive number in S&M INR.

FIGURE 15.4 Negative number in S&M INR.

FIGURE 15.5 Positive number in S&M FNR.

FIGURE 15.6 Negative number in S&M FNR.

15.6.1 1’s and 2’s Complement of Signed Numbers

We notice that so far 1’s complement and 2’s complement representations were described
in the context of unsigned numbers. Let us now develop these representations for signed
numbers using the same register length, N = n + 1 bits, as we have just done for S&M
notation.

In addition to the complemented bits we need to add a sign bit that is zero if the number
is positive, and one if negative. The 1’s complement of a signed number A = ±a will be
denoted, in accordance with the above, A[1] or A. The 2’s complement of A = ±a will be

denoted A[2] or A. The bits of A[1] will be denoted A
[1]
i , where in integer notation i varies

from 0 to n and in fractional notation i varies from 0 to −n. Similarly, the bits of A[2] will

be denoted A
[2]
i . Adding the sign bit to the forms developed above we first notice that all

representations are the same for a positive number, since the added sign bit is simply zero.
We can therefore write

A = +a −→ A[0] = A[1] = A[2] (15.20)

meaning that if A ≥ 0 then S&M , 1’s complement and 2’s complement representations
are the same. If A = −a, that is, A < 0 we write

A = −a 1’s complt
←−−−−−−−−−−→ A[1] = 2n+1 − a− 1 (INR)

= −a 1’s complt
←−−−−−−−−−−→ A[1] = 2− a− 2−n = 2− a− ε (FNR). (15.21)

For example with A = +45 we have a = 45, A[0] = A[1] = A[2] = 0, 101101. Now
let A = −45. The absolute value of A, denoted a is a = 45 = 0, 101101. We have in sign
and magnitude notation A[0] = 1, 101101 and in the 1’s complement representation A[1] is
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given in INR and FNR as follows.

INR FNR
10, 000000 2n+1 2

− 1 1 ǫ
1, 111111 W W

− 0, 101101 a a

1, 010010 A[1] A[1]

We note that the INR column is written with the binary point viewed on the right
of the number while the FNR column is written with it viewed at the same position as
the comma, that is, the sign delimiter. We will follow this convention throughout, listing
whenever appropriate both the INR and FNR values for each given number. From this
example we note that the value W =

(
2n+1 − 1

)
is the maximum possible value that can

be stored in the N = n + 1− bit register. We also note that A[1] can be obtained from
A[0] = a by reversing every bit including the sign bit.

Consider now the case of signed numbers. A sign bit is added and is zero if the number
is positive and 1 if it is negative as is the case in the sign and magnitude notation.

In this case the 1’s complement may be obtained by inverting all bits, including the sign
bit. The 2’s complement may be obtained by adding ε to the 1’s complement, where ε = 1
in integer number representation INR and ε = 2−n in fractional number representation
FNR. Consider the example dealt with in connection with sign and magnitude notation
above. In particular, let A = +a = +90. Since the number is positive its representation
in an 8-bit register is identical to that in the sign and magnitude notation, as shown in
Fig. 15.3.

If instead A = −a = −90 its 1’s complement representation is obtained by inverting
all bits including the sign bit, and is shown in Fig. 15.7 and Fig. 15.8 for INR and FNR,
respectively, where in the second case the number represented is A = −a = −90(2−7).

FIGURE 15.7 Representation of −90 in 1’s complement INR.

FIGURE 15.8 Representation of −90 in 1’s complement FNR.

We can write (with A < 0) for 1’s complement representation

A = −a ≃ 2n+1 − a− 1 (INR)

= −a ≃ 2− a− ε (FNR) (15.22)

where ε = 2−n.

We may thus write in integer number representation INR

A[1] = 2n+1 − a− 1 (15.23)
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and in fractional number representation FNR

A[1] = 2− a− 2−n. (15.24)

2’s complement representation may be obtained from 1’s complement by adding 1 to 1’s
complement in INR, or adding ε = 2−n in FNR. We have for 2’s complement representation

−a ≃ 2n+1 − a (INR)

−a ≃ 2− a (FNR) (15.25)

With A = −90 we obtain A[2] as the sum

1 0100101 A[1]

1 ε
1 0100110 Σ

with ε = 1 in INR and ε = 2−n in FNR, as shown in Fig. 15.9 and Fig. 15.10, respectively.

FIGURE 15.9 Representation of −90 in 2’s complement INR.

FIGURE 15.10 Representation of −90 in 2’s complement FNR.

Given a negative number represented in 2’s complement, such as A[2] = 1.0111 we can
find its absolute decimal value by 2’s complementing it, i.e. negating it, obtaining its positive
value a = 0.1001 i.e. a decimal value of 9 in integral representation INR and 9×

(
2−4
)

in
FNR. It is interesting to note that there is another way of evaluating the decimal equivalent
of a negative number given in 2’s complement representation. The approach is to view the
sign bit as a magnitude bit, weighted according to its position, but negative valued. For
the same example we may rewrite the 2’s complement representation of −9 as 1̄.0111 and
consider the representation as the sum of the magnitude part (0111)2 = 710 and the sign
part properly weighted, i.e. −24 = −16, for a total of −9 as required. Similarly, in FNR we
obtain the sum −1 + (0.0111)2 = −1 + 7× 2−4 = −9

(
2−4
)
.

In general therefore we may write the 2’s complement representation as the sum of a
weighted negative sign and a positive magnitude part, obtaining for INR and FNR, respec-
tively,

A
[2]
I ←→ −2n + xI (15.26)

A
[2]
F ←→ −1 + xF . (15.27)

The value xI is the magnitude part of the 2’s complement representation, i.e. xI = 0111 =
710 in the present example. In general it is the 2’s complement representation without the
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sign bit, i.e.
xI =

(
2n+1 − aI

)
− 2n = 2n − aI (15.28)

in INR, and
xF = (2− aF )− 1 = 1− aF (15.29)

i.e. xF = 1− 9
(
2−4
)

= 7
(
2−4
)

in FNR of the same example.
The significance of this property is that it can be used, as we shall see, in an efficient

method for effecting multiplication in 2’s complement.

15.7 Addition

In this section we study the addition A+B of two signed numbers A and B, A being called
the “augend” and B the “addend,” having absolute values a and b, respectively, in sign
and magnitude, 1’s complement and 2’s complement notation. We assume the absence of
overflow OVF. In other words, when the augend A of a magnitude represented by n bits
is added to the addend B, also of an n-bit magnitude, the result should occupy n bits. In
fractional number representation FNR this means that the result remains a fraction, i.e.
less than 1; same as A and B. In INR this means that the result has a magnitude less than
2n.

In what follows we consider for the different possibilities of the signs of A and B the
corresponding sumA+B, as given in the different representations, with examples illustrating
each case.

To lighten the presentation we shall mainly use FNR. The corresponding representation
in INR may be directly deduced by replacing 1 by 2n and ε = 2−n by ε = 1.

15.7.1 Addition in Sign and Magnitude Notation

In addition in sign and magnitude notation, we have to consider the following cases:
a) Positive Operands A ≥ 0, B ≥ 0.
With positive operands A and B, in all three systems, sign and magnitude, 1’s and 2’s

complement, the result is simply the sum of a+ b with a zero, for positive, sign attached.

C = A+B ←→ a+ b; a+ b < 1, A, B > 0 (FNR)

= A+B ←→ a+ b; a+ b < 2n, A, B > 0 (INR). (15.30)

b) Negative Operands A < 0, B < 0.
Algorithm: To effect the addition add the magnitude bits without the sign. Attach to the

result the common sign of A and B, i.e.

A+B ←→ 1 + a+ b; a+ b < 1 (FNR)

←→ 2n + a+ b; a+ b < 2n (INR). (15.31)

c) Oppositely Signed Operands
(i) The case a > b.
Algorithm: Add to the magnitude a = |A| the 1’s complement of the magnitude b = |B|.

Add the “end-around-carry” that results, that is, ignore the carry-out, replacing it by adding
ε to the result.
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Example 15.1 With n = 5 and FNR

A : +15
(
2−5
)

0.01111
B : +14

(
2−5
)

0.01110
C : +29

(
2−5
)

0.11101

Example 15.2

Augend positive FNR INR
+15(2−5) 0.01111 A
−14(2−5) 1.01110 B

01111 a
10001 1− ε− b 2n − 1− b
00000 Σ

1 ε 1
00001

result : 0.00001

Augend negative FNR INR
−15(2−5) 1.01111 A
+14(2−5) 0.01110 B

01111 a
10001 1− ε− b 2n − 1− b
00000 Σ

1 ε 1
00001

result : 1.00001

We may therefore write, noticing that the addition of the end-around carry is equivalent
to ignoring the carry out bit and adding instead ε, meaning adding {−1 + ε} in FNR, and
to adding |−2n + 1| in INR:

For the case A > 0, B < 0

A+B ←→ a+ (1− ε− b) + {−1 + ε} = a− b (FNR)

←→ a+ (2n − 1− b) + {−2n + 1} = a− b (INR). (15.32)

For the case A < 0, B > 0 we have in FNR and INR, respectively,

A+B ←→ 1 + a+ (1− ε− b) + {−1 + ε} = 1 + a− b
←→ 2n + a+ (2n − 1− b) + (−2n + 1) = 2n + a− b. (15.33)

(ii) The case b > a.

Algorithm: Add to the magnitude a the 1’s complement of b. Attach to the result the
sign of the addend B.
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Example 15.3

With A > 0 FNR INR
+14(2−5) 0.01110 A
−15(2−5) 1.01111 B

01110 a
10000 1− ε− b 2n − 1− b
11110 Σ
00001 ε ε

1.00001 C

With A < 0 FNR INR
−14(2−5) 1.01110 A
+15(2−5) 0.01111 B

01110 a
10000 1− ε− b 2n − 1− b
11110 Σ
00001 ε ε

0.00001 C

With b > a and A > 0, B < 0 we may therefore write

A+B ←→ 1 + [1− ε− {a+ (1− ε− b)}] = 1 + b− a (FNR)
←→ 2n + [2n − 1− {a+ (2n − 1− b)}] = 2n + b− a (INR).

(15.34)

With b > a and A < 0, B > 0 we have

A+B ←→ 1− ε− {a+ (1− ε− b)} = b− a (FNR)
←→ 2n − 1− {a+ (2n − 1− b)} = b− a (INR).

(15.35)

15.7.2 Addition in 1’s Complement Notation

Algorithm : Add the two operands including the sign bit. Add the end-around carry, if any.
a) Two positive operands A ≥ B with no OVF.

A+B ←→ a+ b, a+ b < 1 (FNR); a+ b < 2n (INR). (15.36)

b) Two negative operands A < B, B < 0. Algorithm: Add the two operands including
the sign bit. Add the end-around carry.

Example 15.4
−15(2−5) : 1.10000
−14(2−5) : 1.10001

1.00001
1

1.00010 = −29.

We may write

A+B ←→ (2− ε− a) + (2− ε− b) + {−2 + ε} = 2− ε− (a+ b) (FNR)
←→ 2n − 1− (a+ b) (INR).

(15.37)

c) Oppositely signed numbers:
Algorithm: Add the two numbers including the sign bit. Add end-around-carry if any.
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Example 15.5

−15(2−5) 1.10000
+14(2−5) 0.01110

−1 1.11110

+15(2−5) 0.01111
−14(2−5) 1.10001

0.00000
1

0.00001

As the examples show, we have two cases:

(i) No carry-out generated. This is the case if the negative operand has an absolute value
greater than the positive operand, leading to a negative sum: i.e.

A < 0, B > 0, a > b (15.38)

or

B < 0, A > 0, b > a. (15.39)

For these two cases we have, respectively, (in FNR)

A+B ←→ (2− ε− a) + b
←→ 2− ε− (a− b) ; A < 0, B > 0, a > b

(15.40)

A+B ←→ (2− ε− b) + a
←→ 2− ε− (b− a) ; B < 0, A > 0, b > a

(15.41)

and a similar expression in INR.

(ii) A carry-out is generated. This is the case if the negative operand is of an absolute
value less than the positive operand, leading to a positive result. We have the two cases (in
FNR):

For A < 0, B > 0, b > a:

A+B ←→ (2− ε− a) + b+ {−2 + ε} ←→ b− a. (15.42)

For B < 0, A > 0, a > b:

A+B ←→ (2− ε− b) + a+ {−2 + ε} ←→ a− b. (15.43)

15.7.3 Addition in 2’s Complement Notation

In addition in 2’s Complement we have the following cases:

a) Positive operands

Algorithm: Add the two operands signs included.

A+B ←→ a+ b; a+ b < 1, A, B > 0 (15.44)

which is the same as in the sign and magnitude and 1’s complement representation.

b) Negative Numbers A < 0, B < 0, no OVF

Add the two operands, signs included. Neglect any generated carry-out.
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Example 15.6
−15(2−5) 1.10001
−14(2−5) 1.10010

1.00011

A+B ←→ (2− a) + (2− b)− 2 = 2− (a+ b) .

The value −2 represents the neglected output carry.

c) Oppositely signed numbers
Algorithm: Same as above. We have the following cases:

(i) A ≥ 0, a > b:

A+B ←→ a+ 2− b − 2←→ a− b; a > b, A > 0, B < 0. (15.45)

(ii) A ≥ 0, a < b:

A+B ←→ a+ 2− b←→ 2− (b− a) ; a < b, A > 0, B < 0. (15.46)

(iii) A < 0, a > b:

A+B ←→ 2− a+ b←→ 2− (a− b) ; a > b, A < 0, B > 0. (15.47)

(iv) A < 0, a < b:

A+B ←→ 2− a+ b− 2 = b− a; a 6 b, A < 0, B > 0. (15.48)

Example 15.7
+15(2−5) 0.01111
−14(2−5) 1.10010

0.00001

−15(2−5) 1.10001
+14(2−5) 0.01110

1.11111

−14(2−5) 1.10010
+15(2−5) 0.01111

0.00001

+14(2−5) 0.01110
−15(2−5) 1.10001

1.11111

15.8 Subtraction

We consider the subtraction C = A − B, A is called the “minuend,” B the“subtrahend.”
They are assumed to be represented by n bits for magnitude and one sign bit. Since the
subtraction C = A − B is the same as C = A + (−B), the same approach given above
may be used by replacing B by −B. The subtraction C = A−B is usually performed by
simply reversing the bits of the B operand which produces its 1’s complement, and adding
ε, i.e. a bit 1 as a carry-in to the least significant bit, resulting in the 2’s complement of B,
which is then added to A. The following assumes that numbers are represented in FNR.
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15.8.1 Subtraction in Sign and Magnitude Notation

In subtraction in sign and magnitude notation we have the following cases:
a) Operands of opposite signs
Algorithm: Add the absolute values a and b. Attach to the result the sign of the minu-

end A.

Example 15.8
+15(2−5) 0.01111 A

−
[
−14(2−5)

]
1.01110 B

01111 a
01110 b

result : 0.11101

(15.49)

−15(2−5) 1.01111 A
−
[
+14(2−5)

]
0.01110 B

01111 a
01110 b
11101

result : 1.11101

(15.50)

A−B ←→ a+ b; a+ b < 1, A > 0, B < 0

←→ 1 + a+ b; a+ b < 1, A < 0, B > 0. (15.51)

b) Same sign operands
(i) a > b.

Algorithm: Add to the absolute value a of A the 1’s complement of the absolute value b
of B. Add the end-around carry. Attach to the result the sign of A.

Example 15.9
A, B > 0 +15(2−5) 0.01111 A

−
[
+14(2−5)

]
0.01110 B

01111
10001
00000

1
00001

result : 0.00001

A, B < 0 −15(2−5) 1.01111 A
−
[
−14(2−5)

]
1.01110 B

01111
10001
00000

1
00001

result : 1.00001
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For A, B ≥ 0
A−B ←→ [a+ (1− b − ε)− 1 + ε] = a− b. (15.52)

For A, B < 0

A−B ←→ 1 + [a+ (1− b− ε)− 1 + ε] = 1 + (a− b) . (15.53)

(ii) b > a.
Algorithm: Add to the absolute value a of A the 1’s complement of the absolute value b of

B. No carry-out is generated. Complement the result. Attach to the result the complement
of the sign bit of A.

+14(2−5) 0.01110 A
−
[
+15(2−5)

]
0.01111 B

01110
10000
11110

complement : 00001
result : 1.00001

(15.54)

−14(2−5) 1.01110
−
[
−15(2−5)

]
1.01111

01110
10000
11110

complement : 00001
result : 0.00001

(15.55)

A, B > 0, a ≤ b
A−B ←→ 1 + {1− [a+ (1− b − ε)]− ε} = 1 + b− a. (15.56)

A, B < 0, a ≤ b:
A−B ←→ 1− [a+ (1− b − ε)]− ε = b− a. (15.57)

15.8.2 Numbers in 1’s Complement Notation

Algorithm: Add to A the 1’s complement of B (signs included). Add the end-around carry,
if any. No OVF is assumed i.e., in the present FNR presentation, a+ b < 1

+15(2−5) 0.01111 A
−
(
−14(2−5)

)
1.10001 B

0.01111
0.01110

result : 0.11101

(15.58)

−15(2−5) 1.10000
−
(
+14(2−5)

)
0.01110

1.10000
1.10001
1.00001

1
result : 1.00010

(15.59)
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(i) A > 0, B < 0:
A−B ←→ a+ b. (15.60)

(ii) A < 0, B > 0:

A−B ←→ (2− a− ε) + (2− b − ε)− 2 + ε = 2− (a+ b)− ε. (15.61)

(iii) A > 0, B > 0, a ≥ b:

A−B ←→ a+ (2− b − ε)− 2 + ε = a− b. (15.62)

(iv) A > 0, B > 0, a < b:

A−B ←→ a+ (2− b− ε) = 2− ε− (b− a) . (15.63)

(v) A < 0, B < 0, a ≥ b:

A−B ←→ (2− ε− a) + [2− ε− (2− ε− b)] = 2− ε− a+ b. (15.64)

(vi) A < 0, B < 0, a < b:

A−B ←→ 2− ε− a+ [2− ε− (2− ε− b)]− 2 + ε = b− a (15.65)

Example 15.10 Case (v)
−15(2−5) 1.10000

−
(
−14(2−5)

)
1.10001

−15(2−5) 1.10000
+14(2−5) 0.01110
result : 1.11110

Case (vi)
−14(2−5) 1.10001

−
(
−15(2−5)

)
1.10000

−14(2−5) 1.10001
+15(2−5) 0.01111

0.00000
1

0.00001

15.8.3 Subtraction in 2’s Complement Notation

Algorithm: Add to A the 2’s complement, i.e. the negation, of B.
(i) A > 0, B < 0:

A−B ←→ a+ {2− (2− b)} = a+ b, a+ b < 1. (15.66)

(ii) A < 0, B > 0:

A−B ←→ (2− a) + (2− b)− 2 = 2− (a+ b) . (15.67)

(iii) A > 0, B > 0, a ≥ b:

A−B ←→ a+ 2− b− 2 = a− b. (15.68)
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(iv) A > 0, B > 0, a < b:

A−B ←→ a+ 2− b = 2− (b− a) . (15.69)

(v) A < 0, B < 0, a ≥ b:

A−B ←→ (2− a) + {2− (2− b)} = 2− a+ b. (15.70)

(vi) A < 0, B < 0, a < b:

A−B ←→ 2− a+ {2− (2− b)} − 2 = (b− a) . (15.71)

Example 15.11 case (iii)

+15(2−5) 0.01111
−
(
+14(2−5)

)
0.01110

+15(2−5) 0.01111
−14(2−5) 1.10010

0.00001

case (iv)

+14(2−5) 0.01110
−
(
+15(2−5)

)
0.01111

+14(2−5) 0.01110
−15(2−5) 1.10001

1.11111

case (vi)

−14(2−5) 1.10010
−
(
−15(2−5)

)
1.10001

−14(2−5) 1.10010
+15(2−5) 0.01111

0.00001

15.9 Full Adder Cell

A full adder (FA) cell receives two bits, ai and bi, and a carry-input bit ci−1 and produces
the sum bit and carry-out bit si and ci respectively.

The sum bit si is 1 if and only if the number of 1-bits in the input combination {ai, bi, ci−1}
is odd. We may therefore write

si = ai ⊕ bi ⊕ ci−1. (15.72)

The carry-out bit is 1 if two of the input bits or all three are 1. We may write

ci = aibi + aici−1 + bici−1. (15.73)

A full adder cell may thus be logically implemented as shown in Fig. 15.11(a) and represented
as the FA cell in part (b) of the figure.
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FIGURE 15.11 Full adder cell.

15.10 Addition/Subtraction Implementation in 2’s Complement

An implementation of a logical circuit for addition/subtraction of two numbers A and B in
2’s complement is shown in Fig. 15.12(a) and in symbolic form in (b).

FIGURE 15.12 Addition/subtraction of two numbers in 2’s complement.

A control-bit input labeled Sub/Add dictates whether addition or subtraction is to be
performed. If it is logic “High,” i.e. 1, the unit performs the subtraction C = A − B; if
it is logic “low” i.e. 0, the addition C = A + B is performed. Subtraction is effected by
complementing the bits bi of the subtrahend B, producing its 1’s complement, and applying
a carry-in bit c0, obtaining the 2’s complement, i.e. negation of B, which is added to A.
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15.11 Controlled Add/Subtract (CAS) Cell

The 2’s complement Addition/Subtraction unit just seen may be redrawn to show the
individual FA cells as shown in Fig. 15.13(a).

(a)

FA
ci ci-1

bi ai

si

sn

bn an

FA
ci ci-1

bi ai

si

s1

b1 a1

FA
ci ci-1

bi ai

si

s0

b0 a0 SUB/ADD

FA
ci ci-1

aibi

si

bi

(b)

SUB/ADD

FIGURE 15.13 2’s complement n-bit addition/subtraction employing FA cells.

We note that each stage of this implementation contains an FA cell and an exclusive or
gate. The combination of the two can be implemented as a controlled add/subtract (CAS)
cell, as shown in Fig. 15.13(b). Such a cell is a basic and important component for the
implementation of basic operations such as division and square-root evaluation, as we shall
see shortly. In such operations it is convenient to pass on the input bit bi with a shift to
neighboring cells, same as the control bit ADD/SUB. These bits are therefore made to enter
and exit the CAS cell, to be connected to the neighboring cells, as shown in the figure.

15.12 Multiplication of Unsigned Numbers

Similarly to the paper and pencil method, multiplication is effected by successive add and
shift operations. We shall use mainly fractional number representation FNR and occasionally
show the corresponding equivalent INR. In FNR, the operands being fractions, their product
is also a fraction; hence no overflow can occur. The input operands are the multiplicand A
and the multiplier B and are n bits long each. The product is 2n bits long. The results of
the add-shift operations are partial products which appear in an n-bit accumulator. The
following example illustrates the multiplication of two such numbers.

Example 15.12 Evaluate C = A×B where

A = 17
(
2−5
)
, B = 25

(
2−5
)
.

We have, with n = 5,
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ab = a

n∑

i=1

b−i2
−i = b−12

−1a+ b−22
−2a+ b−32

−3a+ . . .+ b−n2−na

17
(
2−5
)

: 0.10001 A = a
25
(
2−5
)

: 0.11001 B = b
0.0000010001 b−5

(
2−5a

)

0.0000000000 b−4

(
2−4a

)

0.0000000000 b−3

(
2−3a

)

0.0010001000 b−2

(
2−2a

)

0.0100010000 b−1

(
2−1a

)

0.0110101001 Σ = 425
(
2−10

)
.

We can rewrite the procedure by adding each new term b−i2
−ia to the accumulated sum, as

follows
0.10001 A = a
0.11001 B = b FNR INR
0.0000010001 b−5

(
2−5a

)
b0a

0.0000000000 b−4

(
2−4a

)
b12a

0.0000010001 Σ
0.0000000000 b−3

(
2−3a

)
b22

2a
0.0000010001 Σ
0.0010001000 b−2

(
2−2a

)
b32

3a
0.0010011001 Σ
0.0100010000 b−1

(
2−1a

)
b42

4a
0.0110101001 Σ

In INR we write

ab = a

n−1∑

i=0

bi2
i = b02

0a+ b12
1a+ b22

2a+ . . .+ bn−12
n−1a.

15.13 Multiplier Implementation

Since multiplication consists of shifts and additions, a multiplier may be implemented us-
ing FA cells. Consider the 4-bit by 4-bit multiplication of two positive numbers A and B
represented as follows

a3 a2 a1 a0 A
b3 b2 b1 b0 B
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
P7 P6 P5 P4 P3 P2 P1 P0 Σ

Such operation can be implemented using a cellular structure made up of FA units as
shown in Fig. 15.14.

The required additions on each successive column of such products are thus effected,
producing the 8-bit multiplication result.
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FIGURE 15.14 Cellular 4 bit × 4 bit non-additive multiplier.

It is to be noted, however, that such a multiplier is a stand alone unit that cannot be
easily employed as a module to effect multiplications of longer words. If we are to design
a multiplier to act as such a module we would need to replace this multiplier by one that
can perform not only the multiplication A×B but, moreover, addition of partial results. It
is for this reason that the simple direct multiplier just seen is referred to as a “nonadditive
multiplier.” The more versatile building module, referred to as an “additive multiplier,”
performs the operation A × B + C + D, where the the operands C and D are in general
partial results to be added to the product A×B.

The operation of additive multiplication for the case of 4-bit operands A, B, C and D
may be represented in the form

a3 a2 a1 a0 A

b3 b2 b1 b0 B

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

c3 c2 c1 c0 C

d3 d2 d1 d0 D

P7 P6 P5 P4 P3 P2 P1 P0 Σ

Multiplication of operands of higher word lengths can be implemented using this additive
multiplier employed as a building block. A cellular array type additive multiplier may be
realized as shown in Fig. 15.15.

Using the 4 bit × 4 bit additive multiplier consider the realization of two 16-bit operands
X and Y . We may write

X = X0 +X12
4 +X22

8 +X32
12 (15.74)

Y = Y0 + Y12
4 + Y22

8 + Y32
12 (15.75)

where the two operands X and Y are partitioned into four 4-bit words X0, X1, X2, X3

and Y0, Y1, Y2, Y3, respectively.
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a2

FAFAFA

FAFA

FAFAFA

FAFAFA

FA

b0
a3 b0

a0

b1

a2

b1

a0

b2

a1

b2

a0

b3

a1

b3

P0P1P2P3P4P5P6P7

c0

FA

FA

FA

FA
a2

b2

a2

b3

c1c2c 3

d0

d1

d2

d3

bb 00 aa
01

a1

b1
a3 b1

a3 b2

a3 b3

FIGURE 15.15 Cellular array additive multiplier.

The multiplication Z = X Y may thus be effected by evaluating the cross products and
adding the partial sums. We write

Z = X Y = X0Y0 + (X0Y1 +X1Y0) 24 + (X0Y2 +X1Y1 +X2Y0) 28

+ (X0Y3 +X1Y2 +X2Y1 +X3Y0) 212

+ (X1Y3 +X2Y2 +X3Y1) 216 + (X2Y3 +X3Y2) 220 + (X3Y3) 224.
(15.76)

These partial sums are represented graphically in Fig. 15.16 where each such sum is drawn
displaced to the left by the number of bits associated with them in this equation. For
example the third term in the right-hand side, namely, (X0Y2 +X1Y1 +X2Y0) 28 implies
that the partial results X0Y2, X1Y1 and X2Y0 should be drawn displaced 8 bits to the left
of the least significant bit, as shown in the figure.

Rearranged, the multiplier appears as the diamond-like structure, with reduced carry
ripple propagation delay, shown in Fig. 15.17.

15.14 3-D Multiplier

A 3-D structure was proposed in [24] and constructed [28]. This multiplier is shown in Fig.
15.18.

As can be seen the sum bits at the outputs of the 4-bit parallel adders are not propagated
in the same plane producing a 2-D structure as in the last figure. Instead a three-dimensional
structure and higher processing speed is obtained by propagating the adders’ outputs to
a new plane. In the new plane each two rows of bits are paired and added together using
4-bit parallel adders again. The resulting sums are propagated to another plane and so on.
The multiplier rows are thus added in a structure that is in the form of a binary tree made
up of successive parallel planes, as shown in the figure. This multiplier was constructed and
used to build complex multipliers as parts of the arithmetic unit of an FFT radix-4 parallel
processor [28] [15].
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X0Y0

X0Y1

X0Y2

X0Y3

X3Y0

X2Y0

X2Y1

X2Y2

X2Y3

X1Y0

X1Y1

X1Y2

X1Y3

X3Y1

X3Y2

X3Y3

44

FIGURE 15.16 A 16 bit × 16 bit multiplier using 4 bit × 4 bit multipliers.

FIGURE 15.17 A 16 bit × 16 bit multiplier rearranged as a rhombus-like structure.

FIGURE 15.18 A 3-D multiplier.
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15.14.1 Multiplication in Sign and Magnitude Notation

In sign and magnitude notation the following algorithm may be employed:

a) Positive numbers are multiplied as shown above.

b) Negative numbers: Multiply the numbers without their sign bits S(A) and S(B),
respectively, as if the numbers were positive. Attach to the result the sign bit S (C) where
S (C) = S (A)⊕ S (B).

15.14.2 Multiplication in 1’s Complement Notation

In 1’s complement notation we have the following cases:

(i) B > 0, A < 0, i.e. B = +b, A = −a.
Algorithm: For each bit b−i of the multiplier B add the multiplicand A shifted to the

right by 1 bits, performing a ”sign-extend” by inserting i bits to the left of the shifted bits
of A. Moreover, add 1-bits to the right of the shifted bits of A, up to the end of the 2n-bit
word length.

Example 15.13

A = −17
(
2−5
)

1.01110 2− a− ε
B = +25

(
2−5
)

0.11001 +b
1.1111101110 b−5

(
2− ε2 − 2−5a

)

1.1101110111 b−2

(
2− ε2 − 2−2a

)

1.1101100101 Σ
1 ε2

1.1101100110 Σ
1.1011101111 b−1

(
2− ε2 − 2−1a

)

1.1001010101 Σ
1 ε2

1.1001010110 = −425
(
2−10

)

A B ←→
[
∑

i

b−i

(
2− ε2 − 2−ia− 2 + ε2

)
]
− ε2 + 2

= −a
∑

i

b−i2
−i − ε2 + 2 = 2− ε2 − ab.

(15.77)

The term −ε2 + 2 following the term in brackets is added due to the fact that the end
around carry operation is performed in all but the first step.

Note that the addition of the 1-bits is due to the fact that A is negative and is effectively
shifted to the right within a 2n bit register. Hence all zero bits are complemented to 1’s, as
they should in 1’s complement notation.

(ii) B = −b, A = +a.

Algorithm: Since the result should be negative, add the 1’s complement of the multipli-
cand A shifted right i bits for each bit b−i = 0 of the multiplier B. Add end-around carry.
Note that 1-bits are added to the left and to the right of the shifted bits of A as noted
above.
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Example 15.14

+25
(
2−5
)

0.11001 +a
−17

(
2−5
)

1.01110 2− ε− b
1.1111100110 b−5

(
2− ε2 − 2−5a

)

1.1001101111 b−1

(
2− ε2 − 2−1a

)

1.1001010101
1 ε2

1.1001010110

A B ←→
[
∑

i

bi
(
2− ε2 − 2−ia− 2 + ε2

)
]

+ 2− ε2 = 2− ε2 − ab. (15.78)

(iii) B = −b, A = −a.
Algorithm: Add the negation of A, that is, add +a shifted to the right i bits for each bit

b−i = 0 of B.

Example 15.15

−17
(
2−5
)

1.01110 2− ε− a
−25

(
2−5
)

1.00110 2− ε− b
0.0000010001 b−5

(
2−5a

)

0.0010001000 b−2

(
2−2a

)

0.0010011001 Σ
0.0100010000 b−1

(
2−1a

)

0.0110101001 Σ

A B ←→
∑

b−i

(
2−ia

)
= ab. (15.79)

15.14.3 Numbers in 2’s Complement Notation

With either or both operands negative we have the following cases:

(i) B = +b, A = −a.
Algorithm: Add A shifted right for each bit equal to 1 of B. Perform sign extend to the

shifted A. Add zeros to the right of the shifted A up to the end of the 2n bit word length.

Example 15.16

−17
(
2−5
)

1.01111 2− a
+25

(
2−5
)

0.11001 b
1.1111101111 b−5

(
2− 2−5a

)

1.1101111000 b−2

(
2− 2−2a

)

1.1101100111
1.1011110000 b−1

(
2− 2−1a

)

1.1001010111 2− ab

A B ←→
∑

i

b−i

(
2− 2−ia− 2

)
+ 2 = −a

∑

i

b−i2
−i + 2 = 2− ab. (15.80)

(ii) B = −b, A = +a (method 2).

Algorithm: 2’s complement B, replacing it by its absolute value b. Add the complement
of A shifted for each bit b−i = 1. Add zeros to the right of the shifted bits.



Digital Signal Processors: Architecture, Logic Design 999

Example 15.17
+25

(
2−5
)

0.11001 a
−17

(
2−5
)

1.01111 2− b
0.10001 b
1.1111100111 b−5

(
2− 2−5a

)

1.1001110000 b−1

(
2− 2−1a

)

1.1001010111

A B ←→
∑

bi
(
2− 2−ia− 2 + 2

)
= 2− ab. (15.81)

Note that it is possible to interchange the multiplicand and the multiplier, thus adding B
shifted for each bit of a equal to 1.

It is interesting to note, that as we have seen above in Equations (15.26) and (15.27), a
number in 2’s complement may be viewed as composed of a weighted sign bit plus the positive
value of the magnitude bits. As we shall see in the following section, this property my be
used to treat the magnitude bits as a positive operand and deal with the sign bit separately.

Example 15.18 A < 0, B < 0

A = 1.0110 = −10

B = 1.1001 = −7

n = 4, A = −2n + 6, B = −2n + 9

A B = (−2n + 6)× (−2n + 9) = 22n − 6× 2n − 9× 2n + 6× 9

1.0110 A

1.1001 B

0110
0 000

00 00
011 0





6× 9

1.1001
1 b4

}
− 6× 2n

1.0110
1 a4

}
− 9× 2n

1 a4b4 = 22n

0.0100 0110 Σ

Example 15.19 B = −b, A = −a

−17(2−5) 1.01111 2− a
−25(2−5) 1.00111 2− b

1.00111 −1 + x
1.1111101111
1.111101111
1.11101111
0.10001
0.0110101001 ab

(15.82)
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We can write B = −b = −1 + x

A B ←→
∑ {

x−i

(
2− a2−i − 2

)}
+ 2 + a (mod2) =

∑
x−i

(
−a2−i

)
+ a

= −ax+ a = −a (1− b) + a = ab.
(15.83)

15.15 A Direct Approach to 2’s Complement Multiplication

In 2’s complement we have seen that the representation of a negative number may be viewed
as composed of a negatively weighted sign bit and a positive magnitude part which when
added produce the decimal value of the number. In the present context of the multiplica-
tion A × B, where the multiplier B is negative, of absolute value b, the 2’s complement
representation has a decimal value described in INR and FNR respectively by the relations

B
[2]
I ←→ −2n + xI (15.84)

and
B

[2]
F ←→ −1 + xF (15.85)

where the indexI stands for INR and the index F for FNR, As stated earlier, xI = 2n − bI
and xF = 1− bF .

Let B ≡ BI = −9 in INR and n = 5 bit representation, with the corresponding
B ≡ BF = −9(2−5) in FNR. We have xI = 24− 9 = 7 and xF = 1− 9

(
2−4
)

= 7
(
2−4
)
.

B
[2]
I ←→ −24 + xI = −9 and B

[2]
F ←→ −1 + xF = −9

(
2−4
)
.

Example 15.20
+13

(
2−4
)

0.1101 a
−9
(
2−4
)

1.0111 B[2] = −1 + x
0.00001101 x−4

(
2−4a

)

0.0001101 x−3

(
2−3a

)

0.00100111 Σ
0.001101 x−2

(
2−2a

)

0.01011011 Σ
0.00000000 x−1

(
2−1a

)

0.01011011 Σ
1.0011 2− a
1.10001011 C = −117.

As the example shows, multiplication in FNR is performed by multiplying the magnitude
parts aF and xF and the subtraction of a by the addition of its 2’s complement. In other
words the multiplication takes the form

A×B = aF × (−1 + xF )←→ aFxF + (2− aF ) . (15.86)

As a verification, replacing xF by its value we obtain

A×B ←→ aF (1− bF ) + (2− aF ) = 2− aF bF (15.87)

which is the proper product in 2’s complement as required. In INR the corresponding
relations are

A×B = aI × (−2n + xI) = aIxI − 2naI ←→ aIxI + 2n
(
2n+1 − aI

)
(15.88)
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i.e.

A×B ←→ aIxI + 22n+1 − 2naI . (15.89)

Again, as a verification, replacing xF by its value we have

A×B ←→ aI (2n − bI) + 22n+1 − 2naI = 22n+1 − aIbI (15.90)

which is the proper result represented in 2’s complement and in INR.

This approach of multiplication of numbers in 2’s complement may be used as the basis
for constructing a cellular multiplier. The cellular multiplier, is known as the Baugh–Wooley
multiplier. We may add a slight modification to the Baugh–Wooley multiplier resulting in
a reduction of one Full Adder. The result is the structure shown in Fig. 15.19 and which
may be referred to as the Modified Baugh–Wooley Multiplier.

a2
b4

a4

b4

a1
b4

a2

FAFAFA

FAFA

FAFAFA

FAFAFA

FA

a0 b0a1 b0b0a3 b0

a0
b1

a1
b1

a2
b1

a0
b2

a1
b2

a2
b2

a0
b3

a1
b3

a2
b3

a0
b4

FA

P0P1P2P3P4P5P6P7

FAFA

0 0 0

a3
b4

FA

FA

FA

FA

a3
b1

a3
b2

a3
b3

P8

FA

0

a4
b4

FA

b4
a4

a4 b0

a4 b1

a4 b2

a4 b3

FA

FIGURE 15.19 Modified cellular Baugh–Wooley multiplier.

The cellular array effects the operations described by the following bit layout:

a4· a3 a2 a1 a0

b4· b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
b4· b4a3 b4a2 b4a1 b4a0

b4
a4· a4b3 a4b2 a4b1 a4b0

a4

a4b4·
P8· P7 P6 P5 P4 P3 P2 P1 P0 Σ
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15.16 Division

In the division operation a “dividend” A is divided by a “divisor” D. The result of the
division A÷D is a “quotient” Q and a “remainder” R. We write

A

D
= Q+

R

D
. (15.91)

In what follows we study division and its implementation in the three systems of represen-
tation of numbers: sign and magnitude, 1’s complement and 2’s complement notations. We
shall use FNR with occasional referencing to the corresponding INR which should by now
be easy to deduce. The dividend A is assumed to be in general 2n-bits long plus sign, while
the divisor is n-bits long plus sign. We may therefore use the representation

a0 a−1 a−2 . . . a−2n d0 d−1 d−2 . . . d−n

A : D :

We start by an example recalling decimal division since in different parts of the world the
approach takes different forms.

Example 15.21 Evaluate 753802.392÷ 82.96.
With A = 753802392, and D = 82960, the result should be A/D = Q + R/D, with

Q = 9086.33 . . .. The long division process is represented in the form

q1 q2 q3 q4 q5 q6
0 9 0 8 6 .3 3 . . .

D = 82960 A = 7 5 3 8 0 2 3 9 2
q1D 7 4 6 6 4 0
r1 7 1 6 2 3 9
q3D 6 6 3 6 8 0
r3 5 2 5 5 9 2
q4D 4 9 7 7 6 0
r4 2 7 8 3 2 .0
q5D 2 4 8 8 8 .0
r5 2 9 4 4 .0 0
q6D 2 4 8 8 .8 0
r6 4 5 5 .2 0

As shown, we place the dividend A on the right and the divisor D on the left and proceed to
evaluate the quotient Q, which appears above A, one digit at a time. The first step is to take
enough digits of A so that when divided by the divisor D the result is an integer. We therefore
select the first 6 digits of A and obtain the first quotient digit as q1 = 753802/82960 = 9,
as shown above.

We next multiply q1 times D obtaining q1D = 746640 and effect a subtraction, obtaining
the remainder

r1 = A− q1D = 7162

Next we repeat the process by annexing to the right of r1 the next digit “3” of A, obtaining
r′1 = 71623. We divide r′1 by D. The result is q2 = 0. We annex to r′1 one more digit
of A, namely 9, obtaining r′′1 = 716239. We divide r′′1 by D. The result is q3 = 8. This
process is repeated, as shown above. We obtain r3 = r′′1 − q3D = 52559, q4 = ⌊r′3/D⌋ =
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⌊525592/D⌋ = 6 and r4 = r′3 − q4D = 27832. Since all digits of A have already been used
we annex a decimal point and a zero to r4 obtaining r′4 = 27832.0 and insert the decimal
point next to q4. We obtain next q5 = ⌊r′4/D⌋ = 3 and r5 = r′4 − q5D = 2944.0.

With a zero annexed we have r′5 = 2944.00 and q6 = ⌊r′5/D⌋ = 3. Then r6 = r5−q6D =
455.20. We have thus obtained the quotient Q = 9086.33 and the remainder R = 455.20
so that the result of the division is given by A÷D = 9086.33 + 455.20/82960. The process
can be continued if higher precision is required.

15.16.1 Division of Positive Numbers:

Binary division follows the same procedure. It is simpler in the sense that each quotient bit
qi is either 0 or 1. In what follows, since we view all numbers as fractions using the FNR
system the result Q of the division has to be a fraction; otherwise overflow occurs. In the
formalism and examples to follow therefore the dividend A will be less in absolute value
than the divisor, leading to a quotient that is a fraction.

The division of binary positive numbers is illustrated by the following example

A =
(
490× 2−10

)
= 0.0111101010 (15.92)

and

D =
(
26× 2−5

)
10

= 0.11010. (15.93)

q−1q−2q−3q−4q−5

Q = 0 .1 0 0 1 0 = 18× 2−5

D = 0.11010 0 .0 1 1 1 1 0 1 0 1 0 = A
≡ d 1 .1 0 0 1 0 1 q−1

(
2− 2−1d− 2−1ε

)

0 .0 0 0 0 1 1 Σ
1 2−1ε

0 .0 0 0 1 0 0 1 0 1 Σ, r1, r
′
1, r

′′
1 , r

′′′
1

1 .1 1 1 1 0 0 1 0 1 q−4

[
2− 2−4 (d+ ε)

]

0 .0 0 0 0 0 1 0 1 0 Σ, r2
1 2−4ε

0 .0 0 0 0 0 1 0 1 1 0 r3, R = 22× 2−10

R = r = a− qd. (15.94)

Note that the divisor D and the dividend A are positive and are n = 5 and 2n = 10 bits
long, respectively. As in decimal division the dividend A is placed on the right, as shown,
and the divisor D on the left of the chart. The process consists of attempting to place a
1-bit as q−i in the quotient Q and verifying the remainder obtained by subtracting q−iD,
shifted by i bits to the right, initially from A and subsequently from the previous remainder.

If the subtraction leads to the same sign as A, positive in this case, a “success” is met, q−i

is set to 1 and the subtraction is confirmed. If on the other hand it produces a remainder
of opposite sign it is deemed a “failure.” In this case q−i is set to zero and the process
repeated. As can be seen, the subtractions of the shifted divisor D are performed by adding
its 2’s complement, effected in fact by adding the 1’s complement followed by adding a
carry-input, i.e. adding 2−iε.

The division starts by attempting to set the first bit q−1 of the quotient Q to 1. We then
subtract q−12

−1D from A. As shown in the figure this is accomplished by adding to the seven
leftmost bits of A, i.e. 0.011110, the 1’s complement of the shifted D, i.e. 2−2−1d−2−1ε =
1.100101 and a carry-in of a value 2−1ε. The result is given by r1 = 0.000100, as shown in
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the figure. The process is repeated by first annexing the next unused bit of A i.e. 1 to the
last result, obtaining r′1 = 0.0001001.

We now attempt to place a 1 in the Q register, i.e. set q−2 = 1. If we evaluate the result
of subtracting the shifted D from r′1, i.e. the value r′1 − q−2

(
2− 2−2d− 2−2ε

)
we would

discover that the result is negative, opposite to the sign of A. This means a “failure” is
encountered. We reset q−2 = 0, annex a new bit to r′1 from A so that r′′1 = 0.00010010
and attempt setting q−3 = 1. Again a failure is encountered. We reset q−3 to 0, annex bit
to r′′1 from A obtaining r′′′1 = 0.000100101. An attempt of setting bit q−4 = 1 is found
to be a “sucess” confirming its validity. We evaluate r2 = r′′′1 −

(
2− 2−4d− 2−4ε

)
and

add 2−4ε as shown in the figure. The result is r3 = 0.000001011. We annex the last bit
of A to r3 obtaining r′3 = 0.0000010110. An attempt of setting q−5 = 1 fails, leading to
a change of sign of the new remainder r4. We therefore reset q−5 to 0, ending the process.
The result of the division is Q = 0.10010 and R = 0.0000010110, i.e. Q = 18× 2−5 and
R = 22× 2−10. We have obtained

R←→ A+
5∑

i=1

q−i

{
2− 2−i (d+ ε) + 2−iε− 2

}
= a− qd (15.95)

which is the proper representation of the remainder.

15.16.2 Division in Sign and Magnitude Notation

Algorithm: Divide the absolute values. Attach the sign to the quotient as the exclusive-or
of the signs of A and D, i.e. S(Q) = S(A)⊕ S(D).

15.16.3 Division in 1’s Complement

(i) A = −a, D = +d.

Algorithm: Add D = +d shifted right to the dividend A in case of a success, i.e. if the
resulting sum has the same sign as A. Throughout, the quotient being negative, a quotient
bit 0 is inserted in Q if a success is met, and a 1 otherwise.

A = −490× 2−10, D = +26× 2−5 (15.96)

q0 q−1 q−2 q−3 q−4 q−5

1 .0 1 1 0 1
D = 0.11010 1 .1 0 0 0 0 1 0 1 0 1 A

0 .0 1 1 0 1 0 q−12
−1d

1 .1 1 1 0 1 1 0 1 0 Σ
0 .0 0 0 0 1 1 0 1 0 q−42

−4d
1 .1 1 1 1 1 0 1 0 0 1 Σ

Q = 1.01101 = −18× 2−5 (15.97)

R = −22× 2−10 (15.98)

R = (−a)− (−qd) = −a+ qd←→ (2− ε2 − a) +
∑

q−i2
−id = 2− ε2 − (a− qd). (15.99)

(ii) A = +a, D = −d.
Algorithm: Add D shifted and set the bit of Q to 0 if success is met.
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q0q−1q−2q−3q−4q−5

1 .0 1 1 0 1
D = 1.00101 0 .0 1 1 1 1 0 1 0 1 0 A = +a

1 .1 0 0 1 0 1 q−1

[
2− 2−1 (d+ ε)

]

0 .0 0 0 0 1 1 Σ
1 2−1ε

0 .0 0 0 1 0 0 1 0 1 Σ
1 .1 1 1 1 0 0 1 0 1 q−4

[
2− 2−4 (d+ ε)

]

0 .0 0 0 0 0 1 0 1 0 Σ
1 2−4ε

0 .0 0 0 0 0 1 0 1 1 0 R

R←→ a+
∑

i

q−i

[
2− 2−i (d+ ε) + 2−iε− 2

]
= a− qd (15.100)

as required.

(iii) A = −a, D = −d.
Algorithm: Add the 1’s complement, i.e. add d, the negation, of D shifted if success is

met.
q−1q−2q−3q−4q−5

Q = 0 .1 0 0 1 0
D = 1.00101 1 .1 0 0 0 0 1 0 1 0 1 A←→ 2− ε2 − a

0 .0 1 1 0 1 0 q−12
−1d

1 .1 1 1 0 1 1 0 1 0 Σ
0 .0 0 0 0 1 1 0 1 0 q−42

−4d
1 .1 1 1 1 1 0 1 0 0 1 Σ

R←→ A+
∑

q−i2
−id = 2− ε2 − a+ dq = 2− ε2 − (a− qd). (15.101)

15.16.4 Division in 2’s Complement

(i) A = −a, D = +d.

Algorithm: Proceed as in the 1’s complement case, obtaining the quotient in 1’s comple-
ment. Calling this result G we have to add ε to obtain the required quotient Q = G + ε;
ε = 2(−5).

In the following example the bits of the 1’s complement formG of the quotient are denoted
G0, G−1, G−2, . . ., G−5.

G = 1 .0 1 1 0 1 + ε = 1.01110 −→ Q
D = 0.11010 1 .1 0 0 0 0 1 0 1 1 0 A

0 .0 1 1 0 1 0 G−12
−1d

1 .1 1 1 0 1 1 0 1 1 Σ
0 .0 0 0 0 1 1 0 1 0 G−42

−4d
1 .1 1 1 1 1 0 1 0 1 0

R←→ (2− a) +
∑

G−i2
−id = 2− a+ qd (15.102)

R←→ 2− a+ qd = 2− (a− qd) . (15.103)

(ii) A = +a, D = −d.
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Similarly to the last case we proceed as follows:

G = 1 .0 1 1 0 1 + ε = 1.01110
D = 1.00110 0 .0 1 1 1 1 0 1 0 1 0 A = +a

1 .1 0 0 1 1 0 G−1

[
2− 2−1d

]

0 .0 0 0 1 0 0 1 0 1
1 .1 1 1 1 0 0 1 1 0 G−4

[
2− 2−1d

]

0 .0 0 0 0 0 1 0 1 1 0

Note that G−i = q−i.

R←→ a+
∑

G−i

(
2− 2−id− 2

)
= a− qd. (15.104)

(iii) A = −a, D = −d.
Algorithm: Add d, the negation of D, shifted if success is met.

Q = 0 .1 0 0 1 0
D = 1.00110 1 .1 0 0 0 0 1 0 1 1 0 A = −a

0 .0 1 1 0 1 0 q−12
−1d

1 .1 1 1 0 1 1 0 1 1
0 .0 0 0 0 1 1 0 1 0 q−42

−4d
1 .1 1 1 1 1 0 1 0 1 0

R←→ (2− a) +
∑

i

q−i2
−id = 2− (a− qd). (15.105)

A combinatorial approach to construct a divider in sign and magnitude, 1’s and 2’s
complements is depicted in Fig. 15.20. At each step a subtraction of the divisor is performed.
If the remainder does not change sign a success is deduced and the quotient bit is thus set.
If the remainder changed sign a failure is deduced and restoration is performed using a
multiplexer.

15.16.5 Nonrestoring Division

In nonrestoring division A ÷D of two positive operands the process starts by subtracting
the divisor D from the dividend A by adding the 2’s complement of D. The values of the
dividend and divisor should be such that no overflow may occur. We assume a dividend A
of 2n − 1 bits plus sign, and a divisor D of n bits plus sign, leading to a quotient and a
remainder of n magnitude bits each. If instead the divisor is 2n bits long the same approach
would yield a quotient and a remainder of n+ 1 bits each.

To simplify the presentation we consider the example used above for illustrating restoring
division, where A = +a = 49010 = (0.111101010)2 and D = +d = 2610 = (0.11010)2.
We use integer number representation INR to lighten the description, noting that fractional
number representation FNR can be used instead with little modification.

The process of nonrestoring division is illustrated by the following example:

A = 0.111101010 = 490, D = 0.11010 = 26 (15.106)
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FIGURE 15.20 A combinatorial sign and magnitude, 1’s and 2’s complement divider.

D : 0.11010 0.111101010 A
−D = 1.00110 1.00110 −24d

0.001001010 Σ, co = 1, q4 = 1
1.100110 −23d
1.101111010 Σ, co = 0, q3 = 0
0.0011010 22d
1.111100010 Σ, co = 0, q2 = 0
0.00011010 2d
0.000010110 Σ, co = 1, q1 = 1
1.111100110 −d
1.111111100 Σ, co = 0, q0 = 0
0.000011010 +d Restore
0.000010110 Σ, R

The positive quotient Q may be denoted in binary q5; q4q3q2q1q0. or simply q5.q4q3q2q1q0
where q5 = 0 is the sign bit and the binary point is implicitly to the right next to the LSB.
The first step consists of subtracting the divisor d shifted four bits to the left so that its
MSB is aligned with the MSB of the dividend A. The subtraction is effected by adding the
2’s complement of 24d, which equals in 2’s complement notation 1.001100000 = −41610.
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Since A = 490 the result of the addition is the remainder 490− 416 = 74 = 0.001001010.
The carry-out of this operation, denoted co in the figure, is equal to 1, reflecting the fact
that the remainder is positive.

Since co = 1 the quotient bit q4 is set to 1, and the following step is to subtract the
dividend d shifted by 3 bits. This is effected as shown in the figure by adding to the
remainder the value −23d, which appears as 1.100110 = −208. The result is the new
remainder r = 74− 208 = −134 = 1.101111010 (in 2’s complement). This time the carry-
out is co = 0 and, equivalently, the remainder is negative. We set q3 = co = 0 and since
the remainder is negative an addition instead of a subtraction of the shifted divisor to the
remainder is performed next, effectively restoring the value of the remainder.

The rationale is simple. In the nonrestoring division, given a remainder r a subtraction
of the dividend is attempted obtaining r ← (r − d). If the sign of the new remainder is
positive, same as the sign of the dividend A, the operation is a “success” and the next
step proceeds similarly by evaluating 2r − d. If on the other hand the sign is negative a
’failure’ is declared and we restore by adding d to the result restoring the value of the
remainder to (r − d) + d = r, and we proceed by evaluating 2r − d. In the nonrestoring
division we start similarly by subtracting the divisor d from the remainder r obtaining
the new remainder r −→ (r − d). If the result is positive the process continues as in the
corresponding case of the restoring division by evaluating (2r − d). If, on the other hand,
the result is negative then instead of a restoration the remainder is shifted right one bit
as usual followed now by the addition of d. The result of such procedure is therefore a
remainder equal to 2 (r − d) + d = 2r− d, which is the same value obtained subsequent to
the restoration in the restoring division.

Returning to the example we note that with Cout = co = 0 in the fifth line, indicating
a negative remainder, and q3 set to q3 = 0 the following step as just stated should be
an addition of the shifted remainder. To the remainder is added 22d = 0.0011010 = 104,
producing the new remainder r = −134 + 104 = −30 = 1.11110010 and Cout = 0, hence
q2 = 0. In the following steps, as the figure shows, the quotient bits q2 to q0 are equal to
the corresponding carry-out bits. Each time the carry-out bit is a 1, indicating a positive
remainder, the shifted divisor d is subtracted from the remainder. If the carry-out bit is
zero, i.e. a negative remainder the shifted divisor is added to the remainder. At the end
of the process, if q0 = 0 a final-step restoration is called for to correct the remainder by
adding the divisor d as shown in the figure. If q0 = 1 no such final-step restoration is
needed. Referring to the figure we may write

Q = 0.10010 = 18, R = 0.000010110 = 22

R ≃ A− 24d+ q4
(
−23d

)
+ q3

(
22d
)

+ q2 (2d) + q1 (−d) + q0 (d)
= A− d

{
24 + q42

3 − q322 − q22 + q1 − q0
}

= A− d
(
24 + 23 − 22 − 2 + 1− 1

)
= A− 18d = A− qd.

We now show that in general this process produces the proper quotient and remainder.
We shall shortly show in fact that the approach of nonrestoring division may be justified by
noticing that a given number can be decomposed using shift-right versions of its magnitude.
To this end we note from this example where n = 5 that the remainder R, may be written
in the form

R ≃ A− d
[
24 + {q4 − q4} 23 + {q3 − q3} 22 + {q2 − q2} 2 + {q1 − q1} − q0

]
. (15.107)

Since the value of the remainder should be R = A − qd we should show that for this
example the quantity in the square brackets is in fact equal to the quotient q. We can
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visualize this quantity, with the given quotient q = 10010 = 18, by writing it in the form

10000 24

1001 q42
3 + q12

0 ≡ q/2
−0110 −(q32

2 + q22) ≡ − 1’s comp of q/2’s magnitude = −6
−1 −q0

10010 Σ = 16 + 9− 6− 1 = 18 = q.

(15.108)

Note that if instead q = 19 a final-step restoration would be applied and since q0 = 1 the
last term −q0 = 0 leading to a sum of 19 as required.

The fact that the quantity in the squared brackets in the expression of the remainder R
is equal to the quotient q may be proved in general as follows.

We may write for q odd:

q = ⌊q/2⌋+ ⌊q/2⌋+ 1 = ⌊q/2⌋+ ⌊q/2⌋+ 1 + 2n−1 − 2n−1

= ⌊q/2⌋ −
(
2n−1 − 1− ⌊q/2⌋

)
+ 2n−1 (15.109)

and for q even

q = ⌊q/2⌋+ ⌊q/2⌋ = ⌊q/2⌋ −
(
2n−1 − 1− ⌊q/2⌋

)
+ 2n−1 − 1 (15.110)

so that for a general n we may write

q = 2n−1 + ⌊q/2⌋ −
(
2n−1 − 1− ⌊q/2⌋

)
− q0. (15.111)

We have thus shown that the quotient q can in general be decomposed as the sum 2n+1 +
⌊q/2⌋−1’s complement of the magnitude of ⌊q/2⌋−q0. which is what nonrestoring division
effectively applies in evaluating the quotient and remainder values, as we have just noted
in the above example.

15.17 Cellular Array for Nonrestoring Division

A possible cellular array realization for nonrestoring division is shown in Fig. 15.21. The
cells in this figure are the CAS cell shown in Fig. 15.13(b).

The array is a modification of previously proposed structures with the purpose of permit-
ting the division of a 2n-bit dividend with no leading zeros by an n-bit divisor. The CAS
cell employed is the same as the one previously described. If the control input to the cell
is a 0 it performs addition of the bits at its input, ai and bi, otherwise it complements the
bit bi. If the control bit is a 1 a carry-in of 1 is also applied to the least significant CAS
cell carry-in pin. The result is that a control bit of 1 produces the subtraction a− b as the
output of the row of CAS cells.

In the example of operands shown in the figure the dividend A = 490 and D = 26. The
result should be the quotient Q = 18 and remainder R = A−QD = 22.

The array depicted in the figure shows the structure of the array divider in this case of
n = 5, that is, a dividend of 10 magnitude bits and a divisor of 5 magnitude bits.

The successive bits of the dividend A = 0a9a8a7a6a5a4a3a2a1a0 and the divisor D =
0d4d3d2d1d0 are connected to the “a” and “b” inputs of the CAS cells. As shown in the
figure the control bit input to the left-most cell of the first row of cells is set to 1, so that
the operation effected by the first row is “A−D.”
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FIGURE 15.21 Cellular array realization for nonrestoring division.

The carry-out of each CAS is fed to the cell on the left and the carry-out cout of the
left-most cell, which in fact determines the value of the quotient bit corresponding to the
row, is fed as the control input to the following row of cells. As shown in the figure the
successive carry-outs of the first to the fifth row are themselves the quotient bits q4, q3, q2,
q1 and q0. Following the fifth row a row of AND gates controlled by the bit q0 are included
to effect the final-step restoration, in which the remainder is corrected by adding the divisor
D if q0 = 0, and leaves the remainder unchanged by adding zero if q0 = 1.

The values of the input, control, intermediate and output bits of the cellular array are
shown in the figure for the case of the last example, where A = 490 = 0.111101010 and
D = 0.11010. The bits a0 − a8 and d0 − d4 appear at the inputs of the CAS cells.

In the first (upper) row the control bit applied to the leftmost cell is a “1” meaning a
“subtract” command. The effect is to complement the D bits 0, d4, d3, d2, d1, d0. The
complemented bits d4, d3, d2, d1 and d0 are equal to 1, 0, 0, 1, 0, 1 as can be seen inside
the successive cells of the first row. These bits represent the 1’s complement of the divisor
D. The 2’s complement is obtained by applying the same control bit which is equal to “1”
into the carry-input of the right-most cell of the first row, as seen in the figure. The first
row of cells thus effects the addition:

011110
100101

1
1 000100

as can be seen at the outputs of the first row of cells and their carry-out bit which is equal
to 1. The process is repeated in the following rows and can be seen to be identical to the
successive results which we already saw in the numeric example.
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15.18 Carry Look Ahead (CLA) Cell

In adding long words, the propagation time of the carry ripple from the LSB stage to the
higher stages may be slow down a processor. To accelerate the process of addition we need
to shorten carry ripple paths. This is the objective of the carry look-ahead approach. This
approach is based on foreseeing the carry that should be injected at each stage without
having to wait to receive a carry input from the preceding one.

The addition of a bit ai with another bi generates a carry if ai = bi = 1. This is called a
“generate” condition and we write

Gi = ai ∧ bi (15.112)

as shown in Fig. 15.22.

FIGURE 15.22 Generate-bit and propagate-bit logic implementation.

A “propagate” condition exists if either ai or bi is equal to 1. We write

Pi = ai ∨ bi or Pi = ai∀bi. (15.113)

The carry-generate and carry-propagate conditions are used to produce the carry out at
any stage of a multiple bit adder. For a 4-bit parallel adder receiving a carry-input c0 into
the least significant bit (LSB) adder the successive carry-out signals from each of the four
stages can be written in the form

c1 = G0 ∨ P0c0 (15.114)

c2 = G1 ∨ P1G0 ∨ P1P0c0 (15.115)

c3 = G2 ∨ P2G1 ∨ P2P1G0 ∨ P2P1P0c0 (15.116)

c4 = G3 ∨ P3G2 ∨ P3P2G1 ∨ P3P2P1G0 ∨ P3P2P1P0c0 (15.117)

with s1, s2, s3, . . . representing the sum bits and c1, c2, c3, . . . the carry bits.
In practice these equations are realized using NOR and Exclusive-OR gates. To this end

we may write

c1 = G1 + P1c0 = G1P 1 +G1C0 = G1P 1 +G1P 1 +G1C0

= P 1 +G1C0

(15.118)

s2 = P2G2 ⊕ P 1 +G1C0 (15.119)

s3 = P3G3 ⊕ c2 (15.120)
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c2 = G2 + P2G1 + P2P1c0 = G2 + P2 (G1 + P1c0)

= G2 ·
{
P 2 +G1 ·

(
P 1 + C0

)}
= G2P 2 +G2G1P 1 +G2G1C0.

(15.121)

Now
G2P 2 = 0 (a don’t care condition) (15.122)

and
G1P 1 = 0. (15.123)

Hence
c2 = G2P 2 +G2P 2 +G2

(
G1P 1 +G1P 1

)
+G2G1C0

= P 2 +G2P 1 +G2G1C0

(15.124)

s3 = P3G3 ⊕ P 2 +G2P 1 +G2G1C0 (15.125)

s4 = P4G4 ⊕ c3 (15.126)

c3 = G3 + P3G2 + P3P2G1 + P3P2P1c0
= G3 + P3 [G2 + P2 {G1 + P1c0}]
= G3 ·

[
P 3 +G2

{
P 2 +G1 ·

(
P 1 + C0

)}]

= G3P 3 +G3G2P 2 +G3G2G1P 1 +G3G2G1C0.

(15.127)

Similarly
G3P 3 = 0, G2P 2 = 0, G1P 1 = 0 (15.128)

c3 =
(
G3P 3 +G3P 3

)
+G3

(
G2P 2 +G2P 2

)
+G3G2

(
G1P 1 +G1P 1

)

+ G3G2G1C0 = P 3 +G3P 2 +G3G2P 1 +G3G2G1C0.
(15.129)

See Fig. 15.23.

FIGURE 15.23 Sum-bits generation using CLA logic.

In the nonrestoring cellular division array shown in Fig. 15.24 a CLA cell associated with
each row of cells is used to generate the carry-input of each of the successive stages as shown
in the figure.

The carry bits are thus generated using two levels of logic, the AND and OR levels.
This avoids carry-ripple delays, through more logic levels, until the arrival of the proper
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FIGURE 15.24 Nonrestoring cellular division array with CLA blocks.

carry-input to the higher-bits stages. Texas Instruments SN7483 4-bit binary full adder
and SN74181 arithmetic logic unit are among the chips that employ the CLA principle for
accelerating additions. CLA logic can also be applied to a higher number of bits, not limited
to four, leading to even more acceleration of the addition operation. Moreover, second-level
CLA has been applied to blocks of bits wherein for each block a block-generate and block-
propagate signal are produced. These signals are applied as inputs to next higher blocks,
thus accelerating the addition further at a block levels. The principle can be generalized to
still higher levels at chips that produce thereof the carry-inputs to the following blocks.

A Lookahead Carry Unit (LCU) is a integrated circuit chip that is used in conjunction
with CLAs. A chip such as the Advanced Micro Devicesr AM2902A can accept four carry-
generate signalsG0, G1, G2, G3, four carry-propagate signals P0, P1, P2, P3, and a carry input
cn and produce the carries of the successive stages cn+x, cn+y, cn+z, a group-generate signal
G and a group-propagate signal P . These signals can be used for higher levels of carry look-
ahead. The logic equations are similar to the ones used at the basic level. We have

cn+x = G0 + P0cn = G0 · P0cn = G0 ·
(
P 0 + Cn

)
= G0P 0 +G0Cn (15.130)

cn+y = G1 + P1G0 + P1P0cn = G1 · P1G0 · P1P0cn

= G1

(
P 1 +G0

) (
P 1 + P 0 + Cn

)
= G1

[
P 1 +G0

(
P 0 + Cn

)]

= G1P 1 +G0G1P 0 +G0G1Cn

(15.131)

cn+z = G2 + P2G1 + P2P1G0 + P2P1P0cn
= G2 + P2 [G1 + P1 {G0 + P0cn}]
= G2 ·

[
P 2 +G1

{
P 1 +G0 ·

(
P 0 + Cn

)}]

= G2P 2 +G1G2P 1 +G0G1G2P 0 +G0G1G2Cn

(15.132)
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G = G3 + P3G2 + P3P2G1 + P3P2P1G0

= G3 + P3 [G2 + P2 {G1 + P1G0}] (15.133)

G = G3 ·
[
P 3 +

{
G2 ·

[
P 2 +G1

(
P 1 +G0

)]}]

= G3P 3 +G2G3P 2 +G2G3G1P 1 +G0G1G2G3
(15.134)

P = P3P2P1P0 (15.135)

P =
(
P 3 + P 2 + P 1 + P 0

)
. (15.136)

15.19 2’s Complement Nonrestoring Division

The following examples illustrate nonrestoring division in 2’s complement using the cellular
arrays seen above. In the following, as in the above, co ≡ cout is the carry-out of the
addition operation.

Example 15.22

A > 0, D > 0

A = 0.110110 = 54, D = 0.101 = 5

−D = 1.011 0.101 0.110110
1.011 −D

1 0.0011 co = 1 q3 = 1
0.011 ×2
1.011 −D

0 1.1101 co = 0 q2 = 0
1.101 ×2
0.101 +D

1 0.0100 co = 1 q1 = 1
0.100 ×2
1.011 −D

0 1.111 co = 0 q0 = 0
0.101 +D Restore
0.100

Q = (0.1010)2 = (10)10, R = 0.100 = 4.

In the following case the quotientQ is negative and has to be represented in 2’s complement.
This is performed by first generating the 1’s complement of the magnitude q, namely,
q3q2q1q0 and then adding ε = 0001 and the sign bit to the result.
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Example 15.23 A > 0, D < 0, D = −5

cin0
= 0 D : 1.011 0.110110 cin0

= 0
1.011 +D

cin1
= 0 co = 1 0.0011 q3 = co = 1 q3 = 0

0.011 ×2
1.011 +D

cin2
= 1 co = 0 1.1101 q2 = co = 0 q2 = 1

1.101 ×2
0.101 −D

cin3
= 0 co = 1 0.0100 q1 = co = 1 q1 = 0

0.100 ×2
1.011 +D

cin4 = 1 co = 0 1.111 q0 = co = 0 q0 = 1
0.101 −D Restore since q0 = 0
0.100
1.100 Complement remainder

The quotient Q = −10 in 2’s complement is obtained by adding ε = 1 to the 1’s
complement representation thus obtained

Q←→ 1.q3q2q1q0 + 1 = 1.0101 + 0.0001 = 1.0110 (15.137)

The case A < 0, D > 0.

Example 15.24 n = 3, Dividend 2n = 6 bits long.

A = 1.001010 = −5410, D = 0.101 = 510

0.101 1.001010
0.101 +D cin,0 = 0 −→ addD

cin,1 = 0 co = 0 1.110010 q3 = co = 0
1.10010 ×2
0.101 +D

cin,1 = 1 co = 1 0.00110 q2 = co = 1
0.0110 ×2
1.011 −D

cin,1 = 0 co = 0 1.1100 q1 = co = 0
1.100 ×2
0.101 +D q0 = co = 1

co = 1 0.001 q0 = co = 1
1.011 −D Restore since q0 = 0
1.100 R

Q←→ 1.q3q2q1q0 + 1 = 1.0101 + 0.0001 = 1.0110 = −1010.

No need to complement the remainder. It is already negative in 2’s complement.

As the example illustrates start with cin = 0. To A thus D is added. If the carry out
co is 0, set q3 = co = 0 and cin = 0 for next row, leading to the addition of D to the
shifted-by-one-bit-left remainder, else if the carry out co = 1, set q3 = co = 1 and cin = 1
for next row, leading to the addition of −D to the shifted-by-one-bit-left remainder. If the
final quotient bit q0 = 1, restore by adding −D to the remainder. Add ε = 0.001 to the
quotient to convert it from 1’s complement to 2’s complement representation.
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The case A > 0, D < 0.

As the example shows start with input carry cin = 0 (to the left of first row of cells).
To A thus D is added. If the carry out of the row of cells is co = 1, set q3 = co = 0 and
the carry-in for the next row cin = co = 0, leading to the addition of D to the shifted-
by-one-bit-left remainder, else if the carry out co = 0, set q3 = co = 1 and the carry-in
for the next row cin = co = 1, leading to the addition of −D to the shifted-by-one-bit-left
remainder. If the final quotient bit q0 = 1 restore by adding −D to the remainder. This
produces the correct absolute value of the remainder. To obtain a negative remainder, 2’s
complement the result.

The case A < 0, D < 0.

A = 1.001010 = −54, D = 1.011 = −5 (15.138)

cin,0 = 1 −→ To A add −D = 0.101 (15.139)

1.011 1.001010
0.101 −D

cin = 1 co = 0 0 1.1100 co = 0 q3 = 1
1.100 ×2
0.101 −D

cin = 0 co = 1 1 0.0011 co = 1 q2 = 0
0.011 ×2
1.011 +D

cin = 1 co = 0 0 1.1100 co = 0 q1 = 1
1.100 ×2
0.101 −D

co = 1 1 0.001 co = 1 q0 = 0
1.011 +D Restore since q0 = 0
1.100
0.010 Complement result

The process starts with input carry cin = 1. To the dividend A is thus added −D. If the
carry-out of the row of cells is co = 0 then set qi = co = 1 and vice versa. The carry-in
to the next row of cells is set equal to cin = co. With cin = 1, the value added to the
remainder is −D. If cin = 0 the added value is +D. If the final quotient bit, q0 in this
example is equal to 0, restore by adding D. The final remainder thus obtained is equal to
−R. It needs to be 2’s complemented to yield the required positive remainder value R, as
shown in this last example.

15.20 Convergence Division

In convergence division istead of attempting to divide the dividend A by the divisor B we
evaluate the reciprocal 1/B and then multiply the result by A. An effective approach to
evaluate the reciprocal is to use of the Newton–Raphson iterative method. This important
numerical technique may be used to solve a larger class of problems. In fact, as we shall see
in the following section, it can also be used for evaluating the nth root of a number.

The approach is illustrated in Fig. 15.25. To evaluate the reciprocal 1/B, B > 0 we write
f(x) = 1/x−B. Finding the zero of f(x) we have f(x) = 1/x−B = 0, hence x = 1/B.
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x0

x1 x2 x3

f x x B( )=1/ -

x

P

Q

f x( )0

-B

FIGURE 15.25 Conversion division using Newton–Raphson iterative approach.

To find the zero of a function we may use the Newton–Raphson iterative approach illustrated
in Fig. 15.25. In this figure x0 represents an initial guess of the root of f (x). The tangent
at point P in the figure intersects the axis x at the new estimate x1. As the figure shows if
the process is repeated, by drawing the tangent at point Q we obtain the following estimate
x2. Repeating the process the estimate approaches progressively the zero of f (x).

We can write
f ′ (x) = −1/x2 (15.140)

and from the figure we note that with x = xi the slope of the curve is given by

f ′ (xi) =
f (xi)

xi − xi+1
(15.141)

We may therefore write

xi+1 = xi −
f(xi)

f ′ (xi)
= xi −

1/xi −B
−1/xi

2
= 2xi −Bxi

2

From the figure note that to find the initial estimate x0 has to be greater than zero. More-
over, all successive estimates xi must laos be greater than zero. In particular we should
have x1 = 2x0 − Bx2

0 > 0, implying that the condition 0 < x0 < 2/B should be satisfied.
To reduce the number of iterations the initial estimate x0 is normally stored in a read only
memory (ROM). The number B is assumed to be a normalized fraction so that 1/2 ≤ B < 1
and 1 < 1/B ≤ 2. A possible ROM would have eight words. It receives as input address the
value of B in the form B = 0.1xxx, where xxx = 000, 001, 010, ..., 111, and stores at each
address the initial estimate of the corresponding value 1/B. The content of a ROM that
stores five bits of the reciprocal initial estimate is shown in following table.

B 1/B estimate
0 0.1000 1.11111
1 0.1001 1.11000
2 0.1010 1.10011
3 0.1011 1.01110
4 0.1100 1.01010
5 0.1101 1.00111
6 0.1110 1.00100
7 0.1111 1.00010
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15.21 Evaluation of the nth Root

We consider the problem of evaluating the nth root of a given number A, where n is an
integer, using the Newton–Raphson iterative approach. The result sought is n

√
A = A1/n,

i.e.
√
A if n = 2, 3

√
A if n = 3, for example.

To illustrate the approach for evaluating the nth root consider first the case n = 3 and
let

f (x) = xn −A = x3 −A. (15.142)

We note that the zero of f (x) occurs for a value of x given by

f (x) = x3 − A = 0 (15.143)

i.e.

x =
3
√
A = A1/3. (15.144)

In other words if the value of x is found such that f (x) = 0 then that value is the
sought value

√
A. The Newton–Raphson’s iterative technique in this case is illustrated in

Fig. 15.26.

f x x A( ) = -
3

P

Q

-A
Xi+2 Xi+1 Xi X

f x( )i

FIGURE 15.26 Newton–Raphson’s zero-locating technique.

In this figure xi represents an initial guess of the root of f (x). The tangent at point
P in the figure intersects the axis x at the new estimate xi+1. As the figure shows if the
process is repeated, by drawing the tangent at point Q we obtain the following estimate
xi+2. Repeating the process the estimate approaches progressively the zero of f (x).

We have, as seen in the last section,

f ′ (xi) =
f (xi)

xi − xi+1
(15.145)

i.e.

3x2
i =

x3
i −A

xi − xi+1
(15.146)

3x3
i − 3x2

ixi+1 = x3
i −A (15.147)

2x3
i − 3x2

ixi+1 = −A (15.148)
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3x2
ixi+1 = 2x3

i +A (15.149)

xi+1 =
2x3

i +A

3x2
i

=
2

3
xi +

A

3x2
i

. (15.150)

For example let A = 1253.351 and assume an initial estimate of 3
√
A be x0 = 7. The

sequence of improved estimates x1, x2, . . ., x5 is shown in the following table.

i xi

1 13.1928639
2 11.1955855
3 10.7968965
4 10.7818119
5 10.7817908

The result 3
√
A = 10.7817908 agrees with the full-precision floating point evaluation of the

cubic root of A.
Consider now the more general problem of evaluating n

√
A where n is an integer. Similarly

to the above we write
f (x) = xn −A (15.151)

f ′ (x) = nxn−1 (15.152)

f ′ (xi) = nxn−1
i =

f (xi)

xi − xi+1
=

xn
i −A

xi − xi+1
(15.153)

nxn
i − nxn−1

i xi+1 = xn
i −A (15.154)

−nxn−1
i xi+1 = −A (15.155)

nxn−1
i xi+1 = (n− 1)xn

i +A (15.156)

xi+1 =
n− 1

n
xi +

A

nxn−1
i

. (15.157)

The nth root of a given number can thus be evaluated iteratively for any value n. As stated
above, to reduce the number of iterations the initial estimate x0 is normally stored in a read
only memory (ROM). To illustrate the approach consider again the case n = 3, that is, the
problem of evaluating the cubic root 3

√
A. Using the FNR the number A is assumed to be

a fraction. Moreover, as is the case with the floating point number system, we assume the
number be to be normalized. This means that if A 6= 0 then A = (0.1xx . . . x)2 where x
signifies 0 or 1, that is, 0.5 6 A < 1, and we may represent A in the form shown in Fig.
15.27.

FIGURE 15.27 Normalized number in FNR.

The entries of the ROM that stores the initial estimate of 3
√
A may be evaluated as a

function of say the three bits a−2, a−3 and a−4. There are eight possibilities 000, 001,
. . ., 111 and the ROM is therefore eight words in size. Since a−1 = 1 the value of A
corresponding to these eight possibilities are 1000, 1001, 1010, 1011, . . ., 1111. For each of
these respectively the cubic root is evaluated and, assuming that the ROM has words of m
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bits each, only m bits of those cubic roots are stored. Assuming m = 4, the following table
shows a listing of the set of eight 4-bit values of A in the first column, and their cubic roots
in decimal, in the second column.

A 3
√
A 3
√
A× 64

(⌊
64 3
√
A
⌋)

2

0 0.1000 0.7937 50.79 0.110010
1 0.1001 0.8255 52.83 0.110100
2 0.1010 0.8550 54.71 0.110110
3 0.1011 0.8826 56.48 0.111000
4 0.1100 0.9086 58.14 0.111010
5 0.1101 0.93312 59.72 0.111011
6 0.1110 0.9565 61.21 0.111101
7 0.1111 0.9787 62.63 0.111110

The third column shows these values multiplied by 26 = 64, and the fourth includes the
binary equivalent of the integer part of each of these values. Since the left-most two bits
in all eight values are both ones they need not be stored in the ROM. Only the right-most
four bits are stored. The initial estimate for any given value of A is deduced by reading the
ROM content at the address equal to the value of A.

Two 1 bits are then annexed to the left of the value read from the ROM. For example, if
the cubic root of a number given in binary as A = (0.1101xxx . . .)2 = 13/16+ . . ., where x
stands for either 0 or 1, we may find the initial estimate by setting A = (0.1101)2 = 13/16,

which is the sixth value in the table. The following columns show that 3
√
A = 0.93312,

and this value multiplied by 64 is equal to 59.7201. The next column shows the binary
equivalent of ⌊59.7201⌋ = 59 which is 0.111011. The sixth word of the ROM, i.e. at the
address 101 the word content should be 1011. With the two 1 bits annexed to the left the
initial estimate corresponding to A = (0.1101)2 is 0.111011.

15.22 Function Generation by Chebyshev Series Expansion

Chebyshev polynomials may be used in the generation of functions by digital computers.
Trigonometric, exponential, hyperbolic and other functions may be expanded into a power
series using Chebyshev polynomials which converge faster than other expansions such as
Taylor’s series [14].

The Chebyshev series expansion of a function f (x) is similar to the Fourier series ex-
pansion. The “shifted Chebyshev polynomials” T ∗n (x) are defined by

T ∗n (x) = cos (nθ) , θ = cos−1 (2x− 1) . (15.158)

and are suitable for the expansion of functions over the interval 0 ≤ x ≤ 1. They are listed
in Table 15.1.

Consider the expansion of the function f (x) = ex, 0 6 x 6 1 into the form

f (x) = ex =
a0

2
+

∞∑

n=1

anT
∗
n (x) (15.159)

We have
T ∗n (x) = cos

[
n cos−1 (2x− 1)

]
= cosnθ (15.160)
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TABLE 15.1 Shifted Chebyshev polynomials

n T ∗n (x)

0 1
1 2x− 1
2 8x2 − 8x+ 1
3 32x3 − 48x2 + 18x− 1
4 128x4 − 256x3 + 160x2 − 32x+ 1
5 512x5 − 1280x4 + 1120x3 − 400x2 + 50x− 1
6 2048x6 − 6144x5 + 6912x4 − 3584x3 + 840x2 − 72x+ 1
7 8192x7 − 28672x6 + 39424x5 − 26880x4 + 9408x3 − 1568x2 + 98x− 1
8 32768x8 − 131072x7 + 212992x6 − 180224x5 + 84480x4 − 21504x3

+2688x2 − 128x+ 1

θ = cos−1 (2x− 1) (15.161)

2x− 1 = cos θ (15.162)

x = (1 + cos θ) /2 (15.163)

f (x) = f [(1 + cos θ) /2] = g (θ) (15.164)

The function g(θ) is periodic and can be expanded as a Fourier series

g (θ) =
a0

2
+

∞∑

n=1

an cosnθ (15.165)

so that

f (x) =
a0

2
+

∞∑

n=1

anT
∗
n (x) (15.166)

an =
2

π

ˆ π

0

g (θ) cosnθ dθ (15.167)

2 dx = − sin θ dθ, sin θ =
√

1− 4x2 + 4x− 1 = 2
√
x− x2 (15.168)

dθ =
−2 dx

sin θ
=
−2 dx

2
√
x− x2

=
−dx√
x− x2

(15.169)

an =
−2

π

ˆ 0

1

f (x) T ∗n (x)√
x− x2

dx =
2

π

ˆ 1

0

f (x) T ∗n (x)√
x− x2

dx. (15.170)

The same approach may be used in the expansion of the functions f (x) = e−x, log (1 + x)
and Γ (1 + x), 0 6 x 6 1.

For odd functions such as sinπx/2, arcsinx and arctanx we may expand instead the even
functions (sinπx/2)/x, (arcsinx)/x and (arctanx)/x, respectively. If the given function
to be expanded, f(x), is one of the functions (sinπx/2)/x, cosπx/2 or (arctanx)/x, over
the interval −1 ≤ x ≤ 1, it may be expanded as the sum

a0

2
+

∞∑

n=1

anT
∗
n

(
x2
)
. (15.171)

We have
T ∗n
(
x2
)

= cos
[
n cos−1

(
2x2 − 1

)]
= cos (nφ) (15.172)

φ = cos−1
(
2x2 − 1

)
(15.173)
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x2 = (1 + cosφ) /2 (15.174)

f (x) = f
(√

(1 + cosφ) /2
)

= g (φ) (15.175)

g (φ) =
a0

2
+

∞∑

n=1

an cosnφ (15.176)

so that

f (x) =
a0

2
+

∞∑

n=1

anT
∗
n

(
x2
)

(15.177)

an =
2

π

ˆ π

0

g (φ) cosnφ dφ (15.178)

4x dx = − sinφ dφ (15.179)

dφ =
−4x dx

sinφ
=
−4x dx

2x
√

1− x2
=
−2 dx√
1− x2

(15.180)

an =
−4

π

ˆ 0

1

f (x) T ∗n
(
x2
)

√
1− x2

dx =
4

π

ˆ 1

0

f (x) T ∗n
(
x2
)

√
1− x2

dx. (15.181)

For arcsinx/x with −1/
√

2 ≤ x ≤ 1/
√

2, we use T ∗n
(
2x2
)

T ∗n
(
2x2
)

= cos
[
n cos−1

(
4x2 − 1

)]
= cosnγ (15.182)

γ = cos−1
(
4x2 − 1

)
(15.183)

x2 = (1 + cos γ) /4 (15.184)

f (x) = f
(√

1 + cos γ/2
)

= g (γ) (15.185)

g (γ) =
a0

2
+

∞∑

n=1

an cosnγ (15.186)

i.e.

f (x) =
a0

2
+
∞∑

n=1

anT
∗
n

(
2x2
)

(15.187)

an =
2

π

ˆ π

0

g (γ) cosnγ dγ (15.188)

8x dx = − sinγ dγ, (15.189)

dγ = −8x dx

sin γ
= − 8x dx√

8 x
√

1− 2x2
= −
√

8
dx√

1− 2x2
(15.190)

an =
−2

π

ˆ 0

1/
√

2

√
8
f (x)T ∗n

(
2x2
)

√
1− 2x2

dx =
4
√

2

π

ˆ 1/
√

2

0

f (x) T ∗n
(
2x2
)

√
1− 2x2

dx (15.191)

For J0 (x) and J1 (x) , −10 6 x 6 10 we write

T ∗n
(
x2/100

)
= cos

[
n cos−1

(
2
x2

100
− 1

)]
= cosnψ (15.192)

ψ = cos−1
(
x2/50− 1

)
(15.193)

x2 = 50 (1 + cosψ) (15.194)
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f (x) = f
(√

50 (1 + cosψ)
)

= g (ψ) (15.195)

g (ψ) =
a0

2
+

∞∑

n=1

an cosnψ (15.196)

i.e.

f (x) =
a0

2
+

∞∑

n=1

anT
∗
n

(
x2/100

)
(15.197)

an =
2

π

ˆ π

0

g (ψ) cosnψ dψ (15.198)

2x dx = −50 sinψ dψ (15.199)

dψ =
−2x dx

50× x

5

√
1− x2/100

=
−dx

5
√

1− x2/100
(15.200)

an =
−2

π

ˆ 0

10

f (x)T ∗n
(
x2/100

)

5
√

1− x2/100
dx =

2

π

ˆ 10

0

f (x)T ∗n
(
x2/100

)

5
√

1− x2/100
dx (15.201)

The coefficients an for such trigonometric function expansions are listed in Table 15.2.
To summarize

sin (πx/2) = x

(
a0

2
+
∞∑

n=1

anT
∗
n

(
x2
)
)
, −1 ≤ x ≤ 1. (15.202)

cos (πx/2) =
a0

2
+

∞∑

n=1

anT
∗
n

(
x2
)
, −1 ≤ x ≤ 1. (15.203)

tan−1 x = x

(
a0

2
+

∞∑

n=1

anT
∗
n

(
x2
)
)
, −1 ≤ x ≤ 1. (15.204)

For |x| > 1, we may write

tan−1 x = π/2− tan−1 (1/x) . (15.205)

Table 15.3 lists the Chebyshev expansion coefficients of inverse trigonometric and exponen-
tial functions.

sin−1 x = x

(
a0

2
+

∞∑

n=1

anT
∗
n

(
2x2
)
)
, −1/

√
2 ≤ x ≤ 1/

√
2 (15.206)

TABLE 15.2 Chebyshev expansion coefficients of some trigonometric
functions

sin (πx/2) cos (πx/2) tan−1 x
n an an an

0 2.552557925 0.9440024315 1.762747174
1 −0.2852615692 −0.4994032583 −0.1058929245
2 0.009118016007 0.022799207962 0.01113584206
3 −0.0001365875135 −0.0005966951965 −0.001381195004
4 1.184961858× 10−6 6.704394870× 10−6 0.0001857429733
5 −6.702791604× 10−9 −4.653229590× 10−8 −0.00002621519611
6 2.667278599× 10−11 2.193457659× 10−10 3.821036594× 10−6

7 −7.872922122× 10−14 −7.481648701× 10−13 −5.699186167× 10−7
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TABLE 15.3 Chebyshev expansion coefficients of inverse trigonometric
and exponential functions

sin−1 x, cos−1 x ex e−x

n an an an

0 2.102463918 3.506775309 1.290070541
1 0.05494648722 0.8503916538 −0.3128416064
2 0.004080630393 0.1052086936 0.03870411542
3 0.0004078900685 0.008722104733 −0.003208683015
4 0.00004698536743 0.0005434368312 0.0001999192378
5 5.880975814× 10−6 0.00002711543491 −9.975211043× 10−6

6 7.773231246× 10−7 1.128132889× 10−6 4.150168967× 10−7

7 1.067742334× 10−7 4.024558230× 10−8 −1.480552233× 10−8

TABLE 15.4 Chebyshev expansion coefficients of
logarithmic and Gamma functions

log (1 + x) Γ (1 + x)
n an an

0 0.7529056258 1.883571196
1 0.3431457505 0.004415381325
2 −0.02943725152 0.05685043682
3 0.003367089256 −0.004219835396
4 −0.0004332758886 0.001326808181
5 0.00005947071199 −0.0001893024530
6 −8.502967541× 10−6 0.00003606925327
7 1.250467362× 10−6 −6.056761904× 10−6

cos−1 x =
π

2
− x

(
a0

2
+

∞∑

n=1

anT
∗
n

(
2x2
)
)
, 0 ≤ x ≤ 1/

√
2. (15.207)

For 1/
√

2 ≤ x ≤ 1, we may write

sin−1 x = cos−1
√

1− x2, cos−1 x = sin−1
√

1− x2. (15.208)

ex =
a0

2
+

∞∑

n=1

anT
∗
n (x) , 0 ≤ x ≤ 1. (15.209)

e−x =
a0

2
+

∞∑

n=1

anT
∗
n (x) , 0 ≤ x ≤ 1. (15.210)

Chebyshev expansion coefficients of logarithmic and Gamma functions are listed in Table
15.4.

log (1 + x) =
a0

2
+

∞∑

n=1

anT
∗
n (x) , 0 ≤ x ≤ 1. (15.211)

Γ (1 + x) =
a0

2
+

∞∑

n=1

anT
∗
n (x) , 0 ≤ x ≤ 1. (15.212)

Table 15.5 lists the Chebyshev expansion coefficients of Bessel functions.

J0 (x) =
a0

2
+

∞∑

n=1

anT
∗
n

(
x2/100

)
, −10 ≤ x ≤ 10. (15.213)
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TABLE 15.5 Chebyshev expansion
coefficients of Bessel functions

J0 (x) J1 (x)
n an an

0 0.06308122636 0.1388487046
1 −0.2146161828 −0.1155779057
2 0.004336620108 0.1216794099
3 −0.2662036537 −0.1148840465
4 0.3061255197 0.05779053307
5 −0.1363887697 −0.01692388016
6 0.03434754020 0.003235025204
7 −0.005698082322 −0.0004370608604

J1 (x) = x

(
a0

2
+

∞∑

n=1

anT
∗
n

(
x2/100

)
)
, −10 ≤ x ≤ 10. (15.214)

Note that once the coefficients an are evaluated as given above, the expansion of the
function is rewritten by replacing the Chebyshev polynomials by their values in terms of
powers of x. By collecting terms of same powers of x the expansion takes the form of a
polynomial, namely,

f (x) =

m∑

k=0

αkx
k. (15.215)

The coefficients α0, α1, . . ., αm are thus stored in a ROM and used for evaluating f (x)
for any given value x.

Example 15.25 Evaluate the coefficients αk of the powers xk of x with n = 6 terms in
the Chebyshev series expansion of f (x) = sin (πx/2).

The expansion has the form

x
[
a0/2 + a1(2x

2 − 1) + a2(8x
4 − 8x2 + 1) + a3(32x6 − 48x4 + 18x2 − 1)

+ a4(128x8 − 256x6 + 160x4 − 32x2 + 1)

+ a5(512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1)

+ a6(2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1)
]
.

From the coefficients tables we have

sin (πx/2) ≃ x

{
a0

2
+

6∑

n=1

anT
∗
n

(
x2
)
}

= x[2.552557925/2− 0.2852615692 (2x2 − 1)
+ 0.009118016007(8x4− 8x2 + 1)− . . .]

= 1.57079632x− 0.64596409x3 + 0.07969262612x5

− 0.004681753389x7 + 0.000160439053x9

− 3.59570689810−6x11 + 5.46258657010−8x13.

The polynomial coefficients

α1 = 1.57079632, α3 = −0.64596409, α5 = 0.07969262612, α7 = −0.004681753389,

α9 = 0.000160439053, α11 = −3.59570689810−6, α13 = 5.46258657010−8,

may thus be stored in a ROM and used to approximate the function for any given value x.
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15.23 An Alternative Approach to Chebyshev Series Expansion

An alternative approach to the evaluation of the Chebyshev series coefficients is to start
by writing down the power series expansion of the given function. For example, the power
series expansion of cosx is given by

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . (15.216)

The powers of x can be expressed in terms of the Chebyshev polynomials. In fact from the
same Chebyshev polynomials Cn defined in Chapter 9, which are presently denoted Tn, we
have the inverse relations

1 = T0 (x) , x = T1 (x) , x2 = {T0 (x) + T2 (x)} /2, (15.217)

x3 = {3T1 (x) + T3 (x)} /4, x4 = {3T0 (x) + 4T2 (x) + T4 (x)} /8, (15.218)

x5 = {10T1 (x) + 5T3 (x) + T5 (x)} /16, (15.219)

x6 = {10T0 (x) + 15T2 (x) + 6T4 (x) + T6 (x)} /32. (15.220)

In general

xn = 2−n+1

⌊n/2⌋∑

k=0

αkTn−2k (15.221)

where

αk =

(
n

k

)
. (15.222)

By replacing the powers of x in the power series expansion by their values as function of
the Chebyshev polynomials we obtain the required expansion to the desired accuracy. For
example, substituting in the case of f (x) = cosx we have

cosx ≃ T0 (x)− 1

2!

{T0 (x) + T2 (x)}
2

+
1

4!

{3T0 (x) + 4T2 (x) + T4 (x)}
8

− 1

6!

{10T0 (x) + 15T2 (x) + 6T4 (x) + T6 (x)}
32

≃ T0 (x)− 0.25 {T0 (x) + T2 (x)}
+ 0.0052 {3T0 (x) + 4T2 (x) + T4 (x)}
− 4.3403× 10−5 {10T0 (x) + 15T2 (x) + 6T4 (x) + T6 (x)}

≃ 0.765166 T0 (x) − 0.229851 T2 (x) + 0.00493958 T4 (x)
− 0.000043403 T6 (x) .

(15.223)

Higher accuracy is obtained by incorporating more terms of the power series. The coefficients
of the expansion

f (x) =
a0

2
+

∞∑

n=1

anTn (x) (15.224)

in the present case are given by

a0 = 1.53033, a2 = −0.229851, a4 = 0.00493958, a6 = −0.000043403 (15.225)

ak = 0 for k odd. (15.226)



Digital Signal Processors: Architecture, Logic Design 1027

The expansion in powers of x is deduced by replacing the polynomials by their values
obtaining

cosx ≃ 0.765166− 0.229851
(
2x2 − 1

)
+ 0.00493958

(
8x4 − 8x2 + 1

)

− 0.00043403
(
32x6 − 48x4 + 18x2 − 1

)
≃ 1− 0.5x2 + 0.0416x4 − 0.0013889x6

and the coefficients

α0 = 1, α2 = −0.5, α4 = 0.0416, α6 = 0.0013889, αk = 0 for k odd. (15.227)

The same approach may be used to represent any polynomial of order n

p (x) =

n∑

k=0

αkx
k (15.228)

and in particular the power series expansion of a given function, into an expansion in
terms of other well-known orthogonal polynomials such as Legendre, Laquerre and Hermite
polynomials. Chebyshev polynomials have been shown to lead to rapid convergence resulting
in a higher accuracy upon truncation of an infinite expansion to a given finite number of
terms.

15.24 Floating Point Number Representation

Thanks to breathtaking advances in integrated circuit technology, floating point arithmetic
has become increasingly feasible in recent years. In fixed point notation, the addition, or
cumulative addition, of numbers may lead to overflow, necessitating a right shift of the
operands before or after addition, leading to truncation or round-off errors. In floating
point arithmetic the machine simply adjusts the exponent of the result, keeping track of
the effects of any required shift operations. Nowadays, fixed point computation is justified
only if the range of numbers involved is fairly limited in dynamic range. It should be
noted, however, that even today the full potential of floating point arithmetic has not yet
been achieved. Only when full parallelism and pipelining combinatorial logic is used to
achieve the highest possible speeds will the full potential of floating point arithmetic be
attained. As is seen in what follows, apart from normalization operations floating point
arithmetic is made up of sequences of fixed point arithmetic operations, such as addition,
subtraction, multiplication and division. To achieve highest speed the computer designer
should convert, whenever possible, such sequential fixed point operations into operations
performed in parallel. Parallel pipelined architecture and as much as possible combinatorial,
rather than sequential, logic circuit implementation may require more hardware, but lead
potentially to the highest speed of processing.

As in scientific notation of number representation a floating point number a is written in
base 2 binary in the form

a = m 2e (15.229)

where m is the mantissa or fraction part and e is the exponent.
The IEEE 754 Standard for single precision and double precision floating point represen-

tation uses a “biased” exponent e and an implied 1 added to the mantissa m, as seen in
what follows. The Standard specifies that, in single precision, eight bits are assigned to the
biased exponent e, 23 bits to the mantissa m and one bit to the sign s of the number. In
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FIGURE 15.28 Floating point representation in (a) single and (b) double precision.

double precision, 11 bits, 52 bits and 1 bit are assigned to the exponent e, the mantissa m
and the sign bit, as shown in Fig. 15.28(a) and (b) respectively.

The reason for the bias in the exponent is to avoid the need for positive as well as negative
exponents. The biased exponent e is rendered always positive, being the true exponent etrue

plus 2k−1 − 1 where k is the number of bits of the exponent field. With k = 8 we have

e = etrue + 2k−1 − 1 = etrue + 127. (15.230)

The true exponential etrue is deduced from a given IEEE standard biased exponential e
as

etrue = e− 127. (15.231)

There is an implied 1 to be added to the mantissa m to obtain scientific notation-like
representation. The decimal value of a normalized IEEE standard stored number is thus
given by

A = (−1)
s
(1 + 0.m) 2e−127 = (−1)

s
(1.m) 2e−127. (15.232)

For example the number in IEEE standard

0.10011011.10100000000000000000000

has s = 0, e = 10011011 = 155, m = 2−1 + 2−3 = 5/8 = 0.625, so that its decimal value
is

A = 1.625× 2155−127 = 1.625× 228 = 436207616 (15.233)

while the number
1.11000101.10101100000000000000000

has s = 1, e = 197, m = 2−1 + 2−3 + 2−5 + 2−6 = 43/64 = 0.6719 so that

A = −1.6719× 2197−127 = −1.6719× 270 = −1.9738× 1021. (15.234)

In the double-precision IEEE standard format the bias is 211−1 − 1 = 1023, so that

etrue = e− 1023 (15.235)

and the value of a stored number is

A = ±1.m× 2e−123. (15.236)

Example 15.26 A number before normalization is stored in IEEE single precision format
with s = 1, e = 10110000, m = .0000010101100 . . .0. Show the number after normaliza-
tion, state its value and show how it is stored.
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We have etrue = 176 − 127 = 49. Before normalization the value of the number is
A = −(0.00000101011)2 × 249. Normalization is effected by applying six shift-left steps to
the mantissa so that the first 1-bit appears on the left of the binary point. This 1-bit is then
omitted as an implied bit to save one bit of storage space. After normalization the mantissa
has the form .0101100 . . .0 and

A = −(1.01011)2 × 243.

The number is stored as the three components s = 1, e = 176−6 = 170 and the normalized
mantissa m = .0101100 . . .0.

The IEEE Standard 754 deals also with the extreme values such as 0 and infinity, overflow
and underflow as well as NAN (not a number). Some of these conditions are called exceptions
and usually trigger flags or messages signaling their occurrence.

15.24.1 Addition and Subtraction

Addition and subtraction of floating point numbers are effected by aligning the exponents
followed by the addition or subtraction of the mantissas, checking for overflow or underflow
and a normalization of the result.

Aligning the exponents is effected by shifting right the mantissa bits of the number
with the smaller exponent and incrementing its exponent by one for each bit of shift-
right. The number of bit shifts is equal to the difference between the exponents. After
the shifts, the two exponents having been made equal, the addition/subtraction of the
mantissas is performed. The exponent of the result is the common exponent of the numbers
after alignment. Normalization of the result is effected by shifting the mantissa bits left
until a 1 appears to the left of the binary point as seen above. For each shift-left step the
exponent of the result is reduced by one.

In constructing a circuit for addition/subtraction improved accuracy of computation may
be achieved by using long registers-accumulators so that the operation of exponent align-
ment through right shifts does not lead to loss of bits due to a fixed register length. Trun-
cation or round-off of the result is performed only after the addition/subtraction has thus
been performed using a temporary longer accumulator-register.

15.24.2 Multiplication

An interesting property of floating point arithmetic is that multiplication is in a way sim-
pler than addition. We have seen that addition requires exponential alignment as well as
postnormalization. Multiplication is more straightforward. The product of two numbers

A×B = r12
e1 × r22e2 = r1r22

e1+e2 . (15.237)

The mantissas are multiplied as in the usual fixed point multiplication, the exponents are
added and 127 is subtracted thereof and the sign attached to the result. Since a normalized
number, other than zero, has the form 1.xxxx . . . x, its value is

1 < v < 2 (15.238)

and the product of two such numbers has a value

1 < v < 4. (15.239)

Normalization is therefore easily effected.
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15.24.3 Division

In division the exponents are subtracted and 127 is subtracted from the result. The mantissas
are divided and the sign attached to the result. Normalization is applied to the result.

15.25 Square Root Evaluation

In this section we recall the paper and pencil method of the decimal evaluation of square
roots. Subsequently, binary square root evaluation is considered. Note that, alternatively,
as seen earlier the Newton–Raphson method may be used to evaluate the square root and
more generally the nth root of a number where n is any positive integer.

15.25.1 The Paper and Pencil Method

We consider the evaluation of A =
√
B. The operand B is referred to as the “radicant,”

and the result A as the “quotient.”

Example 15.27 Evaluate

A =
√

98924.37.

We group digits in pairs starting from the binary point, and proceed as follows:

A =
√
B =

√
09′89′24′.37

Q2 : 09 q1 = 3, Q = q1 = 3, 2Q = 6
r1 : 00 89 Findq2,max | 6q2 × q2 6 r1; q2 = 1

61× 01 : 61 Q = q1q2 = 31, 2Q = 62
r2 : 28 24 Findq3,max | 62q3 × q3 6 r2; q3 = 4

624× 04 : 24 96 Q = q1q2q3 = 314, 2Q = 628
r3 : 3 28 .37 Forq4,max | 628.q4 × q4 6 r3; q4 = 5

628.5× 0.5 : 3 14 .25 Q = q1q2q3.q4 = 314.5, 2Q = 629.0
r4 : 14 .12 00 q5,max | 629.0q5 × 0.0q5 6 r4; q5 = 2

629.02× 0.02 : 12 .58 04 Q = q1q2q3.q4q5 = 314.52
r5 : 1 .53 96 . . .

The quotient is A = Q =
√
B = 314.52 and the remainder is R = 1.5396. The process

starts by finding the square root of the two left-most digits; in this case 09. We obtain the
first quotient digit q1 = 3. We write Q = 3 and retain the value 2Q = 6. We subtract
Q2 = 9 from B and annex the following pair of digits 89 of B obtaining the first remainder
r1 = 0089.

We next find the second quotient digit q2 as the maximum value satisfying 6q2×0q2 6 r1,
the digit 6 being the value 2Q. We obtain q2 = 1, so that Q = q1q2 = 31, 2Q = 62 and
6q2 × 0q2 = 61× 01 = 61 which is subtracted from r1.

To the result 89−61 = 28 we annex the following two digits from B, namely, 24 obtaining
the remainder r2 = 2824. The quotient digit q3 is similarly found as the maximum value
satisfying 62q3 × 0q3 6 r2. We find q3 = 4, i.e. Q = q1q2q3 = 314 and 2Q = 628.
The process is repeated as shown above leading to improved accuracy as more digits of the
fractional part are annexed to the latest remainder.
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15.25.2 Binary Square Root Evaluation

The evaluation of the square root in the binary system proceeds in a manner similar to
the paper and pencil method. The problem is to evaluate the quotient Q of the radicant A
where, in binary,

A = 0.a1a2 . . . a2n (15.240)

Q = 0.q1q2 . . . qn ≃
√
A (15.241)

the left-most bit zero signifying a positive value. The radicant A may be viewed as a fraction
with the binary point on the left, or equivalently as an integer with the binary point on the
right.

15.25.3 Comparison Approach

In the “comparison” approach, which is identical to the decimal paper and pencil method,
a subtraction is performed and the quotient bit is qi = 1 if and only if it leads to a positive
result. Consider the case

A = 0.00′10′01′00′10′01′11′00′10′01 = 14996110 (15.242)

which may be written A = 149961
(
2−20

)
in FNR, and where the bits are grouped in pairs

for better visibility. The process is illustrated by the following chart, where we see that in
the first step the left-most two bits a1a2 = 00 are taken to be the initial remainder.

√
A =

√
.00′10′01′00′10′01′11′00′10′01
00 q1 = 0, Q = q1 = 0
00 10 r1

01 q2 = 1, Q = q1q2 = 01, 2Q = 10
01 01 r2
1 01 q3 = 1, Q = 011, 2Q = 110

00 00 00 r3
00 q4 = 0, Q = 0110, 2Q = 1100
00 10 r4

00 q5 = 0, Q = 01100, 2Q = 11000
10 01 r5
00 00 q6 = 0, Q = 011000, 2Q = 110000
10 01 11 r6
00 00 00 q7 = 0, Q = 110000
10 01 11 00 r7
00 00 00 00 q8 = 0, Q = 1100000
10 01 11 00 10 r8
1 10 00 00 01 q9 = 1, Q = 11000001
0 11 11 00 01 01 r9

11 00 00 01 01 q10 = 1, Q = 110000011
0 00 11 00 00 00 r10

At each step of the algorithm we subtract 01 from the remainder as long as such sub-
traction does not produce a negative remainder; otherwise we subtract 00. Since the initial
remainder is 00 we can only subtract 00. We therefore set the quotient bit q1 = 0 signifying
that a 00 is subtracted with the result 00. To this two new left-most bits, a3a4 = 10 of A
are appended, leading to the new remainder r1 = 0010.

The second step follows, where now we find that we can set q2 = 1, subtracting 01 from
r1 since such subtraction leads to a positive result. To this we annex a5a6 = 01 obtaining
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the new remainder r2 = 0101. The process is repeated as shown in the chart above, with
the end result

Q = 0.0110000011 = 387 (15.243)

R = 0.00000000000011000000 = 192 (15.244)

R = A−Q2 (15.245)

and Q = 387
(
2−10

)
and R = 192

(
2−20

)
in FNR.

15.25.4 Restoring Approach

As in the case of the evaluation of division the restoring approach of the square root ex-
traction is the same as the comparison approach with the exception that at every step the
bit pair 01 is subtracted from the remainder. If the result is positive the quotient bit is set
to 1 as before. If it is negative the quotient bit is set to 0 and a restoration is applied by
adding 01 to annul the effect of the last subtraction.

15.25.5 Nonrestoring Approach

In the nonrestoring approach the algorithm starts by subtracting D0 = 01 from a1a2. If the
remainder r1 is greater than or equal to zero then the quotient bit q1 = 1, the bits a3a4 are
annexed to r1, so the new remainder is r1a3a4, D1 = q101 and a subtraction is performed
producing r2 = r1 −D1. If on the other hand the remainder r1 < 0 then the quotient bit
q1 = 0, the new remainder is again r1a3a4, but D1 = q111 and an addition is performed
producing r2 = r1 +D1. In the following step the same process takes place If the remainder
r2 is greater than or equal to zero then the quotient bit q2 = 1, the bits a5a6 are annexed to
r2, so the new remainder is r2a5a6, D2 = q1q201 and a subtraction is performed producing
r3 = r2 − D2. If on the other hand the remainder r2 < 0 then the quotient bit q2 = 0,
the new remainder is r2a5a6, but D2 = q1q211 and an addition is performed producing
r3 = r2 +D2. This process is repeated so that in general if the quotient bit qk = 1 we set
rk+1 = rka2k+1a2k+2−q1q2...qk01, and if qk = 0 we set rk+1 = rka2k+1a2k+2 +q1q2 . . . qk11.

Note that if at any point the remainder is simply zero the implication is that the quotient
found so far is an exact square root. The process may be restarted at this point to proces-
sor the radicant’s remaining bits. Alternatively, the process simply resumes producing the
desired number of bits of the quotient.

As an example we consider the case A = 60210 = 0.1001011010. The following chart
shows the process generating 13 bits of quotient

Q = 24.5357 = 11000.10001001
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0.11000.10001 001√
0.10010 11010.00
− 0.01

0.0101 r1 > 0 −→ q1 = 1
− 0 0101 q101

0 00000 1 > 0 −→ q2 = 1
− 110 1 q1q201

1.11010 010 < 0 −→ q3 = 0
+ 11 011 q1q2q301

1.11101 10110 < 0 −→ q4 = 0
+ 1 10011 q1q2q3q411

1.11111 01001.00 < 0 −→ q5 = 0
+ 11000.11 q1q2q3q4q511

0.00000 00001.1100 > 0 −→ q6 = 1
− 1100 0101 q1q2q3q4q5q601

1.11111 10101.01110 0 < 0 −→ q7 = 0
+ 110 00101 1

1.11111 11011 10011 100 q8 = 0
+ 11 00010 011

1.11111 11110 10101 11100 q9 = 0
+ 1 10001 00011

0.00000 00000 00110 11111 00 q10 = 1
− 11000 10001 01

1.11111 11111 01110 01101 1100 q11 = 0
+ 1100 01000 1011

1.11111 11111 11010 10110 01110 0 q12 = 0
+ 110 00100 01001 1

0.00000 00000 00000 11010 10111 100 q13 = 1

15.26 Cellular Array for Nonrestoring Square Root Extraction

A cellular array for nonrestoring square root extraction is shown in Fig. 15.29. The array
is composed of CAS cells as the one described above and used in nonrestoring division.

As an example, Fig. 15.30 shows the operation of extracting the square root of A =
2822 = (101100000110)2, producing the result Q = 53 = (110101)2 and R = 13 = (1101)2.

15.27 Binary Coded Decimal (BCD) Representation

BCD code represents a decimal number in our usual positional decimal notation, with each
decimal digit coded in binary. For example, the decimal number 798310 is coded as the BCD
number

0111 1001 1000 0011

occupying four decades, each of which coded in binary.
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FIGURE 15.29 Nonrestoring square root extraction cellular array.

BCD has the advantage of being a natural way of representing numbers as we usually
see them. Moreover, it allows easy conversion to decimal digits for printing or display and
natural decimal mathematical operations. Since a decimal digit ranges in value from 0 to 9,
BCD representation occupies in general more bits than binary representation. Nevertheless,
decimal fixed-point and floating-point representations are used by in financial, commercial,
and industrial computing.

Conversion from BCD to binary or from binary to BCD is effected by successive right or
left shifts, followed by a conditional restoration after each shift. To view in more detail the
process of conversion note that given a decimal number we may obtain the binary equiv-
alent by successive divisions by 2 and retaining each time the fraction part. For example,
converting 12310 we write 123/2 = 61 with remainder of 1, then 61/2 = 30 with remainder
of, 1 followed by 30/2 = 15 with remainder of 0, then 15/2 = 7 with remainder of 1, followed
by 7/2 = 3 with remainder of 1, then 3/2 = 1 with remainder of 1, and finally by 1/2 = 0
with remainder of 1. The series of remainders thus obtained is the set of bit values of the
binary representation starting from the LSB up to the MSB. In other words, the binary
equivalent is 1111011.

When BCD to binary conversion is performed the same approach is followed. The division
by 2 operation is effected by a shift-right operation. However, any time the shift right
operation displaces a 1-bit from a decade to the neighboring lower decade, a correction is
needed. To see this consider the same number 798310 and its BCD form 0111 1001 1000 0011.
A one-bit shift right leads to the code 0011 1100 1100 0001 with a bit of 1 shifted to the
right as a remainder. This result is not the true value of the original number divided by two
7983/2 = 3991. In fact the number as it stands is not a valid BCD code since the middle
two decades are 1100, which equals 12. To correct the result we have to subtract 3 from
every erroneous decade, that has received a one-bit from its left neighbor due to the shift.
By subtracting 3 from the middle decade the correct number 3991 is obtained as the result
of the integer division 7983/2 = 3991.

The logic here is simple. If the LSB of a decade is 1, and if a right shift is applied, the
1-bit becomes the MSB of the lower decade. Relative to the lower decade its value before
the shifting is 10, while after the shifting its value is 8, being the MSB of the lower decade.
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FIGURE 15.30 Example of cellular array square root extraction.

Thus whereas a value of 10 divided by 2 should produce 5, the result after the shifting is 8.
To correct the result we need to subtract 3.

We conclude that if a 1-bit moves to the MSB of a lower decade the lower decade should
be reduced by 3. Such restoration has to be applied to all decades wherein the MSB receives
a 1 after the right shift.

Conversely, binary to BCD conversion is accomplished by successive multiplications times
2. This calls for successive left shift operations. Consider the same binary number 1110011.
We shift the bits left and assemble successive decades. Note, however, that after three one-
bit shifts to the left the lowest order decade contains (0111)2 = 710 and when shifted one
more bit becomes 1110 = (14)10. In BCD this value 1410 should be coded as

0001 0100

which in binary equals 20. We need therefore to add 6 to convert the simply shifted bits in
order to convert the result to BCD code. Alternatively, we can add 3 to the binary code
before the shift. Adding 3 to 7 produces 10 which after shifting becomes 2010 = 1 0110, the
proper representation for 14.

Such restoration by the addition of 3 is required any time a decade has the value 5 or
more, since multiplication by 2 then exceeds the decade capacity and carries over to a higher
decade.

We conclude that conversion from binary to BCD is accomplished by shifting the bits
successively to the left. Any time a formed decade contains a value greater than or equal to
5 it is restored by adding 3 before continuing the shifting operation.

The design of a logic chip should aim for a structure that allows us to use it as a module
or building block to solve bigger problems. The design of a combinatorial logic circuit for
the conversion from BCD to binary can be approached as shown in Fig. 15.31.

In part (a) a BCD number of one and a half decade is converted to a six-bit binary
number using shifts and two four-bit parallel adders. The drawing of the circuit is simplified
by shifting the adders to the left, rather than shifting the bits to the right. Figure 15.31 (a)
shows the conversion of the decimal number 39, the maximum allowable, to binary. This
unit of conversion may be referred to as a decimal to binary (D/B) converter chip or module
which can be used to construct converters of bigger numbers.
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FIGURE 15.31 BCD to Binary conversion using adders.

The chip is sketched in block form in Fig. 15.31 (b). The BCD to binary conversion of
a four-decade BCD code to binary may be be drawn using adders as shown in Fig. 15.31
(c). The figure also shows the grouping of pairs of adders that would allow each pair to
be replaced by the D/B chip. The same converter is then redrawn using the D/B chips as
shown in Fig. 15.32.

The same principle of designing a binary to decimal (B/D) conversion chip using four-bit
parallel adders is illustrated in Fig.15.33 (a).

Here too, to simplify the drawing, rather than shifting bits to the right the adders are
shifted left. The figure shows the conversion the maximum allowable 1 1 1 1 1 1 to decimal
63 using three adders. The chip is sketched in block form in Fig. 15.33 (b). The binary to
BCD conversion of the 12-bit number

1 1 0 0 0 1 0 1 1 0 1 1

to the decimal 3063 using adders is shown in Fig. 15.33(c). The figure also shows the
grouping of pairs of adders that would allow each pair to be replaced by the B/D chip. The
same converter is then redrawn using the B/D chips in Fig. 15.34.

A good approach in designing conversion circuits is to verify the design using the maxi-
mum allowable input. In binary this means bits that are all ones; in decimal digits that are
all 9’s. This provides a quick means of verifying the maximum length that can occupy each
number at each step of conversion.
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FIGURE 15.32 Four-decade BCD to binary conversion with D/B modules.
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FIGURE 15.33 Binary to BCD conversion array using adders.

15.28 Memory Elements

So far we focused our attention on combinatorial logic circuits. These are characterized by
the fact that their outputs at any time are function of present but not past inputs.
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FIGURE 15.34 Binary to BCD conversion array using B/D Modules

Digital signal processors and computers, however, call generally for effecting logical and
mathematical operations that are function of preceding, not only present, inputs and oper-
ations. Logical circuits capable of storing information are thus called for. These are referred
to as memory elements, and the logic circuit is called a sequential circuit and, more gen-
erally, sequential machines. The basic memory element is the flip-flop, also called bistable
multi-vibrator. In what follows we study several kinds of flip-flops.

15.28.1 Set-Reset (SR) Flip-Flop

An SR flip-flop is represented in Fig. 15.35 (a) in block form, and in Fig. 15.35 (b) and (c)
using logic gates.

y
S

R

y

Q

R

S

yS

R

(a) (b) (c)

R

Clock

S

y

(d)

Q
– y– y– y–

y–

FIGURE 15.35 SR flip-flop: (a) block diagram, (b) using NOR gates, (c) using NAND
gates, (d) clocked.
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If the input S = 1 its output y = 1 and the complement ȳ = 0. If the input R = 1
the output y = 0 and ȳ = 1. The inputs R and S cannot be simultaneously equal to 1.
The excitation characteristics of the SR flip-flop are listed in Table 15.6, where d means
don’t care. From the Karnaugh map depicted in Fig. 15.36, where φ means don’t care, we
conclude that the next state output

Y ≡ y(t+ 1) = S + R̄y(t)

TABLE 15.6 Excitation
characteristics of an SR
flip-flop

y(t) S(t) R(t) y(t+1)
0 0 0 0
0 0 1 0
0 1 1 d
0 1 0 1
1 1 0 1
1 1 1 d
1 0 1 0
1 0 0 1

00 01 11 10

0

1

SR
y

Y

FIGURE 15.36 Karnaugh map for SR flip-flop.

The values of the inputs S and R needed to flip the output or keep it unchanged are
listed in Table 15.7. These are the excitation requirements of the SR flip-flop. A clocked

TABLE 15.7

Excitation
requirements of an SR
flip-flop

y(t) y(t+1) S R
0 0 0 d
0 1 1 0
1 1 d 0
1 0 0 1

SR flip-flop which has a clock input for the purpose of synchronization is shown in Fig.
15.35 (d). The AND gates serve to synchronize the S and R inputs with the clock.
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15.28.2 The Trigger or T Flip-Flop

S

R

Q y

T

y

T

Clock

(a) (b)

Q
–

y–y–

FIGURE 15.37 T flip-flop.

The Trigger or T flip-flop shown in Fig. 15.37 complements its state upon receiving an
input T = 1. We may write

Y ≡ y(t+ 1) = T ȳ(t) + T ′y(t) = T ⊕ y(t)

The values of T required to set or reset the T flip-flop are summarized in Table .

TABLE 15.8

Excitation
requirements of a T
flip-flop

y(t) y(t+1) T
0 0 0
0 1 1
1 1 0
1 0 1

15.28.3 The JK Flip-Flop
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Q

Q
–
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FIGURE 15.38 JK flip-flop, (a) block diagram, (b) using an SR flip flop.

The JK flip-flop combines the properties of SR and T flip-flops. Its J and K inputs act
as the S and R inputs of the SR flip-flop. If, however, J = K = 1, it acts as the T flip-flop,
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reversing its state. The JK flip-flop is represented in block form in Fig. 15.38 (a), and as
a logic circuit employing an SR flip-flop in Fig. 15.38 (b). Table 15.9 shows the excitation
requirements of the JK flip-flop.

TABLE 15.9

Excitation
requirements of a JK
flip-flop

y(t) y(t+1) J K
0 0 0 d
0 1 1 d
1 1 d 0
1 0 d 1

15.28.4 Master-Slave Flip-Flop
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K

Q J

K

Q
J

K

Clock

y

Q
–

y–Q
–

FIGURE 15.39 Master-slave JK flip flop.

An n-bit latch or a shift register is constructed as a set of n flip-flops. An FIR filter such as
the one depicted in Chapter 11 Fig. 11.9, for example, employs unit-delay elements referred
to in the figure by their transfer function z−1. To construct such a filter using fixed point
number representation with say m bits, we would implement each delay element as a latch
made up of m flip-flops. At each clock, m input bits are stored into each latch in parallel.
Since the latches are connected in series as a chain of memory elements, a latch input is
in general the output of the preceding one. The clock pulse should synchronize the data
shifting operation so that each flip-flop will transfer its input to its output once during the
clock cycle. If the clock pulse lingers, however, flip-flop inputs may change, the preceding
stage having changed state. In other words, the clock should ensure that the sampling of
the input is done once and at the appropriate time. It should be short enough to sample
the input but not so long that the input changes to a new state.

A Master-Slave flip-flop solves this problem by using in fact two flip-flops. The first
transfers the input to its output when the clock goes high (1) and the second transfers the
output of the first flip-flop to the second when the clock returns to low (0). Such a master-
slave flip-flop is shown in Fig. 15.39. A detailed circuit using NAND gates can be seen in
Fig. 15.40. The flip-flop has also Clear and Set inputs to override the J and K inputs, with
a 0 on the Set input to set the slave to 1 and a 0 on the Clear input to clear it to 0. If
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both the Set and Clear inputs are 1 they become transparent letting the flip-flop state be
controlled by the J and K flip-flop inputs. The Clear and Set inputs may be used to clear
latches or shift registers and to impose a specific state on a counter when needed.

J

K

Clock

y

Set

Clear

MASTER SLAVE

y–

FIGURE 15.40 Master-slave JK flip-flop detailed structure

15.29 Design of Synchronous Sequential Circuits

To design a synchronous sequential circuit for a given application we start by drawing a state
diagram representing the required sequencing of operations. Consider the state diagram
model of a sequential machine (circuit) shown in Fig. 15.41.

q1 q2

q4 q3

1/3, 2/2, 3/3

0/0

1/00/2

2/0, 3/0 2/0, 3/0

2/0, 3/1
0/0, 1/0

0/0, 1/1

FIGURE 15.41 State diagram of a sequential machine.

Circles in a state diagram represent states of the machine. Directed arcs indicate tran-
sitions between states. The labels that appear next to the directed arcs specify the inputs
and corresponding outputs. For example, the arc directed from state q1 to state q2 has the
label 1/3, 2/2, 3/3. This means that if the input equals 1 the output is 3, if it equals 2 the
output is 2 and if it is 3 the output is 3. A sequential circuit can be, alternatively, described
by a state table. The sequential circuit in question is described by Table 15.10.
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TABLE 15.10 State table of sequential circuit

Present State Next state, output z
x1x2 = 00 x1x2 = 01 x1x2 = 11 x1x2 = 10

q1 q1, 2 q2, 3 q2, 3 q2, 2
q2 q1, 0 q2, 0 q3, 0 q3, 0
q3 q1, 0 q1, 1 q4, 1 q4, 0
q4 q4, 0 q4, 0 q1, 0 q1, 0

Since the input values range between 0 and 3, they will be denoted in binary as x1x2 =
00, 01, 10, and 11. The table shows the transitions from each present state q1, q2, q3, or q4 to
the next state and the corresponding output in each transition. Since the circuit has four
states, we use two variables, y1 and y2, to denote each one. The state assignment is arbitrary.
If, for example, we assign the values y2y1 = {00, 01, 11, 10} to the states q2, q3, q1, and q4,
respectively, we may construct a state transition table specifying the evolution in time of
the state variables y1 and y2 and the corresponding outputs, which we may code using two
variables z1 and z2. Table 15.11 shows such transitions between states and outputs. In this
table, y1 and y2 designate the present state variables, while Y1 and Y2 designate the next
state following the transition.

TABLE 15.11 Transition and output table of sequential circuit

Present State Next state Output
x1x2 = 00 01 11 10 00 01 11 10

y2y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1 z2z1 z2z1 z2z1 z2z1
q2 : 00 11 00 01 01 00 00 00 00
q3 : 01 11 11 10 10 00 01 01 00
q1 : 11 11 00 00 00 10 11 11 10
q4 : 10 10 10 11 11 00 00 00 00

From this table we can draw the Karnaugh maps corresponding to the variables Y1, Y2,
z1, and z2 as functions of x1, x2, y1 and y2, as can be seen in Fig. 15.42 (a-d), respectively.
From these maps we can minimize the required logic functions by grouping zero-cubes to
form bigger ones, as can be seen in the figure.
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FIGURE 15.42 Karnaugh maps of (a) Y1, (b) Y2, (c) z1 and (d) z2.
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We obtain

Y1 = x1ȳ1 + x̄1ȳ2y1 + x̄1x̄2ȳ2 + x̄1x̄2y1

Y2 = y2ȳ1 + ȳ2y1 + x̄1x̄2 = y1 ⊕ y2 + x̄1x̄2

z1 = x2y1 , z2 = y2y1

y1

–
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x1
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x2
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x1
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x2

–
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x2 z1

y2

y1 z2

FIGURE 15.43 Combinational circuit evaluating Y1, Y2, z1, z2.

The realization of these functions using AND and OR gates is shown in Fig. 15.43. The
overall sequential circuit is shown in Fig. 15.44.

Combinational
Circuit

x1

x2

z1

z2

Clock

Q D

Q D

y1

y2 Y2

Y1

FIGURE 15.44 Sequential machine model.

where D-Type flip-flops are used as memory elements. This figure is typical of a sequential
circuit wherein part is combinatorial logic circuit and the other uses memory elements.

The general model of a synchronous sequential machine with m inputs x1, x2, ..., xm, k
outputs z1, z2, ..., zk and p state variables y1, y2, ..., yp, is shown in Fig. 15.45. The outputs
of the combinatorial logic circuit are the machine outputs z1, z2, ..., zm and the next state
variables Y1, Y2, ..., Yp, which are registered into the memory elements.

15.29.1 Realization Using SR Flip-Flops

S2 = ȳ2y1 + x̄1x̄2
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FIGURE 15.45 General Model of a synchronous sequential machine.

S1 = x1ȳ1 + x̄2ȳ2ȳ1

R2 = x1y2y1 + x2y2y1

R1 = x1y1 + x2y2y1

The excitation table of implementation of the above sequential circuit is obtained using
the excitation requirements for SR flip-flops to determine the S and R, namely S1, R1, S2,
and R2 that need to be applied to effect the transition from each present state y2y1 to the
next one Y2Y1 as given in Table 15.12. From this table we draw the Karnaugh maps of S2,
S1, R2, and R1 as seen in Fig. 15.46.

TABLE 15.12 Excitation table using SR flip-flops

Input x1x2

Present State 00 01 11 10
y2y1 S2R2 S1R1 S2R2 S1R1 S2R2 S1R1 S2R2 S1R1

q2 : 00 10 10 0d 0d 0d 10 0d 10
q3 : 01 10 d0 10 d0 10 01 10 01
q1 : 11 d0 d0 01 01 01 01 01 01
q4 : 10 d0 0d d0 0d d0 10 d0 10

15.29.2 Realization Using JK Flip-Flops.

The realization using JK flip-flops is similarly obtained. Table 15.13 lists the excitation
requirements for a JK flip-flop. The resulting Karnaugh maps of J2, J1, K2 and k1 are
shown in Fig. 15.47.
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FIGURE 15.46 Karnaugh maps of S2, S1, R2 and R1.

TABLE 15.13 Excitation table using JK flip-flops

Input x1x2

Present State 00 01 11 10
y2y1 J2K2 J1K1 J2K2 J1K1 J2K2 J1K1 J2K2 J1K1

q2 : 00 1d 1d 0d 0d 0d 1d 0d 1d
q3 : 01 1d d0 1d d0 1d d1 1d d1
q1 : 11 d0 d0 d1 d1 d1 d1 d1 d1
q4 : 10 d0 0d d0 0d d0 1d d0 1d

From these maps we obtain the equations

J2 = x̄1x̄2 + y1

J1 = x1 + x̄2ȳ2

K2 = x1y1 + x2y1

K1 = x1 + x2y2y1

15.30 Realization of a Counter Using T Flip-Flops

The control unit of a computer or general digital processor is a sequential machine which,
depending on conditions it receives as inputs, will change from the present state to a new
one and produce the required output signals. As an illustration of the design of a counter
to cycle through predetermined states we consider a 3-bit counter incrementing its binary
content with each clock. The state diagram of such a counter is shown in Fig. 15.48.

The states of this counter can be seen in Table 15.14. The corresponding excitation
requirements for T flip-flops are listed in Table 15.15.

Drawing the Karnaugh maps for the variables T1, T2 and T3 we deduce that

T3 = xy2y1, T2 = xy1, T1 = x, z = xy3y2y1.

15.30.1 Realization Using JK Flip-Flops

The realization using JK flip-flops of the same 3-bit counter leads to the excitation require-
ments listed in Table 15.16. Drawing the Karnaugh maps for the J and K variables we
obtain

J3 = K3 = xy2y1, J2 = K2 = xy1, J1 = K1 = x.
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FIGURE 15.47 Karnaugh maps of J2, J1, K2 and K1.
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FIGURE 15.48 State diagram of a 3-bit counter.

TABLE 15.14 Transition and output table of
3-bit counter

x = 0 x = 1
y3 y2 y1 Y3 Y2 Y1 Y3 Y2 Y1 Z
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 1 0
0 1 1 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 1 0
1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0
1 1 1 1 1 1 0 0 0 1

Note that the same approach can be used to design a 3-bit counter that switches between
states in any order. For example, we can thus design a counter that follows the Gray code,
rather than straight binary. The student is advised to design such a counter.
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TABLE 15.15 Excitation table using T
flip-flops

x = 0 x = 1
y3 y2 y1 T3 T2 T1 T3 T2 T1

0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1
0 1 1 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1
1 1 1 0 0 0 1 1 1

TABLE 15.16 Excitation table using of 3-bit counter using
JK flip-flops

x = 0 x = 1
y3 y2 y1 J3K3 J2K2 J1K1 J3K3 J2K2 J1K1

0 0 0 0 d 0 d 0 d 0 d 0 d 1 d
0 0 1 0 d 0 d d 0 0 d 1 d d 1
0 1 0 0 d d 0 0 d 0 d d 0 1 d
0 1 1 0 d d 0 d 0 1 d d 1 d 1
1 0 0 d 0 0 d 0 d d 0 0 d 1 d
1 0 1 d 0 0 d d 0 d 0 1 d d 1
1 1 0 d 0 d 0 0 d d 0 d 0 1 d
1 1 1 d 0 d 0 d 0 d 1 d 1 d 1

15.31 State Minimization

A sequential machine may have redundant states. A redundant state is one that is equivalent
to another state, producing the same output whatever the sequence of inputs. Eliminating
redundant states leads to state minimization and, in general, the number of memory ele-
ments needed to represent the machine states. We view here briefly an approach to state
minimization. The approach starts by grouping together states that have no conflicting
outputs for the same input, we thus obtain blocks of states with non-conflicting outputs.
Subsequently we separate states which are in the same block but which under any input lead
to successor states (next states) that are not in the same block. This operation is repeated
until it is found that the no new block partitions are formed.

To illustrate the process consider the machine M1 described by Table 15.17.
Initially all the states are in the same block

P0 = (ABCDEFGH)

Comparing the outputs of these states under the two inputs x = 0 and x = 1 we construct
two blocks, obtaining the new partition

P1 = (ACDGH)(BEF )

Now we note that states A, G, and H with input x = 0 lead to the successors E and F
which are in the same block in P1. The same is found if the input is instead x = 1. The
states (AGH) thus stay in the same block. On the other hand, the successors of states A
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TABLE 15.17 State table
of Machine M1

Present Next State
State x = 0 x = 1

A E, 1 F, 1
B E, 0 C, 1
C D, 1 B, 1
D H, 1 F, 1
E F, 0 G, 1
F E ,0 H, 1
G F, 1 E, 1
H E, 1 E, 1

and C with input x = 0 are E and D which are in separate blocks. State C has to be
removed, therefore, from the (ACDGH) block. Similarly states A and D with x = 0 lead to
successors E and H which are in different blocks. State D should therefore be also removed
from the block (ACDGH). Proceeding similarly we obtain the new partition

P2 = (AGH)(C)(D)(B)(EF )

The successors of states A, G, and H are E and F , which are in the same block. Those
of E and F are E and F if x = 0 and G and H if x = 1. Since in both cases the successors
are in the same block no further splitting of blocks is need and P2 is the final equivalence
partition. The states A, G and H , being in the same block are equivalent states and can
be replaced by one state. Similarly, states E and F are equivalent and can be replaced by
one state.Let us call the successive block α = (AGH), β = (C), γ = (D), δ = (B) and
ǫ = (EF ). These become the new states. We obtain the reduced machine state table shown
as Table 15.18.

TABLE 15.18 State table
of Machine M1

Present Next State
State x = 0 x = 1
α ǫ, 1 ǫ, 1
β γ, 1 δ, 1
γ α, 1 ǫ, 1
δ ǫ, 0 β, 1
ǫ ǫ, 0 α, 1

We thus end up with five instead of eight states. They can now be assigned 3-bit codes
000, 001, ... and we may realize the circuit using SR or JK flip-flops, draw the Karnaugh
maps and find the S and R or J and K equations, as seen above.

Simplification of incompletely specified machines is obtained by following a similar ap-
proach but where compatible, rather than equivalent, state are identified. The approach
will be studied in the context of asynchronous sequential machines.
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15.32 Asynchronous Sequential Machines
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FIGURE 15.49 Waveform description of asynchronous machine requirements.

In many applications, inputs to sequential circuits are not synchronized by a clock. They
may occur at any time and the circuit behavior depends on their sequence of values, when-
ever these values are received. As an example of an asynchronous sequential machine, con-
sider the design of an asynchronous sequential machine which we shall refer to as circuit
M0. This circuit has two inputs x1 and x2 and an output z. The transition of the output z
from 0 to 1 and from 1 to 0 depends on the states of the inputs x1 and x2 as can be seen
in Fig. 15.49 (a) and (b) respectively. Note that the output z should change from 0 to 1 if
while input x1 is 1, input x2 changes from 0 to 1, and that z should change from 1 to 0 if
while input x2 is 1, input x1 changes from 1 to 0.

To draw the state diagram of the machine, we may start by representing schematically
the output z as a function of different possible values of inputs. This is illustrated in Fig.
15.50. From this figure we note that particular combinations of inputs x1 and x2 and output
z are possible distinct states of the circuit. As can be seen in the figure, we identify eight
such states. We now construct a state table starting from the initial state x1 = x2 = z = 0.
We denote this state by the symbol 1©; the circle meaning that it is a stable state.

1 2 34 5 6 7 8

x1

x2

z

0

1

0

1

0

1

FIGURE 15.50 Waveform of asynchronous machine showing eight possible states.

For an asynchronous sequential circuit to function properly, only one input bit can change
at any instant of time. The input x1x2 can change from 00 to 01 or from 11 to 01, say, but
not from 00 to 11 nor from 10 to 01. The state transition table, refereed to as the primitive
flow table, of the required sequential circuit appears as Table 15.19.
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TABLE 15.19 Primitive flow table

Next state, output
Present State x1x2 = 00 x1x2 = 01 x1x2 = 11 x1x2 = 10

1© 1©, 0 2 – 3
2© 1 2©,0 4 –
3© 1 – 5 3©, 0
4© – 2 4©, 0 3
5© – 2 5©, 1 6
6© 7 – 5 6©, 1
7© 7©, 1 8 – 6
8© 7 8©, 1 5 –

Each line in the table corresponds to a stable state and shows under which input it is
stable. For example, state 6© is stable under the input 10 and the circuit output should be
1. From state 1© an input x1x2 = 10 leads to unstable state 3 as seen on the first line, which
becomes stable state 3© on the third line, with an output z = 0. If the circuit is at state
3© and the input changes to x1x2 = 11, the circuit moves to unstable state 5, ending up in
stable state 5© and produces z = 1, as can be seen on line 5. If the circuit is in stable state
3© and the input changes to x1x2 = 00 it changes to state 1, ending up in the initial state
1© and produces an output z = 0.

15.33 State Reduction

Sequential machines are often incompletely specified. Some input transitions are not al-
lowed, such as simultaneous change of more than one bit, and cases where either the input
is illegal or the output is not specified. Such don’t care conditions may lead to a possible
minimization of logic functions and even the number of states of a sequential circuit. There
are several approaches to state reduction. One approach is to start by drawing a merger
graph corresponding to the flow table. The graph has as many vertices as the machine’s sta-
ble states. To illustrate this approach, consider the same eight-state asynchronous sequential
circuit M0 given above.

The merger graph corresponding to this machine is shown in Fig. 15.51(a).
This graph is used to reveal compatible states. These are states which, after transitions

following changes of the input, do not lead to states with conflicting outputs when specified.
If the machine is stable in state S1 and upon receiving an input x0 switches to state S2,
then S2 is called the x0-successor of S1. Two states are compatible if, receiving any input,
have compatible successors, i.e. successors that have un-conflicting outputs.

As an illustration, consider the asynchronous machine M0. We note that states 1© and
2© under any of the inputs x1x2 = 00, 01, 11, and 10 have no conflicting successors as seen
by the first two lines of the table. In the merge graph, therefore, vertices 1 and 2 are joined
by a solid line. Consider now states 2© and 3©. As seen in lines 2 and 3 of the table, the
successor states under input x1x2 = 11 are 4 and 5. Whether or not states 2© and 3© are
compatible depends on whether or not states 4 and 5 under subsequent inputs will lead
to compatible successors. In the merger graph, therefore, the arc joining states 2 and 3 is
interrupted by the connectivity condition, or implied pair (4, 5), implying such dependency
on these states for compatibility.

We note further that states 4© and 5© are in fact, incompatible, since under input x1x2 =
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FIGURE 15.51 Merger graph of a sequential machine.

11, their outputs are conflicting. In the merger graph, therefore, states 4 and 5 are not
connected. Similarly, the pairs of state 2© and 8©, 1© and 7©, and 3© and 6© are incompatible
pairs.

The following step is to reduce the merger graph by crossing out any arcs that are
interrupted by implied pairs of states that we found to be incompatible. For example, having
identified the pair of states 4© and 5© to be incompatible, we can remove the arc connecting
vertices 2 and 3 that has implied pair (4, 5) interrupting it. Applying this simplification to
completion, we obtain the reduced merger graph shown in Fig. 15.51(b).

The following step is to group compatible states into larger sets of mutually compatible
states whenever possible. From this figure, we can see that the set of maximal compati-
bles covering the machine is {(1, 2, 4), (3), (5, 6), (6, 7, 8)}. Note that states 5 and 6 form a
compatible set. However, state 6 is already covered by the set (6, 7, 8), hence a minimum
covering is {(1, 2, 4), (3), (5), (6, 7, 8)}.

An alternative to the merger graph that may be more convenient for larger machines
is the merger table. For the same machine M0, Fig. 15.52 shows the corresponding merger
table. This table lists compatible pairs of states and their implied pairs. Each cell in the table
shows the compatibility or absence thereof of a pair of states. For an n-state machine, states
along the horizontal axis are S1, S2, ..., Sn−1. Those on the vertical axis are S2, S3, ..., Sn. A
cell at the intersection of Si of the horizontal axis and Sj of the vertical one describes the
compatibility of the two states. The figure shows the compatibilities and implied pairs of
each pair of our eight-state machine M0. In a similar way to that followed using the merger
graph, cells are crossed out if their enclosed implied pairs prove to be incompatible. Thus
the cell at the intersection 2 and 3 encloses the implied pair (4, 5). Since this pair is itself
incompatible, the cell of intersection 2-3 is crossed out.

Once all incompatible cells have been crossed out, we proceed in the table from the right
grouping incompatible pairs, forming larger sets enclosing mutually compatible states when-
ever possible. We thus obtain the set of maximum compatibles {(1, 2, 4), (3), (5, 6), (6, 7, 8)}.
We conclude that four states suffice to describe this machine. As found above, a minimal
covering is {(1, 2, 4), (3), (5), (6, 7, 8)}. The reduced state table is shown as Table 15.20.

Assigning the codes 00, 01, 11, and 10 to the new states (5), (3), (1, 2, 4), and (6, 7, 8),



Digital Signal Processors: Architecture, Logic Design 1053

4,5

1,7
2,8

2

3

4

5

6

7

8

1 2 3 4 5 6 7

4,5

3,64,53,6

2,8

2,81,7
1,7
2,8

1,7
3,6

1,7
4,5

1,7
3,6

2,8
4,5

2,8
3,6

4,5
3,6

FIGURE 15.52 Merger-Table of a sequential machine.

TABLE 15.20 State table

00 01 11 10
(5) – 2, 0 5©, 1 6, 1
(3) 1, 0 – 5, 1 3©, 0

(1, 2, 4) 1©, 0 2©,0 4©, 0 3, 0
(6, 7, 8) 7©, 1 8©, 1 5, 1 6©, 1

respectively, we obtain the state transition and output table, seen as Table 15.21.

TABLE 15.21 Transition and output table

Present State Next state, output
y1y2 x1x2 = 00 x1x2 = 01 x1x2 = 11 x1x2 = 10
00 – 11, 0 00, 1 10, 1
01 11, 0 – 00, 1 01 ,0
11 11, 0 11, 0 11, 0 01, 0
10 10, 1 10, 1 00, 1 10, 1

Drawing the Karnaugh maps describing the variables Y2, Y1, and z we obtain

Y2 = x̄1 + x̄2ȳ2 + x2y1y2

Y1 = x̄1ȳ1 + x̄2y2 + y1y2

Z = x1x2ȳ1 + x1ȳ2 + y1ȳ2

The circuit realization is shown in Fig. 15.53.
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FIGURE 15.53 Logic circuit realization of an asynchronous machine.

15.34 Control Counter Design for Generator of Prime Numbers

As an illustration of the design of a control counter to govern the sequencing of operations
in a digital processor we consider the problem of designing a prime numbers generator [13]
[52]. The algorithm for generating the first 1024 numbers starts by recognizing the first two
prime numbers as Prime(1) = 2 and Prime(2) = 3. The following prime numbers cannot
be even, and a prime number is not divisible by any number except 1 and itself. To test if
a number N is prime we effect the division N/Prime(k) with k = 2. We write

N/Prime(k) = Q+R

If R = 0 the number N is not prime. If R 6= 0 and Q ≤ Prime(k) then N is prime;
otherwise set k = k + 1 and the division N/Prime(k) is effected. This process is repeated
until R = 0 or else Q ≤ Prime(k).

The first step in designing the control unit is to determine the basic components needed
to implement the algorithm. These can be seen in Fig. 15.54. We use a prime numbers
memory (PNM), with a capacity of 1024 words. This memory has an associated address
register AR for storing the value k. Two registers G and P are used for storing indexes
j and k, respectively. Register N stores the successive numbers N to be tested. Division
A/Q is effected by successive subtractions of the content of register B which contains the
divisor Prime(k) from the dividend N which is in register A. The result of subtraction
is the difference D and borrow-out bit. We assume a register length of n = 12 bits. The
least significant bit (LSB) is b0 and the most significant is bn−1. The borrow-out bit will
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be denoted Wn. Division is performed by successively subtracting register B from A and
counting, by incrementing register Q, the number of times successful subtractions, i.e. with
borrow Wn = 0 occur. A one-bit flag register labeled U receives the borrow bit Wn. The
figure also shows a control register M connected to a decoder and a combinatorial logic
circuit.
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FIGURE 15.54 Prime number generator hardware components.

15.34.1 Micro-operations and States

The processor performs micro-operations µ1 to µ13. These can be seen in the flowchart of
Fig. 15.55.. Also shown in the figure are states S0, S1, ..., S12, which can be assigned to the
distinct stages of progress during the execution of the algorithm. In addition, we may denote
the micro-operations setting the control register to the required state during processing by
the symbols ν0, ν1, ..., ν12, where the signal νi forces the register to state Si. The control
counter M , connected to a one of 16 decoder as seen in Fig. 15.54. When the counter is
in state Si the decoder output M(i) is at logic 1. This is the case for all states, i.e., for
i = 0, 1, 2, ..., 12.

The micro-operations µ1 to µ13 can be seen in the flowchart of Fig. 15.55 next to the
boxes that include them. As stated D stands for the difference resulting of subtracting B
from A and Wn stands for borrow. In fact, we may write for i = 0, 1, ..., n− 1

Di = BiĀiW̄i + B̄iĀiWi +BiAiWi + B̄iAiW̄i

and

Wi+1 = BiĀi +BiW̄i + ĀiWi

Di being the difference bit and Wi+1 the resulting borrow bit. The resulting leftmost borrow
bit Wn is transferred to register U indicating a borrow condition when Wn = 1.

At any clock time, the states and conditions for branching determine the micro-operations
to be performed. Table 15.22 shows such relation between the states S0 to S12, the results
of tests and the micro-operations µ1 to µ13. These operations are synchronized by the clock
labeled H in the figures.
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TABLE 15.22 Micro-operations of processor states and conditions

Micro-operations
State Condition µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11 µ12 µ13

START ← ON 1
S0 1
S1 1
S2 1
S3 1

S4.GEQ1024 1
S4.GEQ1024 1

S5 1
S6 1
S7 1
S8 1

S9.AEQ0
S9.AEQ0.UEQ1 1
S9.AEQ0.UEQ1 1

S10 1
S11.UEQ0

S11.UEQ0.AEQ0
S11UEQ0.AEQ0 1

S12 1

Table 15.23 shows the control register state-setting signals ν0 to ν12. Note that the symbol
GEQ1024 means G = 1024, AEQ0 means A = 0, UEQ1 stands for U = 1 and UEQ0 for
U = 0.

TABLE 15.23 Micro-operations of processor states and conditions

Micro-operations
State Condition ν0 ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11 ν12
START ← ON 1

S0 1
S1 1
S2 1
S3 1

S4.GEQ1024 1
S4.GEQ1024 1

S5 1
S6 1
S7 1
S8 1

S9.AEQ0 1
S9.AEQ0.UEQ1 1
S9.AEQ0.UEQ1 1

S10 1
S11.UEQ0 1

S11.UEQ0.AEQ0 1
S11UEQ0.AEQ0 1

S12 1
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From the tables we may define the micro-operations as functions of states and conditions.
We have

µ1 = (START ← ON)

µ2 = S0 + S3, µ3 = S1, µ4 = S2,

µ5 = S4.GEQ1024 + S12, µ6 = S4GEQ1024 + S5,

µ7 = S6, µ8 = S7, µ9 = S8,

µ10 = S9.AEQ0.UEQ1, µ11 = S9.AEQ0.UEQ1,

µ12 = S10.

The counter-setting signals are given by

ν0 = (START ← ON), ν1 = S0 + S11.UEQ0 + S11.AEQ0, ν2 = S1, ν3 = S2,

ν4 = S3, ν5 = S4.GEQ1024 + S9.AEQ0 + S11.UEQ0.AEQ0,

ν6 = S5, ν7 = S6, ν8 = S7 + S9.AEQ0.UEQ1, ν9 = S8,

ν10 = S9.AEQ0.UEQ1, ν11 = S10,

ν12 = S4.GEQ1024 + S12.

The micro-operation signals µ1 to µ13 are thus generated by a combinatorial circuit, of
which the inputs are the signals indicating the states of the counter Si and the test results,
such as AEQ0, GEQ1024, ...

The control register setting signals νi are similarly generated using a combination logic
circuit of which the inputs are again the signals Si denoting the states and the test results.

The control register is 4 bits long since it should store 12 states. Receiving an input setting
signal νi it is set to state Si. With a register made of JK flip flops, Table 15.24 shows the
J and K inputs required to set the counter as desired. A straight forward realization yields

J3 = ν8 + ν9 + ν10 + ν11 + ν12

J2 = ν4 + ν5 + ν6 + ν7 + ν12

J1 = ν2 + ν3 + ν6 + ν7 + ν10 + ν11

J0 = ν1 + ν3 + ν5 + ν7 + ν9 + ν11

and
Ki = J̄i, i = 1, 2, 3.

The logic circuit of the prime numbers generator micro-operations is shown in Fig. 15.56.
We may, alternatively, bypass generating the control counter state-setting ν0 to ν12 signals,
replacing them by four flip-flop setting signals, to be directly applied to the counter’s four
flip-flops; thus forcing the new state of the counter at every clock. To this end, let the
counter state Si be coded as y3y2y1y0 = (i)2. For example, the counter in state S10 has the
contents y3y2y1y0 = 1010. As can be seen in the flowchart of Fig. 15.55, the counter state
will increase by one, i.e. from Si to Si+1 unconditionally for i = 0, 1, 2, 3, for example.
On the other hand, if the counter is in state S4, i.e. 0100 it will change to state S5 if
MEQ1024 = 0 and to state S12 if MEQ1024 = 1. If the counter is in state S9, i.e. 1001,
it will change to state S5 if AEQ0 = 1, and to state S10 i.e. 1010 if AEQ0.UEQ1 = 1 ,
otherwise it will go to sate S8 = 1000 if AEQ0.UEQ1 = 1. Moreover, if the counter is in
state S11, i.e. 1011, it will change state to S1 if (UEQ0 + AEQ0) = 1, and to state S6 i.e.
0110 if AEQ0 = 1.
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TABLE 15.24 Control register T states and JK
inputs

JK inputs
State J0K0 J1K1 J2K2 J3K3

ν0 =⇒ M ← 0 0 1 0 1 0 1 0 1
ν1 =⇒ M ← 1 0 1 0 1 0 1 0 1
ν2 =⇒ M ← 2 0 1 0 1 1 0 0 1
ν3 =⇒ M ← 3 0 1 0 1 1 0 1 0
ν4 =⇒ M ← 4 0 1 1 0 0 1 0 1
ν5 =⇒ M ← 5 0 1 1 0 0 1 1 0
ν6 =⇒ M ← 6 0 1 1 0 1 0 0 1
ν7 =⇒ M ← 7 0 1 1 0 1 0 1 0
ν8 =⇒ M ← 8 1 0 0 1 0 1 0 1
ν9 =⇒ M ← 9 1 0 0 1 0 1 1 0
ν10 =⇒ M ← 10 1 0 0 1 1 0 0 1
ν11 =⇒ M ← 11 1 0 0 1 1 0 1 0
ν12 =⇒ M ← 12 1 0 1 0 0 1 0 1

By drawing the Karnaugh maps of next-state variables Y3, Y2, Y1, Y0 of the counter, while
taking into account the conditions for the state transitions as just observed, and the fact
that the states 1101, 1110, 1111 are don’t care states that may be used to simplify the
logic, we obtain

Y0 = y1ȳ0 + ȳ2ȳ0 +MEQ1024ȳ0 + y3AEQ0 + UEQ0y3y1

Y1 = y1ȳ0 + ȳ3ȳ1y0 + ȳ2y1ȳ0 + ȳ1y0.AEQ0UEQ1 + y3y1.UEQ0.AEQ0.

Y2 = y2ȳ1 + y2ȳ0 + ȳ3ȳ2y1y0 + y3ȳ1y0 + y3y1y0.UEQ0.AEQ0.

Y3 = y2y1y0 + y3ȳ0 + y3ȳ1AEQ0 + y2ȳ1ȳ0MEQ1024.

These are the counter-setting signals, applied directly to the D input of the counter’sD type
flip-flops. This approach requires less hardware since it generates directly the four counter
state-setting signals, rather than generate first the ν signals followed by their conversion to
the four signals required to set the counter’s four flip-flops.

15.35 Fast Transform Processors

We shall start with FFT processors followed by generalized Walsh and generalized spectral
analysis processors. We have seen in Chapter 7 that an optimal factorization of the FFT
wherein all iterations data to be accessed are constantly separated by a fixed maximum
distance, thus allowing to store all vectors in maximum length queues leading to wired-
in processor architecture. Moreover, we have seen that the ordered input/ordered output
(OIOO) factorization

FN = TNf =

n∏

m=1

(pmµmS)f (15.246)

operates on a properly ordered input data vector f and produces a properly ordered set of
Fourier coefficients FN . In what follows we focus our attention on the resulting processor
architecture.
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FIGURE 15.56 Logic circuit of prime numbers generator micro-operations.

Figure 15.57 shows the basic radix-2 machine organization for implementing the OIOO
machine-oriented algorithm. The set of data points are gated-in in a parallel-bit serial-word
form, from the input terminal “In” into the “input memory” which can be in the form of a
set of long dynamic shift registers. The input memory is divided into two halves, N/2 bits
long each. If dynamic registers are used, then each half of the input memory consists of 2W
such registers, where W is the word length of the real part and that of the imaginary part.

The first step is to apply the addition-subtraction process described by the operator S.
Thus the elements f0 and fN/2 are added and subtracted.

The following step is to multiply the result of subtraction by the appropriate weighting
coefficient

(
wk
)
. This is performed in the wired-in complex multiplier designated by a square

box which includes a × sign in the figure.

The weighting operation corresponding to the element of the matrix µn is thus performed.
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FIGURE 15.57 Radix-2 FFT wired-in processor.

The next step is to store the results of addition and multiplication into the set of output
registers “output memory.”The output memory is identical in construction to the input
memory and is designated by the two sets “A” and “M” in the figure.

The words in the input memory are then shifted one bit to the right, and the process
repeated for the following two words f1 and fN/2+1. The two words are added and subtracted
and the result of subtraction is weighted by the appropriate weighting coefficient. The results
of addition and multiplication are stored into the output memory and the Process repeated
for every successive pair of data (fi and fi+N/2).

The contents of the “A” and “M” memories are then fed back into the input memory. The
feedback process is made to include the permutation operations by controlling the sequence
in which the outputs of the “A” and “M” memories are gated into the Input Memory. Use
is made of the first stage of an n-bit binary counter to alternately gate the contents of the
“A” and “M” memories into the input memory. Thus, the permutation operator pn, which
calls for the repeated gating-in of one word of the “A” memory followed by another of the
“M” memory, is implemented.

At the end of the feedback process, the “input memory” includes the results of the
first iteration. The subsequent iterations are similarly performed by applying the appro-
priate sets of weighting coefficients using the ROM and performing the appropriate per-
mutations in the feedback process, as controlled by the successive stages of the binary
counter.

FIGURE 15.58 Parallel radix-4 FFT wired-in processor.
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At the end of the n iterations, the output coefficients appear in the proper order. The
processor has the advantage of being wired-in, requiring no addressing and is capable of
operating in real time with a minimum of control unit requirements. The architecture of a
parallel Radix-4 FFT wired-in processor [22] is shown in Fig. 15.58.

The general radix high-speed no feedback algorithm described in Chapter 7 leads to a
parallel architecture that is virtually wired-in. This is shown for radix-4 in Fig. 15.59 and
is described in detail in [15] [22] [28]. The approach has been applied to optimal massive
parallelism of generalized spectral analysis transforms [16] [20]. Real time applications of
such parallel high speed processors, as encountered for example in radar signal processing,
can be seen in [43].
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FIGURE 15.59 Parallel radix-4 FFT high speed processor.

15.36 Programmable Logic Arrays (PLAs)

A programmable logic array (PLA) is a semiconductor device that can be programmed to
implement logic functions. In configuring a PLA the user needs only program the prime
implicants, that is, the necessary products, of the logic functions to be implemented. This is
in contrast with programmable read only (PROM) memories, which require programming
each and every canonical product term thereof. The PLA has in general a programmable
ANDing matrix, of which the outputs are connected to a set of programmable OR gate
planes. As an illustration consider the implementation of the three logic functions f1, f2,
and f3 which are given in terms of four logic variables x1, x2, x3 and x4 by the sum of
products logic equations

f1 = x1 x2 x3 x4 ∨ x1 x2 x3 ∨ x1 x3 ∨ x3 x4

f2 = x2 x3 ∨ x1 x2 x3 ∨ x1 x3 x4 ∨ x1 x3

f3 = x2 x3 ∨ x1 x3 x4 ∨ x1 x2 x3 ∨ x3 x4.
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FIGURE 15.60 PLA logic circuit.

The mapping of these functions on a PLA can be seen in Fig. 15.60. For each of the
functions, f1, f2, and f3, the dots in the products matrix correspond to the variables that
need to be ANDed, and those in the sums section correspond to the terms that need to be
ORed, to implement the function. Note the efficiency of such implementation. If a PROM
is used, instead, each function would require programming the entire set of sixteen binary
values of the set x1x2x3x4, for a total of 48 terms.

Not all PLAs are field-programmable. Many are programmed during manufacture sim-
ilarly to a mask-programmed ROM. In particular, those PLAs which are embedded in
more complex integrated circuits such as microprocessors are mask-programmed during
manufacture. Those that can be programmed after manufacture are called FPLA (Field-
programmable PLA).

15.37 Field Programmable Gate Arrays (FPGAs)

A field-programmable gate array (FPGA) is a semiconductor chip that can be configured
and reconfigured, if need be, by the designer; hence the name “field programmable.” Xilinxr

Inc. co-founders, Ross Freeman and Bernard Vonderschmitt, invented the first commercially
viable field programmable gate array in 1985.

FPGAs can be used to implement any logic function that an application-specific inte-
grated circuit (ASIC) could perform, but is in addition re-configurable and field-program-
mable. They contain programmable logic components called configurable logic blocks (CLBs),
and a hierarchy of reconfigurable interconnects between blocks. A CLB can be configured
as simple logic gates, like AND, OR and XOR, or to perform complex combinational func-
tions. In most FPGAs, the CLBs include in addition memory elements, which may be simple
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flip-flops or more complete blocks of memory, ROMs and RAMs. On a single chip nowa-
days, an FPGA includes thousands of CLBs. Moreover, an FPGA chipf includes hundreds
of input/output blocks (IOBs), each equipped with combinatorial logic, multiplexers and
memory elements.

Figure 15.61 shows a high-level Altera Inc. Stratix IV GX chip view. Stratix IV GX
devices provide up to 32 transceiver channels per device with physical coding sublayer
(PCS) and physical medium attachment (PMA) support at data rates between 600 Mbps
and 8.5 Gbps. Up to 16 additional channels with PMA-only support at data rates between
600 Mbps and 3.2 Gbps are also available, for a total of up to 48 transceiver channels per
device.

Shown in the figure are phase locked loop (PLL) components. Also shown are several units
of a Peripheral Component Interconnect (PCI) Express, an expansion card standard. The
PCI Express hard intellectual property (IP) block embeds all layers of the PCI Express pro-
tocol stack. General-purpose I/O and high-speed low-voltage differential signaling (LVDS)
I/O with dynamic phase alignment (DPA) mode, and soft clock data recovery (CDR) mode
support is available as indicated in the figure.
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FIGURE 15.61 Altera Stratix-IV-GX Chip.

An FPGA can be programmed by simply drawing a block diagram of the desired archi-
tecture, by writing a program in C language, or ar source code in a hardware description
language (HDL) [66] [74].

An FPGA chip contains several logic-function generators, multiplexers and flip-flops. The
designer can thus construct any conceivable processor, be it a combinatorial logic unit, a
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sequential machine, a digital filter, a digital signal processor, a microprocessor or a digital
computer.

15.38 DSP with Xilinx FPGAs

The following is a brief description in Xilinx literature by Jesse Jenkins, Xilinx engineer, of
the evolution of FPGA technology and its increasing popularity among DSP design engi-
neers in recent years.

“Xilinx FPGAs have been around for 25 years. Early products consisted of regular arrays
of static-memory based “Look-Up Tables” (LUTs) along with local flip-flops interconnected
with a set of segmented connections. The contents of the LUTs and the connections made
with the segments offered an extremely versatile framework for designers to create custom
tailored logic solutions. Within the first 10 years of manufacture, these devices were dis-
covered by DSP developers, who successfully developed their algorithms exploiting inherent
parallel capability not offered by standard DSP processors. This opened a collaborative
door between Xilinx FPGA architects and DSP designers.

Initially, improvements were incremental. Xilinx fabric was enhanced to add special cir-
cuitry to speed up fast carry operations within the fabric, with specially developed carry
chains (fast paths) operating in conjunction with the LUTs. This sped up addition, but did
little to improve fabric-based multiplication. Next, a tiny AND gate was married into the
LUT arrangement to work in collaboration with the LUTs and carry chains to speed up
‘partial products,’ which now made fabric-based Multiply Accumulates possible. FPGAs
became serious candidates as DSP engines at that point.

Xilinx then shifted directions by introducing first the Virtex families, then the Virtex-II
families. Virtex parts introduced special blocks of configurable static block RAM (BRAM),
which permitted fast load and store operations for data, but also pre-computed partial oper-
ations to be loaded in advance, to perform specialty operations. At this point, DSP became
a serious market segment for the Virtex families. Virtex-II included fast, larger multipliers
into the Virtex framework, making Multiply-Accumulate a building block. Also, Xilinx be-
gan serious collaboration with The MathWorks to offer solutions using the computational
and simulation resources of MATLABr and Simulinkr along with Xilinx ISE development
tools to form a framework known as System Generator.

Performance focus shifted from multiplication, to the whole calculation of Multiply-
Accumulate with the introduction of the Virtex-4 family and its included DSP48 blocks.”

A Xilinx DSP48 tile can be seen in Fig. 15.62. A simplified model of a DSP48 slice can
be seen in Fig. 15.63.

“In this simplified version, the DSP48 includes both wide multiplication paths along with
high speed addition, and natural feedback and direct cascading paths for operations that
can proceed across multiple blocks. It offers a set of instructions to configure the block for a
large list of common DSP operations (Add, Subtract, Multiply, MAC, etc.). All operations
are 2’s complement and integer based, and a lot of thought has been designed in to handle
overflow as well as designer chosen rounding choices. The DSP48 block consists of two
identical ‘slices’ and parts exist with varying numbers of the DSP48 blocks.”
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15.39 Texas Instruments TMS320C6713B Floating-Point DSP

In what follows, an overview of a Texas Instruments high performance DSP is presented.
We shall view the overall architecture and in particular the central processing unit (CPU)
of this DSP chip. The purpose is to allow the student to start by writing a simple program
and see the result of real-time processing on the DSP. It may be argued that once capable of
writing and executing a simple program, the student should be able to subsequently write
any program of whatever complexity and be able to execute and verify it on the same DSP
chip.

The following can be readily understood by the student even in the absence of the actual
hardware. The presentation is made to help the student understand the system concepts
without having to execute the instructions on the DSP itself. Naturally, sooner or later in
order to truly appreciate the technology and use it for real-time applications the student
would be advised to apply these concepts directly on the TI DSP Starter Kit DSK, which is
depicted in Fig. 15.64. In this figure the main components, such as the DSP chip, the A/D
and D/A conversion Codec unit, memories, JTAG and input and output lines, can be seen.
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FIGURE 15.64 TMS320C6713 DSP Starter Kit.

What can also be most reassuring to the student and the engineer in general is that, as
we shall see, detailed knowledge of the processor architecture and modus operandi is an
asset but not absolute necessity for the proper and full utilization of the DSP. Thanks to a
collaboration between Texas Instruments Inc. and The MathWorks Corp. it is possible to
use Simulinkr to draw a block diagram of the desired system. MATLAB would then map
the desired system onto the DSP, thus configuring it for real-time processing as if it has
been directly applied by the user for the purpose.

The TMS320C67xx, or C67xx for short, family of C6000 DSPs and in particular the
TMS320C6713B, represented schematically in Fig. 15.65 uses very long instruction word
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(VLIW) architecture and is well suited for multichannel and multifunction applications.
The following are extracts from the Texas Instruments data sheets on these devices.

FIGURE 15.65 Texas Instruments TMS320C6713B.

Operating at 300 MHz, the TMS320C6713B delivers up to 1800 million floating-point
operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with
dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per
second (MMACS). The DSP is packaged as a 208-pin integrated circuit IC chip.

The C6713B uses a two-level (L1 and L2) cache memory-based architecture. The name
“cache memory” refers to fast high speed static RAM (SRAM). The level number reflects
the level of proximity to and accessibility by the central processing unit CPU.

The Level 1 program cache (L1P) is a 4K-Byte direct-mapped cache and the Level 1
data cache (L1D) is a 4K-Byte 2-way set-associative cache. The Level 2 memory/cache
(L2) consists of a 256K-Byte memory space that is shared between program and data space.
Of these, 64K Bytes can be configured as direct-mapped memory, cache, or combinations of
the two. The remaining 192K Bytes in L2 serves as mapped static RAM SRAM.

The C6713B has a large peripheral set that includes two Multi-channel Audio Serial
Ports (McASPs), two Multi-channel Buffered Serial Ports (McBSPs), two Inter-Integrated
Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two
general-purpose timers, a host-port interface (HPI), and a glueless external memory in-
terface (EMIF) capable of interfacing to SDRAM, to synchronous burst static SBSRAM,
and to asynchronous peripherals.

The two I2C ports on the TMS320C6713B allow the DSP to easily control peripheral
devices and communicate with a host processor. In addition, the standard multi-channel
buffered serial port (McBSP) may be used to communicate with serial peripheral interface
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(SPI) mode peripheral devices.

The TMS320C67xx DSP generation is supported by the Texas Instruments eXpressDSPTM

set of development tools, including a highly optimizing C/C++ Compiler, the Code Com-
poser StudioTM Integrated Development Environment (IDE), JTAG-based emulation and
real-time debugging, and the DSP/BIOSTM kernel.

15.40 Central Processing Unit (CPU)

The CPU of the TMS320C6713B fetches 256 bits long instruction words to supply up to
eight 32-bit instructions to the eight functional units .L1, .S1, .M1, .D1, .L2, .S2, .M2 and
.D2, as can be seen in Fig. 15.66, during every clock cycle. The VLIW supplies instructions
to functional units only if they are ready to execute. The first bit of every 32-bit instruc-
tion determines if the next instruction belongs to the same execute packet as the previous
instruction, or whether it should be executed in the following clock as a part of the next
execute packet. Fetch packets are always 256 bits wide. However, memory saving is achieved
by allowing execute packets to vary in size.

As shown in the figure the eight functional units are divided in two sets, each containing
four functional units. With each of the two sets the CPU contains a register file of 16 32-bit
registers. As seen in the figure the two sets of functional units, along with their register
files, compose two opposite sides, sides A and B of the CPU. The four functional units on
each side of the CPU can freely share access to their 16 registers. Moreover, each side can
access the register files on the opposite side.

The CPU executes fixed-point instructions, and six out of eight functional units (.L 1,
.S1, .M1, .M2, .S2, and .L2) also execute floating-point instructions. The remaining two
functional units (.D1 and .D2) also execute an “LDDW” instruction which loads 64 bits per
CPU side for a total of 128 bits per cycle.

All instructions operate on registers (as opposed to data in memory). Data transfers
between the register files and memory are effected by the two data-addressing units .D1
and .D2. The data address issued by a .D unit allows transferring data addressed by one
register file to or from the opposite register file.

The C67x CPU supports a variety of indirect addressing modes using either linear- or
circular-addressing with 5- or 15-bit offset. All instructions are conditional, and most can
access any one of the 32 registers. Some registers, however, are singled out to support
specific addressing or to hold the condition for conditional instructions (if the condition is
not automatically “true”).

The two .M functional units are dedicated to multiplication. The two .S and .L functional
units perform arithmetic, logical, and branch functions. Instruction processing begins when
a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit in-
structions destined for the individual functional units are “linked” together by “1” bits
in the least significant bit (LSB) position of the instructions. The instructions that are
thus “chained” together for simultaneous execution (up to eight in total) compose an ex-
ecute packet. A “0” in the LSB of an instruction breaks the chain, effectively placing the
instructions that follow it in the next execute packet. If an execute packet crosses the fetch-
packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the
remainder of the current fetch packet is padded with No Operation (NOP) instructions.

The number of execute packets within a fetch packet can thus vary from one to eight.
Execute packets are dispatched to their respective functional units at the rate of one per
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FIGURE 15.66 Texas Instruments TMS320C6713B CPU.
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clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets
from the current fetch packet have been dispatched. After decoding, the instructions drive
simultaneously all active functional units for a maximum execution rate of eight instructions
every clock cycle. While most results are stored as words in 32-bit registers, they can also
be subsequently moved to memory as bytes or half-words All load and store instructions
are byte-, 16-bit half-word, or word-addressable.

The CPU and Instruction set of the TMS320C6713B DSP are described by the ex-
cellent specifications documentation of Texas Instruments. The reader is referred to the
TMS320C6000 CPU and Instruction Set Reference Guide, TI Literature No. SPRU189F.

The TMS320C6713B DSP has dedicated hardware for single-precision (32-bit) and double-
precision (64-bit) IEEE floating-point operations, 32× 32-bit integer multiply with a 32- or
64-bit result, among other multiplications such as four 8×8 bit multiplies every clock cycle.

The TMS320C67x DSP pipeline can dispatch eight parallel instructions every cycle. The
pipeline has three main stages, namely, Fetch, Decode and Execute. The Fetch stage has
four phases. The Decode stage has two phases. The Execute stage requires a varying number
of up to 10 phases, depending on the type of instruction. The Fetch phases of the pipeline
are

PG: Program address generate

PS: Program address send

PW: Program access ready wait

PR: Program fetch packet receive

The Decode phases of the pipeline are

DP: Instruction Dispatch

DC: Instruction Decode

The Execute portion of the fixed point pipeline is divided into five phases, while that of
the floating-point pipeline is divided into 10 phases.

15.41 CPU Data Paths and Control

The data paths, cross-paths and register files of the TMS320C67xx are shown in Fig. 15.66.
The figure shows two general-purpose register files (A and B), the eight functional units
(.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2), two load-from-memory data paths (LD1 and
LD2), two store-to-memory data paths (ST1 and ST2), two data address paths (DA1 and
DA2) and two register file data cross paths (1X and 2X).

15.41.1 General-Purpose Register Files

There are two general-purpose register files (A and B) in the data paths. Each of these files
contains 16 32-bit registers (A0–A15 for file A and B0–B15 for file B). The general-purpose
registers can be used for data, data address pointers, or condition registers.

The general purpose register files support data ranging in size from packed 16-bit data
through 40-bit fixed-point and 64-bit floating-point data. Values larger than 32 bits, such as
40-bit long and 64-bit float quantities, are stored in register pairs. In these the 32 LSBs of
data are placed in an even-numbered register and the remaining 8 or 32 MSBs in the next
upper register (which is always an odd-numbered register). Packed data types store either
four 8-bit values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-
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bit register pair. In assembly language syntax, a colon between two register names denotes
a register pair, and the odd-numbered register appears on the left, such as in A13 : A12.

15.41.2 Functional Units

A table summarizing the the operations performed by the different functional units is shown
in Fig. 15.67 and Fig. 15.68, where SP stands for single precision and DP for double precision.
Each functional unit has its own 32-bit write port into a general-purpose register file. All
units ending in 1 (for example, .L1) write to register file A, and all units ending in 2 write
to register file B. Each functional unit has two 32-bit read ports for source operands src1
and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long
writes as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit
write port (destination line dst), when performing 32-bit operations all eight units can be
used in parallel.

FIGURE 15.67 TMS320C6713B .L and .S functional units and operations performed.

15.41.3 Register File Cross Paths

As represented schematically in Fig. 15.66, each functional unit reads from and writes to
the register file within its own data path, that is, the .L1, .S1, .D1, and .M1 units write to
register file A and the .L2, .S2, .D2, and .M2 units write to register file B. In addition, the
register files are connected to the opposite-side register file’s functional units via the 1X and
2X cross paths. The 1X cross path allows the functional units of data path A to read their
source input from register file B, and the 2X cross path allows the functional units of data
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FIGURE 15.68 TMS320C6713B .M and .D functional units and operations performed.

path B to read their source from register file A. Six of the eight functional units have access
to the register file on the opposite side, via a cross path. As shown in Fig. 15.65, the source
input src2 of each of the functional units S1, .M1, .S2, and .M2 are selectable between the
same side register file and the cross path. In the case of the units .L1 and .L2, both sources
src1 and src2 inputs are selectable between the same-side register file and the cross path.

15.41.4 Memory, Load, and Store Paths

The C67xx has four 32-bit paths for loading data from memory to the register file: two
paths LD1 for register file A, and two paths LD2 for register file B. This allows the double
precision LDDW instruction to simultaneously load two 32-bit values into register file A
and two 32-bit values into register file B. For side A, LD1a is the load path for the 32 LSBs
and LD1b is the load path for the 32 MSBs. For side B, LD2a is the load path for the 32
LSBs and LD2b is the load path for the 32 MSBs.

As shown in Fig. 15.65 there are also two 32-bit paths, ST1 and ST2, for storing register
values to memory from each register file. On the C6000 architecture, some of the ports
for long and double word operands are shared between functional units. This places a
constraint on which long or double word operations can be scheduled on a data path in the
same execute packet.

15.41.5 Data Address Paths

As shown in Fig. 15.66 the data address paths DA1 and DA2 are each connected to the .D
units in both data paths. This allows data addresses generated by any one path to access
data to or from any register. The DA1 and DA2 units and their associated data paths are
specified as T1 and T2 respectively. T1 consists of the DA1 address path and the LD1 and
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ST1 data paths. LD2 is comprised of LD2a and LD2b to support 64-bit loads. The T1 and
T2 designations appear in functional unit fields for load and store instructions. For example,
the following load instructions uses the .D1 unit to generate the address but is using the
LD2 path resource from DA2 to place the data in the B register file. The use of the DA2
resource is indicated with the T2 designation LDW .D1T2 *A0[3], B1

15.42 Instruction Syntax

The syntax of an instruction of the TI family of DSPs has the form of an instruction
mnemonic followed by the associated functional unit, a source and a destination. For ex-
ample, the Load a Word from Memory instruction LDW has the syntax LDW (.unit) src,
dst, where .unit = .L1, .L2, .S1, .S2, .D1, or .D2. src and dst mean source and destination,
respectively. The (.unit) specifies which functional unit the instruction is mapped to (.L1,
.L2, .S1, .S2, .M1, .M2, .D1, or .D2). For each instruction, a table is included in the Instruc-
tions Reference Guide listing the opcode map fields, that is, the source and destination,
the units (.unit) the instruction is mapped to, the types of operands, and the opcode. The
ADD instruction for example has three opcode map fields: src1, src2, and dst.

Instructions are moreover accompanied by information regarding the details of execution
in the CPU pipeline. This is presented in the form of a table which lists the sources, the
destinations and the functional unit used during each execution cycle of the instruction.

15.43 TMS320C6000 Control Register File

As can be seen in Fig. 15.66, one functional unit, namely, .S2, can read from and write to the
control register file. The components of the control register and their usage are summarized
in what follows.

AMR Addressing mode register. Specifies whether to use linear or circular addressing
for each of eight registers. Contains, moreover, sizes for circular addressing.

CSR Control status register. Contains the global interrupt enable bit, cache control bits,
and other miscellaneous control and status bits.

IFR Interrupt flag register. Displays status of interrupts.
ISR Interrupt set register. Allows manually setting pending interrupts.
ICR Interrupt clear register. Allows manually clearing pending interrupts.
IER Interrupt enable register. Allows enabling/disabling of individual interrupts.
ISTP Interrupt service table pointer. Points to the beginning of the interrupt service

table.
IRP Interrupt return pointer. Contains the address to be used to return from a maskable

interrupt.
NRP Nonmaskable interrupt return pointer. Contains the address to be used to return

from a nonmaskable interrupt.
PCE1 Program counter, E1 phase. Contains the address of the fetch packet that is in

the E1 pipeline stage.
Each control register is accessed by the Move instruction MVC. Some of the control

register bits are accessed alternatively. For example, arrival of a maskable interrupt on
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an external interrupt pin, INTm, triggers the setting of flag bit IFRm. Subsequently, the
processing of that interrupt triggers the clearing of IFRm and the global interrupt enable
bit, GIE. Finally, when that interrupt processing is complete, the B IRP instruction, in the
interrupt service routine, restores the pre-interrupt value of the GIE. Similarly, saturating
instructions like SADD set the SAT bit in the Control Status Register CSR.

15.44 Addressing Mode Register (AMR)

For each of the eight registers (A4-A7,B4-B7) that can perform linear or circular addressing,
the AMR specifies the addressing mode. A 2-bit field for each register specifies the address
modification mode: linear (the default) or circular mode. With circular addressing, the field
also specifies which BK (block size) field to use for a circular buffer. In addition, the buffer
must be aligned on a byte boundary equal to the block size. The mode select fields and
block size fields, together with the mode select field encoding table are shown in Fig. 15.69.

FIGURE 15.69 Addressing mode register.

The reserved portion of the AMR is always 0. The block size fields BK0 and BK1 contain
5-bit values used in evaluating block sizes for circular addressing. If the 5-bit value is N
then BlockSize = 2N+1 bytes. For example, if N = 100112 = 1910 then BlockSize
= 220 = 1048576.
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15.44.1 Addressing Modes

All registers can perform linear addressing. Only eight registers can perform circular ad-
dressing, namely, A4-A7 and B4-B7.

The load, store add and subtract instructions

LDB(U)/LDH(U)/LDW,STB/STH/STW, ADDAB/ADDAH

/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW all use the AMR to determine
the required type of addressing.

Writing to the AMR Register

The Move instructions MVK, MVKLH and MVC can be used to configure the AMR
register in order to perform linear or circular addressing. For example, to use register A6
for circular addressing with Block BK0 field N = 9 implying a block size of 2N+1 = 1024
bytes, the A6 Mode Select bits, 4 and 5, of the AMR should be set to M = 01, as seen
above, and the BK0 field, bits 16-20 should be set to the value 9. This can be obtained
by loading the lower then upper 16-bit desired codes to a register such as B2 and then
transferring the contents of the B2 register to the AMR, as shown in the following code
segment (values such as 0 × 0010 are in hexadecimal):

MVK .S2, 0x0010, B2; Move lower 16 bits to B2, for A6 Mode to equal 01

MVKLH .S2 0x0009, B2; Move upper 16 bits to B2, to set BK0 = 9

MVC .S2 B2, AMR; Move B2 contents to AMR

Linear and circular addressing and different kinds of addressing modes using the AMR
register are described in more detail in what follows.

15.45 Syntax for Load/Store Address Generation

The instructions of the TMS320C67xx allow in general accessing 32-bit words, 16-bit half-
words and 8-bit bytes. Advancing through memory by m words implies advancing by 4m
bytes while advancing by m half words means advancing by 2m bytes. A conversion to
number of bytes is effected in decoding instructions as will be seen shortly.

Indirect addressing is used in loading or storing data. In such addressing mode the actual
address is the content of a register or its content plus or minus a displacement called an
offset. Figure 15.70 shows the syntax of indirect addressing of memory.

FIGURE 15.70 Indirect address generation for Load/Store instructions.

The following addressing types are listed:
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1. Register indirect addressing. Indirect addressing in its simplest form means ac-
cessing memory at an address that is the content of one of the CPU 32 registers
A0-A15, B0-B15; the register thus serving as a pointer to the required memory loca-
tion. The syntax is *R, as shown in the table. In another form of indirect addressing,
the address register R is be preincremented and the result is the true memory ad-
dress to be accessed. In this case the syntax is *++R. Alternatively, the register
content is used as the memory address to be accessed and, subsequently, the register
content is post-incremented in preparation for a subsequent instruction to access the
following location. The syntax in this case is *R++. As the table shows, pre- and post-
increment operations may be replaced by pre- and post-decrement ones, the syntax
being *- -R and *R- -, respectively.

2. Register Relative Addressing. The syntax *+R[ucst5 ] calls for accessing the mem-
ory location at the address that is the sum of the content of register R, called the
base register and the unsigned 5-bit constant ucst5, called the displacement or offset.
The single + sign implies that the register content itself is not altered, in contrast
with the double plus sign ++ which causes the register content to be altered as stated
in the Table column headings. The second form of register relative addressing is the
syntax *++R[ucst5 ]. This is a register preincrement mode, meaning that the register
content is preincremented by the amount ucst5 and the result is the address of mem-
ory location to be accessed. The syntax *R++[ucst5 ] leads to accessing memory at
the address contained in the register R and, subsequently, incrementing the register
content by adding to it the value ucst5. If the single plus sign is replaced by a minus
sign then the displacement ucst5 is subtracted from rather than added to the register
content (R). Similarly, if the double plus sign (++) is replaced by a double minus
sign (− −) then the same as above applies except incrementing the register content
is replaced by decrementing it.

3. Register Relative with 15-bit Constant Offset. If a large offset is required for
a load/store the B14 or B15 register may be used as the base register and a 15-bit
constant ucst15 as the offset. As shown in the table the syntax *+B14/B15[ucst15 ]
specifies either register B14 or B15 as the base register, to the content of which the
displacement ucst15 should be added to obtain the required memory address; without
altering the register content itself since only one plus sign is included.

4. Base + Index Addressing. This last entry in the table is similar to the Register
Relative Addressing except for the fact that the displacement, or offset, here is not
a specific constant ucst but, rather, a value that is the content of an offset register
referred to as “offsetR.”

15.45.1 Linear Addressing Mode

LD/ST Instructions
For load and store instructions, linear mode simply shifts the offsetR/cst operand to the

left by 2, 1, or 0 for word, half-word, or byte access, resulting in a multiplication by 4, 2
and 1, respectively, and then performs an add or a subtract of the result to the base register
baseR, corresponding to a plus or a minus in the instruction syntax, respectively.

ADDA/SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the src1/cst
operand to the left by 2, 1, or 0 for word, half word, or byte data sizes, respectively, and
then performs the add or subtract specified.
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Circular Addressing Mode

As stated above, the BK0 and BK1 fields in the AMR specify block sizes for circular
addressing. Consider the load/store instructions LD/ST in circular addressing mode as
they apply to word, half-word or byte length data. After shifting the offsetR/cst to the left
by 2, 1, or 0 bits, that is after multiplication by 4, 2 or 1, for LDW, LDH(U), or LDB(U)
instructions, respectively, an add or subtract is to base register baseR is performed with
the carry/borrow inhibited between bits N and N + 1. Bits N + 1 to 31 of baseR remain
unchanged. All other carries/borrows propagate as usual. If an offsetR/cst greater than
the circular buffer size, 2N+1, is specified, the effective offsetR/cst is modulo the circular
buffer size as the following example illustrates. The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4× the data size that can be in bytes,
half-words, words. So, to perform circular addressing on an array of 8 words, a size of 32
should be specified, or N = 4.

Example 15.28 Consider a word-type load instruction, in particular, LDW, performed
with register A4 in circular mode and BK0 = 4, i.e. N = 4 so the buffer size is 2N+1 = 32
bytes, 16 halfwords, or 8 words. The instruction MVK is used to set the proper value in the
AMR to 0004 0001h. As seen in Fig. 15.71, the instructions load the address 0000 0104h
in A4 and the memory content 1234 5678h at the address 0000 0104h in A4 into A1.

FIGURE 15.71 Circular addressing mode.

15.46 Programming the T.I. DSP

The TMS320C67xx can be programmed using C or C++, using assembly language code or
using a MATLAB–Simulink configuration. The objective here is to start with very simple
examples, allowing the student to program the DSP for real-time applications in the shortest
time possible, and learning that programming it for more complex applications is in fact
strikingly as easy as that of the simple ones.

The student will realize at the conclusion of this section that thanks to a collaboration
between Texas Instruments and The MathWorks, configuring the TMS320C6xxx DSP to
act as a digital IIR filter for example is as easy as drawing a block diagram using Simulink.
Once the diagram has been drawn all that is needed is to issue a request to transfer the
structure to the DSP. Subsequently the DSP acts in real time as the desired IIR filter.
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As just mentioned, one of the approaches to programming the DSP is to use the language
C or C++. We shall therefore start by showing how to transfer to the DSP a simple basic
program in C and view its conversion into assembly code using the Texas Instruments Code
Composer Studio. This allows us to see how the DSP Instruction Set is used to perform
the required basic operations. We shall then progressively add lines with basic operations
to the C program and observe the corresponding assembly code generated by the Code
Composer StudioTM (CCS) compiler.

The CCS Debug Tools are part of Texas Instruments’ CCS Integrated Development En-
vironment IDE which provides means to program in C/C++ the DSP. It includes software
tools for code generation such as a C/C++ compiler, an assembler, a linker and debugging
means.

Real-Time Analysis—Code Composer Studio provides real-time analysis capability.
Using RTDX technology, DSP/BIOS provides a real-time window into the target system,
allowing designers to analyze a system in real-time.

Advanced Data Visualization—The advanced data visualization capability of Code
Composer Studio enables DSP developers during the debugging process to view the target
signals and data of the execution of an algorithm as images instead of text.

15.47 A Simple C Program

To explore the way a C program is converted into an assembly language code and view
properties of the instruction set we start by writing a simple C program which basically
states that a, b, c, d, e are integers and a = 3, b = 4,

c = a+ b, d = a− b, e = a ∗ b. (15.247)

We add that f , g, h, i, j, k, m are real to effect floating point operations:

f = 0.34375, g = 0.21875; (15.248)

h = f − g, i = f − g, j = f ∗ g, k = −f, m = k ∗ g. (15.249)

We now see the result of converting this C Source program into assembly code and the
resulting sequence of DSP instructions that effect the successive simple computations. The
student should note that it is subsequently possible to increase the C program size and
complexity, to do more complex tasks, knowing that the CCS will subsequently simply
generate the corresponding assembly code that is required to configure the DSP. The C
language listing of the program is shown in Fig. 15.72

As we shall see shortly Code Composer Studio allows the user to view the values of the
variables at each step of program execution. For the present program the values of the input
and output data are shown in decimal, binary and hexadecimal. As an illustration we note
that the values of f and g are given by

f = (0.01011)2 = 1/4 + 1/16 + 1/32 = 11/32 = 0.34375. (15.250)

To deduce the floating point form of the variable f we note that its binary representation
can be rewritten in the form f = 1.011×2−2, which is a form similar to scientific notation,
except that it is written here in base 2. In the IEEE format floating point representation,
as explained earlier, the 1 to the left of the binary point is omitted as an implicit value.
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FIGURE 15.72 C language program.

The mantissa is therefore given by m = 0.011, and the biased exponent is the value of the
true exponent of f , namely, e = −2 plus the bias 127. The biased exponent is therefore
eb = −2 + 127 = 125 = (01111101)2 so that the floating point representation of f can be
written in the form

f ←→ 0.0111110101100 . . .0 (15.251)

and therefore the floating point representation of f as displayed in hexadecimal is f =
3EB00000. Similarly, we have g = (0.00111)2 = 7/32 = 0.21875. We write g = 1.11× 2−3.
The mantissa is m = 0.11, the exponent is e = −3 and the biased exponent is eb =
−3+127 = 124 = (01111100)2, so that the representation of the variable g is in hexadecimal
code g = 3E600000.

The multiplication of f and g produces j = (7× 11) / (32× 32) = 0.075195313, and
the representation in binary is deduced by writing j = 77 × 2−10 = 0.0001001101 =
1.001101× 2−4, so that m = 0.001101, e = −4, eb = 123 and the representation of the
product j is in hexadecimal j = 3D9A0000.

With the variable k defined as k = −f we have k = −0.34375 = BEB0 and m =
k × g = −0.075195313 = BD9A00.

15.48 The Generated Assembly Code

Code Composer Studio (Texas Instruments) allows viewing the C program’s successive
instructions, each directly followed by the corresponding assembly code. We therefore obtain
the mixed mode output code combining each successive C program line and its compilation
into assembly code. This is shown in Fig. 15.73, Fig. 15.74 and Fig. 15.75.
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FIGURE 15.73 Result of compilation of C program.
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FIGURE 15.74 Result of compilation of C program.

FIGURE 15.75 Result of compilation of C program.
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We note that the C source program line a = 3; upon compilation generates an assembly
code which uses the instructions MVK, STW and NOP, respectively. The first of these,
MVK .S1, moves the value 3, denoted 0x0003, that is, hexadecimal 3, to register A3 using
the .S1 functional unit. The second instruction, STW, stores the contents of register A3, i.e.
the same value 3, to memory at an address given by the contents of the Stack Pointer SP plus
1. The local variable a is thus stored and can subsequently be retrieved from the stack at
that address. When no optimization is requested the compiler produces a functional but not
optimized assembly code. The instruction No Operation (NOP) is used to add delay slots
ensuring that results of one instruction have stabilized before they are used by a subsequent
one. The instruction NOP 2 seen following the store instruction in the figure inserts two
such delay slots. If optimization of code is requested by the user such NOP instructions are
minimized. Only the minimum required is kept in the assembly code.

The following line in the figure, namely, b = 4, produces instructions that are seen to move
the hexadecimal value 0x0004 to register B4 and stores same in memory at an address given
by the stack pointer SP plus 2. The subsequent operation

c = a+ b (15.252)

is seen in the figure to be effected by first loading the value b to register B5 and then adding
a and b from registers A3 and B5, putting the result c in register B4. The following STW
instruction stores the contents of B4 into the stack at address SP plus 3. The C program
line d = a− b; produces similar instruction with the exception of a subtraction instead of
addition, and the result is stored at (SP) + 4. The multiplication line e = a ∗ b generates a
MV instruction which moves the contents of register A3, that is, a to B4. This is followed
by the fixed point instruction MPYI which multiplies the contents of B5 and B4 with
a destination B4 and the result stored at SP +5. The MPYI instruction is followed by
NOP 8 to generate a safeguard NOP of 8 delay slots, as given in the MPYI instruction
specifications.

The floating point operations in the rest of the program are similarly compiled into
assembly language code. To set the value f = 0.34375, the hexadecimal equivalent f =
3EB00000, is loaded into register A3 and the same value is stored in memory at the address
(SP) + 6.

The operations h = f + g; i = f − g; are effected using the single precision add and
subtract instructions ADDSP and SUBSP, respectively. They are followed by NOP 3, as
specified by the number of Delay Slots that they require.

As Fig. 15.73 shows, the line g = 0.21875, upon program compilation transfers the
hexadecimal equivalent 3E600000 to register B4. The line j = f ∗ g; loads the value of g
from memory at address (SP) + 7 into register A3, while in parallel, as evidenced by the
two vertical strokes, moves the contents of A3, i.e. the value f , to B4. With f in B4 and g
in A3, the instruction MPYSP A3, B4, A3 effects the multiplication and stores the product
f ∗ g in register A3. Proper pipelining ensures that f , the content of A3, is transferred to
B4 before being replaced by the value g. The remaining lines of the C program are similarly
related to the corresponding generated assembly code.

15.48.1 Calling an Assembly Language Function

This section presents an easy approach to programming the DSP in Assembly language.
Students can thus write assembly language code and verify their understanding of the DSP
instruction set. The approach consists of writing the assembly code as an assembly function
that is called from a C language main program. The C language program thus performs
all input–output operations allowing the programmer to focus attention on the assembly
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FIGURE 15.76 Main C program calling four basic assembly code functions.

language code. This approach is illustrated by rewriting the last basic C program as a main
program which defines the values of the input variables and calls on the assembly function
to evaluate the sums and products thereof in fixed and floating point formats.

As will be seen, it is easy subsequently to test more complex examples, by first evaluating
them in C, observing the assembly code generated by CCS and then similarly rewriting
them as an assembly function called by a main program.

A C main program which calls successively four basic assembly code functions is shown in
Fig. 15.76. The functions perform the same basic operations of addition and multiplication
in fixed and floating-point formats. The student is encouraged to enter the short program
on the TI DSK 2 evaluation kit and observe the results.
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We now view a slightly more complex C and C++ Programs. To this end we consider
constructing a generator of the Fibonacci series. The series starts with the elements 0 and
1. Each new term is the sum of its last two terms. The third term is thus 0 + 1 = 1, the
fourth is 1 + 1 = 2, and the following terms are 3, 5, 8, 13, 21, 34, 55, . . .. Let at any
instant x and y denote the last term found and the one before it, respectively.

We can initialize the process by setting x = 1; y = 1; as the first two terms and the
sum is s = x + y. We then write x = y; y = s; and repeat the above, finding successive
new terms. The C code is shown in Fig. 15.77. As seen in the figure, a C function is created,
accepting as input a number n which is the Fibonacci series term number, and produces the
value of that term. The main program chooses a value n and calls the function fibonacci(n),
receiving from the function the value of the Fibonacci series nth term. For example, with
n = 10 the program produces series value 144. The main function then prints that value.
The mixed mode output code combining each successive C program line and its compilation
into assembly code is shown in Fig. 15.78 and Fig. 15.79.

It is interesting to note that CCS compiles the C program, whatever its complexity,
producing the properly functioning assembly code. The user needs not write assembly code.
A general knowledge of the instructions set and assembly language of the DSP is preferable
for the designer but not essential. CCS can moreover upon request effect an optimization
ensuring a highly efficient assembly code making optimal use of the DSP architecture.

FIGURE 15.77 Generator of the Fibonacci series.
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FIGURE 15.78 Generator of the Fibonacci series.
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FIGURE 15.79 Generator of the Fibonacci series.

15.49 Fibonacci Series in C Calling Assembly-Language Function

In this example we reconsider generating the Fibonacci series by a main program which
accepts a number of terms n and calls the assembly code function which evaluates the
corresponding series element. The program is shown in Fig. 15.80. Note that the value n is
passed on from the main program to the called function by being stored in register A4, by
convention. The assembly code program is straightforward. It resembles closely the assembly
code generated by the CCS if the whole program were written in C as was seen above.

15.50 Finite Impulse Response (FIR) Filter

As another example we consider configuring the DSP as a FIR filter. As noted above, the
DSP can be programmed in C++ and the program is compiled into assembly code using
the CCS. The resulting code is then applied to the DSP, configuring it as the required FIR.
The FIR filter has a finite impulse response h[n] given by

h[n] = anRN [n]

where a = 0.5, RN [n] = u[n]− u[n−N ] and N = 16.
The output y[n]of this filter in response to an input x[n] = 7 cos(nπ/8)RN [n] is given as

a function of n as follows.

For n < 0, y[n] = 0. For 0 ≤ n ≤ N − 1, y[n] =
n∑

k=0

x[k]h[n− k]. For N − 1 ≤ n ≤
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FIGURE 15.80 C main program calling an assembly language function.

2N − 2, y[n] =
N−1∑

k=n−N+1

x[k]h[n− k].

A C++ program effecting such computation is shown in Fig. 15.81. Upon compilation the
filter input and output signals may be displayed, confirming the expected results. These are
shown in Fig. 15.82 (a-b), respectively.

15.51 Infinite Impulse Response (IIR) Filter on the DSP

The next example designs a third order lowpass Chebyshev digital filter. We assume a
maximum permissible attenuation of 1 dB in the pass-band. Let ωc denote the cut-off
frequency, that is, the pass-band edge frequency, and let ωs = 2πfs r/s be the sampling
frequency, where we assume that fs = 1/T = 4 kHz, i.e. the sampling period is T =
1/4000 = 0.25× 10−3 sec and ωs = 2πfs = 2π × 4000 r/s.

The objective is to observe the filter response to an input sinusoid of frequency equal
to the filter cut-off frequency and compare it with its response to a sinusoid of frequency
well beyond the cut-off frequency. Let the filter in the continuous-time domain have a
cut-off frequency of 200 Hz, i.e. ωc = 2π × 200 r/s. The first input to the filer x1 (t) is
a causal sinusoid of frequency β1 r/s which is chosen equal to the cut-off frequency; i.e.
β1 = ωc and x1 (t) = sinβ1t u (t). The second input x2 (t) has a frequency that is 1.5
times the cut-off frequency, i.e. β2 = 1.5ωc and x2 (t) = sinβ2t u (t). In the discrete-time
domain these frequencies are multiplied by the period T , so that the filter cut-off frequency,
denoted Ωc is equal to Ωc = ωcT = 2π × (200/4000) = π/10, the inputs have frequencies
b1 = β1T = Ωc = π/10 and b2 = β2T = 1.5Ωc = 3π/20 and the two input sequences
are x1 [n] = sin b1n u [n] and x2 [n] = sin b2n u [n], respectively. We note that MATLAB
defines the digital filter normalized cut-off frequency, denoted Wn, as the cut-off frequency
ωc divided by half the sampling frequency, i.e. divided by ωs/2 = π/T , so that

Wn = ωc/ (ωs/2) = 2ωc/ωs. (15.253)
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#include<stdio.h>

#include<math.h>

int  main()

{

float pi=3.141592;

float a=0.5;

int n,k;

int N=16;

int M=30;

float x[16];

float h[16];

float y[30];

// Generate Input Sequence x[n]

for (n=0;n<N;n++)

{

x[n]=7*cos(n*pi/8.0);

printf("input at %d is %f\n ",n,x[n]);

}

// Generate Filter Coefficients h[n]

for (n=0;n<N;n++)

{

h[n]=pow(a,n);

printf(" filter cefficient at %d is %f\n",n,h[n]);

}

// Generate FIR Filter Output

for (n=0;n<N;n++)

{

y[n]=0;

for (k=0;k<=n;k++)

{

y[n]=(x[k]*h[n-k])+y[n];

}

printf("output at %d is %f\n",n,y[n]);

}

for (n=N;n<=M;n++)

{

y[n]=0;

for (k=n-N+1;k<N;k++)

{

y[n]=(x[k]*h[n-k])+y[n];

}

printf("output at %d is %f\n ",n,y[n]);

}}

FIGURE 15.81 FIR filter response evaluation C++ program.
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FIGURE 15.82 Sinusoidal FIR filter: (a) input, (b) response.

Equivalently,
Wn = Ωc/π. (15.254)

In the present case Wn = Ωc/π = 1/10. We use the MATLAB command

[b, a] = cheby1(N, R, Wn) (15.255)

where N = 3, R = 1 dB and Wn = 0.1. MATLAB returns the coefficient vectors b and
a, and hence the system function H (z). We then evaluate the filter response to the two
sinusoidal inputs x1 [n] and x2 [n]. The filter output in response to the first input sequence
should be the same sinusoid as its input, except attenuated by 1 dB.

Writing 20 log10 |H | = −1 dB, we have |H | = 10−0.05 = 0.8913 which should be
the amplitude of the output sinusoid. In response to the second input sinusoid, having a
frequency higher than the cut off frequency, the filter output should be further attenuated.
The filter transfer function may be written in the form

H (z) =
b1 + b2z

−1 + b3z
−3 + b4z

−4

1 + a2z−1 + a3z−3 + a4z−4
(15.256)

where the coefficients of the numerator and denominator are returned by MATLAB as the
two vectors

b = [0.001641 0.004923 0.004923 0.001641]
a = [1 -2.623 2.369 -0.7335]

as can be seen in the MATLAB program shown in Fig. 15.83.
The difference equation describing the filter response y [n] to an input sequence x [n] is

given by

y [n] = −a2y [n− 1]− a3y [n− 2]− a4y [n− 3] + b1x [n] + b2x [n− 1]

+b3x [n− 2] + b4x [n− 3] (15.257)

for n ≥ 0; with the initial conditions x [n] = y [n] = 0, n < 0.
The same program rewritten in C++ is shown in Fig. 15.84.
The resulting output sequences corresponding to the two input sinusoids are shown in

Figs 15.85 (a-b), respectively.
We note that the filter attenuates the second input so that the output amplitude is about

0.2, i.e. 20% of the input sequence amplitude.
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N=3;

R=1;

Wn=0.1;

[b,a]=cheby1(N,R,Wn)

sys=filt(b,a)

% M= input sequence duration

M=400;

% First input sequence x[n] having frequency at limit of passband

bee1=pi/10

for n=1:M

x(n)=sin (bee1*(n-1));

end

y(1)=b(1)*x(1);

y(2)=-a(2)*y(1)+b(1)*x(2)+b(2)*x(1);

y(3)=-a(2)*y(2)-a(3)*y(1)+b(1)*x(3)+b(2)*x(2)+b(3)*x(1);

y(4)=-a(2)*y(3)-a(3)*y(2)-a(4)*y(1)+b(1)*x(4)+b(2)*x(3)+b(3)*x(2)+b(4)*x(1);

for n=5:M

y(n)=-a(2)*y(n-1)-a(3)*y(n-2)-a(4)*y(n-3)+b(1)*x(n)+b(2)*x(n-1)...

+b(3)*x(n-2)+b(4)*x(n-3);

end

figure(1)

plot(x)

title('first input sequence x1[n]')

figure(2)

plot(y)

title('Response y1[n] to first input sequence x1[n]')

% Second input x[n] with frequency beyond filter cut-off frequency

bee2=3*pi/20

for n=1:M

x(n)=sin (bee2*(n-1));

end

y(1)=b(1)*x(1);

y(2)=-a(2)*y(1)+b(1)*x(2)+b(2)*x(1);

y(3)=-a(2)*y(2)-a(3)*y(1)+b(1)*x(3)+b(2)*x(2)+b(3)*x(1);

y(4)=-a(2)*y(3)-a(3)*y(2)-a(4)*y(1)+b(1)*x(4)+b(2)*x(3)+b(3)*x(2)+b(4)*x(1);

for n=5:M

y(n)=-a(2)*y(n-1)-a(3)*y(n-2)-a(4)*y(n-3)+b(1)*x(n)+b(2)*x(n-1)...

+b(3)*x(n-2)+b(4)*x(n-3);

end

figure(3)

plot(x)

title('Second input sequence x2[n]')

figure(4)

plot(y)

title('Response y2[n] to second input sequence x2[n]')

FIGURE 15.83 IIR filter and response MATLAB program.
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#include<stdio.h>

#include<math.h>

class Computing

{

public:

void computing_filter_output ( float f )

{

float a2=-2.6225,a3=2.3692,a4=-0.7335;

float b1=0.0016,b2=0.0049,b3=0.0049,b4=0.0016;

int n,M=99;

float x[99],y[99];

FILE *results;

results = fopen("results.txt","a+");

// Generate Input Sequence x1[n]

for (n=0;n<M;n++)

{ x[n]= sin (f*n);
}

// output y[n]

for (n=0;n<M;n++)

{

if(n==0)

{

y[n]=b1*x[n];

fprintf (results,"%f \n",y[n]);}

else if(n==1)

{

y[n]=-a2*y[n-1]+b1*x[n]+b2*x[n-1];

fprintf (results,"%f \n",y[n]);}

else if(n==2)

{

y[n]=-a2*y[n-1]-a3*y[n-2]+b1*x[n]+b2*x[n-1]+b3*x[n-2];

fprintf (results,"%f \n",y[n]);}

else

{

y[n]=-a2*y[n-1]-a3*y[n-2]-a4*y[n-3]+b1*x[n]+b2*x[n-1]+b3*x[n-2]+b4*x[n-3];

fprintf (results,"%f \n",y[n]);

}}

fclose(results);

return ;

}};

int main()

{

float f1,f2,f;

float pi=3.141592;

f1=pi/10;

f2=3*pi/20;
f=f1;

Computing output1;
output1.computing_filter_output (f);

f=f2;

Computing output2;

output2.computing_filter_output (f);

return 0;

}

FIGURE 15.84 IIR filter C++ program.

15.52 Real-Time DSP Applications Using MATLAB–Simulink

Using MATLAB’s Simulink we can draw a block diagram of the system that we intend
to construct. The components of the block diagram may be filters, amplifiers, A/D and
D/A converters, oscilloscopes and any of many units that can be chosen from the Simulink
library. MATLAB subsequently configures the Texas Instruments DSP identically to the
structure of the Simulink block diagram. The block diagram thus replaces the C program.
In other words, we have seen how the Assembly language program may be replaced by the
simpler C source program. We now see how even the C source program needs not be written.
The designer can replace it by the simpler task of connecting a few blocks of his choosing
using Simulink.

We consider as an example the problem of designing a digital oscillator which generates
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FIGURE 15.85 IIR Filter response: (a) to first sinusoid, (b) to second sinusoid.

a pure sinusoid. To this end we note that we may construct a system which has an impulse
response h [n] that is a pure sinusoid. By applying to its input an impulse it would produce
the desired sinusoid. Let the filter impulse response be

h [n] = sinβn u [n] (15.258)

and let us choose its frequency as β = π/8. The filter transfer function is

H (z) = Z [h [n]] =
sinβz−1

1− 2 cosβz−1 + z−2
(15.259)

which has the general form

H (z) =
d0 + d1z

−1

1− c1z−1 − c2z−2
(15.260)

with d0 = 0, d1 = sinβ = sinπ/8 = 0.1951

c1 = 2 cosβ = 2 cosπ/8, c2 = 1. (15.261)

This “filter” will generate the sinusoid h [n] = sin (πn/8)u [n] as a response to an input
impulse δ [n].

To configure the DSP using Simulink we proceed as follows. Using Simulink Library
Browser, with the Menu selection File −→ New −→Model followed by Simulation −→
Configuration Parameters with the options Solver −→ Fixed−Step, the system block
diagram shown in Fig. 15.86 is set up. By double clicking on the blocks Discrete Impulse,
Discrete Filter and DAC digital to analog converter, the parameters are set up as shown in
Fig. 15.87, Fig. 15.88 and Fig. 15.89, respectively. By applying the command Rebuild All
the system is built on the DSP card. Connecting a loudspeaker, for example, to the output
jack of the DSP Starter Kit the oscillator output can be heard.
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15.53 Detailed Steps for DSP Programming in C++ and Simulink

The above was written with an emphasis on simplifying the writing of a C, C++, or assembly
language program, or constructing a Simulink block configuration, for implementation on
the DSP Starter Kit. In what follows we add to the above the important steps to follow
in programming the DSP for an application based on a C++ program and another using
Simulink.

15.53.1 Steps to Implement a C++ Program on the DSP Card

The steps to implement a C++ program on the DSP card are listed in what follows with
reference to the Fibonacci series generation program seen above.

1. Launch the Code Composer Studio (CCStudio).

2. Establish a connection between the CCStudio and the card by clicking in the Debug

FIGURE 15.86 Digital oscillator on Simulink.

FIGURE 15.87 Discrete impulse system input.
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FIGURE 15.88 Oscillator transfer function parameters.

FIGURE 15.89 Digital oscillator output parameters.

menu on “Connect.” You can check the status of the connection at the lower left
corner of the CCStudio window.

3. Create a new project in which the C program provides its main functionality. From
the “Project” menu choose “New.” In the popped window, shown in Fig. 15.90,
enter the Project Name, its Location on the hard disc, its Type (executable (.out) or
library (.lib)) and the Target card used (C6713).

4. Adding your C and other files to the project:

(a) Adding the Source files (.c), for example Fibonacci.cpp: Right click on the project
name and choose “Add files to project,” select your C ( or C++) program
then click on Open.

(b) Adding the Linker command files (.cmd, .lcf): The linker command files map
sections to memory. Right click on the project name. Choose “Add files to
project,” and add “volume.cmd” to the project by clicking on Open.

Note: you can find the “volume.cmd” file in a tutorial project folder. Go to

C:CCStudio v3.1/tutorial/dsk6713/volume1.

(c) Adding the Object and Library files (.o, .l): The library file provides runtime
support for the target DSP. Right click on the project name. Choose “Add files
to project.”

Go to (C:CCStudio v3.1/C6000/cgtools/lib/rts6700.lib) and click on Open.
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FIGURE 15.90 New project window.

(d) Adding the include files (.h): Right click on the project name. Choose “Scan All
file dependencies.” The scan detects and adds automatically all the (.h) files
needed.

(e) If your C program contains assembly functions, add all the files which contain
the functions (.a files). Right click on the project name. Choose “Add files to
project” and add those files.

5. Compiling the C program: In the project list on the left section of the CCStudio
window double-click on the added C program. Then from the “Project” menu click
on “Compile File” or directly use “Ctrl F7.”

6. Building the project on the target: Select “Rebuild all” from the “Project” menu.
The program recompiles, reassembles, and re-links all the files in the project. The
Build frame at the bottom of the window displays messages about this process.

7. Loading the program: Select “Load Program” from the “File” menu. Choose
project name.out file and click Open.

8. Running the program: From the “Debug” menu choose “Go Main” then “Run.”

9. To stop the program: From the “Debug” menu click on “Halt.”

15.53.2 Steps to Implement a Simulink Program on the DSP Card

Configuring the DSP and employing it for real-time processing can be easily effected using
Simulink as the following example illustrates.

In Fig. 15.91 Simulink is used to configure the DSP as a filter, which can be programmed
as a lowpass, bandpass or highpass filter. A signal generator applies a sinusoid to the DSP
card input. The sinusoid is sampled using the A/D converter (ADC). The filter parameters
are set to produce a bandpass Chebyshev filter with pass-band edge frequencies 1 and 1.5
kHz. The filtered signal is converted back to analog using the DAC on the card. The card
output is connected to a loudspeaker. By varying the frequency of the input sinusoid the
effect of attenuation of low and high frequencies are readily noted.

The steps to implement the Simulink program of this IIR bandpass filter on the DSP
Card can be summarized as follows:

1. Build the system shown in Fig. 15.91 using Simulink.
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FIGURE 15.91 Simulink block diagram.

2. Launch Code Composer Studio (CCStudio).

3. Generating and charging the code on the DSP target: Go in the Simulink window
to “Simulation” then “Configuration Parameters. . . .” A new window as shown
in Fig. 15.92 pops up. In the list which appears on the left, click on “TIC6000
code generation.” Deselect “Incorporate DSP/BIOS.” In the same list click on
“Real-Time Workshop”; then on “Generate Code.”

FIGURE 15.92 Configuration parameters window.

Automatically, MATLAB generates the code, establishes a connection with the CC-
Studio, transforms the Simulink model to C/C++ files, creates a new project, adds
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all the necessary files to the project, builds and loads the program onto the target.

4. Running the program: From the “Debug” menu choose “Go Main”; then “Run.”

Alternatively, an audio input such as speech, music or song is fed to the DSP card input
and the effect of altering the filter bandwidth on the signal sound quality may be observed.
Similarly, the effect of filtering out the noise in a contaminated signal can be investigated.

15.54 Problems

Problem 15.1 Show the multiplication steps of two numbers represented in FNR, 1’s com-
plement. The two numbers A and B have absolute values a = 18(2−5) and b = 27(2−5),
respectively. Show all four sign combinations. Next to each line of the multiplication process
write its value formally in terms of a and b and their bits. Add these values to prove that
the result is, as required, the product in 1’s complement.

Problem 15.2 The objective is to verify the direct approach of multiplication in 2’s com-
plement seen in Sec. 15.15.
a) Show the successive steps of the multiplication of the multiplicand A and multiplier B
for the cases i) A = −13, B = 11, ii) A = 12, B = −5, iii) A = −7, B = −6, with four
bits plus a sign bit.
b) For each one of the same three cases in a) show all values of the input, intermediate and
output bits on all the connections of the Modified Baugh–Wooley multiplier, shown in Fig.
15.19.

Problem 15.3 Design a 3-D type multiplier as the one described in Sec. 15.14 for the
multiplication of two operands of 12 bits each in sign and magnitude notation, using four-
bit parallel adders. Show the adders and how they are connected in each of the multiplier
planes. Show the bits at the inputs and outputs of the adders assuming max value for the
input and for the output operand.

Problem 15.4 Given A = (119)10 and B = (12)10, write the bit values at the inputs and
outputs of each cell and of the carry-look ahead cells of the nonrestoring division cellular
array shown in Fig. 15.24, for the division A÷ B. Verify whether or not the quotient and
remainder are the exact results. If not show any correction needed. Show in a table the values
of the propagate and generate bits Pi, and Gi of the carry-look ahead cells for i = 0, 1, 2, 3
corresponding to each row of the array.

Problem 15.5 Show the contents of a ROM used to supply the initial estimate of the recip-
rocal of an operand B for conversion division using the Newton–Raphson iterative approach.
The supplied estimate should provide six useful bits of information, meaning that the ROM
output should be interpreted as the value 1.xxxxxx. The ROM should have eight words cor-
responding to the values B = 0.1xxx, where xxx = 000, 001, 010, ..., 111. Using the initial
estimate supplied by the ROM evaluate the successive estimates x1 and x2 with eight decimal
digits for the case B = 13× 2−4 as produced by the iterative approach.

Problem 15.6 a) Show how to evaluate the fifth root of a given value B using the Newton–
Raphson approach. Write the iterative equation which relates the estimate xi+1 to the pre-
vious one xi.
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b) Consider the case where B is a normalized fraction. Evaluate the estimates xi, i = 1,
2, 3, of the first iterations in evaluating the fifth root of the value B = (0.75)10. Suppose an
initial estimate x0 = B.

c) Show the contents of the ROM of eight words, which accepts as input B = (0.1xxx)2
and produces the corresponding 5-bit initial estimate of the square root.

Problem 15.7 Design a function generator that produces the exponential function e−x, 0 ≤
x ≤ 1 upon receiving an input value x using Chebyshev polynomials.

a) Write the function expansion and its conditions of validity.
b) Write the coefficients of the first five terms in the expansion.
c) Write the expansion in the form of a polynomial in powers of x as used by the function

generator. Evaluate the polynomial for x = 0.4.
d) Write the contents of a Read Only Memory ROM to be used by the function generator

and which stores the coefficients of the powers of x up to x4 with a word length of 10 bits.

Problem 15.8 Using function generation by Chebyshev series expansion design a processor
that evaluates ln(1+x), 0 ≤ x ≤ 1 of any input operand x. Write the expansion of ln(1+x)
in terms of Chebyshev polynomials. Specify the values of the polynomials, for the first four
terms, and the successive values of the coefficients in the expansion. Write the reduced form
as a polynomial in powers of x, giving the coefficient of each power xk of x. Write the
content of the ROM that supplies to the processor the coefficients to employ. Repeat for the
case where the function to be generated is Γ(1 + x). Verify by evaluating Γ(1.4).

Problem 15.9 a) Draw a schematic diagram showing the conversion of a 6-decade BCD
coded number to binary using 4-bit parallel adders. Indicate on the connection diagram the
value of every bit on every line connecting the adders for the case of maximum value of
input.
b) Show the grouping of adders as shown above in Fig. 15.31 (c) as a means of replacing
them by the D/B chip shown in Fig. 15.31(a-b). Draw a final schematic diagram of the
six-decade BCD to binary converter employing solely the D/B chips. Indicate on the con-
nection diagram the value of every bit on every line connecting the D/B chips for the case
of maximum value of input.

Problem 15.10 a) Design a combinatorial BCD to binary converter to convert a BCD
number of two decades to binary using 4-bit parallel adders. This unit may be referred to as
a D/B99 chip.

b) Draw a schematic diagram showing the conversion of an eight-decade BCD coded num-
ber to binary using 4-bit parallel adders. Indicate on the connection diagram the value of
every bit on every line connecting the the adders for the case of maximum value of input.

c) Show the grouping of adders as a means of replacing them by the D/B99 chip. Draw a
final schematic diagram of the 8-decade BCD to binary converter employing solely D/B99
chips designed in part a). Indicate on the connection diagram the value of every bit on every
line connecting the D/B99 chips for the case of maximum value of input.

Problem 15.11 a) Draw a schematic diagram showing the conversion of a 16-bit binary
number to BCD using 4-bit parallel adders. Indicate on the connection diagram the value of
every bit on every line connecting the adders chips for the case of maximum value of input.

b) Draw a schematic diagram showing the conversion of a 16-bit binary number to BCD
using solely B/D chips as the one shown above in Fig. 15.33(a-b).

Problem 15.12 a) Design a seven-bit binary to BCD converter module, employing four-
bit parallel adders, as a chip accepting six input bits b6b5...b1. Indicate on the connection
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diagram the value of every bit on every line connecting the adders for the case of maximum
value of input; i.e. with each input bit equal to 1. b) Show the structure of a 16-bit binary to
BCD converter module, employing four-bit parallel adders, accepting 15 input bits. Indicate
on the connection diagram the value of every bit on every line connecting the adders for the
case of maximum value of input. c) Show the structure of the 16-bit binary to BCD converter
module, employing solely as a building block the seven-bit binary to BCD converter chip you
designed in part a). Justify your design by showing the value of every bit on every wire
connecting the chips for the same case of maximum value of input.

Problem 15.13 a) Let N = 32, r = 2, PK be the base r = 2 perfect shuffle permutation
matrix of K points. Let x be a column vector having the elements x0, x1, ...x31, and y = p2x
where p2 = Ir2 × PN/r2 . Evaluate the vector y.
b) With P = P16 the base r = 2 perfect shuffle permutation matrix of K = 16 points and
T2 = H2 the 2× 2 Walsh–Hadamard core matrix given in Equation 14.20, Chapter 14, and
S = I8 × T2. Evaluate in terms of T2 and using the Kronecker product and the identity
matrix Ik with appropriate values of k the expressions PSP−1, P 2SP−2 and P3SP−3.

Problem 15.14 The objective is to construct an FFT processor using radix r = 2 fac-
torization, which should be of a fully wired-in and symmetric architecture, as seen in [17]
[24].

Starting from the matrix definition of the discrete Fourier transform show the steps of
factorization of the DFT matrix, the resulting factorization in closed form and represent
graphically the processor architecture, putting in evidence its symmetry. Sketch the architec-
ture of the corresponding asymmetric processor and describe in a few words the comparative
processing speeds of the two realizations.

Problem 15.15 Show the architecture of a radix-3 asymmetric FFT processor implement-
ing the high speed ordered input/ordered output factorization for processing N -point input
vectors. Specify the lengths of the processor queues. Describe in a few words the sequence of
operations of the processor in the first three iterations.

Problem 15.16 Write a C or MATLAB program which simulates the radix-2 FFT wired-in
processor implementing the asymmetric OIOO algorithm for a record length of N = 256 data
points. Effect the multiplications in floating point assuming that the processor is equipped
with floating point multipliers. Verify the processor performance by comparing its output
with that produced by the fft instruction of MATLAB for the following cases:
i) x[n] = nRN [n].
ii) x[n] = ne−0.1nRN [n].
iii) x[n] = sinβn RN [n], where a) β = 18π/N , b) β = 19π/N .

Evaluate the inverse transform in each case. Evaluate and represent graphically the am-
plitude and phase spectra for each case as produced by the simulated processor and print
their values. For the first case only, show the memory content of each submemory of the
two memories following each iteration.

Problem 15.17 For the sequential machine described by Table 15.25, evaluate the parti-
tions of equivalent classes, show the state table of the reduced machine, and show a realiza-
tion using RS flip-flops.

Problem 15.18 The objective is to design a serial parity-bit generator. The unit receives
serially, one clock at a time, four bits, of which the first three constitute a message and
the fourth is a space for inserting the parity bit. The unit verifies the number of 1’s in the
message. If the number is odd it generates a parity bit of 1 which it inserts in the fourth
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TABLE 15.25 State table of sequential
machine for Problem 15.17

Present State Next state, output z
x = 0 x = 1 x = 2 x = 3

a e, 0 j, 0 f, 0 a, 0
b e, 0 b, 0 b, 0 e, 0
c e, 0 j, 0 d, 0 e, 0
d h, 1 j, 0 b, 0 e, 0
e e, 0 j, 0 f, 0 e, 0
f e, 0 j, 0 g, 0 e, 0
g h, 1 j, 0 b, 0 e, 0
h k, 1 i, 1 j, 0 a, 0
i k, 1 i, 1 b, 0 e, 0
j e, 0 j, 0 j, 0 e, 0
k k, 1 i, 1 c, 0 e, 0

bit space, otherwise it inserts a zero. The resulting output stream is the same as the input
one except for the parity bit that has been inserted as the fourth bit of each message. Such
parity bit is then used for error detection.

a) Draw a state diagram for the parity-bit generator. Label the states q0, q1, , q2, ...
b) Show the state table.
c) Assigning binary code k to state qk, i.e. the codes 000, 001, 010, 011, 100, 101, ... to

states q0, q1, q2, q3, q4, q5, ..., respectively, show the realization of the generator using JK
flip-flops.

Problem 15.19 Show the architecture of a radix-3 generalized Walsh fully wired in proces-
sor implementing the natural order transform for processing N -point input vectors. Specify
the lengths of the processor queues. Describe in a few words the sequence of operations of
the processor in the first three iterations.

Problem 15.20 Show the architecture of a radix-3 generalized Walsh fully wired in proces-
sor for evaluating the natural, dyadic and sequency order transform for processing N = 3n-
point input vectors. Specify the lengths of the processor queues. Describe in a few words the
sequence of operations of the processor in the first three iterations.

Problem 15.21 Show the architecture of a radix-3 asymmetric generalized Walsh processor
implementing the “High Speed Ordered Input/Ordered Output” factorization, as seen in the
context of FFT processors, for N -point input vectors. Describe in a few words the sequence
of operations of the processor in the first three iterations.

15.55 Answers to Selected Problems

Problem 15.3
a) 2’s complement multiplication

i) A < 0, B > 0

A = −13 = 1.0011

B = +11 = 0.1011
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−B = 1.0101

a4 a3 a2 a1 a0

a : 1. 0 0 1 1
b : 0. 1 0 1 1

0 0 1 1
0 0 1 1

0 0 0 0
0 0 1 1

0. 0 0 1 0 0 0 0 1
1. 0 1 0 1
1. 0 1 1 1 0 0 0 1

ii) A > 0, B < 0
A = 12 = 0.1100

B = −5 = 1.1011

−B = 5 = 0.0101

−a = 1.0010

a4 a3 a2 a1 a0

0. 1 1 0 0
1. 1 0 1 1

1 1 0 0
1 1 0 0

0 0 0 0
1 1 0 0

0. 1 0 0 0 0 1 0 0
1. 0 1 0 0
1. 1 1 0 0 0 1 0 0

iii) A < 0, B < 0
A = −7 = 1.1001

B = −6 = 1.1010

y = 0.1010

−y = 1.0110

x = 0.1001

−x = 1.0111

a4 a3 a2 a1 a0

1. 1 0 0 1
1. 1 0 1 0

0 0 0 0
1 0 0 1

0 0 0 0
1 0 0 1

0. 0 1 0 1 1 0 1 0
1. 0 1 1 1
1. 0 1 1 0
1
0. 0 0 1 0 1 0 1 0
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FIGURE 15.93 For Problem 15.4.

Problem 15.4 See Fig. 15.93.
Problem 15.6

a) xi+1 = xi −
xn

i −B
nxn−1

i

.

b) x1 = 1.0741,
x2 = 0.972,
x3 = 0.9456, x4 = 0.9441, x5 = 0.9441.
c) See Table 15.26.

TABLE 15.26 ROM

B binary B dec. 5
√
B dec. 5

√
B bin.

0, 1000 0.5 0.8706 11011110
0, 1001 0.5625 0.8913 11100100
0, 1010 0.625 0.9103 11101001
0, 1011 0.6875 0.9278 11101101
0, 1100 0.75 0.9441 11110001
0, 1101 0.8125 0.9593 11110101
0, 1110 0.875 0.9736 11111001
0, 1111 0.9375 0.9872 11111100
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Problem 15.7
c) e−x = 0.99999− 0.99947x+ 0.49564x2 − 0.15386x3 + 0.02559x4

d) αi = 0.99999, − 0.99947, 0.49564, − 0.15386, 0.02559.

Problem 15.8 ln(1 + x) = 0.00049 + 0.98248x− 0.39728x2 + 0.1078x3.

Problem 15.13 PSP−1 = T2 × I8, P 2SP−2 = I2 × T2 × I4, P 3SP−3 = I4 × T2 × I2.
Problem 15.17
P2 = (ae)(bj)(cf)(dg)(hi)(k).

Problem 15.18

J2 = xy0 + x̄y1, K2 = y0 + y1, J1 = xȳ0ȳ2 + x̄y0ȳ2 + x̄ȳ0y2, K1 = x̄+ y2

J0 = x̄ȳ2ȳ1 + xȳ2y1 + xy2ȳ1, K0 = x+ y2, z = y2y1ȳ0.



16

Random Signal Processing

What we describe mathematically as a pure sinusoid does not exist as a true physical
signal. In fact any mathematically defined signal never exists in nature. The complexity of
our world, wherein a circle or even a simple straight line exists only in the abstract, in our
mind, but never in physical reality, has intrigued philosophers of the past, and in particular
Plato, as seen in the Appendix.

In our universe there is virtually an infinite number of elements, from electrons to galaxies,
that are in continuous motion and transformation. They influence their neighbors, from
atoms to constellations and beyond, causing what may appear to us as mysterious behavior,
inexplicable phenomena, sudden expansions, explosions and turmoil.

So erratic appears the behavior of particles and celestial bodies that it is claimed by some,
and believed by followers, that in nature there are phenomena which are purely random.
They state that this has nothing to do with us and our inability to comprehend them.
They claim that the behavior of some elements of our universe, whether on the atomic or
astronomical level, is intrinsically random.

This amounts to saying that there are parts of our universe where the laws of physics do
not apply; they are lawless lands, so to speak.

Such contention is preposterous, and risks distorting the views and shaking the confidence
of students and young scientists.

In a bowling club, scientists were asked to estimate whether or not the ten pins will be
knocked down. They were given all of the information that they asked for and based on that
they would evaluate their estimates. The same information was made available to everyone,
and each had the same most advanced massively parallel computer in existence. They had
already preprogrammed their computers, each scientist employing his or her own advanced
probabilistic model of the bowling process. The computers were ready to accept the massive
input data from sensors, data that were entered instantly and simultaneously the moment
the ball left the hand of the bowler. Data included even those related to that worldwide
champion bowler that was expected to knock down all ten pins in one throw.

It was therefore not surprising that all came up with the same estimate; that the ball
was on its way to knock down all ten pins; a result that was instantly broadcast, seen by a
billion viewers.

The ball hit the pins with determination. Nine pins were swiftly knocked down. Yet, the
tenth danced and wobbled, was about to fall but ended up standing upright, refusing to
succumb. All scientists have failed. There was a collective gasp and shock all over the world.
The scientists were asked to explain their failure.

A young relatively unknown scientist stated jokingly that he was not the Pope, that he
will have to take a second look at the required variables, the mathematical models, the
equations and the laws of physics behind them.

A top scientist stated that given the state of knowledge at the time it was not surpris-
ing that all, including himself, failed. He explained, using complex mathematical equations
employing distribution theory, impulsive impacts, quantum mechanics and advanced prob-
abilistic models, that the problem was in the nature of the problem.

1105
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Few were those who understood what that top scientist meant. The mathematical tools
were beyond their means, and even those who were familiar with the scientific notation
lacked the time and energy to go over his equations to really comprehend his theory. The
general consensus, however, was that what this top scientist meant was that an important
previously unknown element in the bowling process was itself intrinsically random. That
this had nothing to do with our ability or inability to comprehend it. The process itself was
random. It was futile to try to mathematically model it. This was not what the top scientist
meant. This was what was understood.

A new theory was thus born. Publications en masse followed supporting and applying
this new scientific wave to other fields from atoms to quasars. Many papers presented highly
advanced mathematical analyses proving that the solution to the problem is that there is no
solution.

Ten years later a scientist published a paper presenting a solution that accepted input
variables and evaluated the number of pins that will fall in the bowling process. The solution
was a good approximation to physical reality that was valid under usual bowling conditions.

For years thence this solution predicted successfully the number of pins to fall. The
metaphor became known as the bowling process syndrome. It referred to the fact that the
process which was thought to be purely random was fairly predictable. The process itself
was not random. Pure randomness was, rather, in the brain of the beholder.

The world has thus learned that if a phenomenon appears to us to be random, unquantifi-
able, unpredictable, the reason that it so appears is simply due to our ignorance. The more
we learn, the more we decipher the universe, the clearer the picture, the less randomness
we think we see, and the closer we are to comprehending the scenes as they truly are.

Our theories, the laws of physics as we call them today, will advance, and more of what we
see today as purely random, we may see tomorrow as fairly deterministic behavior obeying
the law.

Every event related to any element in the universe, from electron to nebula, is a rational,
deterministic occurrence. It is governed by the law of causality. No effect is there without a
cause. If a phenomenon appears random, if we are unable to find the cause, the fault is in
us. The more we learn, the more we refine our laws of physics, the less random the behavior
will appear.

However, if we look closer and closer, the behavior of our physical world will always appear
random. For to be able to evaluate ahead of time, however small that time is, the behavior
of any element from the universe as it actually is, deterministic rather than random, we
would need to have acquired an infinite amount of knowledge. And that will never happen.

Probability and statistics are powerful tools we use to best model events that we are
unable to quantify with certainty. In the following, basic knowledge of the theory of proba-
bility and statistics is assumed. Random signals are treated as stationary random processes,
having statistics that are invariant to time axis translations. In other words their joint prob-
ability density functions are indifferent to translations in time.

A random signal as a function of time will be denoted x(t). It is a single realization of a
random process X(t). Given a random process X(t), sampled at time t = ti, the result is a
random variable Xti = X(ti) which has a probability density function PDF p(xti). The kth

moment of X(ti) is by definition the expected value of Xk(ti)

E[Xk
ti

] =

ˆ ∞

−∞
xk

ti
p(xti )dxti . (16.1)

If the random process X(t) is sampled at two instants t1 and t2 the result is two random
variable Xt1 = X(t1) and Xt2 = X(t2). The statistical correlation between X(t1) and X(t2)
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is the joint moment

E[Xt1 , Xt2 ] =

ˆ ∞

−∞

ˆ ∞

−∞
xt1xt2p(xt1 , xt2)dxt1dxt2 (16.2)

where p(xt1 , xt2) is the joint PDF of xt1and xt2 . The joint moment is the autocorrelation
function denoted φxx(t1, t2) of the random process X(t) at instants t1 and t2.

If X(t) is a stationary process the joint PDF of X(t1) and X(t2) is a function of only the
difference τ = t1 − t2. The autocorrelation function is thus denoted

φxx(τ) = E[X(t1)X(t1 + τ)] (16.3)

and we note that, with t1 − τ = θ,

φxx(−τ) = E[X(t1)X(t1 − τ)] = E[X(θ + τ)X(θ)] = φxx(τ) (16.4)

and that φxx(0) = E[X2(t1)] is the average power of X(t).
The autocovariance function is the same as the autocorrelation function but with the

mean values subtracted.

γxx(t1, t2) = E [{X(t1)−mx(t1)} {X(t2)−mx(t2)}] = φxx(t1, t2)−mx(t1)mx(t2)

wheremx(t1) = E[X(t1)], mx(t2) = E[X(t2)]. If X(t) is stationary, we have, with τ = t1−t2

γxx(t1 − t2) = γxx(τ) = φxx(τ) −m2
x (16.5)

and the variance is σ2
x = γxx(0) = φxx(0)−m2

x.
Consider a random process X(t). Let {X(ti)}, i = 1, 2, . . . , n, be the random variables

at the instants ti. Let {X(ti + τ)} be another realization of X(t). If for all values of τ and
all values of n the joint probability density functions of the two sets are equal, i.e.

p[x(t1), x(t2), . . . , x(tn)] = p[x(t1 + τ), x(t2 + τ), . . . , x(tn + τ)] (16.6)

the random process X(t) is known as stationary in the strict sense; otherwise the process
is nonstationary. The mean value of the random variable Xti = x(ti) is

mx(ti) = E[X(ti)] =

ˆ ∞

−∞
xtip(xti)dxti (16.7)

and the kth moment is

E[Xk(ti)] =

ˆ ∞

−∞
xk

ti
p(xti)dxti. (16.8)

For two random variables Xt1 and Xt2 the autocorrelation is given by

φxx(t1, t2) = E[Xt1Xt2 ] =

ˆ ∞

−∞

ˆ ∞

−∞
xt1xt2p(xt1 , xt2)dxt1dxt2 (16.9)

If the random process is stationary the joint PDF of Xt1 and Xt2 is the same as that of
Xt1+τ and Xt2+τ for any time shift τ . In this case the autocorrelation takes the form

φxx(τ) = E[Xt1Xt1+τ ] (16.10)

In what follows we assume a weaker type of stationarity, referred to as wide-sense station-
arity. A wide-sense stationary process is not strictly stationary, yet its first and second
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moments are constant, not function of time, and the autocorrelation function depends on
only the time difference, i.e. φxx(t1, t2) = φxx(t1 − t2).

The cross-correlation is given by

φxy(τ) = E[Xt1+τYt1 ] (16.11)

and the covariance by
γxy(τ) = φxy(τ) −mxmy (16.12)

16.1 Nonparametric Methods of Power Spectrum Estimation

Stationary random processes, having infinite energy, have no Fourier transform. They have
finite average power, however, and can be characterized by a power spectral density (PSD). A
direct estimate of the (PSD) is known as the periodogram, evaluated as the Fourier transform
of the autocorrelation function. In what follows we recall first some basic definitions that
lead to the definition of the periodogram and related means of PSD estimation.

For continuous-time stationary random signals the PSD is the Fourier transform of the
autocorrelation function

Pxx(ω) = Φxx(jω) =

ˆ ∞

−∞
φxx(τ)e−jωτdτ (16.13)

where, for a generally complex random signal x(t), the autocorrelation is

φxx(τ) = E[x(t + τ)x∗(t)]. (16.14)

The cross-power spectral density of two jointly stationary random process x(t) and y(t) is
by definition

Pxy(ω) = Φxy(jω) =

ˆ ∞

−∞
φxy(τ)e−jωτdτ. (16.15)

In practice we estimate statistical averages by evaluating time averages of single real-
izations of random processes. Theoretically, a random process for which time averages are
asymptotically equal to statistical averages is called ergodic [59]. Under such condition

φxx(τ) = lim
T−→∞

rxx(τ) (16.16)

In what follows we assume random signals to be ergodic. The autocorrelation function may
therefore be estimated as the time average

rxx(τ) =
1

2T

ˆ T

−T

x(t + τ)x∗(t)dt. (16.17)

The power spectrum may thus be estimated as the Fourier transform of rxx(τ)

P̂xx(ω) =

ˆ T

−T

rxx(τ)e−jωτdτ =

ˆ T

−T

1

2T

ˆ T

−T

x(t+ τ)x∗(t)dte−jωτdτ

Letting t+ τ = λ we have

P̂xx(ω) =
1

2T

ˆ T

−T

x∗(t)

{
ˆ T

−T

x(λ)e−jω(λ−t)dλ

}
dt =

1

2T
|XT (jω)|2
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where

XT (jω) =

ˆ T

−T

x(t)e−jωtdt (16.18)

The PSD is the expected value of P̂xx(ω) as T tends to infinity

Pxx(ω) = Φxx(jω) = lim
T−→∞

E
[
P̂xx(ω)

]
= lim

T−→∞
E

[
1

2T
|XT (jω)|2

]

16.2 Correlation of Continuous-Time Random Signals

In this section we study the correlation and power spectral densities of stationary continuous-
time domain random signals. Given a generally complex random process x(t) its first mo-
ment is the mean

mx = E [x(t)] . (16.19)

Its autocorrelation is
φxx(τ) = E [x(t + τ)x∗(t)] . (16.20)

Letting t + τ = u we also have φxx(τ) = E [x(u)x∗(u− τ)] = E [x(t)x∗(t− τ)]. The joint
second moment of two jointly stationary processes x(t) and y(t) is the cross-correlation

φxy(τ) = E [x(t+ τ)y∗(t)] . (16.21)

Replacing t+ τ by λ and then λ by t we have

φxy(τ) = E [x(λ)y∗(λ− τ)] = E [x(t)y∗(t− τ)] . (16.22)

We note that φxx(−τ) = φ∗xx(τ) and if x(t) is real then φxx(−τ) = φxx(τ). Moreover

φxy(−τ) = φ∗yx(−τ). (16.23)

Subtracting the means we have the cross-covariance

γxy(τ) = E
[
{x(t+ τ)−mx}

{
y∗(t)−m∗y

}]
= φxy(τ) −mxm

∗
y

= φxy(τ) −mxm
∗
y. (16.24)

and the autocovariance

γxx(τ) = E [{x(t+ τ)−mx} {x∗(t)−m∗x}] = φxx(τ) − |mx|2. (16.25)

If s(t) = x(t) + y(t) then

φss(τ) = φxx(τ) + φxy(τ) + φyx(τ) + φyy(τ). (16.26)

If v(t) = x(t)y(t), and if x(t) and y(t) are independent then so are x(t + τ) and y(t + τ).
We then have

γvv(τ) = E [v(t+ τ)v∗(t)] = E [{x(t+ τ)x∗(t)}]E [{y(t+ τ)y∗(t)}] = γxx(τ)γyy(τ).

We note that
φxx(0) = E

[
|x(t)|2

]
≥ 0 (16.27)
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and if x(t) is real then

E
[
{x(t+ τ) + x(t)}2

]
= φ(0) + 2φ(τ) + φ(0) = 2φ(0) + 2φ(τ). (16.28)

As stated above, the power spectral density Pxx(ω) or Px(ω) of a random process x(t) is
the Fourier transform of the autocorrelation function

Pxx(ω) = Φxx(jω) =

ˆ ∞

−∞
φxx(τ)e−jωτdτ (16.29)

and conversely

φxx(τ) =
1

2π

ˆ ∞

−∞
Pxx(jω)ejωτdω (16.30)

We note that

E
[
|x(t)|2

]
= φxx(0) =

1

2π

ˆ ∞

−∞
Pxx(ω)dω (16.31)

and since φxx(−τ) = φ∗xx(τ) the transform Pxx(ω) = Φxx(jω) is real, and we may write

Pxx(ω) =

ˆ ∞

−∞
φxx(τ) cosωτdτ. (16.32)

The power cross-spectral density of two processes x(t) and y(t) is the transform of the
cross-correlation

Pxy(ω) = Φxy(jω) =

ˆ ∞

−∞
φxy(τ)e−jωτdτ (16.33)

and conversely

φxy(τ) =
1

2π

ˆ ∞

−∞
Pxy(ω)ejωτdω. (16.34)

We note that Pyx(ω) = P ∗xy(ω).
Two processes x(t) and y(t) are uncorrelated or “orthogonal” if

φxy(τ) = 0 (16.35)

then Pxy(ω) = 0.

16.3 Passage through an LTI System

Let x(t) be the input and y(t) the output random processes of an LTI system of impulse
response h(t). We have

y(t) = x(t) ∗ h(t) =

ˆ ∞

−∞
h(τ)x(t − τ)dτ. (16.36)

The mean value of y(t) is given by

my = E [y(t)] = E

[
ˆ ∞

−∞
h(τ)x(t − τ)dτ

]
= E [x(t− τ)]

ˆ ∞

−∞
h(τ)dτ = H(0)mx. (16.37)
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The cross-correlation φyx(τ) relating the system output to its input is found by multiplying
both sides of (16.36) by x∗(t− τ). We have

y(t)x∗(t− τ) =

ˆ ∞

−∞
x∗(t− τ)h(λ)x(t − λ)dλ (16.38)

so that

φyx(τ) = E [y(t)x∗(t− τ)] =

ˆ ∞

−∞
φxx(τ − λ)h(λ)dλ (16.39)

having noted that

E [x(t − λ)x∗(t− τ)] = φxx [(t− λ)− (t− τ)] = φxx(τ − λ) (16.40)

or by writing

E [x(t− λ)x∗(t− τ)] = E [x(u)x∗(u+ λ− τ)] = E [x(t)x∗ [t− (τ − λ)]] = φxx(τ − λ).
Hence

φyx(τ) = φxx(τ) ∗ h(τ) (16.41)

We can further write from Equation (16.36)

y∗(t) =

ˆ ∞

−∞
h∗(λ)x∗(t− λ)dλ (16.42)

and multiplying both sides by y(t+ τ) and taking the expectation we have

E[y(t+ τ)y∗(t)] = E[

ˆ ∞

−∞
y(t+ τ)h∗(λ)x∗(t− λ)dλ] =

ˆ ∞

−∞
h∗(λ)E[y(u)x∗(u − τ − λ)]dλ

φyy(τ) =

ˆ ∞

−∞
φyx(τ + λ)h∗(λ)dλ =

ˆ ∞

−∞
φyx(u)h∗(u − τ)du

= φyx(τ) ∗ h∗(−τ). (16.43)

Similarly, we obtain

φxy(τ) = φxx(τ) ∗ h∗(−τ) (16.44)

φyy(τ) = φxy(τ) ∗ h(τ)
φyy(τ) = φxx(τ) ∗ h(τ) ∗ h∗(−τ).

Taking the Fourier transforms of these relations we obtain corresponding spectral density
expressions. In particular we have

Pxy(ω) = Φxy(jω) = Φxx(jω)H∗(jω) = Pxx(ω)H∗(jω) (16.45)

Pyy(ω) = Φyy(jω) = Φxy(jω)H(jω) = Pxy(jω)H(jω) = Pxx(ω) |H(jω)|2 . (16.46)

Writing v(τ) = h(τ) ∗ h∗(−τ) = h(τ) ⋆ h(τ) we have

V (jω) = |H(jω)|2 (16.47)

φyy(τ) = φxx(τ) ∗ v(τ) (16.48)

and
Φyy(jω) = Φxx(jω)V (jω) (16.49)

Pyy(ω) = Pxx(ω)V (jω). (16.50)

These relations can be represented in block diagram form as shown in Fig. 16.1.
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FIGURE 16.1 Linear time invariant (LTI) system input and output correlations.

Example 16.1 Evaluate the power spectral density of the process x(t) for the cases a)
φxx(τ) = e−α|τ |, b) φxx(τ) = e−α|τ | cosβτ

a) We have

Pxx(ω) = Φxx(jω) =
2α

α2 + ω2
(16.51)

b)

Pxx(ω) = F
[
e−αt cosβtu(t)

]
+ F

[
eαt cosβtu(−t)

]

=
s+ α

(s+ α)2 + β2
+

−s+ α

(−s+ α)2 + β2

∣∣∣∣
s=jω

=
jω + α

(α+ jω)2 + β2
− jω − α

(α − jω)2 + β2
(16.52)

which can be written in the form

Pxx(ω) =
α

(ω − β)2 + α2
+

α

(ω + β)2 + α2
. (16.53)

Example 16.2 Given a random process x(t) of autocorrelation φxx(τ) and spectral den-
sity Pxx(ω), evaluate the autocorrelation and power spectral density of the random process
y(t)defined by

y(t) = x(t) ∗ h(t) (16.54)

where

h(t) =
1

2T
ΠT (t) (16.55)

is the impulse response of a smoothing filter.
From the definition, referring to Fig. 16.2 we have

y(t) =

ˆ ∞

−∞
x(τ)h(t − τ)dτ =

1

2T

ˆ t+T

t−T

x(τ)dτ (16.56)

H(jω) = Sa(Tω) (16.57)

V (jω) = |H(jω)|2 = Sa2(Tω) (16.58)

v(t) = F−1
[
Sa2(Tω)

]
=

1

2T
{1− |t|/(2T )} =

1

2T
Λ2T (t) (16.59)

which is depicted in Fig. 16.3.

φyy(τ) = φxx(τ) ∗ v(τ) =
1

2T

ˆ 2T

−2T

Λ2T (λ)φxx(τ − λ)dλ (16.60)

and
Pyy(ω) = Pxx(ω)Sa2(Tω). (16.61)
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FIGURE 16.2 System response.
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FIGURE 16.3 The function v(t).

16.4 Wiener Filtering in Continuous-Time Domain

Wiener filtering deals with the problem of estimating a signal contaminated by additive
noise. Linear mean-square estimation is the basic tool for evaluating an optimal filter impulse
response. Consider the problem of estimating a real, for simplicity, random variable v as a
weighted sum of n given random variables, or components, uk

v̂ =
n∑

k=1

akuk (16.62)

by minimizing the mean square error

e = E
[
(v − v̂)2

]
= E



(
v −

n∑

k=1

akuk

)2

 . (16.63)

To this end we may apply the orthogonality principle, which states that the optimum coef-
ficients ak are those causing the error (v − v̂) to be orthogonal to each of the components
{uj} , j = 1, 2, . . . , n, i.e.

E [(v − v̂)uj] = 0, j = 1, 2, . . . , n. (16.64)
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Indeed, the minimum value of e is such that

∂e

∂aj
= E

[
−2

(
v −

n∑

k=1

akuk

)
uj

]
= 0 (16.65)

implying that E [(v − v̂) uj] = 0 as stated. The coefficients ak are thus found by solving the
equations

E [vuj ] =

n∑

k=1

akE [ukuj ] , j = 1, 2, . . . , n (16.66)

Moreover, since each component uk of the estimate v̂ is orthogonal to the error (v − v̂),
the estimate v̂ is itself orthogonal to (v − v̂), i.e. E [(v − v̂) v̂] = 0 and E [vv̂] = E[v̂2]. The
resulting mean-square error is therefore

emin = E [(v − v̂)(v − v̂)] = E [(v − v̂)v] = E
[
v2
]
− E

[
v̂2
]

(16.67)

In the Wiener filtering problem we are given a random signal

x(t) = v(t) + b(t) (16.68)

where v(t) is a stationary random signal to be estimated and b(t) is random noise. The
random processes v(t) and b(t) are jointly stationary with known correlations or power
spectra. To estimate the signal v(t) we seek a filter of impulse response h(t) which upon
receiving the contaminated signal x(t) produces and output

y(t) =

ˆ ∞

−∞
h(τ)x(t − τ)dτ (16.69)

which best approximates v(t) in the minimum mean-square sense. In other words the filter
response should be

y(t) = v̂(t) =

ˆ ∞

−∞
h(τ)x(t − τ)dτ (16.70)

and should minimize the error

e = E
[
(v(t)− v̂(t))2

]
. (16.71)

To obtain the optimum impulse response h(t) we may use the orthogonality principle. We
note that the estimate v̂(t) is a weighted sum of the components x(t − τ) where τ extends
in value from −∞ to ∞.

Drawing on our orthogonality principle results, with the integral limits extending from
−∞ to ∞, we note that the mean square error is minimized if the error e = (v(t)− v̂(t)) is
orthogonal to the components x(t− τ)

E [{v(t) − v̂(t)} x(t− τ)] = 0 (16.72)

i.e.

E [v(t)x(t − τ)] = E

[
ˆ ∞

−∞
h(λ)x(t − λ)dλx(t − τ)

]
(16.73)

or

φvx(τ) =

ˆ ∞

−∞
h(λ)φxx(τ − λ)dλ (16.74)
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of which the solution is the optimum impulse response h(t). In terms of power spectral
densities this equation, which is a form of the Wiener–Hopf equation, may be put in the
form

Pvz(ω) = Φvx(jω) = H(jω)Φxx(jω) = H(jω)Pxx(ω) (16.75)

H(jω) =
Pvx(ω)

Pxx(ω)
(16.76)

and since the error {v(t)− v̂(t)} is orthogonal to each component x(t − τ) of v̂(t) we have

E [{v(t)− v̂(t)} v̂(t)] = 0 (16.77)

so that the minimum mean-square error is given by

emin = E
[
{v(t)− v̂(t)}2

]
= E [{v(t)− v̂(t)} v(t)] = φvv(0)− E

[
ˆ ∞

−∞
h(τ)x(t − τ)dτv(t)

]

= φvv(0)− E
[
ˆ ∞

−∞
h(λ)x(t − λ)dλv(t)

]
= φvv(0)−

ˆ ∞

−∞
h(λ)φvx(λ)dλ.

Using Parseval’s relation we may also write

emin =
1

2π

ˆ ∞

−∞
{Pvv(ω)− Pvx(ω)H(jω)} dω. (16.78)

If the signal v(t) and noise b(t) are uncorrelated, i.e. φvb(τ) = E [v(t)b(t− τ)] = 0 then
the cross-power spectral density

Pvx(ω) = Pvv(ω) (16.79)

Pxx(ω) = Pvv(ω) + Pbb(ω) (16.80)

so that

H(jω) =
Pvv(ω)

Pvv(ω) + Pbb(ω)
(16.81)

e =
1

2π

ˆ ∞

−∞

Pvv(ω)Pbb(ω)

Pvv(ω) + Pbb(ω)
dω (16.82)

and if the noise spectral density tends to a value much higher than that of the signal, i.e.
Pbb(ω) −→ B ≫ Pvv(ω) then

H(jω) −→ Pvv(ω)/B (16.83)

h(t) −→ (1/B)φvv(t) (16.84)

and

e −→ 1

2π

ˆ ∞

−∞
Pvv(ω)dω = φvv(0) = E

[
v2(t)

]
. (16.85)
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16.5 Causal Wiener Filter

The Wiener filter we have just developed has a two-sided (i.e. noncausal) impulse response.
It is therefore not physically realizable. A physically realizable filter has to have a causal
impulse response and has available only the past values and present value of the input
signal. The estimate of the signal v(t) is thus given by

v̂(t) =

ˆ ∞

0

h(τ)x(t − τ)dτ (16.86)

where τ now takes on all values from 0 to ∞. Similarly to the above the orthogonality
principle states that the mean square estimation error is minimum if

E [{v(t)− v̂(t)}x(t − τ)] = 0 τ > 0. (16.87)

Hence the Wiener–Hopf equation takes the form

φvx(τ) −
ˆ ∞

0

h(λ)φxx(τ − λ)dλ = 0, τ > 0 (16.88)

The optimum impulse response h(t) is obtained by solving this equation.
However, the solution is more elaborate than the previous case of the two-sided Wiener

filter where the Wiener–Hopf equation was valid for all τ . Presently we let f(τ) denote the
left-hand side of the equation. We have

f(τ) = φvx(τ) −
ˆ ∞

0

h(λ)φxx(τ − λ)dλ (16.89)

and note that f(τ) = 0 , τ > 0. With F (s) and H(s) the Laplace transforms of f(τ) of the
left-sided f(τ) and the right-sided h(τ) we note that their regions of convergence (ROCs)
are σ < 0 and σ > 0, respectively. Moreover,

φvx(τ)
F←→ Pvx(ω), φvx(τ)

L←→ Pvx(−js) (16.90)

φxx(τ)
F←→ Pxx(ω), φxx(τ)

L←→ Pxx(−js) (16.91)

so we may write
F (s) = Pvx(−js)− Pxx(−js)H(s) (16.92)

and set out to satisfy this equation in the ROC σ < 0 of F (s). To this end we may factor
the m Pxx(−js) into the product

Pxx(−js) = P+(s)P−(s) (16.93)

where P+(s) has a ROC σ > 0 and is minimum phase, having all its poles and zeros in the
left half of the s plane, and P−(s) has the ROC σ < 0 and is maximum phase, having all
its poles and zeros in the right half of the s plane. Now

Y (s) = Pvx(−js)− P+(s)P−(s)H(s) (16.94)

i.e.
Y (s)

P−(s)
=
Pvx(−js)
P−(s)

− P+(s)H(s). (16.95)
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We may now decompose the left-hand side into the transform of a causal function plus that
of an anticausal one.

Y (s)

P−(s)
= Q+(s) +Q−(s) (16.96)

where Q+(s) and Q−(s) are analytic for σ > 0 and σ < 0, respectively. The last two
equations imply that

Q+(s) +Q−(s)− P+(s)H(s) = 0 (16.97)

i.e.
Q+(s) = P+(s)H(s) , σ > 0 (16.98)

or
H(s) = Q+(s)/P+(s) , σ > 0 (16.99)

and the minimum mean-square error is given similarly to the above by

emin = φvv(0)−
ˆ ∞

0

h(λ)φvx(λ)dλ. (16.100)

Example 16.3 We need to approximate the value x(t+ τ) of a stationary random process
x(t). Suppose the estimate is x̂(t+ τ) = γx(t). Evaluate the constant γ that leads to mini-
mum mean square error.

The mean square error is given by

eγ = E
[
{x(t+ τ) − γx(t)}2

]
= E

[
x(x+ τ)2 − 2γx(t)x(t+ τ) + γ2x2(t)

]

∂eγ

∂γ
= E

[
−2x(t)x(t+ τ) + 2γx2(t)

]
= 0 (16.102)

2φxx(τ) = 2γφxx(0) (16.103)

γ = φxx(τ)/φxx(0). (16.104)

The resulting minimum mean square error is

emin = E [x(t+ τ)]
2 − 2γφxx(τ) + γ2φxx(0) = φxx(0)− 2γ2φxx(0) + γ2φxx(0)

= φxx(0)− γ2φxx(0) = φxx(0)− φ2
xx(τ)

φxx(0)
. (16.105)

Example 16.4 Evaluate the impulse response h(t) and the minimum mean square error if

Pxx(ω) =
5

ω2 + 2
, Pbb(ω) = K

assuming that the signal x(t) and the noise b(t) are uncorrelated.

We have

H(jω) =
Pxx(ω)

Pxx(ω) + Pbb(ω)
, Pxb(ω) = 0

H(jω) =
5

ω2+2
5

ω2+2 +K
=

5

5 +K(ω2 + 2)
=

5/K

5/K + ω2 + 2
=

5/K

γ2 + ω2

γ2 = 2 + 5/K
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h(t) =
5

2Kγ
e−γ|t|

e =
1

2π

ˆ ∞

−∞

Pxx(ω)Pbb(ω)

Pxx(ω) + Pbb(ω)
dω =

1

2π

ˆ ∞

−∞

(5/K)K

(γ2 + ω2)
dω

=
5

2π

ˆ ∞

−∞

dω

γ2 + ω2
=

5

2γ
.

16.6 Random Sequences

Similarly to the continuous-time domain, a random process X [n] in the discrete time do-
main is an ensemble of random sequences x[n] of which the elements have probabilities of
occurrence. A sequence x[n], −∞ < n <∞ is one realization of the random process and is
referred to as a sample sequence of the process.

In the discrete-time domain a random signal is often a sampling of a continuous-time
random process. The time axis is now a progression of integer values n and the signal
is a random variable xn of which a particular value at time n is x[n]. Similarly to the
continuous-time domain, the kth moment of X [n] is

E[Xk
n] =

ˆ ∞

−∞
xk

npxndxn (16.106)

and the cross-correlation sequence for generally complex sequences Xn and Yk is by defini-
tion

φxy[n, k] = E[XnY
∗
k ] =

ˆ ∞

−∞

ˆ ∞

−∞
xny

∗
kp(xn, yk)dxndyk. (16.107)

The autocorrelation is

φxx[n, k] = E[XnX
∗
k ] =

ˆ ∞

−∞

ˆ ∞

−∞
xnx

∗
kp(xn, xk)dxndxk (16.108)

The cross-covariance is

γxy[n, k] = E[(Xn −mxn)(Yk −myk
)∗] = φxy[n, k]−mxnmyk

(16.109)

where mxn = E[Xn] and myn = E[Yn]. A random signal, denoted xn or x[n], are assumed
in what follows to be stationary. The mean and variance are constant and we may write the
mean, variance and autocorrelation, respectively, as

mx = E[xn] (16.110)

σ2
x = E

[
(xn −mx)2

]
(16.111)

φxx[n+m,n] =△ φxx[m] = E[xn+mx
∗
n] (16.112)

The cross-correlation φxy[m] of random variables xn and yn, and of the random sequences
x[n] and y[n], respectively, are given by

φxy[m] = E[xn+my
∗
n] = E[xny

∗
n−m] (16.113)

φxy[m] = E[x[n+m]y[n]∗] = E[x[n]y[n−m]∗] (16.114)
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and if xn is real then

φxx[m] = E[xn+mxn] (16.115)

γxy[m] = φxy[m]−mxmy . (16.116)

We note that lim
m−→∞

φxx[m] = E[x2
n] = m2

x, wherefrom the z-transform Φxx(z) of φxx[m]

exists only if mx = 0, in which case Γxx(z) = Φxx(z). The power spectral density is the
Fourier transform of the autocorrelation sequence

Pxx(Ω)=△Φxx(ejΩ) =
∞∑

m=−∞
φxx[m]e−jΩm (16.117)

and

φxx[m] =
1

2π

ˆ ∞

−∞
Φxx(Ω)ejΩmdΩ. (16.118)

Example 16.5 Let x[n] and y[n] be two zero-mean random processes. Let v[n] = x[n]−y[n].
Evaluate the autocovariance sequence of v[n].

The autocovariance sequence of v[n] is given by

γvv[m] = φvv[m]−m2
v (16.119)

where

mv = E
[
v[n]

]
= E

[
x[n]− y[n]

]
= 0 (16.120)

so that

γvv[m] = φvv [m] = E
[
{x[n]− y[n]} {x[n+m]− y[n+m]}

]
(16.121)

= φxx[m]− φxy[m]− φyx[m] + φyy[m]. (16.122)

16.7 From Statistical to Time Averages

In practice we do not usually have probability distributions and statistics of a given class of
random signals. We often have to evaluate averages from single recordings of finite duration
signals. To this end we have to evaluate time averages instead of statistical ones. Assuming
the process is ergodic we define an approximation of the mean of a random sequence x[n]
as

µx =
1

2N + 1

N∑

n=−N

x[n] (16.123)

with the implication that as N tends to infinity the time average µx will tend to the
statistical mean mx. We note that the time average µx is itself a random variable and our
approximation would be well justified if its average value is equal to mx. In this case the
estimate µx is called unbiased. We may also evaluate the variance of the estimate µx. The
lower the variance the less the deviation there is from the true value mx.
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The time autocorrelation of a real sequence, an approximation of the statistical one, is
by definition

cxx[m] =
1

2N + 1

N∑

n=−N

x[n+m]x[n] (16.124)

and, for any lag m, is a random variable approximating the statistical autocorrelation
φxx[m].

16.8 Correlation and Covariance in z-Domain

We consider generally complex stationary random processes {xn} and {yn}. As noted above
the z-transform Φxx(z) of the autocorrelation sequence φxx[m] exists if and only if mx = 0,

in which case Γxx(z)=△Z
[
γxx[m]

]
= Φxx(z) and Γxy(z)=△Z

[
γxy[m]

]
= Φxy(z). Moreover, if

x and y are linearly independent, i.e. uncorrelated

lim
m−→∞

φxy[m] = E[xnyn] = mxmy (16.125)

so that Φxy(z) exists if and only if mx or my or both are zero, in which case γxy[m] = φxy[m]
and Γxy(z) = Φxy(z). The following relations can also be inferred.

E[x2
n] ≡ mean− squarevalue = φxx[0] (16.126)

σ2
x ≡ variance = E[(x−mx)2] = γxx[0] (16.127)

φxx[m] = φxx[−m] , φxy[m] = φyx[−m] , (16.128)

γxx[m] = γxx[−m] , γxy[m] = γyx[−m] (16.129)

|φxx[m]| ≤ φxx[0] , γxx[m] ≤ γxx[0] . (16.130)

lim
m−→∞

φxx[m] = E[x2
n] = {E[xn]}2 = m2

x (16.131)

lim
m−→∞

γxx[m] = 0 , lim
m−→∞

φxy[m] = mxmy , lim
m−→∞

φxy[m] = 0 (16.132)

φxx[m] =
1

2πj

‰

C

Φxx(z)zm−1dz (16.133)

and

σ2
x = φxx[0] =

1

2πj

‰

C

Φxx(z)z−1dz (16.134)

where C is a closed contour in the ROC of Γxx(z). Moreover, since φxx[m] = φ∗xx[−m] and
φxy[m] = φ∗yx[−m]

Φxx(z) = Φ∗xx(1/z∗) (16.135)

and

Φxy(z) = Φ∗yx(1/z∗) (16.136)

The ROC of Γxx(z) is therefore an annular region r < |z| < 1/r and since lim
m−→∞

γxx[m] = 0

the Fourier transform Γxx(ejΩ) exists; hence the unit circle is within the annular ROC i.e.
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0 < r < 1. We recall, moreover, that the power spectral density, or power spectrum is by
definition

Pxx(Ω) = Φxx(ejΩ) (16.137)

and we may write

φxx[m] =
1

2π

ˆ π

−π

Φxx(ejΩ)ejΩmdΩ (16.138)

γxx[m] =
1

2π

ˆ π

−π

Γxx(ejΩ)ejΩmdΩ (16.139)

and

E[|x[n]|2] = φxx[0] =
1

2π

ˆ π

−π

Φxx(ejΩ)dΩ =
1

2π

ˆ π

−π

Pxx(Ω)dΩ (16.140)

σ2
x = γxx[0] =

1

2π

ˆ π

−π

Γxx(ejΩ)dΩ =
1

2π

ˆ π

−π

Pxx(Ω)dΩ− |mx|2 (16.141)

16.9 Random Signal Passage through an LTI System

We presently investigate the input–output relations of an LTI system upon applying a real
input sequence x[n] that is a realization of a stationary random process. Let h[n] be the
system unit pulse response and H(z) its transfer function. The mean value of the system
output y[n] is given by

my = E
[
y[n]

]
= E

[ ∞∑

k=−∞
h[k]x[n− k]

]
=

∞∑

k=−∞
h[k]E

[
x[n− k]

]
(16.142)

= mx

∞∑

k=−∞
h[k] = H(1)mx. (16.143)

The autocorrelation sequence of the output is

φyy [n, n+m] = E
[
y[n]y[n+m]

]
= E

[ ∞∑

k=−∞
h[k]x[n− k]

∞∑

i=−∞
h[i]x[n+m− i]

]

= E
[ ∞∑

k=−∞
h[k]

∞∑

i=−∞
h[i]x[n− k]x[n+m− i]

]

=

∞∑

k=−∞
h[k]

∞∑

i=−∞
h[i]E

[
x[n− k]x[n+m− i]

]
.

Note however that x[n] is assumed to be stationary. This implies that E
[
x[n−k]x[n+m−i]

]

is a function of only the difference (n+m− i)− (n− k) = m− i+ k, and not a function of
n. We may therefore write

φyy[n, n+m]=△φyy[m] =

∞∑

k=−∞
h[k]

∞∑

i=−∞
h[i]φxx[m− i+ k] (16.144)
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Letting r = i− k we have

φyy[m] =
∞∑

k=−∞
h[k]

∞∑

r=−∞
h[r + k]φxx[m− r] =

∞∑

r=−∞
φxx[m− r]

∞∑

k=−∞
h[k]h[r + k].

Letting

v[r] =

∞∑

k=−∞
h[k]h[r + k] = h[r] ∗ h[−r] = h[r] ∗ h[−r] (16.145)

that is, v[r] is the autocorrelation of the system unit sample response, we have

φyy[m] =

∞∑

r=−∞
v[r]φxx[m− r] (16.146)

meaning that the autocorrelation of the system response is equal to the convolution of the
input signal autocorrelation with the autocorrelation of the system impulse response. In the
z-transform domain we have

Φyy(z) = V (z)Φxx(z) (16.147)

and
V (z) = H(z)H(z−1) (16.148)

so that
Φyy(z) = H(z)H(z−1)Φxx(z) (16.149)

and if mx = 0 then my = H(1)mx = 0, the z-transform exists and γxx[m] = φxx[m] so that

Γyy(z) = H(z)H(z−1)Γxx(z) (16.150)

The system output power spectral density is

Pyy(Ω) = Φyy(ejΩ) = |H(ejΩ)|2Φxx(ejΩ) = |H(ejΩ)|2Pxx(Ω) . (16.151)

The system output-input cross-correlation is given by

φyx[m] = E
[
y[n+m]x[n]

]
= E

[
x[n]

∞∑

k=−∞
h[k]x[n+m− k]

]
(16.152)

=

∞∑

k=−∞
h[k]φxx[m− k] (16.153)

that is, equal to the convolution of the impulse response with the input autocorrelation
sequence. Again, with mx = 0 the z-transforms exist and

Φyx(z) = H(z)Φxx(z) (16.154)

Pyx(Ω) = H(ejΩ)Pxx(Ω). (16.155)

This is an important relation that can be used for system frequency response evaluation.
In particular, if the input sequence x[n] is white noise then

φxx[m] = σ2
xδ[m] (16.156)

Pxx(Ω) = Φxx[ejΩ] = σ2
x , −π ≤ Ω ≤ π (16.157)
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so that
Pyx(Ω) = σ2

xH(ejΩ) (16.158)

i.e.
H(ejΩ) = Pyx(Ω)/σ2

x (16.159)

We can thus evaluate the frequency response from knowledge of the input–output power
density spectrum Pxy(Ω) and the white noise variance σ2

x. Moreover,

φyx[m] = h[m] ∗ φxx[m] = σ2
xh[m] (16.160)

so that the impulse response h[n] can be estimated from knowledge of the input–output
cross-correlation sequence φxy[n].

Example 16.6 Evaluate the variance of the response y[n] of a linear system if the input
to the system x[n] is zero-mean white noise.

The autocorrelation of the input is

φxx[m] = σ2
xδ[m]. (16.161)

Now

σ2
y =

1

2π

ˆ π

−π

Pyy(Ω)dΩ (16.162)

and

Pyy(Ω) = |H(ejΩ)|2Pxx(Ω) = |H(ejΩ)|2Φxx(ejΩ) = σ2
x|H(ejΩ)|2.

Hence

σ2
y =

σ2
x

2π

ˆ π

−π

|H(ejΩ)|2dΩ = σ2
x

∞∑

n=−∞
h2[n] (16.163)

using Parseval’s relation.

Example 16.7 A linear system has the impulse response h[n] = 2−nu[n]. It receives white
noise of zero mean and variance σ2

x as input. Evaluate the average power of its response.

The average power of the output y[n] is φyy [0]. We note that

φxx[m] = E
[
x[n]x[n+m]

]
= E

[
x[n]

]
E
[
x[n+m]

]
(16.164)

since the samples of a white-noise random process are statistically independent, i.e.

φxx[m] = 0 , m 6= 0 (16.165)

and
φxx[0] = σ2

x (16.166)

i.e.
φxx[m] = σ2

xδ[m] . (16.167)

The average output power is

Φyy[0] =
1

2πj

‰

C

Φyy(z)z−1dz =
1

2πj

‰

C

H(z)H(z−1)Φxx(z)z−1dz

=
1

2πj

‰

C

1

1− 2−1z−1

1

1− 2−1z
σ2

xz
−1dz =

σ2
x

2πj

‰

C

1

z − 0.5

1

1− 0.5z
dz =

4

3
σ2

x.
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Example 16.8 A linear system has an impulse response

h[n] = 0.5n sin(πn/4)u[n] (16.168)

It receives a wide-sense stationary random signal x[n] of unit variance. Evaluate the system
output autocorrelation sequence, its power density spectrum and its average power.

Let r = 0.5, Ω0 = π/4. We have

H(z) =
r sin Ω0z

−1

1− 2rcosΩ0z−1 + r2z−2
(16.169)

H(z−1) =
r sinΩ0z

−1

r2 − 2rcosΩ0z−1 + z−2
. (16.170)

Let G(z) = H(z)H(z−1).
We have

Φyy(z) = G(z) = H(z)H(z−1)

= 0.125z−2/ ( 0.25− 0.8839z−1 + 1.563z−2

−0.8839z−3 + 0.25z−4 ) (16.171)

Evaluating the inverse transform we obtain

φyy [n] = g[n] = 0.2287(2n + 0.5m) cos(0.7854n− 0.5404)u[n] (16.172)

The power spectral density of the system output is

Pyy(Ω) = Φyy(ejΩ) (16.173)

Now

Φyy(z) = H(z)H(z−1) = G(z) (16.174)

Hence

Pyy(Ω) = 0.125e−j2Ω/ ( 0.25− 0.8839e−jΩ

+1.563e−j2Ω − 0.8839e−j3Ω + 0.25e−j4Ω )

= 0.125/ {0.5 cos 2Ω− 1.7678 cosΩ + 1.563} . (16.175)

The average output power is

Φyy[0] = 2× 0.2287× cos(−0.5404) = 0.3922 . (16.176)

16.10 PSD Estimation of Discrete-Time Random Sequences

In the discrete-time domain the PSD of a stationary random sequence x[n] is by definition

Pxx(Ω) = Φxx(ejΩ) =
∞∑

m=−∞
φxx[m]e−jΩm (16.177)
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where φxx[m] = E
[
x[n+m]x∗[n]

]
, and the average power is

φxx[0] = E[|x[n]|2] =
1

2π

ˆ π

−π

Φxx(ejΩ)dΩ =
1

π

ˆ π

0

Pxx(Ω)dΩ

We shall compare two similar yet distinct estimates of the autocorrelation sequence.
Consider an N -point real stationary random sequence x[n], n = 0, 1, . . . , N − 1. The auto-
correlation of the sequence x[n] may be evaluated by referring to Fig. 16.4.

x n[ ]

0 N-1 n

x n+m[ ]

0 n-m m N- + -1

FIGURE 16.4 Autocorrelation of a sequence.

We may write the autocorrelation as

cxx[m] =
1

N

∞∑

n=−∞
x[n]x[n+m]. (16.178)

Note that the roles of m and n are reversed in the figure compared to our usual deterministic
signal correlation, and the normalization by the factor 1/N . As the figure shows, with
0 ≤ m ≤ N − 1

cxx[m] =
1

N

N−m−1∑

n=0

x[n]x[n+m], m = 0, 1, . . . , N − 1. (16.179)

Since the autocorrelation sequence is even-symmetric cxx[−m] = cxx[m] we may write

cxx[m] =
1

N

N−|m|−1∑

n=0

x[n]x[n+ |m|], m = 0, ±1, ±2, . . . ,± (N − 1). (16.180)

This is one estimate of the autocorrelation sequence. A closely related estimate is defined
as

c′xx[m] =
1

N −m

N−m−1∑

n=0

x[n]x[n+m], m = 0, 1, 2, . . . , N − 1. (16.181)

where the normalization factor is 1/(N − m) instead of the factor (1/N) in cxx[m]. The
mean value of c′xx[m] is given by

E
[
c′xx[m]

]
=

1

N −m

N−m−1∑

n=0

E
[
x[n]x[n+m]

]
=

1

N −m

N−m−1∑

n=0

φxx[m] = φxx[m]
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which is the true statistical autocorrelation sequence. The estimate c′xx[m] is therefore an
unbiased estimate of the autocorrelation sequence φxx[m]. In contrast, the mean value of
the estimate cxx[m] is

E
[
cxx[m]

]
=

1

N

N−m−1∑

n=0

E
[
x[n]x[n+m]

]
=

1

N
(N −m)E

[
c′xx[m]

]

=
N −m
N

φxx[m], m = 0, 1, . . . , N − 1 (16.182)

and for −(N − 1) ≤ m ≤ (N − 1)

E
[
cxx[m]

]
=
N − |m|

N
φxx[m] . (16.183)

This estimate has therefore a bias of (|m|/N)φxx[m]. It is asymptotically unbiased, however,
since as N −→∞ it tends to the true value φxx[m].

Evaluation of the variance of each of these estimates is more complex. An approximation
of the variance of c′xx[m] was given by Jenkins and Watts [49] as

var
[
c′xx[m]

]
≃ N

|N −m|2
∞∑

n=−∞

{
φ2

xx[n] + φxx[n−m]φxx[n+m]
}

(16.184)

an expression that applies if the number of samples N is much larger than m. This variance

tends to zero as N −→∞, as long as the sum
∞∑

n=−∞
φ2

xx[n] is finite.

Since E
[
c′xx[m]

]
= φxx[m] and the variance of c′xx[m] tends to zero as N −→ ∞ the

estimate c′xx[m] is said to be a consistent estimate. On the other hand, for large values of
m, and particularly as m approaches the value N , the variance increases progressively in
value. The variance of the estimate cxx[m] may similarly be approximated as

var
[
cxx[m]

]
≃ 1

N

∞∑

n=−∞

{
φ2

xx[n] + φxx[n−m]φxx[n+m]
}

(16.185)

which tends to zero as N −→∞.
Since, moreover, lim

N−→∞
E
[
cxx[m]

]
= φxx[m], i.e. the estimate cxx[m] is asymptotically

unbiased, this estimate is also a consistent estimate of φxx[m]. Using cxx[m] we have the
PSD estimate known as the periodogram. It is usually attributed the symbol IN (Ω)

IN (Ω) =

N−1∑

m=−(N−1)

cxx[m]e−jΩm (16.186)

We note that cxx[m] is the autocorrelation of the N -point sequence x[n] normalized by the
factor (1/N). We may write

cxx[m] = {x[m] ∗ x[−m]} /N (16.187)

Hence

IN (Ω) = cxx(ejΩ) = (1/N)X(ejΩ)X∗(ejΩ) = (1/N)
∣∣X(ejΩ)

∣∣2 .
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Assuming a zero-mean random process the auto-covariance is equal to the autocorrelation.
The mean of the periodogram is given by

E[IN (Ω)] =

N−1∑

m=−(N−1)

E[cxx][m]e−jΩm =

N−1∑

m=−(N−1)

N − |m|
N

φxx[m]e−jΩm

which is different from the Fourier transform of φxx[m]; hence the estimate is biased, relative
to the true PSD, Pxx(Ω).

Consider now the second estimate c′xx[m]. Its Fourier transform is

PN (Ω) =

N−1∑

m=−(N−1)

c′xx[m]e−jΩm (16.188)

and its mean value is

E[PN (Ω)] =

N−1∑

m=−(N−1)

E
[
c′xx[m]

]
e−jΩm =

N−1∑

m=−(N−1)

φxx[m]e−jΩm.

Since the limits are finite this too is a biased estimate of Pxx(Ω), even if c′xx[m] is an
unbiased estimate of φxx[m].

We have just seen that there are two different truncations of the true autocorrelation
sequence. The first is the sequence cxx[m], of which the Fourier transform is the periodogram.
The expectation

E[IN (Ω)] =

N−1∑

m=−(N−1)

N − |m|
N

φxx[m]e−jΩm (16.189)

is the Fourier transform of the autocorrelation sequence φxx[m] weighted by the triangular
Bartlet window

wB [m] =

{
N−|m|

N , |m| < N

0, otherwise
(16.190)

of which the Fourier transform is given by

WB(ejΩ) =
1

N
Sd2

N (Ω/2). (16.191)

We may therefore write

E[IN (Ω)] =
1

2π

ˆ π

−π

Pxx(y)WB(ej(Ω−y))dy (16.192)

In the second truncation, leading to the sequence c′xx[m], the expectation is

E[PN (Ω)] =
N−1∑

m=−(N−1)

φxx[m]e−jΩm (16.193)

which implies a truncation of φxx[m] by a rectangular window

wR[m] = u[m+ (N − 1)]− u[m− (N − 1)] (16.194)

of which the Fourier transform is

WR(ejΩ) = Sd2N−1(Ω/2) . (16.195)
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Hence we may write

E[PN (Ω)] =
1

2π

ˆ π

−π

Pxx(y)WR(ej(Ω−y))dy (16.196)

Similarly to the mean value of the periodogram E[IN (Ω)] this mean value E[PN (Ω)] is
the convolution of the true PSD, Pxx(Ω) = Φxx(ejΩ), with the transform of the weighting
window. The result is a spectrum that displays spectral leakage accompanied by a reduction
in frequency resolution due to the window truncation of the autocorrelation sequence. As
N −→∞, the mean of the periodogram, E[IN (Ω)], tends to

lim
N−→∞

E[IN (Ω)] =

∞∑

m=−∞
φxx[m]e−jΩm = Φxx(ejΩ) = Pxx(Ω) (16.197)

which is the true value of the PSD, Hence the periodogram is asymptotically unbiased.
The Bartlet window, which truncates the autocorrelation sequence, tends to 1 as N −→∞
leading to no truncation in the limit and hence to the periodogram mean tending to the
true PSD.

Windows other than the rectangular and triangular ones may be used in evaluating mod-
ified periodograms. It can be shown that the variance of the resulting periodogram is given
for large values of N by [49].

var[IN (Ω)] = RwP
2
xx(Ω) (16.198)

where Rw is a constant that depends on the window w[n] used. The variance tends to the
square of the true PSD rather than the PSD itself Pxx(Ω). As the record length N increases
the periodogram displays higher peaks and more rapid fluctuations. It produces in general
spectral estimates that are not consistent for different data sequences from the same random
process.

Several approaches have been proposed in the literature to provide better estimates of
the PSD. In truncating sequences, different windows were applied in an effort to reduce
spectral leakage or improve the frequency resolution. A given long data record is divided into
nonoverlapping or overlapping segments and the resulting estimates of the power spectral
density are averaged over the segments. The averaged periodograms produce in general
the same mean value for the different segments while the resulting variance is reduced in
proportion to the number of averaged identically distributed segments. For details regarding
such approaches to power spectrum estimation the reader is referred to many excellent text
books on the subject [39] [55], [59].

16.11 Fast Fourier Transform (FFT) Evaluation of the Periodogram

The periodogram of an N -point random sequence x[n] may be evaluated by sampling the
the z-plane unit circle uniformly into N points. We may write the result in the form

Pxx[k] ≡ Pxx(2πk/N) =
1

N

∣∣∣∣∣

N−1∑

n=0

x[n]e−j2πkn/N

∣∣∣∣∣

2

=
1

N
|X [k]|2 , k = 0, 1, . . . , N − 1

and evaluate the discrete Fourier transform (DFT) X [k] using the FFT.
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Interpolation may be performed if finer sampling of the unit circle is desired. If we are
given only N samples of x[n] and we need to interpolate between the N samples X [k] of
the DFT we should introduce zero padding, thus increasing the length of the data sequence
from N points to say L points. We then evaluate the DFT of the resulting L-point sequence
x′[n] by sampling the unit circle uniformly into L points. We thus obtain the samples of the
spectrum

Pxx(2πk/L) =
1

N

∣∣∣∣∣

L−1∑

n=0

x′[n]e−j2πkn/L

∣∣∣∣∣

2

=
1

N

∣∣∣∣∣

N−1∑

n=0

x[n]e−j2πkn/L

∣∣∣∣∣

2

, k = 0, 1, . . . , L− 1 .

It is important to note that interpolation by zero padding allows us to evaluate the
same spectrum of the N point sequence x[n] on the unit circle, but with added in-between
frequency samples. Zero padding does not, however, add information regarding the sequence
x[n] which itself remains the same N -point sequence. The smaller the sampling interval
2π/N on the unit circle the higher the frequency resolution. To obtain a higher frequency
resolution we would need a higher value of N , the number of points of the sequence x[n].
The following example illustrates these properties of spectrum sampling and interpolation.

Example 16.9 Given the sequence

x[n] = {sin(0.0969πn+ π/3) + sin(0.2031πn− π/5)}w[n]

where w[n] is the rectangular window w[n] = RN [n] and N = 64.

a) Evaluate the periodogram of x[n]. Apply zero padding, evaluating the periodogram with
a number of points L = 2N and 16N .

b) Repeat for the case

x[n] = {sin(0.0969πn+ π/3) + sin(0.1219πn− π/5)}RN [n].

Observe the failure of the periodogram to reveal the second sinusoid spectral peak, even with
the application of zero padding.

c) By doubling the record length of the sequence x[n] defined in part b) so that now
w[n] = RN [n] with N = 128, verify that the periodogram reveals the second sinusoid spectral
peak.
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Periodogram, case a)

FIGURE 16.5 Periodogram of the sequence x[n].
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a) The periodogram is shown in Fig. 16.5. Two spectral peaks correspond to the two sinu-
soidal components. The results of interpolation by zero padding with L = 2N and L = 16N ,
respectively, are seen in Fig. 16.6(a-b). The resulting spectrum tends toward a continuous
curve.

b) The periodogram is shown in Fig. 16.7 for the two cases L = N and with the zero
padding case L = 16N , respectively.

This time with or without zero padding the periodogram resolution fails to distinguish be-
tween the two sinusoids.

c) Doubling the record length N increases the frequency resolution. The periodogram re-
veals the presence of the two sinusoids as two clear spectral peaks, as seen in Fig. 16.8.
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FIGURE 16.6 Periodogram with zero padding of (a) L = 2N and (b) L = 16N .
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FIGURE 16.7 Periodogram of the sequence x[n] of part (b) with L = N and L = 16N ,
respectively.
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FIGURE 16.8 Periodogram of the sequence x[n] of part (c) with the number of points N
doubled.

16.12 Parametric Methods for PSD Estimation

In parametric methods for PSD estimation the stationary random signal x[n] is modeled
as the output of a linear system driven by white noise w[n] as input. By estimating the
parameters of the system transfer function H(z), the PSD of its output x[n] is readily
deduced. Representation of a stationary random process as the response of a causal IIR
filter to white noise input is known as Wold representation.

As stated earlier the autocorrelation of a white noise process w[n] is

φww[m] = σ2
wδ[m] (16.199)

and its PSD is
Pww(Ω) = Φww(ejΩ) = σ2

w. (16.200)

The PSD of the infinite impulse response (IIR) filter output x[n] is therefore

Pxx(Ω) = Φxx(ejΩ) = Φww(ejΩ)
∣∣H(ejΩ)

∣∣2 = σ2
w

∣∣H(ejΩ)
∣∣2 . (16.201)

More generally, in the z-domain, the PSD is given by

Φxx(z) = Φww(z)H(z)H(z−1) = σ2
wH(z)H(z−1) , r1 < |z| < r2. (16.202)

Referring to Fig. 16.9(a) we assume that the system is causal, stable and minimum phase
and that its system function H(z) is rational given by

H(z) =
X(z)

W (z)
=

q∑
k=0

bkz
−k

1 +
p∑

k=1

akz−k

=
B(z)

A(z)
, |z| > r1. (16.203)

The PSD of x[n] is therefore also a rational function.
The system inverse, of transfer function 1/H(z), Fig. 16.9(b), is thus also a causal, stable

and minimum phase filter and if it receives the stationary random process x[n] as input
would produce white noise w[n] as output. This filter is referred to as a whitening filter
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w n[ ]
H( )z

x n[ ] x n[ ]
1/H( )z

w n[ ]

(a) (b)

FIGURE 16.9 Parametric modeling: (a) system with white noise as input, (b) inverse
system.

and its output w[n] as the innovation process associated with the random process x[n]. The
corresponding linear difference equation is

x[n] = −
p∑

k=1

akx[n− k] +
q∑

k=0

bkw[n− k]. (16.204)

This is the general polo-zero model referred to as the autoregressive moving average (ARMA)
model for generating an ARMA process. In the special case where b0 = 1 and bk = 0, k > 0,
the model is an autoregressive (AR) all-pole filter generating an AR process with the dif-
ference equation rewritten as

x[n] = −
p∑

k=1

akx[n− k] + w[n] (16.205)

If instead ak = 0, k > 0 the model is a moving average (MA) filter generating and MA
process, with the difference equation given by

x[n] =

q∑

k=0

bkw[n− k]. (16.206)

16.13 The Yule–Walker Equations

We may obtain the relation between the autocorrelation sequence φxx[m] and the system
transfer function parameters ak and bk in the case of ARMA model by multiplying both
sides of the difference equation by x∗[n−m] and evaluating their expectations. We have

E[x[n]x∗[n−m]] = −
p∑

k=1

akE[x[n− k]x∗[n−m]] +

q∑

k=0

bkE[w[n− k]x∗[n−m]] (16.207)

i.e.

φxx[m] = −
p∑

k=1

akφxx[m− k] +
q∑

k=0

bkφwx[m− k]. (16.208)

In this equation the cross-correlation φwx[.] is by definition

φwx[m] = E[w[n+m]x∗[n]] = E[w[n +m]

∞∑

k=0

h[k]w∗[n− k]]

=

∞∑

k=0

h[k]E[w[n+m]w∗[n− k]] =

∞∑

k=0

h[k]σ2
wδ[k +m] = h[−m]σ2

w (16.209)
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ans since the system is causal

φwx[m] =

{
σ2

wh[−m], m ≤ 0

0, m > 0
. (16.210)

Now the last term in the difference equation of φxx[m] is the sum

S =

q∑

k=0

bkφwx[m− k] (16.211)

and if m = 0 we have

S = b0σ
2
wh[0] + b1σ

2
wh[1] + · · ·+ bqσ

2
wh[q] (16.212)

and more generally if m = r then

S = brσ
2
wh[0] + br+1σ

2
wh[1] + · · ·+ bqσ

2
wh[q − r] (16.213)

wherefrom

S = σ2
w

q−m∑

k=0

bk+mh[k], 0 ≤ m ≤ q (16.214)

and

S = 0 ifm > q. (16.215)

The autocorrelation equation therefore takes the form

φxx[m] =





−
p∑

k=1

akφxx[m− k] + σ2
w

q−m∑
k=0

bk+mh[k], 0 ≤ m ≤ q

−
p∑

k=1

akφxx[m− k], m > q
(16.216)

and for negative values of m we have the symmetry property

φxx[m] = φ∗zx[−m]. (16.217)

Note that the autocorrelation equation is a nonlinear relation between the autocorrelation
φxx[m] and the parameters ak.

If instead of the ARMA model an AR model is used then q = 0 and b0 = 1. The equation
simplifies to

φxx[m] =






−
p∑

k=1

akφxx[m− k] + σ2
w , m = 0

−
p∑

k=1

akφxx[m− k], m > 0
(16.218)

i.e.
p∑

k=0

akφ
∗
xx[k] = σ2

w (16.219)

p∑

k=0

akφxx[m− k] = 0, m = 1, 2, . . . , p (16.220)
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This linear relationship is known as the Yule–Walker equations. It can be put in the
matrix form




φxx[0] φxx[−1] φxx[−2] . . . φxx[−p]
φxx[1] φxx[0] φxx[−1] . . . φxx[−p+ 1]

...
...

...
. . .

...
φxx[p] φxx[p− 1] φxx[p− 2] . . . φxx[0]







1
a1

...
ap


 =




σ2
w

0
...
0


 . (16.221)

The matrix of correlations is Toeplitz, a property that can be used to efficiently evaluate
its inverse as effected by the Levinson–Durbin algorithm. [53].

The equations simplify, moreover, if the process is an MA one, generated using an MA
model. In this all-zero case the model coefficients are ak = 0 for 1 ≤ k ≤ p so that

H(z) =

q∑

k=0

bkz
−k (16.222)

h[n] =

q∑

k=0

bkδ[n− k] (16.223)

h[k] = bk , 0 ≤ k ≤ q (16.224)

and

φxx[m] =




σ2

w

q∑
k=0

bkbk+m, o ≤ m ≤ q

0, m > q
. (16.225)

16.14 System Modeling for Linear Prediction, Adaptive Filtering
and Spectrum Estimation

System modeling, or the identification of a system’s mathematical model, is an impor-
tant signal processing problem encountered in many applications such as adaptive filtering,
adaptive noise cancellation, linear prediction and parametric power spectrum estimation.
By adjusting its coefficients in real time, a filter can adapt its response to random variations
or nonstationarity accompanying its input signal. In this section we study in particular two
main problems of system modeling, namely, the Wiener filtering problem and the least-
squares estimation problem. Forward and backward linear prediction filter structures are
obtained as applications of these models.

16.15 Wiener and Least-Squares Models

The need often arises to filter a stationary random signal x[n] using a causal finite impulse
response (FIR) filter in such a way that the resulting signal approximates a given desired
sequence d[n]. As shown in Fig. 16.10, the sequence x[n] is applied as the input to the
finite impulse response (FIR) filter. The filter impulse response h[n] is p-points long. Its
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coefficients are hk = h[k], k = 0, 1, . . . , p. The filter output, denoted d̂[n], is given by

d̂[n] =

p∑

k=0

hkx[n− k] (16.226)

The system receives as a second input the desired sequence d[n] and compares it with the

FIR filter output. The difference d[n]− d̂[n] is the filter estimation error e[n]. We may write

e[n] = d[n]− d̂[n] = d[n]−
p∑

k=0

hkx[n− k] (16.227)

which may be put in the matrix form

e[n] = d[n]−
[
h0 h1 . . . hp

]




x[n]
x[n− 1]

...
x[n− p]


 = d[n]− hTx (16.228)

where h and x are column vectors the elements of which are {hk} and {x[n− k]} ,k =
0, 1, . . . , p, respectively.

x n[ ]

d n[ ]

z-1 z-1 z-1 z-1

h0 h1 hp-1

hp

d n[ ]

-1

e n[ ]

FIGURE 16.10 System modeling by Wiener filtering.

16.16 Wiener Filtering

The objective in the Wiener filtering problem is to evaluate the impulse response vector h
that leads to minimization of the magnitude square |e[n]|2 of the error e[n]. Such minimiza-

tion may be carried out statistically by minimizing the mean-square error E
[
|e[n]|2

]
, or by

using time averages to minimize the sum-square error
∑
n
|e[n]|2. These two approaches are

referred to as the Wiener filtering problem and the least-squares filtering problem, respec-
tively.

Consider the Wiener filtering approach of minimizing the mean-square error E
[
|e[n]|2

]
.
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We may write in matrix form

|e[n]|2 =
{
d∗[n]− hT∗x∗

}{
d[n]− hTx

}
(16.229)

= d∗[n]d[n]− d∗[n]hTx− d[n]hT∗x∗ − hT∗x∗hTx

or in direct form

|e[n]|2 =

{
d∗[n]−

p∑

k=0

h∗kx
∗[n− k]

}{
d[n]−

p∑

m=0

hmx[n−m]

}
(16.230)

= d∗[n]d[n]−
p∑

m=0

hmd
∗[n]x[n−m]−

p∑

k=0

h∗kd[n]x∗[n− k]

+

p∑

k=0

p∑

m=0

h∗khmx
∗[n− k]x[n−m].

Now hTx = xTh so that

d∗[n]hTx =
[
d∗[n]x[n] d∗[n]x[n− 1] . . . d∗[n]x[n− p]

]




h0

h1

...
hp


 (16.231)

and since by definition
E[d[n]x∗[n−m]] = φdx[m] (16.232)

we have

E[d∗[n]hTx] =
[
φ∗dx[0] φ∗dx[1] . . . φ∗dx[p]

]




h0

h1

...
hp


=△φ

∗T
dxh. (16.233)

Similarly, hT∗x∗ = xT∗h∗ and

E[d[n]hT∗x∗] =
[
φdx[0] φdx[1] . . . φdx[p]

]




h∗0
h∗1
...
h∗p


=△φ

T
dxh
∗. (16.234)

Moreover hT∗x∗hTx = hT∗x∗xTh
i.e.

hT∗x∗hTx =
[
h∗0 . . . h

∗
p

]




x∗[n]x[n] . . . x∗[n]x[n− p]
x∗[n− 1]x[n] . . . x∗[n− 1]x[n− p]

...
. . .

...
x∗[n− p]x[n] . . . x∗[n− p]x[n− p]







h0

h1

...
hp


 (16.235)

and

E[hT∗x∗hTx] =
[
h∗0 . . . h

∗
p

]




φxx[0] φ∗xx[1] . . . φ∗xx[p]
φxx[1] φxx[0] . . . φ∗xx[p− 1]

...
...

. . .
...

φxx[p] φxx[p− 1] . . . φxx[0]







h0

h1

...
hp




= h∗TφT
xxh (16.236)
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where φxx is the matrix

Φxx = {φxx,ij} = {E[x[n− i]x∗[n− j]]} (16.237)

φxx =




φxx[0] φxx[1] . . . φxx[p]
φ∗xx[1] φxx[0] . . . φxx[p− 1]

...
...

. . .
...

φ∗xx[p] φ∗xx[p− 1] . . . φxx[0]


 . (16.238)

We may therefore write the mean-square value of the error in the form

Ep=△E
[
|e[n]|2

]
= φdd[0]− φ∗Tdxh− φT

dxh
∗ + h∗TφT

xxh (16.239)

where φdd[0] = E[d∗[n]d[n]]. We may also write the same equation in direct form

Ep = φdd[0] +

p∑

k=0

{hkφdx[k] + h∗kφ
∗
dx[k]}+

p∑

k=0

p∑

m=0

h∗khmφ
∗
xx[m− k]. (16.240)

The optimal value of the impulse response h is obtained by equating the derivative of Ep

with respect to h∗ to zero. We have

∂Ep

dh∗
= 0− φdx + φT

xxh = 0 (16.241)

φT
xxh = φdx. (16.242)

This is known as the Wiener–Hopf equation of which the solution is the optimal value of h,
the impulse response of the Wiener filter

h =
{
φT

xx

}−1
φdx. (16.243)

The corresponding value of the mean-squared error is given by

Ep min = φdd[0]− φ∗Tdxh (16.244)

as can be seen by noting that in the expression of Ep we have

−φT
dxh
∗ + h∗TφT

xxh = − h∗Tφdx + h∗TφT
xxh = h∗T {φdx − φdx} = 0 (16.245)

We have therefore found that

Emin = φdd[0]−
[
φ∗dx[0] φ∗dx[1] . . . φ∗dx[p]

]




h0

h1

...
hp


 (16.246)

= φdd[0]−
p∑

k=0

φ∗dx[k]hk

where h = {hk} is the optimal impulse response.
We also note that the Wiener–Hopf equation, of which the solution is the optimal vector

h, namely,
φdx = φT

xxh (16.247)
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can be written in the form

φdx[m] =

p∑

k=0

hkφxx[m− k] . (16.248)

The orthogonality principle may be used to directly obtain this relation. In particular, since
the error sequence is given by

e[n] = d[n]−
p∑

k=0

hkx[n− k] (16.249)

the orthogonality principle states that the minimum mean-square error is achieved if the
error is made orthogonal to each of the elements of the sequence. This implies that

E[e[n]x∗[n−m]] = 0 , m = 0, 1, . . . , p (16.250)

i.e.

φdx[m] = E[d[n]x∗[n−m]−
p∑

k=0

hkx[n− k]x∗[n−m]] = 0 (16.251)

or

φdx[m] =

p∑

k=0

hkφxx[m− k] (16.252)

as found above.

16.17 Least-Squares Filtering

In the least-squares approach the optimal filter is found by minimizing the sum of the
squares of the error sequence, i.e. minimizing

∑
n
|e[n]|2, in contrast with the Wiener filter

minimization of the mean square error E
[
|e[n]|2

]
. Least-squares filtering is in fact the prac-

tical approach where statistical expectations are replaced by deterministic time averages.
The same analysis and results obtained in the Wiener filtering problem apply in the least-
squares problem where now the correlations are replaced by their time-average approxima-
tions. In particular, the correlations φdd[0], φdx[m] and φxx[m] in the Wiener–Hopf equations
and Wiener filter solution are replaced respectively by

∑
n
d∗[n]d[n],

∑
n
d∗[n]x[n −m] and

∑
n
x∗[n]x[n−m].

16.18 Forward Linear Prediction

“Forward linear prediction” is better seen as “forward linear approximation.” It is an im-
portant problem, closely related to the Wiener and least-squares filtering problems. The
one-step forward prediction problem is modeled in Fig. 16.11. As the figure shows an FIR
filter of coefficients {ak} disposes of the last p samples x[n− 1], x[n− 2], . . . , x[n− p] of the



Random Signal Processing 1139

input sequence. Its coefficients {ak} should be adjusted so that the filter’s output, that is,
the weighted sum of the p samples approximate the value of the following sample x[n]. As
is the convention in the literature the filter’s weighed sum is denoted with a negative sign
so that the filter output is −x̂[n]. As seen in the figure the approximation error is denoted
fp[n], that is,

x̂[n] = −
p∑

k=1

akx[n− k] (16.253)

fp[n] = x[n]− x̂[n] = x[n] +

p∑

k=1

akx[n− k] (16.254)

fp[n] =

p∑

k=0

akx[n− k] , a0 = 1 (16.255)

|fp[n]|2 = f∗p [n]fp[n] =

{
x∗[n] +

p∑

k=1

a∗kx
∗[n− k]

}{
x[n] +

p∑

m=1

amx[n−m]

}

= x∗[n]x[n] +

p∑

k=1

{akx
∗[n]x[n− k] + a∗kx[n]x∗[n− k]}

+

p∑

k=1

p∑

m=1

a∗kamx
∗[n− k]x[n−m] (16.256)

Ef
p = E

[
|fp[n]|2

]
= φxx[0] +

p∑

k=1

{akφ
∗
xx[k] + a∗kφxx[k]}+

p∑

k=1

p∑

m=1

a∗kamφ
∗
xx[m− k].

Similarly to Wiener filtering we have

∂Ef
p

∂a∗r
= 0 = φxx[r] +

p∑

m=1

amφ
∗
xx[m− r], r = 1, . . . , p (16.257)

i.e. with r replaced by m and m by k

φxx[m] = −
p∑

k=1

akφ
∗
xx[k −m] = −

p∑

k=1

akφxx[m− k] (16.258)

x n[ ] z-1 z-1 z-1 z-1

a1 ap-1

ap

- [ ]x n

f np[ ]

a2

z-1

FIGURE 16.11 System modeling by forward prediction.
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Note m = 1, 2, . . . , p.

The minimum error is given by

Ef
min = φxx[0] +

p∑

k=1

{akφ
∗
xx[k] + a∗kφxx[k]} −

p∑

m=1

amφ
∗
xx[m] = φxx[0] +

p∑

k=1

akφ
∗
xx[k].

We may write, with a0 = 1

p∑

k=0

akφxx[m− k] = 0 , m = 1, 2, . . . , p. (16.259)

These are called the normal equations for the coefficients of the forward linear predictor.

Ef
min =

p∑

k=0

akφ
∗
xx[k] (16.260)

and from Equation (16.221)

Ef
min = σ2

w. (16.261)

In matrix form 


φxx[1] φxx[0] . . . φxx[1− p]
φxx[2] φxx[1] . . . φxx[2− p]

...
...

. . .
...

φxx[p] φxx[p− 1] . . . φxx[0]







1
a1

...
ap


 = 0. (16.262)

Incorporating into this equation the minimum error equation we may write




φxx[0] φ∗xx[1] . . . φ∗xx[p]
φxx[1] φxx[0] . . . φ∗xx[p− 1]
φxx[2] φxx[1] . . . φ∗xx[p− 2]

...
...

. . .
...

φxx[p] φxx[p− 1] . . . φxx[0]







1
a1

a2

...
ap




=




Ef
min

0
0
...
0




(16.263)

which are referred to as the augmented normal equations. As with Wiener filtering statistical
correlations are replaced in practice by the corresponding time average approximations.
The Toeplitz property of the matrix of correlations is used to efficiently solve the normal
equations by the Levinson–Derbin and the Schur algorithm [39].

16.19 Backward Linear Prediction

Backward Linear Prediction is depicted in Fig. 16.12. We note that in backward prediction
the FIR filter has coefficients {bk}, k = 0, 1, . . . , p− 1. It evaluates the weighted sum of the
sequence values x[n], x[n− 1], . . . , x[n− p+ 1], producing the estimate

−x̂[n− p] =

p−1∑

k=0

bkx[n− k] (16.264)
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so that x̂[n− p] should approximate the value x[n− p]. The estimation error is

gp[n] = x[n− p] +

p−1∑

k=0

bkx[n− k]. (16.265)

x n[ ] z-1 z-1 z-1 z-1

b0 b1

bp-1

g np[ ]

- [ - ]x n p

z-1

(c)

bp-2

FIGURE 16.12 System modeling by backward prediction.

Similarly to the above we write

|gp[n]|2 =

{
x∗[n− p] +

p−1∑

k=0

b∗kx
∗[n− k]

}{
x[n− p] +

p−1∑

m=0

bmx[n−m]

}

= x∗[n− p]x[n− p] +
p−1∑

m=0

bmx
∗[n− p]x[n−m]

+

p−1∑

k=0

b∗kx[n− p]x∗[n− k] +
p−1∑

k=0

p−1∑

m=0

b∗kbmx
∗[n− k]x[n−m]. (16.266)

Eg
p=△E

[
|gp[n]|2

]
= φxx[0] +

p−1∑

m=0

bm = φ∗xx[m− p] +
p−1∑

k=0

b∗kφxx[k − p]

+

p−1∑

k=0

p−1∑

m=0

b∗kbmφxx[k −m] (16.267)

∂Eg
p

∂b∗r
= φxx[r − p] +

p−1∑

m=0

bmφxx[r −m]φxx[m− p] +

p−1∑

k=0

bkφxx[m− k] = 0 (16.268)

i.e. with bp = 1
p∑

k=0

bkφxx[m− k] = 0, m = 0, 1, . . . , p− 1. (16.269)

Consider the 4th term of E
g

p . We may write

t4 =

p−1∑

k=0

b∗k

p−1∑

m=0

bmφxx[k −m] (16.270)



1142 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

∑p−1
k=0 bkφxx[r − k] = −φxx[r − p], ∑p−1

m=0 bmφxx[r −m] = −φxx[r − p]

t4 = −
p−1∑

k=0

b∗kφxx[k − p] (16.271)

which cancels the 3rd term. Hence

Eg
min = φxx[0] +

p−1∑

m=0

bmφ
∗
xx[m− p] =

p∑

m=0

bmφ
∗
xx[m− p] =

p∑

m=0

bmφxx[p−m].

We may therefore write in matrix form




φxx[0] φ∗xx[1] . . . φ∗xx[p]
φxx[1] φxx[0] . . . φ∗xx[p− 1]

...
...

. . .
...

φxx[p− 1] φxx[p− 2] . . . φ∗xx[1]
φxx[p] φxx[p− 1] . . . φxx[0]







b0
b1
...

bp−1

1




=




0
0
...
0

Eg
min



. (16.272)

From the above we may write

p∑

k=0

akφ
∗
xx[k −m− 1] = 0, m = 1, 2, . . . , p (16.273)

p∑

k=0

akφ
∗
xx[k] = Ef

min (16.274)

p∑

k=0

bkφxx[p− k −m− 1] = 0 (16.275)

p∑

k=0

bkφxx[p− k] = Eg
min. (16.276)

Letting k = p− r we have

p∑

r=0

ap−rφ
∗
xx[p− r −m− 1] = 0 (16.277)

p∑

r=0

a∗p−rφxx[p− r −m− 1] = 0. (16.278)

Hence

bk = a∗p−k, k = 0, 1, . . . , p (16.279)

Moreover

Ef
min =

p∑

k=0

akφ
∗
xx[k] =

p∑

k=0

b∗p−kφ
∗
xx[k] =

p∑

m=0

b∗mφ
∗
xx[p−m] = Eg

min. (16.280)
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16.20 Lattice MA FIR Filter Realization

As we have seen in Chapter 11 an all-zero (MA) FIR filter can be implemented as a lattice-
type structure. The result of converting a direct form FIR filter of order p into a lattice
filter is shown in Fig. 16.13.

x n[ ]

k1

k1

k2 kp

k2 kp

z-1z-1

f n0[ ] f n1[ ] f n2[ ] f np[ ]

g n0[ ] g n1[ ] g n2[ ] g np[ ]

FIGURE 16.13 MA model lattice filter realizations.

The reflection coefficients km and k∗m are deduced from the direct form FIR filter coeffi-
cients ak, which are in fact the samples of the filter impulse response.

At each of the successive p stages of the lattice filter the recursive equations are

fm[n] = fm−1[n] + kmgn−1[n− 1] (16.281)

gm[n] = k∗mfm−1[n] + gm−1[n− 1] (16.282)

where m = 1, 2, . . . , p,. The initial conditions are

f0[n] = g0[n] = x[n] (16.283)

and fm[n] and gm[n] are the forward and backward linear prediction errors at the mth stage
of the lattice. To show that this is a proper conversion to the lattice form and to write the
resulting z-domain input–output relations we note that since

fp[n] =

p∑

k=0

akn[n− k] (16.284)

we have

Fp(z) =

p∑

k=0

akz
−kX(z) = Ap(z)X(z) (16.285)

where

Ap(z) =

p∑

k=0

akz
−k =

(
1 + a1z

−1 + · · ·+ apz
−p
)

(16.286)

i.e.

Ap(z) =
Fp(z)

X(z)
=
Fp(z)

F0(z)
(16.287)
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This is the filter transfer function from its input to the output fp[n] of the pth stage.
Moreover, we may write

gp[n] =

p∑

k=0

bkn[n− k] (16.288)

Gp(z) =

p∑

k=0

bkz
−kX(z) = Bp(z)X(z) (16.289)

Bp(z) =

p∑

k=0

bkz
−k =

{
b0 + b1z

−1 + · · ·+ bp−1z
−(p−1) + z−p

}
(16.290)

and since,bk = a∗p−k, k = 0, 1, . . . , p, we have

Bp(z) =

p∑

k=0

a∗p−kz
−k =

p∑

r=0

a∗rz
−p+r = z−p

p∑

r=0

a∗rz
r = z−pA∗p(1/z

∗). (16.291)

This is the same relation we encountered in the all-zero lattice filter in Chapter 11. The
only difference is that here the coefficients and the input sequence are generally complex.
We note that, as expected, if z = z0 is a zero of the polynomial Bp(z) i.e. Bp(z0) = 0 then
z = 1/z∗0 is a zero of A(z) since Bp(z0) = z−p

0 A∗0(1/z
∗
0) = 0. The polynomial Bp(z) is there-

fore the reciprocal polynomial of Ap(z) as defined in Chapter 11. Note that the polynomial

Bp(z) was labeled Ãp(z) in Chapter 11, wherein we found that Ãs(z) = z−sAs(z
−1). Note,

moreover, that if Ap(z) is minimum phase then Bp(z) is maximum phase, i.e. its poles and
zeros are outside the unit circle.

Proceeding similarly to Chapter 11, we may write the recursive relations

Fm(z) = Fm−1(z) + kmz
−1Gm−1(z) (16.292)

Gm(z) = k∗mFm−1(z) + z−1Gm−1(z) (16.293)

wherefrom

Am(z) = Am−1(z) + kmz
−1Bm−1(z) (16.294)

Bm(z) = k∗mAm−1(z) + z−1Bm−1(z) (16.295)

or, in matrix form, where m = 1, 2, . . . , p,

[
Am(z)
Bm(z)

]
=

[
1 kmz

−1

k∗m z−1

] [
Am−1(z)
Bm−1(z)

]
(16.296)

Note that the coefficients ak in the polynomial

Ap(z) =

p∑

k=0

akz
−k (16.297)

are a short-hand notation for a
(p)
k , the symbol used in Chapter 11. Similarly the coefficients

bk in Bp(z) =
p∑

k=0

bkz
−k are short-hand notation for b

(p)
k . In writing the coefficients of the

polynomial Am(z) and Bm(z), to indicate that the coefficients relate to a lattice filter of m
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stages we will use the long notations a
(m)
k and b

(m)
k , i.e.

Am(z) =

m∑

k=0

a
(m)
k z−k (16.298)

Bm(z) =
m∑

k=0

b
(m)
k z−k =

m∑

k=0

a
(m)∗
m−kz

−k (16.299)

We may therefore write

m∑

k=0

a
(m)
k z−k =

m−1∑

k=0

a
(m−1)
k z−k + kmz

−1
m−1∑

k=0

a
(m−1)∗
m−1−kz

−k. (16.300)

Equating the coefficients of the same powers of z−1 in both sides of this equation we have

a
(m)
k = a

(m−1)
k + kma

(m−1)∗
m (16.301)

a(m)
m = km.

We may also write

Am−1(z) = Am(z)− km {Bm(z)− k∗mAm−1(z)} (16.302)

wherefrom
Am−1(z) = {Am(z)− kmBm(z)} /

{
1− |km|2

}
(16.303)

i.e.
a(m)

m = km (16.304)

and

a
(m−1)
k =

a
(m)
k − kmb

(m)
k

1− |km|2
=
a
(m)
k − kma

(m)∗
m−k

1− |km|2
(16.305)

which is the step-down recursion as found in Chapter 11. The {ak} and {bk} coefficients
can thus be recursively evaluated from the reflection coefficients and vice versa.

The mean-square error E
[
|fm[n]|2

]
may be directly minimized relative to the lattice filter

reflection coefficients km. We have

fm[n] = fm−1[n] + kmgm−1[n− 1] (16.306)

|fm[n]|2 = fm−1[n]f∗m−1[n] + k∗mfm−1[n]g∗m−1[n− 1] (16.307)

+kmgm−1[n− 1]f∗m−1[n] + kmk
∗
mgm−1[n− 1]g∗m−1[n− 1]

∂E
[
|fm[n]|2

]

∂k∗m
= E[fm−1[n]g∗[n− 1] + kmgm−1[n− 1]g∗m−1[n− 1]] (16.308)

km =
−E[fm−1[n]g∗m−1[n− 1]]

E
[
|gm−1[n− 1]|2

] (16.309)

and we note that E
[
|gm−1[n− 1]|2

]
is the minimum prediction errorEg

m−1,min = Ef
m−1,min.
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16.21 AR Lattice of Order p

An AR(p) autoregressive stationary random process of order p may be produced by applying
white noise of variance σ2

w say, to an all-pole IIR filter of transfer function

H(z) =
1

1 +
p∑

k=1

akz−k

. (16.310)

As we have seen in Chapter 11 the all-pole lattice structure is the same as the all-zero
structure but with the roles of input and output reversed.

x n f n[ ]  = [ ]p f n y n0[ ] = [ ]

g n0[ ]

z-1

-kp -k2 -k1

kp k2 k1

z-1

g np[ ]

f np-1[ ] f n1[ ]

g n2[ ] g n1[ ]

FIGURE 16.14 AR model lattice filter realizations.

The lattice structure is shown in Fig. 16.14. We note that the filter input is

x[n] = fp[n] (16.311)

and its output is
y[n] = f0[n] = g0[n]. (16.312)

The recursive relations are

fm−1[n] = fm[n]− kmgm−1[n− 1] (16.313)

gm[n] = gm−1[n− 1] + k∗mfm−1[n] (16.314)

as we have seen in Chapter 11.

16.22 ARMA(p, q) Process

Similarly, for an ARMA(p, q) process the transfer function is

H(z) =

q∑
k=0

bkz
−k

1 +
p∑

k=1

akz−k

=
Bq(z)

Ap(z)
, (16.315)

where we assume that p ≥ q. Receiving, as input, white noise this pole-zero IIR filter
generates an ARMA(p, q) process. The lattice structure is shown in Fig. 16.15, based on



Random Signal Processing 1147

the conversion to lattice form development seen in Chapter 11. If the input white noise is
of variance σ2

w, the ARMA(p, q) process has a power spectral density

Φxx(ejΩ) = σ2
w

∣∣Bq(e
jΩ)
∣∣2

|Ap(ejΩ)|2
. (16.316)

cp c2 c1 c0

y n[ ]

x n f n[ ]  = [ ]p f n y n0[ ] = [ ]

g n0[ ]

z-1

-kp -k2 -k1

kp k2 k1

z-1

g np[ ]

f np-1[ ] f n1[ ]

g n2[ ] g n1[ ]

FIGURE 16.15 ARMA model lattice filter realizations.

16.23 Power Spectrum Estimation

IIR
Filter

white
noise

w n[ ]

AR( )p

x n[ ]

FIGURE 16.16 AR process as IIR filter response to white noise.

Referring to Fig. 16.16 and Fig. 16.17, an AR(p) stationary random process x[n] is gen-
erated by feeding an all-pole IIR filter with a white noise sequence x[n]. We have

x[n] +

p∑

k=1

akx[n− k] = w[n] (16.317)

X(z) +

p∑

k=1

akz
−kX(z) = W (z) (16.318)

H(z) =
X(z)

W (z)
=

1

1 +
p∑

k=1

akz−k

. (16.319)
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w n[ ] x n[ ]

z-1

z-1

z-1

-a1

-a2

-ap

FIGURE 16.17 AR process model for power spectrum estimation.

The white noise is assumed to be of zero mean and of variance σ2
w. The power spectral

density of the AR(p) process may be estimated by writing

Px(Ω) = Φxx(ejΩ) = Φww(ejΩ)
∣∣H(ejΩ)

∣∣2 = σ2
w

∣∣H(ejΩ)
∣∣2

=
σ2

w∣∣∣∣1 +
p∑

k=1

ake−jΩk

∣∣∣∣
2 . (16.320)

This is an alternative to the periodogram, and related FFT-based approaches, which has
been gaining popularity in some applications calling for narrow-band frequency resolution of
limited duration signals. An AR rather than ARMA model is often used in such applications.

16.24 FIR Wiener Filtering of Noisy Signals

We presently focus our attention on the filtering and prediction of a desired signal s[n]
contaminated by added noise w[n]. We shall see that Wiener filter optimization and filter
optimization for prediction lead to practically equivalent results, as found above in the
absence of noise.

y n[ ]
Filter

d[ ]n

e n[ ]
+

-

s n[ ]

w[ ]n

x n[ ]

FIGURE 16.18 Wiener filtering and prediction.

The problem of filtering and prediction of a noise-contaminated signal is depicted in Fig.
16.18. As seen in the figure the filter receives as input the sequence

x[n] = s[n] + w[n]. (16.321)
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Its output y[n] is compared with the desired signal d[n]. In the case of (Wiener) filtering
the desired signal is the signal before contamination, i.e. d[n] = s[n] and the error is e[n] =
s[n]− y[n]. In the case of prediction, d[n] = s[n+K], K ≥ 1.

Assuming that the signal s[n] and noise w[n] are zero-mean stationary random processes
which are uncorrelated, the analysis is practically the same as seen above in the case of
absence of noise. Optimization of the filter parameters is obtained by minimizing the mean

square error E
[
|e[n]|2

]
and we presently consider the case of an FIR filter. Similarly to the

above we summarize the optimization steps. We have

e[n] = d[n]− y[n] (16.322)

where

y[n] =
M−1∑

k=0

h[k]x[n− k] (16.323)

{h[k]} being the M -point samples of the filter impulse response. Note that compared to the

above we have y[n] = −d̂[n] leading to a reversal of sign in the result and in matrix form

e[n] = d[n]− hTx. (16.324)

The mean-square error is

EM = E



∣∣∣∣∣d[n]−

M−1∑

k=0

h[k]x[n− k]
∣∣∣∣∣

2

 . (16.325)

Similarly to the above the mean square error EM is given by

EM = φdd[0]− φ∗Txxh− φT
dxh
∗ + h∗TφT

xxh (16.326)

∂EM

∂h∗
= φdx − φT

xxh = 0 (16.327)

φT
xxh = φdx (16.328)

h =
{
φT

xx

}−1
φdx (16.329)

and the corresponding value of the mean-square error is

EM min = φdd[0]− φ∗Tdxh = σ2
d − φdx. (16.330)

We note that in the case of filtering, with d[n] = s[n] and with s[n] and w[n] uncorrelated
we have

φxx = φss + φww (16.331)

φdx = φss (16.332)

while, in the case of prediction,

φdx[k] = φss[m+K], m = 0, 1, . . . , M − 1. (16.333)
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Example 16.10 A signal s[n] is an ARMA(p) process with p = 2 which is described by the
difference equation

s[n] = 1.2s[n− 1]− 0.35s[n− 2] + 3v[n]− 1.7v[n− 1] (16.334)

where v[n] is a white noise sequence with variance σ2
v = 0.49. Evaluate the power spectral

density of s[n]. Design a Wiener filter of length M = 4 to estimate the signal s[n] from a
received signal x[n] = s[n] + w[n] where w[n] is a white noise sequence of variance σ2

w = 1,
which is uncorrelated with s[n].

Filter

white
noise

v n[ ]

s n[ ]

FIGURE 16.19 FIR Wiener filter example.

Referring to Fig. 16.19, the signal s[n] is obtained by applying a white noise signal v[n]
to the input of a second order filter. The power spectral density of s[n] is

Pss(Ω) = Φss(e
jΩ) = σ2

v

∣∣H(ejΩ)
∣∣2 (16.335)

Now

H(z) =
S(z)

V (z)
=

3− 1.7z−1

1− 1.2z−1 + 0.35z−2
=

3− 1.7z−1

(1− 0.5z−1)(1 − 0.7z−1)
(16.336)

∣∣H(ejΩ)
∣∣2 =

11.89− 10.2 cosΩ

2.5625− 3.24 cosΩ + 0.7 cos 2Ω
(16.337)

The power spectral density of s[n] is

Pss(Ω) = Φss(e
jΩ) = σ2

v

∣∣H(ejΩ)
∣∣2 =

0.49(11.89− 10.2 cosΩ)

2.5625− 3.24 cosΩ + 0.7 cos 2Ω
(16.338)

Φss(z) = σ2
vH(z)H(z−1) (16.339)

=
5.8261− 2.499z−1 − 2.499z

2.5625 + 0.35z−2 − 1.62z−1 − 1.62z + 0.35z2

=
2.161

1− .05z−1
− 2.161

1− 2z−1
+

5.3508

1− 0.7z−1
− 5.3508

1− 1.428z−1

φss[m] = 2.161(0.5)|m| + 5.3508(0.7)|m|. (16.340)

The desired signal is d[n] = s[n] and since w[n] and s[n] are uncorrelated we have

φxx[k] = φss[k] + φww[k] (16.341)

φdx[k] = φss[k] (16.342)

φxx[0] = φss[0] + σ2
w = φss[0] + 1 (16.343)

φxx[k] = φss[k], k 6= 0 (16.344)
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φxxh = φss (16.345)



8.5118 4.82606 3.16214 2.10545
4.82606 8.5118 4.82606 3.16214
3.16214 4.82606 8.5118 4.82606
2.10545 3.16214 4.82606 8.5118







h[0]
h[1]
h[2]
h[3]


 =




7.5118
4.82606
3.16214
2.10545


 . (16.346)

Solving we obtain
h = {0.8259, 0.0913, 0.0114, 0.0027} . (16.347)

The minimum mean-square error is

Emin = φss[0]−
3∑

k=0

φss[k]hk (16.348)

= 7.5118− ( 7.5118× 0.8529 + 4.82606× 0.0913

+3.16214× 0.0114 + 2.10545× 0.0027)

= 0.8255.

16.25 Two-Sided IIR Wiener Filtering

We consider the case where the optimal Wiener filter has a two-sided impulse response h[n].
The filter is therefore not causal and hence not physically realizable. The analysis follows
the same steps, where now summations extend from −∞ to ∞. The filter output is

y[n] =
∞∑

k=−∞
h[k]x[n− k]. (16.349)

The Wiener–Hopf equation takes the form

∞∑

k=−∞
h[k]φxx[m− k] = φdx[m] , −∞ < m <∞. (16.350)

The left-hand side of this equation being a convolution we have in the z-domain

H(z)Φxx(z) = Φdx(z) (16.351)

H(z) = Φdx(z)/Φxx(z) (16.352)

The resulting minimum mean square error is

E = σ2
d −

∞∑

k=−∞
h[k]φ∗dx[k]. (16.353)

The minimum mean square error can also be written using Parseval’s relation in the form

E =
1

2πj

‰

C

{
Φdd(z)−H(z)Φdx(z−1)

}
z−1dz. (16.354)
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Example 16.11 Evaluate the two-sided IIR Wiener filter and the resulting minimum mean
square error for the case stated in Example 16.10.

We have

Φdx(z) = Φsx(z) = Φss(z) =
5.8261− 2.499z−1 − 2.499z

2.5625− 0.35z−2 − 1.62z−1 − 1.622z + 0.35z2

Φxx(z) = Φss(z) + 1 =
0.35− 4.119z−1 + 8.389z−2 − 4.119z−3 + 0.35z−4

0.35− 1.62z−1 + 2.563z−2 − 1.62z−3 + 0.35z−4

Hopt(z) =
Φdx(z)

Φxx(z)
=

Φss(z)

Φxx(z)
= 1− 1

Φxx(z)

Hopt(z) =
−2.499z−1 + 5.826z−2 − 2.499z−3

0.35− 4.119z−1 + 8.389z−2 − 4.119z−3 + 0.35z−4

Hopt(z) =
−0.7732

1− 9.3349z−1
− −0.0041

1− 1.7576z−1
+

0.0041

1− 0.569z−1
+

0.7732

1− 0.1071z−1

hopt[n] = 0.7732× 0.1071|n| + 0.041× 0.569|n|.

We note that Φdd(z) = Φss(z), Φdx(z) = Φsx(z) = Φss(z), since φsx[m] = φss[m], and
Φdx(z−1) = Φss(z

−1) = Φss(z) The resulting minimum mean square error is

E =
1

2πj

‰

C

{Φss(z)− Φss(z)Hopt(z)} z−1dz

E = Σ
[

residues of z−1Φss(z)[1−Hopt(z)]
]

= Σ

[
residues of z−1 Φss(z)

Φxx(z)

]
.

We may write

G(z) = z−1 Φss(z)

Φxx(z)
= −0.714

(z − 1.7647)(z − 0.5667)

(z − 9.3349)(z − 1.7576)(z − 0.569)(z − 0.1071)

E = Σ [ residues of G(z) at the poles z = 0.569 and z = 0.1071]

E = 0.07732 + 0.000408 = 0.07773.

16.26 Causal IIR Wiener Filter

We note that in the case of a causal IIR Wiener filter the Wiener–Hopf equation is valid
only for m ≥ 0. To solve this equation using the z-transform we need to pay attention to
the ROC of its transform. We rewrite the Wiener–Hopf equation in the form

f [m] =

∞∑

k=0

h[k]φxx[m− k]− φdx[m], m ≥ 0. (16.355)

Taking its z-transform we have

F (z) = Φdx(z)− Φxx(z)H(z). (16.356)
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We note that f [m] = 0, m ≥ 0, i.e. f [m] is left-sided and F (z) is analytic for |z| < 1 while
H(z) is analytic for |z| > 1. Factoring Φxx(z) we have

Φxx(z) = P+(z)P−(z) (16.357)

where P+(z) is minimum phase, having all its poles and zeros inside the unit circle, and
vice versa for P−(z). We have

F (z) = Φdx(z)− P+(z)P−(z)H(z) (16.358)

F (z)

P−(z)
=

Φdx(z)

P−(z)
− P+(z)H(z) (16.359)

Effecting a decomposition using partial faction expansion we may write

Φdx(z)

P−(z)
= Q+(z) +Q−(z) (16.360)

where Q+(z) is analytic for |z| > 1 and Q−(z) is analytic for |z| < 1. Alternatively we can
evaluate Q+(z) as the transform of the causal part q[n]u[n] of the inverse transform q[n] of
Φdx(z)/P−(z). We may write

F (z)

P−(z)
= Q+(z) +Q−(z)− P+(z)H(z) (16.361)

and for |z| > 1 we have
Q+(z)− P+(z)H(z) = 0 (16.362)

so that
H(z) = Q+(z)/P+(z), |z| > 1. (16.363)

Example 16.12 Referring to Example 16.10, design a causal Wiener filter by evaluating
its optimal transfer function and impulse response.

Φxx(z) = Φss(z) + Φww(z) (16.364)

φww[n] = σ2
wδ[n] (16.365)

Φxx(z) = Φss(z) + 1 (16.366)

Φxx(z) =
0.35− 4.119z−1 + 8.389z−2− 4.119z−3 + 0.35z−4

0.35− 1.62z−1 + 2.563z−2− 1.62z−3 + 0.35z−4
(16.367)

Φxx(z) = P+(z)P−(z) (16.368)

Φxx(z) =

(
1− 0.569z−1

) (
1− 0.1071z−1

) (
1− 9.3349z−1

) (
1− 1.7576z−1

)

(1− 0.5z−1) (1− 0.7z−1) (1− 2z−1) (1− 1.4286z−1)
(16.369)

P+(z) =

(
1− 0.1071z−1

) (
1− 0.569z−1

)

(1− 0.5z−1) (1− 0.7z−1)
=

1− 0.6761z−1 + 0.061z−2

1− 1.2z−1 + 0.35z−2
(16.370)

P−(z) =

(
1− 1.7576z−1

) (
1− 9.3349z−1

)

(1− 1.42862z−1) (1− 2z−1)
=

1− 11.09z−1 + 16.41z−2

1− 3.429z−1 + 2.857z−2
(16.371)
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R(z) =
Φdx(z)

P−(z)
=

Φss(z)

P−(z)
(16.372)

R(z) =
−2.499z−1 + 5.8261z−2 − 2.499z−3

0.35− 1.62z−1 + 2.5625z−2 − 1.62z−3 + 0.35z−4

×
(
1− 1.4282z−1

) (
1− 2z−1

)

(1− 1.7576z−1) (1− 9.3349z−1)

= Q+(z) +Q−(z) (16.373)

Q+(z) =
0.8259− 0.4671z−1

1− 1.2z−1 + 0.35z−2
(16.374)

H(z) =
Q+(z)

P+(z)
(16.375)

=
0.8259− 1.458z−1 + 0.8496z−2 − 0.1635z−3

1− 1.876z−1 + 1.222z−2 − 0.3098z−3 + 0.02133z−4

∼= 0.81987

1− 0.10712z−1
+

0.005988627

1− 0.568955z−1

h[n] = [0.81987(0.10712)n + 0.005989(0.56896)n]u[n] (16.376)

16.27 Wavelet Transform

The wavelet transform was introduced in the 1980s as a means of spectral analysis, over
relatively short time periods, of nonstationary signals. In contrast to Fourier and related
transforms such as Walsh–Hadamard where the signal is decomposed into the sum of infinite
duration sinusoidal or alternating square waves basis functions, the wavelet transform views
a short-duration of the signal and evaluates its product with a burst that is typically a fast
rising and decaying sinusoid or a few cycles of a square wave. The burst is referred to as
a wavelet and, beside being slid along the time axis, it may be stretched or compressed at
will, effectively selecting a suitable local frequency resolution, and altering it as desired.

In the continuous-time domain the wavelet transform of a function f(t) is given by

Fw(a, τ) =
1√
a

ˆ ∞

−∞
f(t)ψ∗

(
t− τ
a

)
dt. (16.377)

Alternatively, we may write

Fw(a, τ) =

ˆ ∞

−∞
f(t)ψ∗a,τ (t)dt (16.378)

where

ψa,τ (t) =
1√
a
ψ

(
t− τ
a

)
. (16.379)

The function ψ
(

t−τ
a

)
is a shift in time by τ seconds and dilation by a time scale factor a

of a wavelet ψ(t) that is a relatively short duration generally oscillating pulse. An example
is what is known as the Morlet wavelet given by

ψ(t) = e−t2 cos

(
π

√
2

ln 2
t

)
(16.380)
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a product of a Gaussian function and a pure sinusoid, seen in Fig. 16.20 a).

-3 -2 -1 1 2 3

1

y( )t

t

-3 -2 -1 1 2 3

0.6

t

y2,0( )t

(a)

(b)

FIGURE 16.20 (a) Morlet wavelet, (b) scaled form.

We note that
ψ1,0 = ψ(t) (16.381)

and that

ψa,0 =
1√
a
ψ

(
t

a

)
. (16.382)

The dilation of ψ(t) caused by setting a = 2 is shown as the function ψ2,0(t) in Fig. 16.20(b).
Another example of the wavelet ψ(t) is the Haar wavelet shown in Fig. 16.21.

ψHa(t) =






1, 0 < t < 0.5

−1, 0.5 < t < 1

0, otherwise.

(16.383)

Another example is the Mexican hat introduced by Gabor [40]. It is the second derivative

of the Gaussian function −e−t2/2

ψ(t) = e−t2/2
(
1− t2

)
. (16.384)

Its Fourier transform is
Ψ(jω) = −ω2e−ω2/2 (16.385)
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1

1

t

yHa( )t

-1

FIGURE 16.21 Haar wavelet.

The Gaussian function has derivatives of all orders, and each on its own qualifies as a
wavelet. Its nth order derivative has the Fourier transform

Ψ(jω) = (jω)ne−ω2/2 (16.386)

By progressively increasing the value of the parameter b the window of the wavelet is
made to slide along the time axis. Similarly to short-time Fourier analysis, sliding window
spectral analysis and in particular the spectrogram, the resulting wavelet spectrum is a
function of time. By choosing a wider wavelet window, lower frequency resolution for slowly
varying signal sections can be applied. Higher resolution for fast varying parts of the signal
is obtained by applying narrower time-compressed wavelets.

The definition Equation (16.377) implies that the wavelet transform Fw(a, τ) is a cor-
relation of f(t) with the time-scaled wavelet ψ∗(t/a).The factor 1/

√
a is included in the

definition for energy normalization. Moreover, wavelets are in general real, so that the cor-
relation is in fact between f(t) and ψ(t/a). Let

Ψ(jω) = F [ψ(t)] . (16.387)

We have
F [ψ(t/a)] = aΨ(jaω) (16.388)

F [ψ {(t− τ)/a}] = aΨ(jaω)e−jτω (16.389)

so that

ψa,τ (t) =
1√
a
ψ

(
t− τ
a

)
F←→ √aΨ(jaω)e−jτω (16.390)

i.e.
Ψa,τ (jω) =

√
aΨ(jaω)e−jτω. (16.391)

The Fourier transform of the wavelet transform Fwf(a, τ) may be written directly since
the latter is the correlation of f(t) with (1/

√
a)Ψ∗(t/a). We may write

φw(a, jω)=△F [Fw(a, τ)] =
1√
a
F (jω)aΨ∗(jaω) =

√
aF (jω)Ψ∗(jaω) (16.392)

and we have the inverse relation

Fw(a, τ) =

√
a

2π

ˆ ∞

−∞
F (jω)Ψ∗(jaω)ejωτdω. (16.393)

Similarly to the spectrogram, the wavelet transform is a two-dimensional function of time
and frequency. It may be displayed as an image, with the vertical axis being the frequency,
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referred to as “scale,” that is, the parameter a, and the horizontal being the time axis, that
is, the parameter τ .

In analyzing speech signals, for example for speech recognition, short-time Fourier analysis
is a major tool of spectral analysis. The speech signal is in fact a succession of phonemes.
To identify such phonemes, be they vowels or consonants, affricate or fricative, the speech
signal is divided into sections corresponding generally to distinct phonemes. These are
windowed for Fourier analysis, uncluttered by neighboring phonemes. Each phoneme is
thus of a relatively short duration. A spectrogram can be displayed as a film strip with the
horizontal axis as the time axis and the vertical the frequency axis. At each time interval
∆t along the horizontal axis the power spectrum of the windowed section is plotted as a
function of frequency in a strip extending along the vertical frequency axis. The succession of
such strips, each occupying a time ∆t along the horizontal time axis, forms the spectrogram
[6].

The wavelet transform leads to a similar time-frequency decomposition. The advantage
of the short-time Fourier analysis approach is its classic well-established standard nature,
which allows for direct interpretation and comparison of results. The wavelet transform
incorporates a decay of the basis function on both sides of the wavelet, effectively applying
a sliding short-duration window to the analysis. Its main advantage is to automatically mask
out neighboring sections, resulting in a short-time type analysis. New wavelets are proposed
in search for an optimal standard. It is therefore that even though wavelets simplify in a
way the sectioning of the signal and the application of localized form of spectral analysis,
the arbitrariness of wavelet shapes as basis functions introduces some complexity and a
wide variety of analysis results.

We note that the scale a is inversely proportional to frequency. The higher the value of
the scale a the lower the wavelet frequency and vice versa. In wavelet terminology, “scale”
is commonly used, rather than “frequency.”

The Wigner Distribution is one of the oldest approaches for a two-dimensional spectral
analysis of one-dimensional functions. The Wigner distribution Wx(t, f) of a function x(t)
is given by

Wx(t, f) =

ˆ ∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−j2πfτdτ (16.394)

It is generally free of fuzziness, due to the uncertainty principle, that is commonly associated
with wavelet transforms [9].

16.28 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is evaluated by passing the signal through a lowpass
and a highpass filter, diving it into a lower frequency band and an upper band. Each
band is subsequently divided into a second level lower and upper bands. The process is
repeated, taking the form of a binary, or “dyadic” tree. The lower band is referred to as
the “Approximation” and the upper band as the “Detail.” Down sampling by retaining
each second sample may be employed to reduce the number of samples at each level of the
dyadic tree. The inverse transform is evaluated by doing these steps in reverse, where now
upsampling is employed. This is achieved as seen in Chapter 7 by interlacing with zeros.

MATLABr has a Wavelet Toolbox that greatly simplifies experimentation and applica-
tion of the wavelet transform to signal analysis. It offers a choice of a reasonably large class
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of wavelets, for applying downsampling and upsampling and displaying the time-frequency
(scale) spectrogram-like plots.

Example 16.13 Wavelet DWT

a) Show the Approximation and Detail parts of the DWT applied to the signal

x(t) = sin(20πt+ π/3) + n(t) (16.395)

where n(t) is a zero-mean normally distributed white noise of variance σ2 = 0.36. The
sampling frequency is fs = 1000 Hz.

b) Observe the effect of doing the same on the signal in the absence of noise.

We write

Ts = 0.001 sec, and let t = (0 : 0.001 : 1)

T = size(t) = 1001

x = sin(20*pi.* t+pi/3) + 0.6* randn(T)

a) The signal with the added noise, x(t) is shown in Fig. 16.22.

0 200 400 600 800 1000 1200
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-2

-1

0

1
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3

FIGURE 16.22 Noisy signal.
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2
DWT cD component

FIGURE 16.23 DWT cA and cD component, respectively, of noisy signal.
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The Approximation part cA and the Details part cD, respectively, are shown in Fig. 16.23.
We note that the first shows the lower frequency content revealing the sinusoid and some
residual noise after filtering. The Detail part shows the upper frequency content with mainly
noise in evidence.

b) In the absence of noise the DWT reveals the sinusoid as seen in the cA Approximation
part of Fig. 16.24. However, the cD Detail part in the same figure includes a residual
sinusoid together with spikes at both ends of the Details window.
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FIGURE 16.24 DWT cA and cD parts, respectively, of pure sinusoid.

The scale-time plot that wavelet analysis produces is the counterpart of the spectrogram
of Fourier analysis. The vertical axis represents the scale, where lower values correspond to
time-compressed wavelets, hence higher resolution and, vice versa, higher values correspond
to stretched wavelets, hence coarser resolution.

Example 16.14 Show three levels of wavelet transform decomposition for the signal

x(t) = sin(10πt− π/3) + sin(50πt) + n(t), 0 ≤ t ≤ 1 (16.396)

where n(t) is a zero-mean normally distributed white noise with variance σ2 = 0.25.

We write
t = 0:0.001:1;
T = size(t)
x = sin(10*pi.*t-pi/3)+sin(50*pi.*t)+0.5*randn(T);
tt= wpdec(x,3,’db2’);
fig = plot(tt)

The Tree Decomposition is displayed by MATLAB. By clicking on any node of the tree
we visualize the resulting filtered component. For example clicking on node (3,0) we obtain
the form shown in Fig. 16.25. Clicking on node (3,7) produces the waveform seen in Fig.
16.26.

To visualize the function db2, on the Wavelet Toolbox Main Menu click on Display,
Wavelet Display and select wavelet: dB2.

Example 16.15 Plot the coefficients of the continuous wavelet transform (CWT) as a
scale-time diagram for the sinusoid with added noise noissin of MATLAB, using the wavelet
“db3.”
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FIGURE 16.25 DWT at node(3,0).
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FIGURE 16.26 DWT at node(3,7).

The sinusoid with added noise is generated and the scale-time plot displayed by writing:

load noissin

figure(1)

plot(noissin)

figure(2)

c = cwt(noissin,1:48,’db3’,’plot’)
These can be seen in Fig. 16.27 and Fig. 16.28, respectively.

The spectrogram of the same signal is generated using the function call spectrogram(noissin).
It is shown as a time versus frequency plot in Fig. 16.29.

Example 16.16 For the MATLAB speech sample signal mtlb, the sound “MATLAB,” gen-
erate the CWT scale-time display and the spectrogram and specgram respectively.
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FIGURE 16.27 Noisy sinusoid noissin of MATLAB.
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FIGURE 16.28 CWT scale time display.
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FIGURE 16.29 Spectrogram.
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We write:
load mtlb
c = cwt(mtlb,1:48,’db3’,’plot’);
spectrogram(mtlb,512,Fs,kaiser(500,5),475)
specgram(mtlb)
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FIGURE 16.30 MATLAB’s speech signal “mtlb.”

The speech signal mtlb is seen in Fig. 16.30. The CWT scale-time plot can be seen in
Fig. 16.31.

Absolute Values of Ca,b Coefficients for a =  1 2 3 4 5 ...

s
c
a

le
s
 a

500 1000 1500 2000 2500 3000 3500 4000
1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

time (or space) b

FIGURE 16.31 CWT scale time plot.

The result of the function spectrogram of MATLAB can be seen in Fig. 16.32, while
that of the function specgram is shown in Fig. 16.33.

Each of these plots reveals some properties of the analyzed signal. The last is particularly
effective for directly revealing the speech signal formants and their evolution in time.
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FIGURE 16.32 MATLAB’s spectrogram function result.
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FIGURE 16.33 MATLAB’s specgram function result.

Example 16.17 Show the CWT scale-time plot and the short-time Fourier transform spec-
trogram for a linear swept-frequency sinusoid.

The function chirp of MATLAB generates the signal. The swept-frequency signal, its
CWT, spectrogram using MATLAB’s function spectrogram and that using the function spec-
gram, respectively, are shown in Fig. 16.34 to Fig. 16.37. Note that the last the spectrogram
reveals directly the frequency sweeping nature of the signal.

The following remarks can be made regarding wavelets [9], [65]. A wavelet has a zero
average value. While pure sinusoids, the basis functions of Fourier transformation are per-
fectly uniform, wavelets tend to be irregular in shape and asymmetric. Wavelets decompose
a signal into shifted and scaled versions of the original basic “mother” wavelet. A signal
with sudden transition may be better decomposed by short duration wavelets. Note however
that the Walsh–Hadaward transform is a highly effective tool for such decomposition.
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FIGURE 16.34 Swept-frequency signal
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FIGURE 16.35 CWT of swept-frequency signal.

Similarly to Fourier-related transforms wavelet analysis may be applied to images and in
general multidimensional signals. The CWT produces a collection of coefficients Fw(a, τ)
which are function of the scale a and position τ . Several scaled versions of wavelets are
generated in MATLAB Toolbox.

16.29 Important Signal Processing MATLAB Functions

MATLAB’s Signal Processing Toolbox has a family of functions for the efficient execution
of statistical signal processing algorithms. Functions such as xcorr and xcov evaluate the
time-averaged approximations of the statistical cross-correlation and covariance functions
φxx[m] and γxx[m], respectively. The power spectral density and cross-spectral density may
be evaluated as averaged periodograms of overlapped, windowed signal sections as in Welch’s
method, by calling the functions psd and csd, respectively. The Yule–Walker AR all-pole
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FIGURE 16.36 Spectrogram produced by MATLAB’s function spectrogram.
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FIGURE 16.37 Spectrogram produced by MATLAB’s function specgram.

model power spectral density estimate is evaluated using the function pyulear.
The solution of the general Yule–Walker equation may be obtained by calling yulewalk.

Several parametric modeling functions are included in MATLAB’s Signal Processing Tool-
box. The function prony implements Prony’s method and lpc effects linear prediction.
These are but a few examples of many highly efficient functions included in MATLAB’s
Signal Processing Toolbox.

The following MATLAB functions and statements of MATLAB are particularly worth
remembering in the context of signal processing. The function randn is a random number
generator which may be used to simulate normally distributed white noise. To duplicate
the results in subsequent function calls it should be initiated using the call randn(’seed’,0).

sawtooth Generates a periodic ramp.

chirp Generates a linearly swept-frequency sinusoid.
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sinc Generates sinc(x) = sin(πx)/(πx) = Sa(πx).

diric Generates the Dirichlet function.

diric(x,N) =

{
sin(Nx/2)
N sin(x/2) , x 6= 2πk, k integer

(−1)k(n−1) x = 2πk, k = 0, ±1, ±3, . . .
(16.397)

Note that diric(x) = SdN (x/2).

conv2 Convolution of two-dimensional signal

filter Filters input data with a given IIR or FIR filter.

upfirdn Effects upsampling by an integer factor p by zero insertion between samples, fil-
tering by an FIR filter and downsampling by an integer q.

Multirate Processing
Change the sampling rate from 44.1 KHz to 48 KHz
We write:
g = gcd(48000,44100) p = 48000/d q = 44100/d y = upfirdn(x,h,p,q)

We obtain p = 160, q = 147. The output result y is the response of the FIR filter of impulse
response h to the input x.

plot(t,x,t,v,’+’,t,y,’*’) A call for simultaneous plotting of three functions x, v, y versus
t.

legend Adds legend of plotted function to agraph.

fftfilt For FIR filters, uses sectioning and the overlap add method to filter a long sequence
by successive shorter FFTs.

impz Evaluates the impulse response of a discrete-time linear system.

freqz Evaluates the frequency response H(ejΩ) of a given digital filter with transfer func-
tion H(z).

unwrap Unwraps the phase to make it continuous across 360◦ phase transitions by adding
±360◦ when needed.

grpdelay Evaluates the group delay of a filter frequency response.

zplane Plots poles and zeros of a linear system on the z-plane.

roots Evaluates the zeros of a polynomial.

poly Inverse of roots. Evaluates the polynomial given its zeros.

residuez Converts a transfer function to its partial fraction expansion form and vice versa.
It is the discrete-time domain function corresponding to the function residue of the
continuous-time domain.

zp2sos Factors a transfer function into a product of second order sections, performs pole-
zero pairing, section scaling and ordering.

ss2sos Same as zp2sos but in the context of state space models.

tf2latc Evaluates the lattice filter reflection coefficients for an FIR or IIR filter given in
polynomial form
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latc2tf Evaluates the polynomial coefficients of a filter, given its reflection coefficients.

latcfilt Implements a lattice or lattice-ladder filter given its coefficients.

tf2ss, tf2zp, tf2latc Convert system transfer function to state-space, zero-pole and lattice
form respectively.

ss2tf, ss2zp, ss2sos Convert state-space to transfer function, to zero-pole and to second
order section forms, respectively.

zp2tf, zp2ss, zp2sos Convert zero-pole form to transfer function, state-space and second
order sections, respectively.

sos2tf, sos2ss, sos2zp Convert second order sections model to transfer function, state-
space and zero-pole models, respectively.

fft, fftshift Evaluate the FFT and shifted FFT. The latter corresponds to sampling the
unit circle from Ω = −π to Ω = π.

ifft Evaluates the inverse FFT.

fft2 Evaluates the FFT of two-dimensional signals.

yulewalk Evaluates the IIR filter using least-squares estimation from a given magnitude
of frequency response.

16.30 lpc

The function lpc of MATLAB evaluates the coefficients of a forward linear prediction FIR
filter.

Example 16.18 Using an eighth order forward predictor estimate the successive samples
x̂[n] of a sequence x[n]. The sequence x[n] should be the response of an AR process to white
noise input.

We shall choose the AR process transfer function as

H(z) =
1

1 + 0.5z−1 + (1/3)z−2 + 0.25z−3 + 0.2z−4
. (16.398)

To generate the white noise we write
randn(’state’,0)
noise=randn(50000,1)
% With the white noise applied as input to the AR filter its response is
x = filter(1,[1 0.5 1/3 0.25], noise)
% To avoid initial transients we use the last 4096 samples
x = x(45904:50000)
% The predictor coefficients are given by
a = lpc(x,8)
% Filter x by the FIR predictor filter
xest = filter([0 -a(2:end)],1,x);
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% Estimation error:
e = x-xest
% Simultaneous plot of x and xest:
plot(1:37,x(4001,4037),1:37,xest(4001,4037,’- -’)

The predictor coefficients are given by

a = {1, 0.4973, 0.3275, 0.2212, 0.2036, 0.0064, 0.0174, −0.0002, 0.0006}

See Fig. 16.38 depicting a simultaneous plot of the sequence x and its forward linear pre-
diction estimate.
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FIGURE 16.38 Signal and lpc estimate.

16.31 Yulewalk

MATLAB’s function Yulewalk designs an IIR filter of a desired order given samples of a
desired magnitude spectrum.

In the function call [b, a] = yulewalk(n, f,m), n is the filter required order, f is a vector
of frequency points ranging in value between 0 and 1 where 1 corresponds to the sampling
Nyquist frequency, i.e. to half the sampling frequency and m is the vector of the desired
response values at those frequencies.

Example 16.19 Design a tenth order IIR filter using the Yule–Walker least-squares fitting
equations having the specification

f =
[
0 0.3 0.3 0.7 0.7 1

]
(16.399)

m =
[
0 0 1 1 0 0

]
(16.400)

Plot the desired and resulting magnitude response.

We write:
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[b,a] = yulewalk(10,f,m)

[H,w] = freqz(b,a,1024);

Habs = abs(H);

plot (f,m,w/pi,Habs,’.’)

legend (’Desired Response’,’Yule–Walker reponse’

obtaining

b = {0.0827, 0, −0.1877, 0, 0.2458, 0, −0.1983, 0, 0.0954, 0, −0.0061}

a = {1, 0, 0.9306, 0, 1.0145, 0, 0.3901, 0, 0.1433, 0, 0.0216}

The desired response together with the Yule–Walker evaluated filter response can be seen in
Fig. 16.39.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Desired response

Yule Walker response

FIGURE 16.39 Desired response and Yule–Walker solution.

16.32 dfilt

dfilt is a discrete-time filter function. Hd = dfilt.structure returns a discrete-time filter
Hd of the structure type specified. For example dfilt.df1, dfilt.df1t, dfilt.df2, dfilt.df2t
produce filters of structures Direct-form I, Direct-form I transposed, Direct-form II and
Direct-form II transposed, respectively.

Similarly, dfilt.latticear, dfilt.latticearma, dfilt.latticemamin produce the struc-
tures AR, ARMA and MA minimum phase, respectively. dfilt.statespace, dfilt.cascade
and filt.parallel produce state space, cascade and parallel filter structures.
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16.33 logspace

logspace generates logarithmically spaced elements of a vector. logspace(x1,x2) generates
a vector of 50 equally spaced points on a logarithmic scale between the decades 10x1 to
10x2. logspace(x1,x2,N) generates N points.

Example 16.20 Generate a semilog and a log-log plot of an elliptic filter of the fifth order
with pass-band ripple Rp = 1dB and stop-band attenuation Rs = 20dB.

We write:
[z,p,k] = elliap(7,1,20)
w = logspace(-1,2,10000);
h=freqs(k*poly(z), poly(p), w);
semilogx(w,abs(h)),grid
loglog(w,abs(h)),grid
The results appear as seen in Figs. 16.40(a-b) respectively.
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FIGURE 16.40 Elliptic filter (a) semilog magnitude response, (b) loglog magnitude
response.

16.34 FIR Filter Design

The MATLAB functions fir1, fir2, firls, firpm, . . . , design Types I and II linear phase
FIR filters. The functions firls and firpm design types III and IV FIR linear phase filters
when the flag “hilbert” or “differentiator” is appended.

In the windowing method of FIR filter design an ideal lowpass filter is approximated by
first evaluating the filter’s infinite impulse response h[n]. Since this IIR is not causal, hence
not realizable, we multiply it by a truncating window, thus obtaining a finite impulse re-
sponse of length N say and of even symmetry. This in turn leads to a linear-phase frequency
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response. A shift of N/2 of the finite impulse response produces a causal filter with a delay
of (N − 1)/2 samples.

The truncating window may be the rectangular window, in which case the FIR impulse
response is the best approximation of the ideal lowpass response in the least-squares sense.
To see the effect of applying this window note that the infinite impulse response h[n] of the
ideal lowpass filter with cut-off frequency Ωc given by

h[n] =
1

2π

ˆ Ωc

−Ωc

H(ejΩ)ejΩndn =
Ωc

π
Sa(Ωcn). (16.401)

Truncating this impulse response by a rectangular window of length N we have the response

hN [n] = h[n]w[n] (16.402)

where
w[n] = ΠN/2(n) = u[n+ (N − 1)/2]− u[n− (N − 1)/2]. (16.403)

The FIR impulse response is the shifted by (N − 1)/2 samples sequence

hF [n] = hN [n− (N − 1)/2]. (16.404)

Example 16.21 Plot the IIR of an ideal lowpass filter of cut-off frequency Ωc = π/2. Apply
a rectangular window of length N = 101. Plot the frequency response of the resulting FIR
filter.

We write:
h = 0.5*sinc(0.5*(-50:50));
H = freqs(h,1,101)
plot(unwrap(angle(H))),grid
fvtool(h,1)
The magnitude-squared frequency response and the unwrapped linear phase response are
shown in Fig. 16.41(a-b), respectively.
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FIGURE 16.41 Rectangular windowing: (a) magnitude-squared and (b) phase response.

An alternative window may be applied to effect smoothing of the spectrum. To apply a
Hamming window we write
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b = h.*hamming(101)’;

fvtool(b,1)

The reduced ripples, in the magnitude-squared spectrum, at the expense of a wider tran-
sition region, may be seen in Fig. 16.42(a).
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FIGURE 16.42 (a) Hamming, (b) Blackman windowing magnitude-squared response.

The function fir1 effects the same windowing applying the Hamming window by default.
The above is obtained by writing

b = fir1(101, 0.5);

The statement

b = fir1(n,Wn,window);

applies the window specified in the (n+1)-element column vector window in truncating the
impulse response.

For example the Blackman window may be employed by writing

win = window(@blackman, 101)

b = fir1(100, 0.5, win)

The resulting magnitude spectrum is shown in Fig. 16.42(b).

The window function is thus called by specifying the function handle as @blackman.
Other available function handles include @bartlett, @chebwin, @gausswin, @hann,
@kaiser, @triang, @tukeywin. For windows chebwin, kaiser, and tukeywin the desired
window parameter should be specified. For example, the kaiserord function estimates the
required filter order, cut-off frequency and the β parameter corresponding to given filter
specifications.
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16.35 fir2

The function fir2 of MATLAB designs an FIR filter given an arbitrary piecewise linear
frequency-magnitude response. The statement

b = fir2(n, f,m)

accepts as input the required filter order n, a vector f of frequency points and a vector m
of corresponding spectrum magnitude values. It produces the row vector b of n + 1 filter
coefficients.

Example 16.22 Design an FIR bandpass filter of order n = 100 using fir2. The magni-
tude spectrum of the ideal filter should be equal to one in the frequency range Ω = 0.3π
to Ω = 0.5π and zero otherwise. Plot the resulting magnitude spectrum approximation and
verify the linearity of the FIR filter phase spectrum.

We write:
f = [0 0.3 0.3 0.5 0.5 1];
m = [0 0 1 1 0 0];

b = fir2(100,f,m);

[h,w] = freqz(b,1,1024);

plot(f,m,w/pi,abs(h))

legend(’desired’,’approximation’)

title(’Desired and designed magnitude spectra’)

plot(f,m,w/pi,unwrap(angle(h))

title(’phase spectrum’)

The magnitude and phase spectra are shown in Fig. 16.43(a-b), respectively.
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FIGURE 16.43 fir2-produced magnitude and phase spectra.



1174 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

16.36 Power Spectrum Estimation Using MATLAB

MATLAB has nonparametric and parametric spectral estimation functions. The nonpara-
metric approach estimates the power spectrum by direct evaluation of the Fourier transform
of the autocorrelation function. As we have seen, the periodogram and modified averaged
periodogram obtained by sectioning/overlapping the signal, applying a suitable window
and averaging of periodograms are nonparametric methods of spectral estimation. The
functions periodogram, spectrum.periodogram, pwelch, spectrum.welch are among
such highly computationally efficient functions.

MATLAB also has Multitaper functions wherein a combination of multiple orthogonal
windows are employed in estimating the power spectrum.

Among the nonparametric spectral estimation methods MATLAB has the Yule–Walker
AR estimation functions pyulear and spectrum.yulear, and the Burg AR linear predic-
tion approach pburg, spectrum.burg, the Covariance AR spectral estimation by forward
and backward linear prediction functions pcov and spectrum.cov, pmcov and spec-
trum.mcov. For signals, composed of sinusoidal components subspace methods perform
eigen values and vectors decomposition of the correlation matrix. These function include
Multiple signal classification MUSIC and eigenvector EV pseudo spectrum estimation ones
pmusic, spectrum.music, peig and spectrum.eigenvector, respectively.

See Signal Processing Toolbox User’s Guide 6, The Mathworks, 2008.

16.37 Parametric Modeling Functions

Operating on the impulse or frequency response, parametric modeling functions estimate
the system rational transfer function coefficients. These functions are important tools for
system identification, as well as the design of FIR and IIR filters.

arcov: The statement [a, e] = arcov(x, p) estimates the coefficients {a} of the AR model
of order p, which would produce the sequence x upon receiving white noise as input. The
estimation minimizes the forward prediction error in the least-squares sense. The function
also evaluates the variance e of the input white noise. The function armcov and arburg
are the same as arcov but evaluate a modified covariance by minimizing both the forward
and backward prediction errors.

aryule: The statement a = aryule(x, p) estimates the denominator coefficients {a} of
an all-pole (AR) model of order p using the Yule–Walker autocorrelation approach. The
sequence x is viewed as the output of the AR model upon receiving white noise as input.
The statement [a, e] = aryule(x, p) returns also the variance e of the white noise input. The
statement [a, e, k] = aryule(x, p) returns the vector k of lattice filter realization reflection
coefficients. It should be noted that in executing the functions arcov, armcov and aryule
we are assuming an all-pole model, rather than an ARMA pole-zero model. Such restriction
of the model structure leads to results that are closely tied to the assumed system order p.
A judicious choice of the order is thus important in order to produce reliable results.

The Yule–Walker equations, having Toeplitz symmetry, are efficiently solved using the
Levinson–Durbin recursion approach. This is effected using the function levinson.
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16.38 prony

We have seen the basis of Prony’s method in Chapter 11. The statement [b, a] = prony(h, n,
m) executes the function prony which accepts as input a finite impulse response of an
unknown system and estimates the coefficients {b} and {a} of an IIR(pole-zero) filter that
approximates the system and having n and m as the assumed numerator and denominator
orders of its transfer function.
stmcb: The stmcb(Steiglitz–McBride) function estimates an IIR filter model the out-
put of which upon receiving a given input approximates a given response. The statement
[b, a] = stmcb(h, nb, na) evaluates the filter transfer function’s numerator and denominator
coefficients {b} and {a} which approximate the given finite impulse response h. The function
attempts to directly minimize the squared error between the impulse response h and the
input signal x. The statement [b, a] = stcmb(y, x, nb, na) evaluates the coefficient vectors b
and a of the transfer function which, given x as input, produces an approximation of y as
output. Similarly to the AR all-pole modeling functions defined above it is important to
specify the correct orders nb and na in calling the function stmcb.

Example 16.23 Evaluate the impulse response of an elliptic filter of the seventh order with
pass-band ripple Rp = 0.5dB, stop-band attenuation of at least Rs = 40dB and pass-band
edge frequency of 0.8×the sampling frequency. Truncate the impulse response to N = 256
samples. Apply this finite impulse response h to the function stmcb. Evaluate the frequency
response obtained in the two cases a) nb = 7, na = 7, b) nb = 6, na = 7 with the true
response of the elliptic filter.

We write:
[b,a] = ellip(7,0.5,40,0.4)
impul = [1 zeros(1,256)];
h = filter(b,a,impul);
figure(1)
freqz(b,a,512)

a)
[b2,a2] = stmcb(h,7,7) fig(2) freqz(b2,a2,512)
The true magnitude and phase obtained using the coefficients b and a are shown in Fig.
16.44(a). The estimated spectra are very close to the true spectra.

b)
[b3,a3] = stmcb(h,6,7)
freqz(b3,a3,512)
The resulting spectra are shown in Fig. 16.44(b). We note the deviation from the true spectra
caused by choosing nb = 6 instead of nb = 7, i.e. six zeros instead of seven.

Example 16.24 Evaluate the impulse response of an elliptic filter of the seventh order with
pass-band ripple Rp = 0.5dB, stop-band attenuation of at least Rs = 40dB and pass-band
edge frequency of 0.8× the sampling frequency. Truncate the impulse response to N = 256
samples. Apply this finite impulse response h to the function stmcb. Evaluate the frequency
response obtained in the two cases a) nb = 7, na = 7, b) nb = 7, na = 6 with the true
response of the elliptic filter.

We write:
[b,a] = ellip(7,0.5,40,0.4)
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FIGURE 16.44 (a) Elliptic filter impulse respose, (b) stmb approximation.

impul = [1 zeros(1,256)];
h = filter(b,a,impul);
figure(1)
freqz(b,a,512)

16.39 Problems

Problem 16.1 Let z[n] = x[n] + y[n] where x[n] and y[n] are stationary uncorrelated ran-
dom sequences. Evaluate the mean and variance of z[n] given that those of x[n] and y[n]
are mx, σ2

x, my and σ2
y respectively.

Problem 16.2 Let z[n] = x[n] + y[n], where x[n] and y[n] are zero-mean real stationary
uncorrelated random sequences. Evaluate the autocorrelation φzz [n] of z[n] given that those
of x[n] and y[n] are φxx[n] = a|n| and φyy[n] = b|n|.

Problem 16.3 A zero-mean random signal x[n] is contaminated by a zero-mean white noise
sequence b[n], which is linearly independent (uncorrelated) of x[n], producing the sequence
y[n] = b[n]x[n]. Evaluate the autocorrelation sequence, the variance and the power spectral
density of y[n].

Problem 16.4 A zero-mean white noise sequence x[n] of variance σ2
x is applied to the input

of a causal LTI system of unit sample response

h[n] = anu[n]

with a real, and 0 < a < 1. Evaluate the autocorrelation of the system output y[n] and the
cross correlation φyx[m].

Problem 16.5 A random sequence x[n] has an autocorrelation sequence

φxx[m] = α|m|, 0 < α < 1.
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Evaluate its power density spectrum.

Problem 16.6 A stationary random sequence x[n] has the autocorrelation φxx[m]. Given
that

Φxx(z) =
1

(1− 0.5z−1)(1− 0.5z)(1− 0.2z−1)(1− 0.2z)

Evaluate φxx[m].

Problem 16.7 A random sequence x[n] has a power spectral density Pxx(ω) = 4 sin2(Ω/2).
The sequence is applied to the input of an LTI system of transfer function

H(z) =
1

1− 0.5z−1

Evaluate the power spectral density Pyy(Ω) of the system output y[n] and the output auto-
correlation φyy[n].

Problem 16.8 Using time averages to approximate statistical ones, a measurement of N
samples of a process x[n] produces the time averaged autocorrelation estimate Cxx[m]. Eval-
uate Cxx[0] and relate it to the variance of the process.

Problem 16.9 A zero-mean real stationary white noise sequence x[n] is applied to the
input of an LTI system of impulse response h[n]. Evaluate the input–output cross-correlation
φxy[n], the output autocorrelation, the average value of the product x[n]y[n] and of y2[n].

Problem 16.10 A zero-mean real stationary white noise sequence x[n] of variance σ2
x = 10

is applied to the input of an LTI system of transfer function

H(z) =
1

1− az−1
, a real, 0 < a < 1.

Evaluate the power spectral density and the variance σ2
y of the system response y[n].

Problem 16.11 A real stationary white noise sequence applied to a causal LTI system of
transfer function

H(z) =
1

1− az−1

at an instant n = M is given by xi[n] = x[n]u[n −M ] where xi[n] is an infinite duration
two-sided random sequence. Evaluate the mean and autocorrelation of the output y[n] and
their limits as n −→∞.

Problem 16.12 A real stationary random sequence x[n] with unit variance is applied to
the input of an LTI system of the transfer function

H(z) =
z−2

a2 − 2az−1 + z−2

and output y[n]. Evaluate the autocorrelation, power spectral density and average power of
the output y[n].

Problem 16.13 An AR process is generated by applying a zero-mean stationary white noise
e[n] of variance σ2

e to the input of a causal LTI system of impulse response h[n] = anu[n],
where a is real and a < 1. Evaluate the autocorrelation of the sequence x[n], the power
spectral density of the system output and the mean of x2[n].
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Problem 16.14 The two real zero-mean stationary random signals x[n] and y[n] are ap-
plied to the input of an LTI system of the system function H(z) producing the outputs v[n]
and w[n] respectively. Assuming knowledge of the autocorrelation and cross-correlation se-
quences of x[n] and y[n], evaluate the cross-correlation and the cross-power density spectrum
of v[n] and w[n].

Problem 16.15 A random signal x[n] is contaminated by additive noise b[n], which is
uncorrelated with x[n]. The signal x[n] may be modeled as the output of an LTI system of
transfer function

G(z) =
1

(1− az−1)

in response to unit variance white noise w[n]. The noise contaminated signal s[n] = x[n] +
b[n] is applied to the input of a noise reduction filter of impulse response h[n] = bnu[n].

Assuming that the autocorrelation of the noise b[n] is φbb[n] = σ2
bδ[n], evaluate the auto-

correlation of the signal φxx[n], the PSD and deduce thereof the average power of x[n], and
the signal to noise ratio

SNR1 =
E
[
x2[n]

]

E [b2[n]]

at the input of the digital filter. With v[n] = x[n] ∗ h[n] and w[n] = b[n] ∗ h[n], evaluate
φvv[n] and E

[
v2[n]

]
. Assuming a = 0.8, b = 0.7, compare

SNR2 =
E
[
v2[n]

]

E [w2[n]]

with SNR1.

Problem 16.16 Given x[n] = s[n]+w[n], where s[n] is an AR(1) random process described
by

s[n] = 0.7s[n− 1] + v[n]

v[n] being a white noise sequence of variance σ2
v = 0.49 and w[n] is white noise with variance

σ2
w = 1. Design an M = 5-point FIR Wiener filter to estimate s[n]. Evaluate the resulting

minimum mean square error.

Problem 16.17 A signal s[n] is an ARMA(p) process with p = 2 which is described by the
difference equation

s[n] = 1.4s[n− 1]− 0.48s[n− 2] + 5v[n]− 3.4v[n− 1] (16.405)

where v[n] is a white noise sequence with variance σ2
v = 0.81. Evaluate the power spectral

density of s[n]. Design a Wiener filter of length M = 3 to estimate the signal s[n] from a
received signal x[n] = s[n] + w[n] where w[n] is a white noise sequence of variance σ2

w = 1,
which is uncorrelated with s[n].

Problem 16.18 Evaluate the two-sided IIR Wiener filter and the resulting minimum mean
square error for the case of signal contaminated by additive noise stated in Problem 16.17.

Problem 16.19 Referring to Problem 16.17 design a causal Wiener filter by evaluating its
optimal transfer function and impulse response.
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16.40 Answers to Selected Problems

Problem 16.1
mz = mx +my, σ2

z = σ2
x + σ2

y

Problem 16.2
φzz [n] = a|n| + b|n|

Problem 16.3
Py(Ω) = σ2

bσ
2
x

Problem 16.4
φyx[m] = σ2

xa
mu[m]

Problem 16.5
Pxx(Ω) = (1− α2)/(1− 2α cosΩ + α2)

Problem 16.6
φxx[m] = 2.469× 0.5|n| − 0.776× 0.2|n|

Problem 16.7
φyy[n] = 2δ[n]− (2/3)2nu[−1− n]− (2/3)0.5nu[n]

Problem 16.9
E[y[n]2] = σ2

x

∑∞
k=−∞ h2[k]

Problem 16.10
σ2

y = 10/(1− a2)

Problem 16.11
φyy[n1, n2] −→

∑∞
k=0

∑∞
m=0 h[k]h[m]φxx[k,m]

Problem 16.12
φyy[0] = (1 + a2)/(1− a2)3

Problem 16.13
φxx[n] = σ2

ea
n/(1− a2) u[n]

Problem 16.14
Pvw(Ω) = Φxy(ejΩ)|H(ejΩ)|2

Problem 16.15
SNR2/SNR1 = 5.5 dB

Problem 16.16
h[n] = {0.4084, 0.1693, 0.0704, 0.0298, 0.0140}, e[n] = 0.4476

Problem 16.17
h[n] = {0.954, 0.0316, 0.0019}
Problem 16.18
E = 0.932

Problem 16.19
h[n] = [0.001× 0.6804n + 0.953× 0.0324n]u[n].
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17

Distributions

17.1 Introduction

Without the Dirac-delta function, without the theory of generalized functions or distribu-
tions, there would be no Fourier transform of the most elementary of functions, such as a
simple constant f(t) = 1 or a pure sinusoid f(t) = cosβt, nor Fourier transform of t, tk,
nor the integral of a two-sided pure sinusoid such as cosβt. Such functions, of which the inte-
grals are not absolutely convergent, have no Fourier transform in the ordinary sense. Thanks
to the Dirac-delta function and the theory of generalized functions these Fourier transforms
exist as distributions, as we have seen in previous chapters. Thanks to distribution theory
we can write transforms such as

1
F←→ 2πδ (ω) (17.1)

cosβt←→ π{δ(ω − β) + δ(ω + β)}. (17.2)

The theory of distributions has its origins in the works of Heaviside, Dirac, Sobolov and
Schwartz, among others. It has received its due attention in the literature [3] [5] [7] [8] [9]
[10] [29] [30] [33] [35] [36] [37] [44] [45] [46] [50] [51] [54] [61] [67] [68] [72], [75].

This chapter has been placed near the end of this book since a basic knowledge of the
family of the Dirac-delta impulse and its derivatives suffices to evaluate the transforms of
most common signals. It is thus that with the simple introduction of these basic properties
as presented in the first chapters it is possible to evaluate the transforms of such signals
without having to refer to the theory of distributions. Now we are more in a position to
study this theory.

One objective of this chapter is to equip the student with a simplified presentation of the
subject of distributions. It should be valuable to the student who wishes to pursue advanced
studies in the area of signals and transforms.

17.2 Distributions as Generalizations of Functions

The process of integration of a continuous function f(t) between the limits t = a and
t = b is illustrated in Fig. 17.1. The integral of f(t) is the area under the curve f(t)
bounded between a and b. If the interval of integration (a, b) is divided into n subintervals,
namely, t0, t1, . . ., tn−1, tn with t0 = a, tn = b, and with a spacing between subintervals
equal to ∆ti, i = 0, 1, . . ., n− 1 then the surface area may be approximated as the sum

A =

n−1∑

i=0

f(ti)∆ti. (17.3)

1181
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Dt0 Dt1

FIGURE 17.1 Integration as a sum of increments.

As the largest time increment ∆ti −→ 0 the number of slices n −→ ∞, the area A
approaches the true area under the curve and we can write

ˆ b

a

f(t)dt = lim
∆ti−→0

n−1∑

i=0

f(ti)∆ti. (17.4)

Such interpretation of the integration operation implies that the surface area and hence
the value of the integral is not affected if at an isolated point, say t = τ in the interval of
integration, a < τ < b, the value of the function f(τ) is changed arbitrarily. As long as f(τ)
is finite, and as long as f(t) is the same everywhere else, whether f(τ) = 0 or f(τ) = 100,
the value of the integral remains the same. This is due to the fact that the contribution to
the area A of such an isolated point such as t = τ is a strip of height f(τ) and zero width.

We note that the same applies if the value of the function changes at a set of isolated
points. The area remains the same. The integral of a function is thus the same whatever is
its value over “a set of measure zero,” that is, a set of isolated points.

Consider now the usual definition of the Dirac-delta impulse:

δ(t) = 0, t 6= 0 (17.5)

ˆ ∞

−∞
δ(t)dt = 1. (17.6)

The impulse, being nil everywhere except at the isolated point t = 0, its integral should
be zero since the function is nil almost everywhere and the value of the integral, as just
deduced, is unaffected by the value of a function at an isolated point. The fact that it should
have a nonzero integral implies that it is not an ordinary function. In fact if its integral is
to be other than zero its value f(0) at t = 0 cannot be finite.

It is for this reason that the delta function is not an ordinary function and is a main
subject of the theory of distributions. In what follows a basic overview of this theory is
presented.

17.3 What is a Distribution?

A distribution is a generalized function. It differs from an ordinary function in the fact that
whereas a function f(t) is defined for all values of the independent variable t, a distribution
g(t) is not defined for any particular value of t. The value of a distribution g(t) is given by
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the integral of its product with a test function φ(t). A test function belongs to a given class
C which contains functions that are infinitely smooth, having derivatives of all orders, and
decaying more rapidly than any power of t as |t| −→ ∞.

A distribution g(t) is in fact a mapping that associates with any test function φ(t) a value
of an integral, which we may call Ig[φ(t)]. This is the value of the integral of the product
of the distribution g(t) with the test function φ(t). We shall use the notation

Ig [φ(t)] = < g(t), φ(t) > =

ˆ ∞

−∞
g(t)φ(t)dt (17.7)

assuming that this definite integral, which will be referred to as the defining integral, exists.
For example, the impulse, the Dirac-delta, distribution denoted usually δ(t), is defined

by the property

Iδ [φ(t)] = < δ(t), φ(t) > =

ˆ ∞

−∞
δ(t)φ(t)dt = φ(0) (17.8)

and the same property applies even if the test function φ(t) is replaced by a simple function
f(t), as long as it is continuous at t = 0 so that f(0) is well defined. We may then write

ˆ ∞

−∞
δ(t)f(t)dt = f(0). (17.9)

Beside the Dirac-delta impulse δ(t), the unit step Heaviside function u(t) and the succes-
sive derivatives δ′(t), δ′′(t), δ(3)(t), . . . are distributions. In the literature the Dirac-delta
impulse is sometimes denoted by the symbol u0(t). Its first derivative δ′(t) is denoted u1(t)
and its second derivative δ′′(t) is denoted u2(t). The step function, which we call u(t) is
denoted u−1(t), being the integral of the impulse u0(t). The integral of u−1(t), namely,
the function t, where t > 0 is denoted by u−2(t) and so on. The index i of ui(t) thus
increases with differentiation and reduces with integration from the central value i = 0
corresponding to the Dirac-delta impulse.

Example 17.1 Evaluate the distributions

ui (t), i = −3, −2, −1, 0, 1, 2, 3.

We have u(t) ≡ u−1(t),

u0(t) = δ(t), u1(t) = δ′(t), u2(t) = δ′′(t), u3(t) = δ(3)(t)

u−1 (t) =

ˆ t

−∞
u0 (τ) dτ =

ˆ t

−∞
δ (τ) dτ =

{
1, t > 0
0, t < 0

u−2 (t) =

ˆ t

−∞
u (τ) dτ.

The integrand u (τ) is not nil if and only if τ > 0 wherefrom the integral is non-nil if and
only if t > 0, so that

u−2(t) =

{
ˆ t

0

dτ

}
u (t) = tu (t).

Similarly

u−3(t) =

ˆ t

−∞
τu (τ)dτ =

{
ˆ t

0

τdτ

}
u(t) =

t2

2
u(t).

More generally, we can write

u−n(t) =
tn−1

(n− 1)!
u−1(t). (17.10)
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17.4 The Impulse as the Limit of a Sequence

If g(t) = δ(t), the improper integral defining the Dirac-delta impulse may be replaced by
a limit involving a sequence of ordinary functions δn(t) which tend to the impulse. They
satisfy the property

lim
n−→∞

ˆ ∞

−∞
δn(t)φ(t)dt =

ˆ ∞

−∞
δ(t)φ(t)dt (17.11)

which is written symbolically as
δn(t) −→

n−→∞
δ(t). (17.12)

When we write, therefore,

Iδ [φ(t)] =△ < δ, φ > =

ˆ ∞

−∞
δ (t)φ(t)dt = φ(0) (17.13)

the integral will be understood to mean the a limit as just defined. Sequences δn(t) having
this property will be studied in what follows.

For the distribution g(t) = u(t) we have

Iu [φ(t)] =△ < u, φ > =

ˆ ∞

−∞
u(t)φ(t)dt =

ˆ ∞

0

φ(t)dt (17.14)

that is, the distribution u(t) is the mapping that assigns to the test function φ(t) a value
that is the area of φ(t) in the interval (0, ∞).

17.5 Properties of Distributions

In what follows we study the properties of distributions and operations involving distribu-
tions.

17.5.1 Linearity

A distribution g(t) is linear. Operating on a sum of test functions it produces the sum of
the results of its operations on each function. In particular

< g, a1φ1 + a2φ2 > =

ˆ ∞

−∞
g(t){a1φ1(t) + a2φ2(t)}dt

= a1

ˆ ∞

−∞
g(t)φ1(t) + a2

ˆ ∞

−∞
g(t)φ2(t)dt

= a1 < g, φ1 > + a2 < g, φ2 > .

(17.15)

Moreover, the sum of two distributions is a distribution that assigns to a test function a
scalar that is the sum of the scalars assigned by the two distributions. In other words, if
g(t) = g1(t) + g2(t) then

< g1 + g2, φ > =

ˆ ∞

−∞
{g1(t) + g2(t)}φ(t)dt

=

ˆ ∞

−∞
g1(t)φ(t)dt +

ˆ ∞

−∞
g2(t)φ(t)dt

= < g1, φ > + < g2, φ >

(17.16)
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or
Ig [φ(t)] = Ig1 [φ(t)] + Ig2 [φ(t)]. (17.17)

17.5.2 Time Shift

Given a distribution g(t), its time-shifted version f(t) = g(t − t0), denoted often by
g(t0)=

△g(t− t0) satisfies

< g(t− t0), φ > =△
ˆ ∞

−∞
g(t− t0)φ(t)dt

=

ˆ ∞

−∞
g(τ)φ(τ + t0)dτ = < g(t), φ(t+ t0) >

(17.18)

where we have used the substitution t− t0 = τ and subsequently replaced τ by t. Applying
this property to the Dirac-delta distribution δ(t) we have

< δ(t− t0), φ > = < δ, φ(t+ t0) > = φ(t0) (17.19)

which can be written in the form
ˆ ∞

−∞
δ(t− t0)φ(t)dt =φ(t0). (17.20)

17.5.3 Time Scaling

Consider the distribution f (t) = g(αt), where α is a scalar. We have, if α > 0

< g(αt), φ(t) > =

ˆ ∞

−∞
g(αt)φ(t)dt =

1

α

ˆ ∞

−∞
g(τ)φ(τ/α)dτ (17.21)

having replaced αt by τ .
If α < 0 we write α = −a where a > 0. Using the substitution αt = τ , i.e. −at = τ

ˆ ∞

−∞
g(αt)φ(t)dt =

−1

a

ˆ −∞

∞
g(τ)φ {τ/(−a)} dτ =

1

a

ˆ ∞

−∞
g(t)φ(t/α)dt. (17.22)

We conclude that for any scalar α 6= 0

< g(αt, φ(t) > =
1

|α|

ˆ ∞

−∞
g(t)φ(t/α)dt =

1

|α| < g(t), φ(t/α) > . (17.23)

Applying this property to the delta impulse we have

ˆ ∞

−∞
δ(αt)φ(t)dt =

1

|α|

ˆ ∞

−∞
δ(t)φ(t/α)dt =

1

|α|φ(0). (17.24)

We note that the value of δ(αt) can be deduced from this equation if the right-hand side is
rewritten in the form

1

|α|

ˆ ∞

−∞
δ(t)φ(t)dt (17.25)

which upon comparison with the left-hand side yields

δ(αt) =
1

|α|δ(t). (17.26)
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Example 17.2 Evaluate u(αt). Let g(t) = u(t). Applying the property
ˆ ∞

−∞
g(αt)φ(t)dt =

1

|α|

ˆ ∞

−∞
g(t)φ(t/α)dt

we have
ˆ ∞

−∞
u(αt)φ(t)dt =

1

|α|

ˆ ∞

−∞
u(t)φ(t/α)dt =

1

|α|

ˆ ∞

0

φ(t/α)dt.

If α > 0 letting τ = t/α
ˆ ∞

−∞
u(αt)φ(t)dt =

α

|α|

ˆ ∞

0

φ(τ)dτ =

ˆ ∞

−∞
u(t)φ(t)dt.

If α < 0 let α = −a where a > 0
ˆ ∞

−∞
u(αt)φ(t)dt =

−a
|α|

ˆ −∞

0

φ(τ)dτ =
a

|α|

ˆ 0

−∞
φ(τ)dτ =

ˆ ∞

−∞
u(−t)φ(t)dt.

We deduce that

u(αt) =

{
u (t) , α > 0
u (−t) , α < 0.

17.5.4 Product with an Ordinary Function

The product of a distribution and an ordinary function is by definition a distribution. Let
f(t) be an ordinary function. The product of a distribution g(t) and the function f(t) can
be evaluated by observing its effect on a test function φ(t). We write

Ig f =

ˆ ∞

−∞
{g(t)f(t)}φ(t)dt =

ˆ ∞

−∞
g(t){f(t)φ(t)}dt. (17.27)

We note that the product f(t)φ(t) should be a test function. For example, if the distribution
g(t) is the Dirac-delta impulse δ(t), the product f(t)φ(t) should be continuous at t = 0.

Example 17.3 Consider the product x(t) = δ(t)f(t). Evaluate the parameter Ix[φ(t)]
associated with x(t).

We write

Ix [φ(t)] =

ˆ ∞

−∞
δ(t)f(t)φ(t)dt = f(0)φ(0) = f(0)

ˆ ∞

−∞
δ(t)φ(t)dt =

ˆ ∞

−∞
f(0)δ(t)φ(t)dt.

Comparing both sides we have
f(t)δ(t) = f(0)δ(t).

17.5.5 Symmetry

A distribution g(t) is even, i.e., g(−t) = g(t) if
ˆ ∞

−∞
g(t)φ(t)dt = 0 (17.28)

for every odd test function φ(t). Similarly, g(t) is odd if
ˆ ∞

−∞
g(t)φ(t)dt = 0 (17.29)

for every even test function φ(t).
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17.5.6 Differentiation

To measure the mapping implied by the derivative g′(t) of a distribution we write

< g′, φ > =

ˆ ∞

−∞
g′(t)φ(t)dt = g(t)φ(t)|∞−∞ −

ˆ ∞

−∞
g (t)φ′ (t) dt

= −
ˆ ∞

−∞
g (t)φ′ (t) dt = − < g, φ′ >

(17.30)

where we have integrated by parts and noted that g(t)φ(t) −→ 0 as t −→ ∞ and
t −→ −∞.

With g(t) = δ(t) we have

< δ′, φ > =

ˆ ∞

−∞
δ′(t)φ(t)dt = −

ˆ ∞

−∞
δ(t)φ′(t)dt = −φ′(0).

By differentiating n times we obtain

< g(n), φ > =

ˆ ∞

−∞
g(n)(t)φ(t)dt = (−1)n

ˆ ∞

−∞
g(t)φ(n)(t)dt

= (−1)n < g, φ(n) >
(17.31)

and with g(t) = δ(t) we have

< δ(n), φ > = (−1)n < δ, φ(n)) > (17.32)

i.e.
ˆ ∞

−∞
δ(n) (t)φ (t) dt = (−1)n

ˆ ∞

−∞
δ (t)φ(n) (t) dt = (−1)

n
φ(n) (0) . (17.33)

17.5.7 Multiplication Times an Ordinary Function

< gf, φ > =

ˆ ∞

−∞
{g(t)f(t)}φ(t)dt =

ˆ ∞

−∞
g(t){f(t)φ(t)}dt = < g, fφ > (17.34)

where f(t)φ(t) is a test function, i.e. f(t) has derivatives of any order.

17.5.8 Sequence of Distributions

A sequence of distributions gn(t), n = 1, 2, 3, . . . converges to a distribution g(t) if

lim
n−→∞

< gn, φ > = < g, φ > (17.35)

i.e.,

lim
n−→∞

ˆ ∞

−∞
gn(t)φ(t)dt =

ˆ ∞

−∞
g(t)φ(t)dt. (17.36)

17.6 Approximating the Impulse

Among the possible sequences δn(t) that tend to the impulse and may thus serve as ap-
proximating sequences, we have the centered rectangle of width ε = 1/n

δn(t) =
1

ε
Πε/2(t) = nΠ1/(2n)(t). (17.37)
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Figure 17.2 shows the effect of increasing n on the approximating rectangle, reducing in
width and increasing in height, approaching the shape of the impulse while having an area
equal to 1 for any value n.

FIGURE 17.2 Rectangles leading to an impulse.

Let φ(t) be an arbitrary function that is continuous at t = 0. We note that as n −→∞
we have

lim
n−→∞

ˆ ∞

−∞
δn(t)φ(t)dt = lim

n−→∞

ˆ ε/2

−ε/2

1

ε
φ (t) dt = lim

n−→∞
1

ε
φ(0)ε = φ(0)

=

ˆ ∞

−∞
δ(t)φ(t)dt. (17.38)

We deduce that

lim
n−→∞

δn(t) = δ(t) (17.39)

as desired. Another possible approximating function is the Gaussian function shown in Fig.
17.3, namely,

δn(t) =

√
n

π
e−nt2 . (17.40)

FIGURE 17.3 Gaussian function leading to an impulse.
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Following the same reasoning we evaluate

lim
n−→∞

ˆ ∞

−∞
δn(t)φ(t)dt = lim

n−→∞

√
n

π

ˆ ∞

−∞
e−nt2φ(t)dt. (17.41)

As n −→ ∞ the Gaussian function becomes increasingly narrower, ultimately sampling
φ(t) at t = 0. We can thus write, as n −→∞,

ˆ ∞

−∞
δn(t)φ(t)dt −→

√
n

π
φ(0)

ˆ ∞

−∞
e−nt2dt. (17.42)

The integral on the right-hand side is well known, given by

ˆ ∞

−∞
e−αt2dt =

√
π

α
. (17.43)

We thus obtain
lim

n−→∞
δn(t)φ(t)dt = φ(0) (17.44)

whence

lim
n−→∞

δn(t) = δ(t) (17.45)

as desired.
We can devise another approximating sequence as follows. We note that the Fourier

transform of a causal exponential f(t) = e−αtu(t) is given by

F (jω) = F
[
e−αtu(t)

]
=

1

α+ jω
. (17.46)

The modulus squared of F (jω) is given by

|F (jω)|2 =
1

α2 + ω2
(17.47)

and is bell-shaped and a good candidate as an approximating sequence. We also note that
by Parseval’s theorem

ˆ ∞

−∞
f2(t)dt =

1

2π

ˆ ∞

−∞
|F (jω)|2dω. (17.48)

Now
ˆ ∞

−∞
f2(t)dt =

ˆ ∞

0

e−2αtdt =
1

2α
(17.49)

wherefrom
ˆ ∞

−∞

1

α2 + ω2
dω = 2π · 1

2α
=
π

α
(17.50)

i.e.
ˆ ∞

−∞

α

π

1

α2 + ω2
dω = 1. (17.51)

Letting α = 1/n and replacing ω by t we can thus write the approximating sequence of
the impulse in the form

δn(t) =
1

nπ

1

1/n2 + t2
=
n

π

1

1 + n2t2
(17.52)
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a sequence of unit area for all values of n as we have just seen and which narrows and
increases in height as n −→ ∞, ultimately taking the shape of the delta impulse. In Fig.
17.4 we see the narrowing and height increase of this approximating sequence as n −→∞.

We can, similarly to the above, write

lim
n−→∞

ˆ ∞

−∞
δn(t)φ(t)dt = lim

n−→∞
φ(0)

ˆ ∞

−∞

n

π

1

1 + n2t2
dt = φ(0). (17.53)

Hence
lim

n−→∞
δn(t) = δ(t). (17.54)

FIGURE 17.4 Impulse approximating sequence.

We conclude from this discussion that one way of verifying if a sequence δn(t) tends or
not to δ(t) is to evaluate the integral

ˆ ∞

−∞
δn(t)φ(t)dt (17.55)

and ensure that it tends to φ(0) as n −→∞.

17.7 Other Approximating Sequences and Functions
of the Impulse

The following are other approximating sequences and functions of the impulse.
Centered triangle, shown in Fig. 17.5(a)

δ (t) = lim
τ−→0

1

τ

[
1− |t|

τ

]
Πτ (t) = lim

n−→∞
n [1− n |t|] Π1/n (t) . (17.56)

Even exponential, shown in Fig. 17.5(b)

δ (t) = lim
τ−→0

1

τ
e−2|t|/τ = lim

n−→∞
ne−2n|t|. (17.57)
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FIGURE 17.5 Impulse approximating sequences.

Sampling function, shown in Fig. 17.5(c)

δ(t) = lim
τ−→0

1

τ
Sa(πt/τ). (17.58)

Alternatively, we may write

lim
v−→∞

v

π
Sa(vt) = δ(t). (17.59)

Sampling squared function shown in Fig. 17.5(d)

δ(t) = lim
τ−→0

1

τ
Sa2(πt/τ). (17.60)

and, equivalently,

lim
v−→∞

v

π
Sa2(vt) = δ(t). (17.61)

17.8 Test Functions

As noted earlier a test function φ(t) is real-valued. It can be differentiated an arbitrary
number of times and is of a finite interval.

Example 17.4 The function

φ(t) = eτ2/(t2−τ2)Πτ (t)
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is a test function of finite duration (−τ, τ). Its derivative is given by

φ′(t) = eτ2/(t2−τ2) −2τ2t

(t2 − τ2)2
Πτ (t).

The function φ (t) and its derivative φ′ (t) are shown in Fig. 17.6 for the case τ = 1.

FIGURE 17.6 Test function and its derivative.

If f(t) is a function that can be differentiated an arbitrary number of times then the
product f(t)φ(t) is a test function. If f(t) is a finite duration function its convolution with
φ(t) is a test function ψ(t)

ψ(t) =

ˆ ∞

−∞
f(τ)φ(t − τ)dτ. (17.62)

17.9 Convolution

The convolution of two distributions is given by

< g1 ∗ g2, φ > =

ˆ ∞

−∞

{
ˆ ∞

−∞
g1 (τ) g2 (t− τ) dτ

}
φ (t) dt

=

ˆ ∞

−∞
g1 (τ)

{
ˆ ∞

−∞
g2 (t− τ)φ (t) dt

}
dτ

(17.63)

through a change of order of integration.

Example 17.5 The convolution of two impulses g1(t) = δ(t − t0) and g2(t) = δ(t − t1)
is given by

ˆ ∞

−∞
δ(τ − t0)δ(t− τ − t1)dτ = δ{t− (t0 + t1)}.

Example 17.6 The derivative g′n (t) of the sequence

gn(t) =
n/π

(1 + n2t2)
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is given by

g′n(t) =
−2n3t/π

(1 + n2t2)2
.

The sequence gn(t) and its derivative g′n(t) are shown in Fig. 17.7(a-b), respectively.

FIGURE 17.7 The sequence gn(t) and its derivative.

We can write
lim

n−→∞
g′n(t) = g′(t)

i.e.

lim
n−→∞

{
−2n3t/π

(1 + n2t2)
2

}
= δ′(t)

and we note that
lim

n−→∞
< g′n, φ > = < g′, φ > = − < g, φ′ >

wherefrom
< δ′, φ > = − < δ, φ′ > = −φ′ (0)

i.e.
ˆ ∞

−∞
δ′ (t)φ (t) dt = −

ˆ ∞

−∞
δ (t)φ

′
(t) dt = −φ′ (0)

as seen above.

17.10 Multiplication by an Impulse Derivative

We set out to prove that

f(t)δ(n)(t) =

n∑

k=0

(−1)k

(
n

k

)
f (k)(0)δ(n−k)(t) (17.64)
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where (
n

k

)
=

n!

k!(n− k)! . (17.65)

Let us first evaluate the product f(t)δ′(t). We write

< fδ′, φ > =

ˆ ∞

−∞
f(t)δ′(t)φ(t)dt =

ˆ ∞

−∞
{f(t)φ(t)}δ′(t)dt. (17.66)

Integrating by parts we have

< fδ′, φ > = f (t)φ (t) δ (t)|∞−∞ −
ˆ ∞

−∞
{f (t)φ (t)}′ δ (t) dt

= 0−
ˆ ∞

−∞
{f (t)φ′ (t) + f ′ (t)φ (t)} δ (t) dt

= −f (0)φ′ (0)− f ′ (0)φ (0) .

(17.67)

We have established the relation

< δ′, φ > = −φ′(0) (17.68)

wherefrom we can write

< fδ′, φ > = f (0) < δ′, φ > −f ′ (0) < δ, φ >

=

ˆ ∞

−∞
f (0) δ′ (t)φ (t) dt−

ˆ ∞

−∞
f ′ (0) δ (t)φ (t) dt.

(17.69)

so that
f(t)δ′(t) = f(0)δ′(t)− f ′(0)δ(t). (17.70)

We shall follow basically the same steps to evaluate f(t)δ(n)(t). We write

< fδ(n), φ > =

ˆ ∞

−∞
f(t)δ(n)(t)φ(t)dt =

ˆ ∞

−∞
{f(t)φ(t)}δ(n)(t)dt. (17.71)

Integrating by parts we have

< fδ(n), φ > = f(t)φ(t)δ(n−1)(t)
∣∣∞
−∞ −

ˆ ∞

−∞
{f(t)φ(t)}′ δ(n−1)(t)dt

= 0−
ˆ ∞

−∞
{f(t)φ(t)}′ δ(n−1)(t)dt.

(17.72)

Repeating the process of integration by parts (n− 1) times we obtain

< fδ(n), φ > = (−1)n

ˆ ∞

−∞
{f(t)φ(t)}(n)δ(t)dt. (17.73)

The nth derivative of the product f(t)φ(t) is given by

{f(t)φ(t)}(n) =
n∑

k=0

(
n

k

)
f (k)(t)φ(n−k)(t) (17.74)

wherefrom

< fδ(n), φ > = (−1)

ˆ ∞

−∞

{
n∑

k=0

(
n

k

)
f (k) (t)φ(n−k) (t)

}
δ(t)dt

= (−1)
n

n∑

k=0

(
n

k

)
ˆ ∞

−∞
δ(t)

{
f (k) (t)φ(n−k) (t)

}
dt

= (−1)
n

n∑

k=0

(
n

k

)
f (k) (0)φ(n−k) (0) .

(17.75)
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Using the property

< δ(m), φ > =

ˆ ∞

−∞
δ(m)(t)φ(t)dt = (−1)mφ(m)(0) (17.76)

so that

φ(n−k)(0) = (−1)n−k

ˆ ∞

−∞
δ(n−k)(t)φ(t)dt (17.77)

and

< fδ(n), φ > = (−1)
n

n∑

k=0

(
n

k

)
f (k) (0) (−1)

n−k
ˆ ∞

−∞
δ(n−k)(t)φ(t)dt

=

ˆ ∞

−∞

n∑

k=0

(−1)k
(
n

k

)
f (k) (0) δ(n−k) (t)φ(t)dt

(17.78)

obtaining Equation (17.64) as desired. In particular, the expressions for f(t)δ′(t) and f(t)δ′′(t)
are

f (t) δ′ (t) = f ′′ (0) δ (t)− 2f ′ (0) δ′ (t) + f (0) δ′′ (t) (17.79)

f (t) δ′′ (t) = −f (3) (0) δ (t) + 3f ′′ (0) δ′ (t)− 3f (0) δ′′ (t) + f (0) δ(3) (t) . (17.80)

More generally, we have

f(t)δ(n)(t− τ) =

n∑

k=0

(−1)k

(
n

k

)
f (k)(τ)δ(n−k)(t− τ). (17.81)

Example 17.7 Evaluate eαtδ′(t), cosβtδ′(t) and sinβtδ′(t).
We have

f (t) δ′ (t) = −f ′ (0) δ (t) + f (0) δ′ (t)

eαtδ′ (t) = −αδ (t) + δ′ (t)

cosβtδ′ (t) = β sinβt|t=0 + δ′ (t) = δ′ (t)

sinβtδ′ (t) = −β cosβt|t=0 δ (t) + 0 = −βδ (t) .

17.11 The Dirac-Delta Impulse as a Limit of a Gaussian Function

We consider the definition of the impulse as a limit of a Gaussian function.
To show that

lim
α−→0

e−ω2/(4α)

2
√
πα

= δ (ω) . (17.82)

Let

sα (ω) = e−ω2/(4α)/
{
2
√
πα
}

(17.83)

and

< sα (ω) , Φ (ω) > =△
ˆ ∞

−∞

1

2
√
πα

e−ω2/(4α)Φ (ω) dω. (17.84)



1196 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

We have

lim
α−→0

< sα (ω) , Φ (ω) > ≃ lim
α−→0

1

2
√
πα

Φ (0)

ˆ ∞

−∞
e−ω2/(4α)dω

=
Φ (0)

2
√
πα

√
π4α = Φ (0) =< δ (ω) , Φ (ω) >

(17.85)

lim
α−→0

sα (ω) = δ (ω) (17.86)

wherefrom

δ (ω) = lim
α−→0

e−ω2/(4α)

2
√
πα

. (17.87)

17.12 Fourier Transform of Unity

We have found the Fourier transform of the Gaussian function, namely,

e−αt2 F←→
√
π/α e−ω2/(4α). (17.88)

We deduce that
lim

α−→0
e−αt2 F←→ lim

α−→0

√
π/α e−ω2/(4α). (17.89)

The left-hand side of this relation is equal to 1. The right-hand side has been found to equal
2πδ (ω), wherefrom

1
F←→ 2πδ (ω) . (17.90)

Alternatively, consider the function

f (t) = Πτ/2 (t) = {u (t+ τ/2)− U (t− τ/2)} . (17.91)

Its Fourier transform is given by

F (jω) = τSa [τω/2] . (17.92)

Now

lim
ω−→∞

ω
sinωt

πωt
= lim

ω−→∞
ω

π
Sa (ωt) = δ (t) (17.93)

and with ω replaced by τ/2 and t replaced by ω we have

lim
τ−→∞

τ

2π
Sa (τω/2) = δ (ω) (17.94)

wherefrom
lim

τ−→∞
Πτ/2 (t) = 1

F←→ lim
τ−→∞

τSa [τω/2] = 2πδ (ω) . (17.95)

17.13 The Impulse of a Function

To show that

δ [f(t)] =

n∑

n=1

δ(t− tm)

|f ′(tm)| (17.96)
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FIGURE 17.8 Functions and their zeros.

where tm are simple zeros of f(t).
a) assume f ′ (t1) > 0 as shown in Fig. 17.8(a).
Let t1 be a zero of f (t) , i.e. f (t1) = 0

I =

ˆ ∞

−∞
δ [f (t)]φ (t) dt. (17.97)

Writing y = f (t) we have dy/dt = f ′ (t), i.e. dt = dy/f ′ (t) = dy/f ′
[
f−1 (y)

]

I =

ˆ

δ[f(t)]φ(t)dt =

ˆ ∞

−∞
δ(y)

φ[f−1(y)]

f ′[f−1(y)]
dy =

φ[f−1(0)]

f ′[f−1(0)]
=

φ(t1)

f ′(t1)
. (17.98)

We may therefore write

I =

{
ˆ ∞

−∞
δ (t− t1)φ (t) dt

}
/f ′ (t1) . (17.99)

Comparing both values of I we have

δ [f(t)] =
δ(t− t1)
f ′(t1)

, f ′(t1) > 0. (17.100)

b) For the case f ′(t1) < 0, represented in Fig. 17.8(b) we can similarly show that

δ [f(t)] =
δ(t− t1)
−f ′(t1)

, f ′(t1) < 0. (17.101)

From cases a) and b) we can write

δ [f(t)] =
δ(t− t1)
|f ′(t1)|

, f ′(t1) 6= 0. (17.102)

Now suppose f(t) has two zeros t1 and t2. Let τ be a point between t1 and t2

t1 < τ < t2. (17.103)

We can write

I =

ˆ ∞

−∞
δ[f(t)]φ(t)dt =

ˆ τ

−∞
δ[f(t)]φ(t)dt +

ˆ ∞

τ

δ[f(t)]φ(t)dt. (17.104)

Proceeding as above we obtain

I =
φ(t1)

|f ′(t1)|
+

φ(t2)

|f ′(t2)|
(17.105)
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I =

ˆ ∞

−∞
δ(t− t1)φ(t)dt

|f ′(t1)|
+

ˆ ∞

∞
δ(t− t2)φ(t)dt

|f ′(t2)|
(17.106)

wherefrom

δ [f(t)] =
δ(t− t1)
|f ′(t1)|

+
δ(t− t2)
|f ′(t2)|

(17.107)

and in general with f(t) having the zeros t1, t2, . . ., tn we have

δ [f(t)] =

n∑

i=1

δ(t− ti)
|f ′(ti)|

. (17.108)

If the zeros are multiple, i.e., if higher order, the distribution δ[f(t)] is not defined.

Example 17.8 Given the function f (t) = C3 (t− 1) where C3(t) is the Chebyshev poly-
nomial of the third order as a function of t, evaluate δ [f (t)].

We have C3 (t) = 4t3 − 3t, so that

f (t) = 4 (t− 1)
3 − 3 (t− 1) = 4t3 − 12t2 + 9t− 1

which is depicted in Fig. 17.9 The zeros of f (t) are t1 = 0.133975, t2 = 1, t3 = 1.86603.

FIGURE 17.9 A function with three zeros.

The derivative of f (t) is f ′ (t) = 12t2 − 24t + 9, so that f ′ (t1) = 6, f ′ (t2) = −3,
f ′ (t3) = 6.

Hence

δ [f (t)] = (1/6)δ (t− 0.133975) + (1/3) δ (t− 1) + (1/6) δ (t− 1.86603) .

We just found that if f(t) increases monotonically between t = a and t = b and if it
has one zero, at t = τ , i.e. f(τ) = 0, where a < τ < b then

δ [f(t)] =
δ(t− τ)
f ′(τ)

. (17.109)

It is interesting to evaluate δ′[f(t)] where

δ′ [f(t)] =
dδ[f(t)]

d[f(t)]
. (17.110)
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Since
d

dt
δ [f(t)] =

dδ[f(t)]

d[f(t)]

d

dt
f(t) (17.111)

we have

δ′ [f(t)] =
d

dt
δ [f(t)] · 1

f ′ (t)
=

1

f ′ (t)

d

dt

{
δ (t− τ)
f ′ (τ)

}

=
1

f ′ (t)
· 1

f ′ (τ)
δ′ (t− τ) =

1

f ′ (τ)

{
1

f ′ (t)
δ′ (t− τ)

}
. (17.112)

Using the property
g(t)δ′(t− τ) = g(τ)δ′(t− τ) − g′(τ)δ(t − τ) (17.113)

we have

δ′ [f(t)] =
1

f ′(τ)

{
1

f ′(τ)
δ′(t− τ) +

f ′′(τ)

|f ′(τ)|2 δ(t− τ)
}
. (17.114)

17.14 Multiplication by t

From the property
f(t)δ(t) = f(0)δ(t) (17.115)

we have
tδ(t) = 0. (17.116)

It follows that, if g1(t) = g2(t)+Aδ(t) then tg1(t) = tg2(t) and vise versa; if tg1(t) = tg2(t)
we cannot simplify by dividing by t. We have, rather,

g1(t) = g2(t) +Aδ (t) . (17.117)

The property
f(t)δ′(t) = f(0)δ′(t)− f ′(0)δ(t) (17.118)

implies that
tδ′(t) = −δ(t). (17.119)

17.15 Time Scaling

If
g(t)

F←→ G(jω) (17.120)

then

g(at+ b)←→ 1

|a|G
(
j
ω

a

)
ej(b/a)ω. (17.121)

Example 17.9 Evaluate F [δ(at+ b)].
Since δ(t)←→ 1 we have

δ(at+ b)←→ 1

|a|e
j(b/a)ω

which is the same as found by applying the property.
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17.16 Some Properties of the Dirac-Delta Impulse

The following is a summary of important properties of the Dirac-delta impulse for future
reference.

f (t) δ′ (t) = f(0)δ′ (t)− f ′(0)δ (t) (17.122)

δ (at) =
1

|a|δ (t) (17.123)

ˆ ∞

−∞

dnδ (t− t0)
dtn

φ (t) dt = (−1)
n dn

dtn
φ (t0) (17.124)

d

dt
u (t) = δ (t) (17.125)

tδ′ (t) = −δ (t) (17.126)

δ(n) (t) = (−1)
n
n!t−nδ (t) (17.127)

δ(n) (t) ∗ f (t) = f (n) (t) (17.128)
ˆ ∞

−∞
tδ′ (t) dt = −1 (17.129)

ˆ

δ(n) (t) f (t) dt = (−1)
n
f (n)(0) (17.130)

t2δ′ (t) = 0 (17.131)

t2δ′′ (t) = 2δ (t) (17.132)

t3δ′′ (t) = 0 (17.133)

tnδ(n) (t) = (−1)n n!δ (t) (17.134)

If tg1 (t) = tg2 (t) then g1 (t) = g2 (t) + c δ (t) , c constant. (17.135)
ˆ ∞

−∞
δ′ (t)φ (t) dt = −φ′(0) (17.136)

ˆ ∞

−∞
δ(m) (t) dt = 1 iff m = 0 (17.137)

δ′(−t) = −δ′ (t) (17.138)
ˆ ∞

−∞
δ′′ (t) dt = 0 (17.139)

δ′ (t) ∗ f (t) = f ′ (t) (17.140)

δ(n) (t) ∗ f (t) = f (n) (t) (17.141)

δ(n)(ω) ∗ F (jω) = F (n)(jω) (17.142)
ˆ ∞

−∞
δ(t− t0)φ (t) dt = φ(t0) (17.143)

tδ (t) = 0 (17.144)

tδ′ (t) = −δ (t) (17.145)

t2δ′ (t) = 0 (17.146)
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δ(at) =
1

|a|δ (t) (17.147)

f (t) δ′ (t) = f(0)δ′ (t)− f ′(0)δ (t) (17.148)

f (t) δ′′ (t) = f(0)δ′′ (t)− 2f ′(0)δ′ (t) + f ′′(0)δ (t) (17.149)

f (t) δ′′′ (t) = f(0)δ′′′ (t)− 3f ′(0)δ′′ (t) + 3f ′′(0)δ′ (t)− f ′′′(0)δ (t) (17.150)

f (t) δ(n) (t) =
n∑

k=0

(−1)k
n!

k! (n− k)!f
(k)(0)δ(n−k) (t) (17.151)

δ(t− t1) ∗ δ(t− t2) = δ [t− (t1 + t2)] (17.152)

δ(n) (−t) =

{
δ(n) (t) , n even

−δ(n) (t) , n odd
(17.153)

17.17 Additional Fourier Transforms

From the transform

sgn(t)←→ 2

jω
(17.154)

using the duality property we can write

2/jt←→ 2πsgn(−ω) = −2πsgn(ω) (17.155)

i.e.

1/t←→ −jπsgn(ω). (17.156)

Since (t−1)
′
= −t−2, (t−2)

′
= −2t−3, . . . and in general

t−k = (−1)k−1 (t−1)(k−1)

(k − 1)!
(17.157)

we have

F
[
t−k
]

=
(−1)

k−1

(k − 1)!
(jω)

k−1 F
[
t−1
]

=
(−j)k

π

(k − 1)!
ωk−1sgn (ω) . (17.158)

17.18 Riemann–Lebesgue Lemma

The Riemann–Lebesgue lemma may be stated as follows: If a function φ(t) is absolutely
integrable in an interval (a, b) and if ψ(t) is the same as φ(t) over the interval (a, b) and
is nil elsewhere then the Fourier transform Ψ(jω) of ψ(t) tends to zero as ω −→∞

lim
ω−→∞

Ψ(jω) = 0 (17.159)
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where the constants a and b have finite or infinite values. The lemma is easily proved using
an integration by parts

Ψ(jω) =

ˆ ∞

−∞
ψ(t)e−jωtdt =

ˆ b

a

φ(t)e−jωtdt

=
−1

jω

{
e−jωbφ (b)− e−jωaφ (a)

}
+

ˆ b

a

1

jω
e−jωtφ′ (t) dt

(17.160)

which tends to zero as ω −→∞ as stated.
Using the Riemann–Lebesgue lemma we have as a special case with a = −∞ and b =∞

and ψ(t) a test function

lim
ω−→∞

Φ(jω) = lim
ω−→∞

ˆ ∞

−∞
φ(t)e−jωtdt = 0. (17.161)

The function e−jωt can be thus seen as a distribution having the property

lim
ω−→∞

< e−jωt, φ(t) > = lim
ω−→∞

ˆ ∞

−∞
e−jωtφ(t)dt = 0. (17.162)

Hence

lim
ω−→∞

e−jωt = 0. (17.163)

Again, this is a limit that makes sense only as a distribution and, in particular, as a gener-
alized limit.

We can write, moreover,

lim
ω−→∞

(cosωt− j sinωt) = 0 (17.164)

lim
ω−→∞

cosωt = 0 (17.165)

lim
ω−→∞

sinωt = 0. (17.166)

Now we can evaluate the improper integral

ˆ ∞

0

cosωt dt = lim
T−→∞

ˆ T

0

cosωt dt = lim
T−→∞

sinωT

ω
= 0. (17.167)

Similarly

ˆ ∞

0

sinωt dt = lim
T−→∞

ˆ T

0

sinωt dt = lim
T−→∞

1− cosωT

ω
=

1

ω
. (17.168)

17.19 Generalized Limits

We have already seen that a sequence of distributions gn(t), n = 1, 2, 3, . . . has as a limit
g(t) as t −→∞ if

lim
t−→∞

< gn, φ > = lim
t−→∞

ˆ ∞

−∞
gn(t)φ(t)dt =

ˆ ∞

−∞
g(t)φ(t)dt = < g, φ > . (17.169)
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The same concept of a limit of a distribution sequence applies to the limit of a distribution
gβ(t) of which the parameter β tends to a limit β0. In particular, if for every test function
φ(t)

lim
β−→β0

< gβ , φ > = lim
β−→β0

ˆ ∞

−∞
gβ(t)φ(t)dt =

ˆ ∞

−∞
gβ0(t)φ(t)dt = < gβ0 , φ > (17.170)

then we write
gβ(t) −→ gβ0 (t) . (17.171)

We use this property to establish a distribution that has as a limit the delta function. Let

gβ(t) =
β

π
Sa(βt). (17.172)

We consider the limit as β −→∞

lim
β−→∞

< gβ, φ > = lim
β−→∞

β

π

ˆ ∞

−∞
Sa(βt)φ(t)dt. (17.173)

Now
ˆ ∞

−∞
Sa(βt)φ(t)dt =

{
ˆ −ε

−∞
+

ˆ ε

−ε

+

ˆ ∞

ε

}
Sa(βt)φ(t)dt. (17.174)

The first integral is given by
1

β

ˆ ε

−∞
sinβt

φ(t)

t
dt. (17.175)

Since the function {φ(t)/t} is integrable in the interval of integration (−∞, ε) the integral
tends to zero according to the Riemann–Lebesgue lemma. Similarly the third integral tends
to zero. The second integral is evaluated by noticing that the test function φ(t) being
continuous at t = 0 is given approximately by φ(0) in the interval of integration (−ε, ε).
We can thus write

ˆ ε

−ε

Sa(βt)φ(t)dt ≃ φ(0)

ˆ ε

−ε

Sa(βt)dt =
φ(0)

β

ˆ βε

−βε

Sa(u)du (17.176)

having replaced βt by u.
We can therefore write

lim
β−→∞

ˆ ∞

−∞
Sa(βt)φ(t)dt =

φ(0)

β

ˆ ∞

−∞
Sa(u)du =

πφ(0)

β
(17.177)

where we have used the well-known integral

ˆ ∞

−∞
Sa(x)dx = π. Hence

lim
β−→∞

< gβ , φ > = φ(0) = < δ, φ > (17.178)

wherefrom

lim
β−→∞

β

π
Sa(βt) = δ(t). (17.179)

This important distribution representing the Dirac-delta impulse may be applied to the
evaluation of limits and integrals that do not exist in the ordinary sense. An important
integral such as

I =

ˆ ∞

−∞
ejωtdω (17.180)
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is an example of such improper integrals. To evaluate this integral we first note that it can
be written in the from

I =

ˆ ∞

−∞
(cosωt+ j sinωt)dω =

ˆ ∞

−∞
cosωt dω (17.181)

the imaginary part being an odd function of t. Now

ˆ ∞

−∞
cosωt dω = lim

β−→∞

ˆ β

−β

cosωt dω = lim
β−→∞

{2 sinβt/t}

= lim
β−→∞

{2βSa (βt)} = 2πδ (t) (17.182)

wherefrom
ˆ ∞

−∞
cosωt dω = 2πδ(t) (17.183)

and
ˆ ∞

−∞
ejωtdω = 2πδ (t) . (17.184)

We thus note how such an improper integral

ˆ ∞

−∞
cosωt dω that has no meaning in the

ordinary sense is assigned a value 2πδ(t) when viewed as a distribution. Note that this is
result is but a statement of the fact that F−1[1] = δ(t).

Moreover, replacing ω by t and vice versa we obtain the transform of unity.

ˆ ∞

−∞
e−jωtdt = 2πδ (ω) (17.185)

i.e.
F [1] = 2πδ(ω). (17.186)

17.20 Fourier Transform of Higher Impulse Derivatives

From the differentiation property of the Fourier transform we know that if f(t) ←→
F (jω) then f (n)(t) ←→ (jω)nF (jω). Hence δ(n)(t) ←→ (jω)n, and using the duality
property we have

(jt)n ←→ 2πδ(n) (−ω) = 2π
dn

dωn
δ (−ω) = 2π

dn

dωn
δ (ω) (17.187)

tn ←→ 2πjnδ(n) (ω) . (17.188)

17.21 The Distribution t−k

The function t−k is an improper one, being infinite at t = 0.
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To evaluate the distribution t−k let us first evaluate it for k = 1. We write g(t) = t−1

< t−1, φ > =

ˆ ∞

−∞

φ(t)

t
dt. (17.189)

Due to the infinite discontinuity jump at t = 0, as shown in Fig. 17.10(a), the integral does
not exist.

1/ t ln t| |

t1-1 0

(a) (b)

FIGURE 17.10 Functions with infinite discontinuities.

We note however that the integral of (1/t) is the function ln |t|, shown in Fig. 17.10(b),
which is itself integrable, even though it is infinite at t = 0. We should therefore rewrite
the integral in terms of ln |t| rather than 1/t. To this end let us write g′(t) = 1/t. We now
have g(t) = ln |t|, and we may write

< t−1, φ > =

ˆ ∞

−∞

φ(t)

t
dt = < g′, φ > . (17.190)

Now applying the distribution property

< g′, φ > = − < g, φ′ > (17.191)

we have

< t−1, φ > =

ˆ ∞

−∞

φ(t)

t
dt = −

ˆ ∞

−∞
ln |t|φ′(t)dt (17.192)

and have thus obtained a definition of the distribution in terms of a convergent integral.
Higher powers k of t−k can be expressed as successive derivatives of 1/t. The first deriva-

tive of 1/t is −1/t2 = −t−2, the second derivative is 2t−3 and so on. We can write

(
1

t

)k

=
(−1)k−1

(k − 1)!

(
1

t

)(k−1)

(17.193)

where (
1

t

)(k−1)

=
dk−1

dtk−1

(
1

t

)
. (17.194)

The distribution t−k is thus defined by

< t−k, φ > =

ˆ ∞

−∞
t−kφ(t)dt =

(−1)k−1

(k − 1)!

ˆ ∞

−∞

(
1

t

)(k−1)

φ(t)dt

=
(−1)k−1

(k − 1)!
<
(
t−1
)(k−1)

, φ > .

(17.195)
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Using the property

< g(n), φ > = (−1)n < g, φ(n) > (17.196)

we have

ˆ ∞

−∞

φ(t)

tk
dt =

[(−1)k−1]2

(k − 1)!

ˆ ∞

−∞

1

t
φ(k−1)(t)dt =

1

(k − 1)!

ˆ ∞

−∞

1

t
φ(k−1)(t)dt (17.197)

or
ˆ ∞

−∞

φ(t)

tk
dt =

1

(k − 1)!

ˆ ∞

−∞
ln |t|φ(k) (t) dt. (17.198)

Example 17.10 Evaluate the integral

I =

ˆ ∞

−∞
cos (βt) /t2dt

Using Equation (17.197) or the differentiation property Equation (17.196) we may write

I =

ˆ ∞

−∞
(1/t) (d cosβt/dt)dt = −β

ˆ ∞

−∞
(1/t) sinβtdt

Since
ˆ ∞

−∞

sin τ

τ
dτ = π

we obtain I = − |β| π.

17.22 Initial Derivatives of the Transform

The Fourier transform F (jω) can be expanded in terms of its initial derivatives F ′(0),
F ′′(0), F (3)(0), . . .. The expression is instructive for several reasons. We first note that the
exponential e−jωt in the transform

F (jω) =

ˆ ∞

−∞
f (t) e−jωtdt (17.199)

can itself be expanded using

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · (17.200)

so that

e−jωt = 1− jωt+ (−jωt)2
2!

+
(−jωt)3

3!
+ . . . =

∞∑

k=0

(−1)
k (jωt)

k

k!
(17.201)

F (jω) =

ˆ ∞

−∞
f (t)

∞∑

k=0

(−j)k
(ωt)

k

k!
dt =

∞∑

k=0

(−j)k ωk

k!

ˆ ∞

−∞
f (t) tkdt. (17.202)
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The integral on the right-hand side is known as the kth moment denoted mk of f(t), so that

F (jω) =

∞∑

k=0

(−j)k ωk

k!
mk. (17.203)

Now, using a MacLaurin series expansion we may write

F (jω) =

∞∑

k=0

ωk

k!
F (k)(0). (17.204)

Equating the coefficients of equal power in the last two equations we have

F (k)(0) = (−j)kmk = (−j)k
ˆ ∞

−∞
tkf (t) dt (17.205)

showing that the kth derivative of F (jω) at ω = 0 is equal, apart from a factor, to the kth

moment of f(t).

17.23 The Unit Step Function as a Limit

FIGURE 17.11 Error function.

The error function depicted in Fig. 17.11 is by definition the integral of the Gaussian function

erf t =
2√
π

ˆ t

0

e−τ2

dτ. (17.206)

The Heaviside unit step function may be written as the limit of a sequence fn(t) of error
functions,

fn(t) =

√
n

π

ˆ t

−∞
e−nτ2

dτ (17.207)

and is therefore the integral of the scaled Gaussian function gn(t) =
√
n/π e−nτ2

. The
sequences of functions g(n) and its integral f(n) are shown for increasing values of n,
namely, n = 1, n = 2, and n = 8, in Fig. 17.12.
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f tn( )

n=1

n 2=

n 8=

g tn( )

1
1.5

1

0.5

-2 -1 1 t -2 -1 1 t

0.5

n=1

n=2

n=8

FIGURE 17.12 Gaussian function sequence and integral.

We note that as n −→∞ the function gn(t) becomes narrower and higher in value, and
fn(t), approaches the unit step function

lim
t−→∞

fn(t) =

√
n

π

ˆ ∞

−∞
e−nτ2

dτ = 1. (17.208)

The sequence of functions fn(t) thus tends to the unit step distribution u(t)

lim
n−→∞

fn(t) = u(t). (17.209)

We note, moreover, that

u′(t)=△
d

dt
u(t) = δ(t) (17.210)

and

δ(t) =

ˆ t

−∞
u(t)dt. (17.211)

We may also write

lim
n−→∞

√
n

π

ˆ ∞

−∞
e−nt2φ(t)dt ≃ lim

n−→∞

√
n

π
φ (0)

ˆ ∞

−∞
e−nt2dt = φ(0) (17.212)

i.e.

lim
n−→∞

ˆ ∞

−∞

√
n

π
e−nt2φ(t)dt = φ(0) =

ˆ ∞

−∞
δ(t)φ(t)dt (17.213)

wherefrom

lim
n−→∞

√
n

π
e−nt2dt = δ(t) (17.214)

and

lim
n−→∞

ˆ t

−∞

√
n

π
e−nt2dt =

ˆ t

−∞
δ(t)dt = u(t). (17.215)

17.24 Inverse Fourier Transform and Gibbs Phenomenon

We investigate the inverse Fourier transform and the effect of function discontinuity. We
recall from the scaling property that if a function f(t) is compressed in time its spectrum
F (jω) is spread wider in frequency. A point of discontinuity of a function is the ultimate
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in time compression, whereat the function jumps in value in zero time. This is reflected in
the frequency domain as an infinitely wide spectrum required to produce in time such rapid
transition.

We start by proving the inverse transform formula for continuous functions. We then focus
our attention on function discontinuity and the result of applying the inverse transform at
a point t = t0 of discontinuity. The inverse transform relation implies that the exact
value of the function at the immediate neighboring points t = t−0 and t = t+0 of the
discontinuity are produced as long as the inverse transform is applied to the infinitely wide
spectrum F (jω). To view the process of convergence of the inverse transform toward the
true function form f(t) in the neighborhood of the discontinuity we investigate the effect
of starting from a truncated spectrum and progressively adding spectral components. This
leads us to Gibbs phenomenon. From the definition of the Fourier transform F (jω) of a
function f(t)

F (jω) =

ˆ ∞

−∞
f(t)e−jωtdt (17.216)

we can evaluate the inverse Fourier transform by multiplying both sides by ejωτ and inte-
grating with respect to ω

ˆ ∞

−∞
F (jω) ejωτdω =

ˆ ∞

−∞

ˆ ∞

−∞
f (t) e−jωtdt ejωτdω (17.217)

=

ˆ ∞

−∞
f (t)

ˆ ∞

−∞
ejω(τ−t)dω dt (17.218)

using Equation (17.184)
ˆ ∞

−∞
ejωtdω = 2πδ(t) (17.219)

ˆ ∞

−∞
F (jω)ejωτdω = 2π

ˆ ∞

−∞
f(t)δ(τ − t)dt. (17.220)

Interchanging t and τ we have

ˆ ∞

−∞
F (jω)ejωtdω = 2π

ˆ ∞

−∞
f(τ)δ(t − τ)dτ = 2πf(t) (17.221)

where the last equality holds if and only if the function f(t) is continuous at t. We have
thus confirmed that under this condition the inverse transform is given by

f(t) =
1

2π

ˆ ∞

−∞
F (jω)ejωtdω. (17.222)

We now consider the case where f(t) has a jump discontinuity. Let FW (jω) be a
truncation of the true spectrum F (jω), as illustrated in Fig. 17.13.

FW (jω) = F (jω)ΠW (ω) = F (jω)[u(ω +W )− u(ω −W )]. (17.223)

We have

fW (t) = F−1 [FW (jω)] = f (t) ∗ F−1 [ΠW (ω)] = f (t) ∗ W
π
Sa (Wt)

=
W

π

ˆ ∞

−∞
f (τ)Sa [W (t− τ)] dτ. (17.224)
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FIGURE 17.13 A spectrum and its truncation.

The function fW (t) is thus an approximation of f(t) when the Fourier spectrum F (jω) is
truncated to include only the frequencies −W < ω < W . By increasing W the function
fW (t) tends in the limit to f(t), for all t where f(t) is continuous. Indeed,

lim
W−→∞

fW (t) =
W

π

ˆ ∞

−∞
f (τ) lim

W−→∞
Sa[W (t− τ)]dτ. =

ˆ ∞

−∞
f(τ)δ(t− τ)dτ = f(t)

(17.225)
using Equation (17.59). To show the corresponding relations in the case of a discontinuity,
consider a function f(t) that is continuous except for a jump discontinuity at, for simplicity,
t = 0, as shown in Fig. 17.14. We can write

FIGURE 17.14 Function with discontinuity.

f(t) = g(t) +Au(t) (17.226)

i.e. f(t) = g(t), t < 0; f(t) = g(t) + A, t > 0, where A = f(0+) − f(0−). We define
FW (jω) as the truncated spectrum

FW (jω) = F (jω)ΠW (ω) (17.227)

and observe the effect of increasing the bandwidth W . We have

fW (t) =
W

π

ˆ ∞

−∞

{
g(τ)Sa[W (t− τ)] +A

ˆ ∞

−∞
u(τ)Sa[W (t − τ)]

}
dτ. (17.228)

Hence

lim
W−→∞

fW (t) =

ˆ ∞

−∞
g(τ)δ(t− τ)dτ + lim

W−→∞

AW

π

ˆ ∞

0

Sa[W (t− τ)]dτ.

= g(t) +A lim
W−→∞

uW (t) (17.229)
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where we use the notation

uW (t)=△
W

π

ˆ ∞

0

Sa[W (t− τ)]dτ (17.230)

since fW (t) is the approximation of f(t) as given by Equation (17.226). Letting W (t−
τ) = λ we have

uW (t) =
1

π

ˆ Wt

−∞
Sa (λ) dλ =

1

π

ˆ 0

−∞
Sa (λ) dλ+

1

π

ˆ Wt

0

Sa (λ) dλ

=
1

2
+

1

π
Si (Wt) (17.231)

where Si (x) =

ˆ x

0

Sa(t)dt is the sine integral function. The steeper rise of the approxi-

mation uW (t) as W increases can be seen in Fig. 17.15.

FIGURE 17.15 Unit step approximating sequence.

We conclude that

f(t) = lim
W−→∞

fw(t) = g(t) +
A

2
+
A

π
lim

W−→∞
Si(Wt) (17.232)

which at t = 0 equals g(0)+A/2 = f(0−)+A/2 = {f(0−)+f(0+)}/2. The function fW (t)
is sketched schematically in Fig. 17.16. The inverse transform at the point t = 0 is therefore
equal to the middle value of the discontinuity jump, as stated in connection with Fourier
series in Chapter 2. As W increase, however, the approximating function Si(Wt) becomes
increasingly more compressed but has the same form with no change in height. The ripples
increase in frequency but in height remain the same as long as W remains finite. Only when
W becomes infinite do ripples disappear and the inverse transform equals the value as f(t)
at all values of t where the function is continuous; including the points 0− and 0+. This is
known as Gibbs phenomenon.
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FIGURE 17.16 Convergence to a discontinuity.

FIGURE 17.17 Spectral multiplication by a triangle.

17.25 Ripple Elimination

We conclude from Gibbs phenomenon that if the spectrum F (jω) of a function is truncated
to a bandwidthW then in the neighborhoods of a discontinuity the inverse Fourier transform
fW (t) displays ripples near any function discontinuity. We have also noted that the overshoot
and ripples are of the same amplitude however large, but finite, the value W . This may be
viewed as a Windowing problem in the frequency domain. By applying a proper window
we may obtain a smoother transition without ripples. For example a transition without
overshoot can be obtained if the spectrum F (jω) is multiplied by a triangular instead of a
rectangular window, of width W , as shown in Fig. 17.17.

ΛW (jω) =

{
1− |W |

ω
, |ω| < W

0, otherwise.
(17.233)

The truncated spectrum denoted by say FW (jω) is given by

FW (jω) = F (jω)ΛW (jω). (17.234)



Distributions 1213

Its inverse transform is

fW (t) = f (t) ∗ F−1 [ΛW (jω)] = f (t) ∗ W
2π
Sa2

[
W

2
t

]

=
W

2π

ˆ ∞

−∞
f(τ)Sa2

[
W

2
(t− τ)

]
dτ. (17.235)

The function fW (t) has the form

fW (t) =

ˆ ∞

−∞
f(τ)x(τ)dτ. (17.236)

The result is a convolution with the square of the sampling function known as as the Fejér
kernel. Such a convolution with a positive function implies that as a step discontinuity of
f(t) is traversed the resulting function fW (t) converges with no ripple to the value past the
discontinuity of f(t); as can be seen in Fig. 17.18.

FIGURE 17.18 Ripple elimination at a discontinuity.

We also note that

lim
W−→∞

fW (t) =

ˆ ∞

−∞
f(τ)δ(t− τ)dτ = f(t) (17.237)

since, by Equation (17.61)

lim
W−→∞

W

2π
Sa2

[
W

2
(t− τ)

]
= δ(t− τ) (17.238)

17.26 Transforms of |t| and tu(t)

We have seen in Example 17.10 that

ˆ ∞

−∞

cosωt

t2
dt = −π|ω|. (17.239)

We deduce that
ˆ ∞

−∞

ejωt

t2
dt =

ˆ ∞

−∞

cosωt

t2
dt = −π|ω| (17.240)
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i.e.

1/t2 ←→ −π|ω|. (17.241)

Using duality we have

−π |t| ←→ 2π/ω2 (17.242)

|t| ←→ −2/ω2. (17.243)

We can further write

t+ |t| =
{

2t, t > 0
0, t < 0

= 2tu (t) (17.244)

tu(t) =
1

2
(t+ |t|) (17.245)

tu(t)←→ jπδ′(ω)− 1/ω2. (17.246)

17.27 The Impulse Train as a Limit

Consider the impulse train of period T shown in Fig. 17.19.

FIGURE 17.19 Impulse train.

f(t) = ρT (t)=△
∞∑

n=−∞
δ(t− nT ). (17.247)

Its Fourier series expansion is

ρT (t) =
1

T

∞∑

n=−∞
ejnω0t (17.248)

and its Fourier transform is

F [ρT (t)] = ω0

∞∑

n=−∞
δ(ω − nω0). (17.249)

It is interesting to note that in as much as the impulse δ(t) is the limit of a sequence of
sampling functions

lim
w−→∞

w

π
Sa(wt) = δ(t) (17.250)
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the impulse train is the limit of a periodic repetition of sampling functions. To this end we
consider the truncated sum

ρN (t) =
1

T

N∑

n=−N

ejnω0t (17.251)

which is known as the Fourier series kernel, and show that its limit as N −→ ∞ is the
impulse train. Using the geometric sum

n2∑

n=n1

an = an1
1− a(n2−n1+1)

1− a (17.252)

we have

ρN (t) =
1

T
e−jNω0t 1− ej(2N+1)ω0t

1− ejω0t
=

sin[(N + 1/2)ω0t]

T sin(ω0t/2)
(17.253)

as can be seen in Fig. 17.20.

FIGURE 17.20 Periodic sampling function.

We note that ρN (0) =

N∑

n=−N

1 = 2N + 1 and ρN (t) is periodic with period T . We now

consider the limit of the period of ρN (t) lying between t = −T/2 and t = T/2. Writing
ρN (t) in the form

ρN (t) =
1

T
Sa [(N + 1/2)ω0t]

(N + 1/2)ω0t

sin (ω0t/2)
(17.254)

we note that with
w = (N + 1/2)ω0 (17.255)

ρN (t) =
1

T
Sa(wt)

wt

sin(ω0t/2)
. (17.256)

Now lim
w−→∞

wSa(wt) = πδ(t) so that

lim
N−→∞

ρN (t) = lim
w−→∞

1

T
wSa (wt)

t

sin (ω0t/2)
=

t

sin (ω0t/2)

π

T
δ (t)

=
t

sin (ω0t/2)

∣∣∣∣
t=0

π

T
δ (t) . (17.257)
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Using L’Hopital’s rule we have

lim
t−→0

t

sin(ω0t/2)
=

1

(ω0/2) cos(ω0t/2)

∣∣∣∣
t=0

=
2

ω0
=
T

π
(17.258)

wherefrom
lim

N−→∞
ρN (t) = δ(t), −T/2 ≤ t ≤ T/2. (17.259)

We therefore conclude that the periodic sampling function train ρN (t) tends in the limit,
as N −→∞, to the impulse train ρT (t)

lim
n−→∞

ρN(t) = ρT (t). (17.260)

17.28 Sequence of Distributions

As noted earlier, if a sequence of distributions g (t) tends to a limit such that

lim
n−→∞

< gn, φ > = lim
n−→∞

ˆ ∞

−∞
gn(t)φ(t)dt =

ˆ ∞

−∞
g(t)φ(t)dt = < g, φ > (17.261)

then g (t) is called the limit of gn (t),

g(t) = lim
n−→∞

gn(t). (17.262)

Example 17.11 The sequence

gn(t) =
n

π

1

1 + n2t2

satisfies

lim
n−→∞

< gn, φ > = lim
n−→∞

1

π

ˆ ∞

−∞

nφ(t)

1 + n2t2
dt.

The right-hand side can be shown to equal φ (0).

lim
n−→∞

< gn, φ > = φ (0) = < δ, φ >

wherefrom

lim
n−→∞

{
n

π

1

1 + n2t2

}
= δ (t) .

Other sequences that lead in the limit to the delta impulse are

gn(t) =
n√
π
e−nt2 (17.263)

and
gn(t) =

n

π
Sa2(nt). (17.264)

Similarly,

lim
n−→∞

{
n/π

1 + n2(t− to)2
}

= δ(t− to). (17.265)



Distributions 1217

The limit of the differentiation g′n (t) is defined by

lim
n−→∞

< g′n, φ > = lim
n−→∞

ˆ ∞

−∞
g′n(t)φ(t)dt

= lim
n−→∞

{
gn(t)φ(t)|∞−∞−

ˆ ∞

−∞
gn(t)φ′(t)dt

}

= − lim
n−→∞

{
ˆ ∞

−∞
gn(t)φ′(t)dt

}
= −
ˆ ∞

−∞
g(t)φ′(t)dt

= − < g, φ′ > .

(17.266)

A distribution gα (t) can also be defined as the limit of a distribution gx (t) as the pa-
rameter x tends to α. We write

gα(t) = lim
x−→α

gx(t) (17.267)

if for every test function φ(t)

lim
x−→α

< gx, φ > = lim
x−→α

ˆ ∞

−∞
gx(t)φ(t)dt =

ˆ ∞

−∞
gα(t)φ(t)dt = < gα, φ > . (17.268)

Example 17.12 The sequence

gn(t) =






1, t > 1/n
n/2, −1/n < t < 1/n
0, t < −1/n

represents the unit-step Heaviside distribution

lim
n−→∞

gn(t) = u(t)

since

lim
n−→∞

< gn, φ > = lim
n−→∞

ˆ ∞

−∞
gn(t)φ(t)dt =

ˆ ∞

0

φ(t)dt

=

ˆ ∞

−∞
u(t)φ(t)dt = < u, φ > .

Example 17.13 The distribution

gω(t) = e−jωt

has the limit as ω −→∞
lim

ω−→∞
gω (t) = g∞ (t) = 0

since

lim
ω−→∞

ˆ ∞

−∞
e−jωtφ(t)dt = lim

ω−→∞
Φ(jω) = 0

by a direct application of Riemann–Lebesgue lemma.

Example 17.14 Letting

gτ (t) =
1

τ
Πτ/2(t).

We have

lim
τ−→0

< gτ , φ > = lim
τ−→0

ˆ τ/2

−τ/2

(1/τ)φ(t)dt = lim
τ−→0

1

τ
φ(0)

ˆ τ/2

−τ/2

dt = φ(0) = < δ, φ >

wherefrom

lim
τ−→0

1

τ
Πτ/2(t) = δ(t).
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Example 17.15 Let

gτ (t) =
e−t2/τ

√
πτ

.

We have

lim
τ−→0

< gτ , φ > = lim
τ−→0

1√
πτ

ˆ ∞

−∞
e−t2/τφ(t)dt ∼= 1√

πτ
φ(0)

ˆ ∞

−∞
e−t2/τdt

=
1√
πτ
φ (0)

√
πτ = φ(0) = < δ, φ >

so that

lim
τ−→0

{
e−t2/τ

√
πτ

}
= δ(t).

17.29 Poisson’s Summation Formula

Let φ (t) be a real function of Fourier transform Φ (jω). Let ψ (t) be the periodic repetition
of φ (t) with period T , i.e.

ψ (t) =

∞∑

n=−∞
φ (t+ nT ) . (17.269)

We can also write ψ (t) = φ (t) ∗
∞∑

n=−∞
δ (t− nT ) and its transform

Ψ (jω) = Φ (jω)ω0

∞∑

n=−∞
δ (ω − nω0) = ω0

∞∑

n=−∞
Φ (jnω0) δ (ω − nω0) (17.270)

where ω0 = 2π/T .
Taking the inverse transform of both sides we have

∞∑

n=−∞
φ (t+ nT ) =

1

T

∞∑

n=−∞
Φ (jnω0) e

jnω0t. (17.271)

This is Poisson’s summation formula. It also appears in the form

∞∑

n=−∞
φ (nT ) =

1

T

∞∑

n=−∞
Φ (jnω0) (17.272)

which is obtained by setting t = 0.

Example 17.16
f (t) = e−α|t|, α > 0.

We have obtained

F (jω) =
2/α

1 + ω2
.

In particular

e−|t| ←→ 2

1 + ω2
.
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From the Poisson summation formula we have

∞∑

m=−∞
e−|mT | =

1

T

∞∑

k=−∞

2

1 + (kω0)
2 , ω0 = 2π/T

= 2
∞∑

k=−∞

T

T 2 + 4π2k2

and both sides being even functions, we have

1

2
+

∞∑

m=1

e−mT =
1

T
+ 2

∞∑

k=1

T

T 2 + 4π2k2
.

Note that the left-hand side is given by

1

2
+ e−T 1

1− e−T
=

1− e−T + 2e−T

2(1− e−T )
=

1 + e−T

2(1− e−T )
=

1

2

eT/2 + e−T/2

eT/2 − e−T/2

=
1

2
coth(T/2).

We have thus obtained the series sum

1 + 2

∞∑

k=1

T 2

T 2 + 4π2k2
=
T

2
coth

(
T

2

)
.

The Poisson summation formula leads often to a simple expression for series sums.

17.30 Moving Average

An approach to time domain smoothing of a function f(t) which produces its average over
a time window that slides with t. The smoothed function denoted by f̄(t) may be written
in the form

f̄(t) =
1

2T
f (t) ∗ΠT (t) =

1

2T

ˆ t+T

t−T

f (τ) dτ. (17.273)

To see the effect of the moving average on smoothing a discontinuity consider the step
function f(t) = u(t). The convolution of f(t) with {ΠT (t)/(2T )} is performed as shown in
Fig. 17.21(a). The resulting averaged function f̄(t) is shown in Fig. 17.21(b). The transform
of f̄(t) is given by

F̄ (jω) = F (jω)Sa(Tω). (17.274)

Suppose now we truncate the spectrum F̄ (jω) above a frequency |ω| = B obtaining

F̄B(jω) = F̄ (jω)ΠB(ω) (17.275)

f̄B(t) = f̄(t) ∗ (B/π)Sa(Bt) =
B

π

ˆ ∞

−∞
f̄(τ)Sa [B (t− τ )] dτ. (17.276)

which is the weighted average of f̄(t), with the Fourier kernel (B/π)Sa [B (t− τ )] as the
weighting function. As B −→∞ this kernel tends to δ (t− τ ), so that

lim
B−→∞

f̄B(t) =

ˆ ∞

−∞
f̄(τ)δ (t− τ) dτ = f̄(t) ∗ δ (t) = f̄(t). (17.277)
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FIGURE 17.21 Moving average evaluation.

In other words, for a large enough value B the function f̄B(t) is a good approximation,
and since f̄(t) is continuous for all t the approximation has no overshoot, as represented by
the dashed curve seen in Fig. 17.21(b).

17.31 Problems

Problem 17.1 Show that δ (t) is even.

Problem 17.2 Evaluate the distribution f(t) if tf(t) = 0.

Problem 17.3 Evaluate u(k) =
dk

dtk
u (t), where u(t) is the Heaviside unit step function.

Problem 17.4 Show that 〈δn, f〉 −→
n−→∞

〈δ, f〉 = f (0), where δn(t) = nΠ1/(2n)(t).

Problem 17.5 Reduce the expressions
a) δ (−t− 5).
b) (t− t0)δ(t− t0).
c)
´∞
−∞ δ

′(t− t0)φ(t)dt.

d)
´∞
−∞ δ

′′
(t− t0)φ(t)dt.

e)
´∞
−∞ δ

(n)(t− t0)φ(t)dt.

Problem 17.6 Evaluate the distribution
a)
´∞
−∞ δ

′(t− t0)f(t)φ(t)dt.
b) f(t)δ′(t).
c) f(t)δ

′′
(t).

d) f(t)δ(3)(t).
e) f(t)δ(n)(t).
f) tδ′(t).

Problem 17.7 Evaluate the distribution
a)
´∞
−∞ δ

′(t)dt.

b) δ(t2 − 4).
c) δ(cos t).
d) δ(sin t).

Problem 17.8 Evaluate the distribution
´∞
−∞ e

jωtdω.
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Problem 17.9 Evaluate the distribution
a) (sin 2t− 2 cos 3t)δt.
b)
´∞
−∞ (t+ 5)2e3t cos(2t)δ(t)dt.

c)
´∞
−∞ t

3
m∑

n=1
δ(t− n)dt.

Problem 17.10 Evaluate the distribution
a) d

dt [u(−1− t)− 2u(t− 1)].

b) d
dt [sin 2t {1− 2u(t− 1)}].

Problem 17.11 Evaluate the distribution
d
dt {[2u(t− t0)− u(2t0 − t)] cos 2t} ; t0 = π/2.

Problem 17.12 Evaluate the distribution
´∞
−∞ 8 cos 4πtδ(t2 − 4)dt.

Problem 17.13 Evaluate the distribution
´ π

−π
etδ(cos t)dt.

Problem 17.14 Evaluate the distribution
a)
´∞
−∞ cos 3tδ(3t− π)dt.

b)
´ 2

0 cosh 2tδ(3− 2t)dt.

Problem 17.15 Evaluate the distribution
´∞
−∞ cos tδ(sin t)dt.

Problem 17.16 Evaluate the distribution
a)
´∞
−∞

{
t2 + 3et sin 2t

}
δ′(t)dt.

b)
´∞
−∞ sin 2tδ

′′
(t− 3π/4)dt.

Problem 17.17 Deduce the derivative of the product of the distribution γ(t) and an ordi-
nary function f(t) by evaluating < (γf)′, φ >.

Problem 17.18 With u−1(t) = u(t) and u0(t) = δ(t), evaluate u−2(t), u−3(t), ..., u−k(t) .

Problem 17.19 With u−1(t) = u(t) and u0(t) = δ(t), evaluate u1(t), u2(t), ..., uk(t) .

Problem 17.20 Show that δ′(t) = −δ(t)/t.
Problem 17.21 Evaluate < δ′, φ >, < δ′(t− τ), φ >.

Problem 17.22 Show that if y(t) =
´∞
−∞ f(τ)g(t− τ)dτ = f ∗ g then

y(t− t0) = f ∗ g(t− t0) = f(t− t0) ∗ g.
Problem 17.23 Show that if y(t) = f ∗ g then

y′(t) = f ∗ g′(t) = f ′(t) ∗ g.
Problem 17.24 Evaluate y′(t) if y = f ∗ δ.
Problem 17.25 Evaluate

a) u−1 ∗ u−1.
b) u−1(t) ∗ u−k(t).
c) u−2(t) ∗ u−k(t).
d) Deduce u−m(t) ∗ u−k(t), m, k > 0.

Problem 17.26 Evaluate uk ∗ um where uk = δ(k) ; k,m ≥ 0.

Problem 17.27 Show that

f(t) ∗ g(t) = y(t) −→ f(t− t1) ∗ g(t− t2) = y [t− (t1 + t2)] .
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17.32 Answers to Selected Problems

Problem 17.1

δ (at) =
1

|a|δ (t)⇒ δ (−t) = δ (t) .

Problem 17.3

〈
u(k), φ

〉
=
〈
δ(k−1), φ

〉
= (−1)k−1 φ(k−1) (0) .

Problem 17.5
a) δ (−t− 5) = δ (t+ 5)
b) (t− t0)δ(t− t0) = 0

c)
´ +∞
−∞ δ

′
(t− t0)φ(t)dt = −φ′

(t0)

d)
´ +∞
−∞ δ

′′
(t− t0)φ(t)dt = φ

′′
(t0)

e)
´ +∞
−∞ δ(n)(t− t0)φ(t)dt = (−1)nφ(n)(t0)

Problem 17.6
a)
´∞
−∞ δ

′
(t− t0)f(t)φ(t)dt = −f(0)φ

′
(0)− f ′

(0)φ(0)

b) f(t)δ
′
(t) = −f ′

(0)δ(t) + f(0)δ
′
(t)

c) f(t)δ′′(t) = f(0)δ′′(t)− 2f ′(0)δ′(t) + f ′′(0)δ(t)
d) f(t)δ(3)(t) = f(0)δ(3)(t)− 3f ′(0)δ′′(t) + 3f ′′(0)δ′(t)− f (3)(0)δ(t)

e) f(t)δ(n)(t) =
n∑

k=0

(−1)k n!
k!(n−k)!f

(k)(0)δ(n−k)(t)

f) tδ
′
(t) = −δ(t)

Problem 17.7
a)
´∞
−∞ δ

′
(t)dt = 0

b) δ(t2 − 4) = 1/4 [δ(t− 2) + δ(t+ 2)]

c) δ(cos t) =
∞∑

n=−∞
δ [t− (2n+ 1)π/2] =

∑
n=odd

δ (t− nπ/2)

d) δ(sin t) =
∞∑

n=−∞
δ(t− nπ)

Problem 17.8
´ +∞
−∞ ejωtdω = 2πδ(t)

Problem 17.9
a) (sin 2t− 2 cos 3t)δt = −2
b)
´∞
−∞ (t+ 5)2e3t cos(2t)δ(t)dt =

´∞
−∞ 25δ(t)dt = 25

c)
´∞
−∞ t

3
m∑

n=1
δ(t− n)dt =

m∑
n=1

n3 = m2(m+ 1)2/4

Problem 17.10
a) (d/dt) [u(−1− t)− 2u(t− 1)] = −δ(−1− t)− 2δ(t− 1)
b) (d/dt) [sin 2t {1− 2u(t− 1)}] = 2 cos 2t− 2 sin 2tδ(t− 1)− 4 cos 2tu(t− 1)

Problem 17.11

{[2u(t− t0)− u(2t0 − t)] cos 2t}
′
= −2 sin2t [2u(t− π/2)− u(π − t)]−2δ(t−π/2)+δ(t−π)
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Problem 17.12

ˆ ∞

−∞
8 cos 4πtδ(t2 − 4)dt = 4

Problem 17.13

´ π

−π e
tδ(cos t)dt = cosh(π/2)

Problem 17.14
a)
´∞
−∞ cos 3tδ(3t− π)dt = −1/3

b)
´∞
0

cosh 2tδ(3− 2t)dt = (1/2) cosh3.

Problem 17.15

´∞
−∞ cos tδ(sin t)dt =

∞∑
n=−∞

(−1)nδ(t− nπ)

Problem 17.16
a)
´∞
−∞

{
t2 + 3et sin 2t

}
δ
′
(t)dt = −6.

b)
´∞
−∞ sin 2tδ

′′
(t− 3π/4)dt = 4.

Problem 17.18
u−2 = tu−1(t), u−3(t) = t2

2 u−1(t), u−4(t) = t3

6 u−1(t), u−k(t) = tk−1

(k−1)!u−1(t).

Problem 17.19
u0(t) = d

dtu−1(t), u1(t) = d
dtu0(t) = δ

′
(t), u2(t) = d

dtu1(t) = δ
′′
(t), uk(t) = δ(k)(t).

Problem 17.21

〈
δ
′
, φ
〉

= −
〈
δ, φ

′
〉

= −φ′
(0)

〈
δ
′
(t− τ), φ

〉
= −

〈
δ(t− τ), φ′

〉
= −φ′

(τ)

Problem 17.23

y
′
(t) = d

dt

´∞
−∞ f(τ)g(t− τ)dτ

=
´∞
−∞ f(τ)g

′
(t− τ)dτ

= f ∗ g′

Problem 17.24

y = f y
′
= f

′

y
′
= f ∗ δ′

= f
′ ∗ δ

⇒ f ∗ δ′
= f

′ ∗ δ = f ′

Problem 17.25
a) u−1 ∗ u−1 = u−2(t)
b) u−1(t) ∗ u−k(t) = u−(k+1)(t)
c) u−2(t) ∗ u−k(t) = u−(k+2)(t).

Problem 17.26

un ∗ uk = un+k = δ(n+k).
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18

Generalization of Distributions Theory, Extending

Laplace-, z- and Fourier-Related Transforms

18.1 Introduction

This chapter summarizes the results of a recently proposed generalization of the Dirac-
delta impulse and the theory of distributions. The generalization leads to a considerable
expansion of the domains of existence of Laplace, z- and Fourier-related transforms, such
as Hilbert, Hartley and Mellin transforms.

The question may be asked as to why present such topics near the end, rather than the
beginning, of this book? The answer to this question is that presenting such new “radical”
concepts to a student who is learning the basics of the subject of signals, systems and
transforms would be asking too much too soon. The concepts would be better appreciated
if the student learned the classical approach, was able to compare what is presented with
similar coverage in other books in the literature and, possibly, discovered himself the need
for improvement.

It is for this reason that in this book a choice was made to present the subject as it is
presented in the literature and, now that the student has been fortified with solid knowledge
of the domain, reveal such important new developments that should lead to the rewriting
of the transforms.

In recent papers [21] [23] and [27], such a generalization of distribution theory was pro-
posed. New transforms are introduced and some basic transforms are rewritten. The gen-
eralization of distribution theory starts with the introduction of generalized Dirac-delta
impulses and their families of integrals and derivatives in Laplace and z-transform domains.
The purpose of this chapter is to present a simplified summary of these recent developments.

18.2 An Anomaly

A review of the state of art in the literature on transforms, would reveal that whereas
for a large class of basic infinite duration two-sided functions and sequences such as a
constant or a simple pure sinusoid the Fourier transform exists, the more general Laplace
and z-transform do not [1] [39] [42] [56] [58] [62] [63] [64] [70] [73]. The fact that for some
functions the Fourier transform exists whereas the more general Laplace and z-transforms
do not may be viewed as an anomaly. The effect of such anomaly is that in contrast with
the Fourier transform, the literature dealing with Laplace and z-transform show transforms
of right-sided or left-sided functions or sums thereof, but no true two-sided infinite duration
function. In what follows we summarize the recent generalizations, rewrite some important
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transforms and introduce the new extended Laplace and z-transforms which were hitherto
inexistent.

18.3 Generalized Distributions for Continuous-Time Functions

A generalized distribution G(s), associated with the continuous-time domain and transforms
such as Laplace, is a generalized function of a complex variable s = σ + jω, which may be
defined as an integral along a straight line contour in the s plane extending from a point
s = σ − j∞ to s = σ + j∞ of the product of G(s) with a test function Φ (s). For
convenience we refer to this integral by the symbol IG[Φ(s)], or simply IG[Φ], and use the
shorthand notation

IG [Φ (s)] = < G (s) , Φ (s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
G (s)Φ (s) ds. (18.1)

The test function Φ (s) has derivatives of any order along such a contour line in the s plane,
and tends to zero more rapidly than any power of |s|. In what follows to lighten the notation
we will sometimes write < G (s) , Φ (s) >, meaning < G (s) , Φ (s) >ℜ[s]=σ.

As proposed in [21] and [23], the Dirac-delta impulse may be generalized, leading to a
distribution that is a generalized function of a complex variable. The generalized impulse
may be denoted ξ(s) being a function of the complex variable s. We may define such a
generalized Dirac-delta impulse by writing

IG [Φ (s)] = < ξ (s) , Φ (s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
ξ (s)Φ (s) ds =

{
jΦ(0), σ = 0
0, σ 6= 0.

(18.2)

18.3.1 Properties of Generalized Distributions in s Domain

The following properties are generalizations of properties of the usual real-variable distri-
butions, and can be proven similarly to the corresponding proofs of the well-known theory
of generalized functions.

18.3.2 Linearity

< G (s) , a1Φ1 (s) + a2Φ2 (s) > = a1 < G (s) , Φ1 (s) > + a2 < G (s) , Φ2 (s) > (18.3)

< G1 (s) +G2 (s) , Φ (s) > = < G1 (s) , Φ (s) > + < G2 (s) , Φ (s) > . (18.4)

18.3.3 Shift in s

Consider the generalized distribution G(s− s0). We can write

< G(s− s0), Φ(s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
G(s− s0)Φ(s)ds. (18.5)

Let s− s0 = y, ds = dy we obtain

< G(s− s0), Φ(s) >ℜ[s]=σ = < G(y), Φ(y + s0) >ℜ[y]=σ−σ0
. (18.6)
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18.3.4 Scaling

Let γ 6= 0 be a real constant. We can write

< G (γs) , Φ (s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
G (γs)Φ (s) ds. (18.7)

Letting γs = y, γds = dy we obtain

< G (γs) , Φ (s) >ℜ[s]=σ =

ˆ γσ+j∞

γσ−j∞
G (y)Φ (y/γ) dy/γ

=
1

|γ| < G (y) , Φ (y/γ) >ℜ[y]=γσ .

(18.8)

Consider the product G (s)F (s). We can write

< G (s)F (s) , Φ (s) >ℜ[s]=σ = < G (s) , F (s)Φ (s) >ℜ[s]=σ (18.9)

if F (s)Φ (s) ∈ C, the class of test functions.

18.3.5 Convolution

Denoting by G1(s)∗G2 (s) the convolution of two generalized distributions, with y = Σ+jΩ,
we may write

< G1(s) ∗G2 (s) , Φ (s) >ℜ[s]=σ

= <

ˆ Σ+j∞

Σ−j∞
G1 (y)G2 (s− y) dy, Φ (s) >ℜ[s]=σ

= < G1 (y) ,

ˆ σ+j∞

σ−j∞
G2 (s− y)Φ (s) ds >ℜ[y]=Σ

the integral on the right, being in the form of a convolution with a test function, belongs
to the class of test functions.

18.3.6 Differentiation

< G′ (s) , Φ (s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
G′ (s)Φ (s) ds. (18.10)

Integrating by parts we obtain

< G′ (s) , Φ (s) >ℜ[s]=σ = G (s)Φ (s)|σ+j∞
σ−j∞ −

ˆ σ+j∞

σ−j∞
G (s)Φ′ (s) ds

= − < G (s) , Φ′ (s) >ℜ[s]=σ

(18.11)

and, by repeated differentiation,

< G(n) (s) , Φ (s) >ℜ[s]=σ = (−1)
n
< G (s) , Φ(n) (s) >ℜ[s]=σ . (18.12)
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18.3.7 Multiplication of Derivative by an Ordinary Function

Consider the product G′ (s)F (s). We can write

< G′ (s)F (s), Φ (s) >ℜ[s]=σ =

ˆ σ+j∞

σ−j∞
G′ (s)F (s)Φ (s) ds. (18.13)

Integrating by parts we obtain

< G′ (s)F (s), Φ (s) > = − < G (s) , F (s)Φ′ (s) > − < G (s) , F ′(s)Φ (s) > . (18.14)

18.4 Properties of the Generalized Impulse in s Domain

The following properties of the generalized Dirac-delta impulse are easily established [21]
[23].

< ξ (γs) , Φ (s) >ℜ[s]=σ =
1

|γ| < ξ (y) , Φ (y/γ) >ℜ[y]=γσ (18.15)

< ξ (γs) , Φ (s) >=






1

|γ|

ˆ γσ+j∞

γσ−j∞
ξ (y)Φ (y/γ) dy =

j

|γ|Φ(0), σ = 0

0, σ 6= 0

(18.16)

wherefrom

ξ (γs) =
1

|γ|ξ(s). (18.17)

18.4.1 Shifted Generalized Impulse

We can write

< ξ(s− s0), Φ(s) >ℜ[s]=σ = < ξ(y), Φ(y + s0) >ℜ[y]=σ−σ0

=

{
jΦ(s0), σ = σ0

0, σ 6= σ0.
(18.18)

18.4.2 Differentiation

Applying the differentiation property obtained in Equation (18.12) above, with G (s) =
ξ (s), we have

< ξ(n) (s− s0) , Φ (s) >ℜ[s]=σ = (−1)n < ξ (s− s0) , Φ(n) (s) >ℜ[s]=σ

=

{
(−1)

n
jΦ(n) (s0) , σ = σ0

0, σ 6= σ0.
(18.19)

18.4.3 Convolution

Let G1(s) = ξ(s− a) and G2(s) = ξ(s− b), where a = ar + jai and b = br + jbi.

Applying the convolution property we have
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I = < ξ(s− a) ∗ ξ(s− b), Φ (s) >ℜ[s]=σ

= < ξ (y − a) ,
ˆ σ+j∞

σ−j∞
ξ (s− y − b)Φ (s) ds >ℜ[y]=Σ

=

{
< ξ(y − a), jΦ(y + b) >ℜ[y]=Σ, σ = ℜ[y + b] = Σ + br
0, σ 6= Σ + br

(18.20)

=

{
−Φ(a+ b), σ = ar + br
0, σ 6= ar + br

i.e. I = j < ξ [s− (a+ b)] , Φ(s) >ℜ[s]=σ wherefrom

ξ(s− a) ∗ ξ(s− b) = jξ [s− (a+ b)] . (18.21)

Two generalized impulses and their convolution are represented graphically in Fig. 18.1.

FIGURE 18.1 Convolution of two generalized impulses.

18.4.4 Convolution with an Ordinary Function

Consider the convolution of G1(s) = ξ(s − s0) with an ordinary function F (s). Writing,
with s0 = σ0 + jω0

< ξ(s− s0) ∗ F (s), Φ (s) >ℜ[s]=σ

=

ˆ σ+j∞

σ−j∞

ˆ Σ+j∞

Σ−j∞
F (y)ξ (s− y − s0)dyΦ (s) ds

=

ˆ Σ+j∞

Σ−j∞
F (y)

ˆ σ+j∞

σ−j∞
ξ (s− y − s0)Φ (s) ds dy.

From Equation (18.18) the value of this integral is

I =





j

ˆ Σ+j∞

Σ−j∞
F (y)Φ (y + s0) dy, σ = ℜ[y + s0] = Σ + σ0

0, σ 6= Σ + σ0

(18.22)
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i.e.

I = j

ˆ σ+j∞

σ−j∞
F (s− s0)Φ (s) ds = j < F (s− s0), Φ(s) >ℜ[s]=σ (18.23)

wherefrom
ξ(s− s0) ∗ F (s) = jF (s− s0). (18.24)

18.4.5 Multiplication of an Impulse Times an Ordinary Function

We can write

< ξ (s− a)F (s) , Φ (s) >ℜ[s]=σ = < ξ (s− a) , F (s)Φ (s) >ℜ[s]=σ

=

{
jF (a)Φ(a), σ = ar

0, σ 6= ar

(18.25)

< ξ (s− a)F (s) , Φ (s) >ℜ[s]=σ = < F (a)ξ(s − a), Φ(s) >ℜ[s]=σ (18.26)

ξ (s− a)F (s) = F (a)ξ(s− a). (18.27)

18.4.6 Multiplication by Higher Derivatives of the Impulse

Applying the property of the derivative times an ordinary function we obtain

ξ′(s)F (s) = F (0)ξ′(s)− F ′(0)ξ(s). (18.28)

More generally we obtain

F (s)ξ(n)(s) =

n∑

k=0

(−1)k

(
n

k

)
F (k)(0)ξ(n−k)(s). (18.29)

Basic properties of Laplace-domain generalized functions of a complex variable are listed in
Table 18.1.

18.5 Additional Generalized Impulse Properties

The following are properties of the generalized impulse in the s domain.

ξ(n) (jω) =
1

jn
δ(n) (ω) (18.30)

ξ(n)(s) ∗ 1

s
= (−1)

n n!

sn+1
(18.31)

dn

dΩn
ψ (z) = ψ(n) (z) jnejΩ (18.32)

dn

dΩn
ψ (z) = jn

n∑

m=1

S(m)
n ψ(m)

(
ejΩ
)
ejmΩ (18.33)

where

ψ(m)
(
ejΩ
)

=
dm

dzm
ψ (z)|z=ejΩ (18.34)
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TABLE 18.1 Properties of Laplace-domain generalized functions of a
complex variable

Linearity 1 < G (s) , a1Φ1 (s) + a2Φ2 (s) >
= a1 < G (s) , Φ1 (s) > + a2 < G (s) , Φ2 (s) >

Linearity 2 < G1 (s) +G2 (s) , Φ (s) >
=< G1 (s) , Φ (s) > + < G2 (s) , Φ (s) >

Shift in s Plane < G(s− s0), Φ(s) >ℜ[s]=σ

= < G(y), Φ(y + s0) >ℜ[y]=σ−σ0

Scaling < G (γs) , Φ (s) >ℜ[s]=σ

=
1

|γ| < G (y) , Φ (y/γ) >ℜ[y]=γσ

Impulse-Scaling ξ (γs) =
1

|γ|ξ(s)

Product < G (s)F (s) , Φ (s) >=< G (s) , F (s)Φ (s) >

Convolution <

ˆ σ+j∞

σ−j∞
G1 (y)G2 (s− y) dy , Φ (s) >

=< G1 (y) ,

ˆ σ+j∞

σ−j∞
G2 (s− y)Φ (s) ds >

Differentiation < G(n) (s) , Φ (s) >= (−1)n < G (s) , Φ(n) (s) >

Modulation L[f(t) cosβt] = (1/2){F (s− jβ) + F (s+ jβ)}

Convolution of
two impulses ξ(s− a) ∗ ξ(s− b) = jξ[s− (a+ b)]

Sampling the

nth derivative

ˆ s0+j∞

s
0
−j∞

dn

dsn
Φ(s)ξ(s − s0)ds = (−1)nj

dn

dsn
Φ(s0)

Multiplication by the

nth derivative ξ(n)(s) F (s)ξ(n)(s) =

n∑

k=0

(−1)k

(
n

k

)
F (k)(0)ξ(n−k)(s)
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dn

dΩn
ψ (z) = jn

n∑

m=1

S(m)
n (−1)

r

(
m

r

)
jrmrδ(m−r) (Ω) , −π ≤ Ω ≤ π (18.35)

dn

dΩn
ψ (z) = jn

n∑

m=1

S(m)
n

∞∑

k=−∞

m∑

r=0

(−1)
r

(
m

r

)
jrmrδ(m−r) (Ω + 2kπ) (18.36)

d

dΩ
ψ
(
ejΩ
)

=
∞∑

k=−∞
δ′ (Ω + 2kπ) (18.37)

d2

dΩ2
ψ
(
ejΩ
)

=

∞∑

k=−∞
δ′′ (Ω + 2kπ) (18.38)

dn

dΩn
ψ
(
ejΩ
)

=

∞∑

k=−∞
δ(n) (Ω + 2kπ) (18.39)

dn

dΩn
ψ
(
r−1
0 e−jβz

)∣∣
z=r0ejΩ =

∞∑

k=−∞
δ(n) (Ω− β + 2kπ) . (18.40)

Table 18.2 lists basic properties of the continuous-time domain generalized Dirac-delta im-
pulse ξ(s). In this table the symbol s(n, k) stands for the Striling Numbers of the First
Kind, defined in the Appendix.

18.6 Generalized Impulse as a Limit of a Three-Dimensional
Sequence

The Dirac-delta impulse may viewed as the limit of a sequence of functions that becomes
progressively narrower and of increasing height as a parameter as ε −→ 0, such as a rectan-
gle. In the complex s-plane we can generalize rectangular sequences leading to impulses into
three-dimensional solids. A cylinder may be introduced as the form of one such sequence.
We may write

Xε(s) =

{
1/ε, |s| < ε/2
0, |s| > ε/2

(18.41)

which is represented graphically in Fig. 18.2.
Another sequence leading to the Dirac-delta impulse is the Gaussian sequence shown in

Fig. 18.3.

v(t) = e−t2/ε/
√
πε. (18.42)

A rotation, about the complex s-plane origin, of this Gaussian sequence would produce
a 3-D solid defined by

Xε(s) = e−|s|
2/ε/
√
επ. (18.43)

We can write

lim
ε−→0

< Xε(s), Φ(s) >ℜ[s]=σ =
1√
επ

lim
ε−→0

ˆ j∞

−j∞
e−|s|

2/εΦ(s)ds

=
j√
επ

lim
ε−→0

ˆ ∞

−∞
e−ω2/εΦ(jω)dω, σ = 0

(18.44)
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TABLE 18.2 Properties of the ξ impulse

Relation to δ ξ(jy) = δ(y)

Time scaling ξ(γs) =
1

|γ|ξ(s)

Multiplication F (s)ξ(s− a) = F (a)ξ(s− a)

Sampling property

ˆ Re[a]+j∞

Re[a]−j∞
F (s)ξ(s− a)ds = jF (a)

Complex plane
convolution ξ(n)(s)⊗ F (s) = F (n)(s)

Modulation L[f(t) cosβt] = (1/2){F (s− jβ) + F (s+ jβ)}
Convolution of
two impulses ξ(s− a)⊗ ξ(s− b) = jξ[s− (a+ b)]
Sampling the

nth derivative

ˆ s0+j∞

s
0
−j∞

dn

dsn
Φ(s)ξ(s− s0)ds = (−1)nj

dn

dsn
Φ(s0)

Multiplication by the

nth derivative ξ(n)(s) F (s)ξ(n)(s) =

n∑

k=0

(−1)k

(
n

k

)
F (k)(0)ξ(n−k)(s)

Sampling the

nth derivative

ˆ s0+j∞

s0−j∞

dn

dsn
ξ(s− s0)Φ(s)ds = (−1)nj

dn

dsn
Φ(s0)

Symmetry ξ(n)(−s) = (−1)nξ(n)(s)

i.e.

lim
ε−→0

< Xε(s), Φ(s) > =






j√
επ

Φ(0)

ˆ ∞

−∞
e−ω2/εdω = jΦ(0), σ = 0

0, σ 6= 0
(18.45)

wherefrom lim
ε−→0

< Xε(s), Φ(s) >ℜ[s]=σ = < ξ(s), Φ(s) >ℜ[s]=σ and

ξ(s) = lim
ε−→0

Xε(s). (18.46)

A generalized Gaussian sequence is shown in Fig. 18.4.
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FIGURE 18.2 A cylindrical sequence leading to ξ(s).

FIGURE 18.3 Gaussian sequence tending to Dirac-delta impulse as ε −→ 0.

18.7 Discrete-Time Domain

A distribution G(z) may be defined as the value of the integral, denoted IG [Φ (z)], of its
product with a test function Φ (z). Symbolically, we write

IG [Φ (z)] = < G (z) , Φ (z) >|z|=r =

‰

|z|=r

G (z)Φ (z)dz (18.47)

where the contour of integration is a circle of radius r = |z| centered at the origin in the
z-plane.
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0
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0

w
0

X se( )

FIGURE 18.4 A 3-D generalized Gaussian sequence.

18.8 3-D Test Function as a Possible Generalization

A 3-D solid resembling a possible generalization of a test function which reduces to the
usual test function along the unit circle can be defined as the function Φ (z) given by

Φ(z) =

{
e

1
|z−1|2−1 , |1− z| < 1

0, |1− z| ≥ 1
(18.48)

shown in Fig. 18.5.
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FIGURE 18.5 A 3-D test function in z-domain.

The test function Φ
(
ejΩ
)

as it appears along the unit circle is shown in Fig. 18.6.

18.8.1 Properties of Generalized Distributions in z-Domain

The following properties of generalized distributions are readily established.
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FIGURE 18.6 Test function on unit circle.

18.8.2 Linearity

< G (z) , a1Φ (z) + a2Φ2 (z) > = a1 < G (z) , Φ1 (z) > + a2 < G (z) , Φ2 (z) > (18.49)

< G1 (z) +G2 (z) , Φ (z) > = < G1 (z) , Φ (z) > + < G2 (z) , Φ (z) > . (18.50)

18.8.3 Scaling in z-Domain

< G (z/z0) , Φ (z) >|z|=r =

‰

|z|=r

G (z/z0)Φ (z) dz. (18.51)

Letting z/z0 = w and w = ρejφ we have

< G (z/z0) , Φ (z) >|z|=r =

‰

|w|=ρ

G (w) Φ (z0w) z0dw = < z0G (w) , Φ (z0w) >|w|=ρ=r/|z0| .

(18.52)

18.8.4 Differentiation

Let

I = < G′ (z) , Φ (z) >|z|=r =

‰

|z|=r

G′(z)Φ(z)dz. (18.53)

Writing z = rejΩ, dz = jrejΩdΩ, we have

< G′ (z) , Φ (z) >|z|=r = jr

ˆ π

−π

G′
(
rejΩ

)
Φ
(
rejΩ

)
ejΩdΩ. (18.54)

Integrating by parts
u′ = G′

(
rejΩ

)
jrejΩ, v = Φ

(
rejΩ

)
(18.55)

I = G
(
rejΩ

)
Φ
(
rejΩ

)∣∣π
−π
−
ˆ π

−π

G
(
rejΩ

)
jrΦ′

(
rejΩ

)
ejΩdΩ

= −
ˆ π

−π

G
(
rejΩ

)
jrΦ′

(
rejΩ

)
ejΩdΩ = − < G (z) , Φ′ (z) >|z|=r . (18.56)

More generally

< G(n) (z) , Φ (z) >|z|=r = (−1)
n
< G (z) , Φ(n) (z) >|z|=r . (18.57)
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18.8.5 Convolution

The convolution G1(z) ∗G2(z) of two generalized distributions may be written

< G1(z) ∗G2(z), Φ(z) >|z|=r =

‰

|z|=r

‰

|y|=ρ

G1(y)G2(z/y)y
−1dyΦ(z)dz. (18.58)

Interchanging the order of integrations we can write

< G1(z) ∗G2(z), Φ(z) >|z|=r =

‰

|y|=ρ

G1(y)

‰

|z|=r

G2(z/y)Φ(z)dzy−1dy

=< G1 (y) /y,

‰

|z|=r

G2(z/y)Φ(z)dz >|y|=ρ . (18.59)

18.9 Properties of the Generalized Impulse in z-Domain

The discrete-time domain generalized impulse will be denoted by the symbol ψ(z) as in [23],
and is equivalent to the symbol ζ (z − 1) proposed in [21], that is,

ψ(z) = ζ (z − 1) (18.60)

< ψ(z), Φ(z) >|z|=r =

{
jΦ(1), r = 1
0, r 6= 1

(18.61)

having the property

ψ(rejΩ) =






∞∑

k=−∞
δ(Ω + 2kπ), r = 1

0, r 6= 1.

(18.62)

18.9.1 Differentiation

Let G (z) = ψ(z)

< G′ (z) , Φ (z) >|z|=r = < ψ′ (z) , Φ (z) >|z|=r

= − < ψ (z) , Φ′ (z) >|z|=r

=

{
−jΦ′ (1) , r = 1
0, r 6= 1

(18.63)

< G(n)(z), Φ (z) > = < ψ(n) (z) , Φ (z) > = (−1)
n
< ψ (z) , Φ(n) (z) > (18.64)

< ψ(n) (z) , Φ (z) >|z|=r =

{
j (−1)n Φ(n) (1) , r = 1
0, r 6= 1.

(18.65)

Let
G (z) = ψ(z/z0) (18.66)

I = < ψ(z/z0), Φ (z) >|z|=r = < z0ψ (w) , Φ (z0w) >|w|=r/|z0| (18.67)

I 6= 0 if and only if r = |z0|, i.e. w = ejφ,



1238 Signals, Systems, Transforms and Digital Signal Processing with MATLABr

TABLE 18.3 Properties of z-domain generalized functions of a complex variable

< G (z) , a1Φ (z) + a2Φ2 (z) >
Linearity = a1 < G (z) , Φ1 (z) > + a2 < G (z) , Φ2 (z) >

< G1 (z) +G2 (z) , Φ (z) >
= < G1 (z) , Φ (z) > + < G2 (z) , Φ (z) >

Differentiation < G(n) (z) , Φ (z) > = (−1)
n
< G (z) , Φ(n) (z) >

Impulse-differentiation < ψ(n) (z) , Φ (z) > = j (−1)
n

Φ(n) (1)

Convolution F (z) ∗ ψ(z/a) = jF (z/a)

Convolution of two
impulses ψ(z/a) ∗ ψ(z/b) = jψ[z/(ab)]

The nth derivative ψ(n)(z) =
dn

dzn
ψ(z) =

n∑

k=1

s(n, k)

jkzn

dk

dΩk
ψ(z)

Sampling by the nth

derivative ψ(n)(z)

‰

ψ(n)(z)Φ(z)dz = j(−1)nΦ(n)(1)

The value of the integral

I =

‰

F (z)ψ(n)(z)Φ(z)dz I =

n∑

k=0

(−1)k

(
n

k

)
F (k)(1)ψ(n−k)(z)Φ(z)dz

Multiplication by the

nth derivative F (z)ψ(n)(z) =

n∑

k=0

(−1)k

(
n

k

)
F (k)(1)ψ(n−k)(z)

< ψ(z/z0), Φ (z) >|z|=r

=





ˆ π

−π

z0ψ
(
ejφ
)
Φ
(
z0e

jφ
)
jejφdφ = jz0Φ(z0), r = |z0|

0, r 6= |z0| .
Table 18.3 lists basic properties of z-domain generalized functions of a complex variable.

18.10 Generalized Impulse as Limit of a 3-D Sequence

In the z-plane a cylinder, again, may be proposed as a generalization to a three-dimensional
solid of the rectangular sequence leading to impulses. We may write

Xε(z) =

{
1/ε, |z − 1| < ε/2
0, |z − 1| > ε/2

(18.68)
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as represented graphically in Fig. 18.7.

FIGURE 18.7 A cylindrical sequence leading to the generalized impulse ψ(z).

A possible three-dimensional solid generalizing the Gaussian sequence may be defined as
the sequence

Wε(z) =
1√
πε
e−|z−1|2/ε (18.69)

which with z = ejΩ is equal to

Wε(e
jΩ) = e−4 sin2(Ω/2)/ε/

√
πε (18.70)

I = < ψ(z), Φ(z) >|z|=1 = lim
ε−→0

< Wε(z), Φ(z) >|z|=1

= lim
ε−→0

1√
πε

Φ(z)dz = lim
ε−→0

1√
πε

ˆ π

−π

e−(4/ε) sin2(Ω/2)Φ(ejΩ)jdΩ. (18.71)

Letting Ω = 2θ the integral I may be approximated as

I ≃ lim
ε−→0

j2√
πε

ˆ π/2

−π/2

e−(4 sin2 θ)/εΦ(1)dθ. (18.72)

With u = sin θ, dθ = du/
√

1− u2

I ≃ lim
ε−→0

j2Φ(1)√
πε

ˆ 1

−1

e−4u2/ε

√
1− u2

du (18.73)

and with u =
√
εv

I ≃ lim
ε−→0

j2Φ(1)√
πε

ˆ 1/
√

ε

−1/
√

ε

e−4v2

√
1− εv2

√
εdv =

j2Φ(1)√
π

ˆ ∞

−∞
e−4v2

dv

=
jΦ(1)√

π

ˆ ∞

−∞
e−x2

dx = jΦ(1). (18.74)
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Since
ˆ π

−π

∞∑

k=−∞
δ(Ω + 2kπ)Φ(ejΩ)jejΩdΩ = jΦ(1) (18.75)

we have

ψ(ejΩ) =

∞∑

k=−∞
δ(Ω + 2kπ) (18.76)

confirming the validity of the property of the generalized impulse stated above.

We have thus established that the limit of the 3-D Gaussian sequence of ordinary functions
tends to the generalized impulse

lim
ε−→0

< Wε(z), Φ(z) > = < ψ(z), Φ(z) > (18.77)

ψ(z) = lim
ε−→0

Wε(z). (18.78)

The Gaussian sequence Wε(z) of which the limit is the generalized impulse is shown in Fig.
18.8.

0.5

1

1.5

2-1

-0.5

0

0.5

1

0

0.5

1
W ze( )

z plane

Real axisIm [ ] = 0
z

FIGURE 18.8 A 3-D Gaussian sequence leading to ψ(z).

18.10.1 Convolution of Generalized Impulses

Let G1(z) = ψ(z/a), G2(z) = ψ(z/b).

We can write

I =< ψ(z/a) ∗ ψ(z/b),Φ(z) >|z|=r =

‰

|z|=r

‰

|y|=ρ

ψ(y/a)ψ[z/(yb)]y−1dy Φ(z)dz (18.79)

I =

‰

|y|=ρ

ψ(y/a)

‰

|z|=r

ψ[z/(yb)] Φ(z)dzy−1dy. (18.80)
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Let

I1 =

‰

|z|=r

ψ[z/(yb)] Φ(z)dz. (18.81)

With z = ybejΩ we have

I1 =

ˆ π

−π

ψ(ejΩ)Φ(ybejΩ)jybejΩdΩ = jybΦ(yb), r = ρ |b| (18.82)

I =

‰

|y|=r/|b|

ψ(y/a) jbΦ(y)dy. (18.83)

With y = aejφ, i.e. r = |ab|

I =

ˆ π

−π

ψ(ejφ)jbΦ(abejφ)jaejφdφ = −abΦ(ab), r = |ab| (18.84)

i.e.
I = < jψ[z/(ab)], Φ(z) >|z|=r (18.85)

wherefrom
ψ(z/a) ∗ ψ(z/b) = jψ[z/(ab)] (18.86)

an operation illustrated in Fig. 18.9.

a

b

1

1j

1c ab=

y * y( / ) ( / )z a z b

FIGURE 18.9 Convolution of impulses on z-plane.

18.10.2 Convolution with an Ordinary Function

Consider

I =< ψ(z/a) ∗ F (z),Φ(z) >|z|=r =

‰

|z|=r

‰

|y|=ρ

F (y)ψ[z/(ay)]y−1dy Φ(z)dz

I =

‰

|y|=ρ

F (y)

‰

|z|=r

ψ[z/(ay)] Φ(z)dzy−1dy =

‰

|y|=ρ

F (y)I1(y)y
−1dy.
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With z = ayejΩ, i.e. r = |ay| = ρ |a|

I1 =

ˆ π

-π
ψ(ejΩ) Φ(ayejΩ)jayejΩdΩ = jayΦ(ay), r = ρ |a| (18.87)

I =
�

|y|=r/|a|
F (y)jaΦ(ay)dy = ja

�

|z|=r

F (z/a)Φ(z)a−1dz

= < jF (z/a),Φ(z) >|z|=r

(18.88)

wherefrom
ψ(z/a) ∗ F (z) = jF (z/a). (18.89)

Consider

I =< ψ(z/a) ∗ F (z),Φ(z) >|z|=r =

ˆ ˆ

F (y)ψ[z/(ay)]y−1dy Φ(z)dz (18.90)

I =

ˆ

F (y)

ˆ

ψ[z/(ay)] Φ(z)dzy−1dy =

ˆ

F (y)I1(y)y
−1dy. (18.91)

With z = ayejΩ, i.e. r = |ay| = ρ |a|

I1 =

ˆ π

-π
ψ(ejΩ) Φ(ayejΩ)jayejΩdΩ = jayΦ(ay), r = ρ |a| (18.92)

I =
´

F (y)jaΦ(ay)dy = ja
´

F (z/a)Φ(z)a−1dz
= < jF (z/a),Φ(z) >|z|=r

(18.93)

wherefrom
ψ(z/a) ∗ F (z) = jF (z/a). (18.94)

18.11 Extended Laplace and z-Transforms

Some basic new Laplace transforms resulting from the generalization of the distributions
and in particular the generalization of the Dirac-delta impulse are listed in Table 18.4. New
extended-domain z-transforms are listed in Table 18.5 [21] [23] [27]. In this table the symbol
S(n,m) stands for the Striling Numbers of the Second Kind, defined in the Appendix.

Moreover, the z-transform of the sequence 4 cosγn coshαn×{1+(−1)n} is shown in Fig.
18.10. The z-transform of the exponentially rising impulse train

x[n] =

∞∑

k=−∞
akN δ[n− kN ], N = 16

is shown in Fig. 18.11.

18.12 Generalization of Fourier-, Laplace- and z-Related
Transforms

We have just seen how the newly introduced generalized Dirac-delta impulses enhance con-
siderably the powers of bilateral Laplace and z-transforms. The existence of these bilateral
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TABLE 18.4 New Laplace transforms

xc(t) Extended ξ−Transform Xc(s)

1 2πξ(s)

eat 2π ξ(s− a)

cosh(at) π{ξ[s− a] + ξ[s+ a]}

cosh(jβt) π{δ[ω − β] + ξ[ω + β]}

u(t) 1/s+ πξ(s)

eatu(t) 1/(s− a) + πξ(s− a)

eαt cos(βt) π{ξ[s− (α+ jβ)] + ξ[s− (α − jβ)]}

eαt cosβt u(t)
s− α

(s− α)2 + β2
+
π

2
{ξ[s− (α+ jβ)] + ξ[s− (α− jβ)]}

t −2πdξ(s)/ds

tn (−1)n2πξ(n)(s)

tnu(t) n!/sn+1 + (−1)
n
πξ(n)(s)

tneatu(t)
n!

(s− a)n+1
+ (−1)

n
πξ(n)(s− a)

1/(jt) + πδ(t) 2πν(−s)

4 cosβt coshαt 2π{ξ(s− a) + ξ(s− a∗) + ξ(s+ a) + ξ(s+ a∗)}

(−t)n 2πξ(n)(s)

−tu(−t) 1/s2 + πξ′(s)

tneαtu(t)
n!

(s− α)n+1
+ (−1)nπξ(n)(s− α)

(−t)ne−αtu(−t) n!

(−1)n+1(s+ α)n+1
+ πξ(n)(s+ α)
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TABLE 18.5 New z-transforms

x[n] Extended z -transform X(z)

1 2πψ(z)

an 2πψ(z/a)

2π{ψ(z/a) + ψ(z/a∗) + ψ(z/a−1)
4 cosγn coshαn{1 + (−1)n} +ψ(z/a−1∗) + ψ(−z/a) + ψ(−z/a∗)

+ψ(−z/a−1) + ψ(−z/a−1∗)}

an cos(Ω0n) π
{
ψ
[
z/
(
aejΩ0

)]
+ ψ

[
z/
(
ae−jΩ0

)]}

u[n] 1/(1− z−1) + πψ(z)

anu[n] 1/(1− az−1) + πψ(z/a)

nanu[n]
−az−1

(1− az−1)2
+ πψ′(a−1z)

(n+ 1)anu[n]
1

(1− az−1)2
+ π[zψ′(a−1z)− ψ(a−1z)]

an−n0u[n− n0] z−n0

{
1

1− az−1
+ πψ(z/a)

}

anbnu[n]
1

1− abz−1
+ πψ {z/(ab)}

cos[Ω0n+ φ] π[ejφψ(z/ejΩ0) + e−jφψ(z/e−jΩ0)]

nru[n] (−1)r

r∑

i=1

S(r, i)
(−1)ii!

(z − 1)i+1
zi

+π
r+1∑

i=1

(−1)i+1S(r + 1, i)ψ(i−1)(z)

nru[−n]

r∑

i=1

S(r, i)
(−1)ii!

(z−1 − 1)i+1
z−i

+π

r+1∑

i=1

(−1)i+r+1S(r + 1, i)ψ(i−1)(z−1)

nr 2π

r+1∑

i=1

(−1)i+1S(r + 1, i)ψ(i−1)(z)



Generalization of Distributions Theory, Extending Laplace-, z- and Fourier-Related Transforms 1245

X z( )

1

0

FIGURE 18.10 z-transform of the sequence 4 cos γn coshαn× {1 + (−1)n}.

1

X z( )

p/8

0

a

FIGURE 18.11 z-transform of an exponentially rising impulse train.

transforms for a large new class of functions opens the doors to generalizations of several
Fourier, Laplace and z-related transforms such as Hilbert, Hartley, Mellin transforms among
others, as we see in what follows.

18.13 Hilbert Transform Generalization

As we have seen in Chapter 14 the Hilbert transform of a function f (t) may be defined as
a transformation from the time domain to the time domain, producing a function fHi (t),
such that

fHi (t) =
1

π

ˆ ∞

−∞

f (τ)

t− τ dτ = f (t) ∗ h (t) (18.95)
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where h (t) = 1/(πt). Equivalently, we may consider the Hilbert transform as a transforma-
tion from the time domain to Fourier frequency domain

FHi (jω) = F [jω]H [jω] (18.96)

where

H (jω) = F [1/(πt)] = −jsgn (ω) .

The generalization of the Hilbert transform would be a transformation from the time domain
to the bilateral Laplace transform domain. We may write

G (s) = H (s)F (s) (18.98)

H (s) = L [1/(πt)] = −jsgn (−js) .

The signum function of a complex variable sgn (s) would have to be defined. We may write
sgn (w) = sgn (ℜ [w]) so that sgn (−js) = sgn (ω − jσ) = sgn (ω), H (s) = −jsgn (ℑ[s]).

Example Given f (t) = cos (βt) we have

F (s) = π {ξ (s− jβ) + ξ (s+ jβ)} (18.100)

FHi (s) = −jπsgn (ℑ [s]) {ξ (s− jβ) + ξ (s+ jβ)} = −jπ {ξ (s− jβ)− ξ (s+ jβ)}
(18.101)

fHi (t) = sin (βt) (18.102)

Example Given f (t) = ΠT (t) we write F (s) = 2T Sa (−jT s) = 2T Sah (Ts). Hence

FHi (s) = −jsgn (ℑ[s]) 2TSah (Ts) =




−j2TSah (Ts) , ℑ [s] > 0

j2TSah (Ts) , ℑ [s] < 0
(18.103)

Table 18.6 lists basic generalized Hilbert transforms.

TABLE 18.6 New generalized Hilbert transforms

f (t) fHi (t) FHi (s)

ejt −jejt −j2πξ (s− j)

cosβt sinβt −jπ {ξ (s− jβ)− ξ (s+ jβ)}

ΠT (t)
1

π
ln

∣∣∣∣
t+ T

t− T

∣∣∣∣
{
−j2TSah (sT ) , ℑ [s] > 0
j2TSah (sT ) , ℑ [s] < 0

1

t2 + 1

t

t2 + 1

{
−jπe−|s|, ℑ [s] > 0
jπe−|s|, ℑ [s] < 0

δ(t) 1/(πt) −jsgn(ℑ[s])
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18.14 Generalizing the Discrete Hilbert Transform

In the discrete-time domain Hilbert transformer may be viewed as a filter of transfer function

H
(
ejΩ
)

=

{
−j , 0 < Ω < π
j , −π < Ω < 0

(18.104)

To generalize the discrete Hilbert transform we may write

sgn [n] = 2u [n]− 1 (18.105)

sgn [n]
Z←→ 2

{
1

1− z−1
+ πψ (z)

}
− 2πψ (z) =

2

1− z−1
(18.106)

The filter impulse response is

h [n] =
1

2π

{
ˆ 0

−π

jejΩndΩ+

ˆ π

0

−jejΩndΩ

}
=

1

2π

{
1− e−jπn

n
− ejπn − 1

n

}
(18.107)

h [n] =
1

2nπ
{2− 2 cos (πn)} =

1− cos (πn)

πn
=

{
0 , n even
2

πn , n odd
(18.108)

H (z) = −jsgn (−j ln z) (18.109)

In other words, if z = rejb, H (z) = −jsgn (b− j ln r) = −jsgn (b). Given a sequence x [n]
its Hilbert transform in the z-domain is therefore

XHi (z) = −jsgn (−j ln z)X (z) (18.110)

and in the time domain is xHi [n] = x [n] ∗ h [n]

Example With x [n] = cos (bn), X (z) = π
{
ψ
(
e−jbz

)
+ ψ

(
ejbz

)}

XHi (z) = −jsgn (−j ln z)X (z) = −jπsgn (−j ln z)
{
ψ
(
e−jbz

)
+ ψ

(
ejbz

)}
(18.111)

Hence XHi (z) = −jπ
{
ψ
(
e−jbz

)
− ψ

(
ejbz

)}
and xHi [n] = sin (bn).

Table 18.7 lists basic generalized discrete Hilbert transforms.

18.15 Generalized Hartley Transform

The Hartley transform, defined above in Chapter 14, may be generalized by an extension
in Laplace plane. We may write

FHa (s) = 1
2

´∞
−∞ f(t) {est + e−st − j (est − e−st)} dt

= 1
2

´∞
−∞ f(t) {2 cosh st− j2 sinh st} dt (18.112)

FHa (s) =

ˆ ∞

−∞
f(t) {cosh st− j sinh st} dt. (18.113)
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TABLE 18.7 Generalized discrete Hilbert transforms

x[n] xHi [n] XHi (z)

δ [n]
1− cos (πn)

πn
−jsgn(−j ln z)

cos bn sin (bn) −jπ
{
ψ
(
z/ejb

)
− ψ

(
z/e−jb

)}

u [n] u [n] ∗ 1− cos (πn)

πn






−j
1− z−1

, ℑ [z] > 0

j

1− z−1
, ℑ [z] < 0

sgn [n] sgn [n] ∗ 1− cos (πn)

πn






−j2
1− z−1

, ℑ [z] > 0

j2

1− z−1
, ℑ [z] < 0

The inverse transform is given by

f(t) = 1
4πj

´ σ+j∞
σ−j∞ FHa(s) {est + e−st − j (est − e−st)} ds

= 1
4πj

´ σ+j∞
σ−j∞ FHa(s) {2 cosh st− j2 sinh st} ds (18.114)

f(t) = 1
2πj

´ σ+j∞
σ−j∞ FHa(s) {cosh st− j sinh st} ds (18.115)

Example
With f(t) = eαt

FHa(s) =
´∞
−∞ e

αt {cosh st− j sinh st} dt =
´∞
−∞ e

αt
(

est+e−st

2 − j est−e−st

2

)
dt

= 1
2

´∞
−∞ e

(s+α)t + e−(s−α)t − je(s+α)t + je−(s−α)tdt
(18.116)

=
1

2
{2πξ (−s− α) + 2πξ (s− α)− j2πξ (−s− α) + j2πξ (s− α)} (18.117)

= π {(1− j) ξ (s+ α) + (1 + j) ξ (s− α)} (18.118)

Table 18.8 lists basic generalized Hartley transforms.

18.16 Generalized Discrete Hartley Transform

A generalized Hartley transform extending the transform over the complex z-plane may be
written in the form

XHa(z) =
1

2

∞∑

n=−∞
x [n]

{
(1 + j) z−n + (1− j) zn

}
=

1

2

{
(1 + j)X (z) + (1− j)X

(
z−1

)}

(18.119)
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TABLE 18.8 Generalized Hartley transforms

f(t) FHa(s)

1 2πξ (s)

eγt π {(1− j) ξ (s+ γ) + (1 + j) ξ (s− γ)}

cosβt π {ξ (s+ jβ) + ξ (s− jβ)}

sinβt π {ξ (s− jβ)− ξ (s+ jβ)}

eαt cosβt (π/2) {(1− j) [ξ (s+ α+ jβ) + ξ (s+ α− jβ)]
+ (1 + j) [ξ (s− α− jβ) + ξ (s− α+ jβ)]}

u(t) j2/s+ 2πξ (s)

sgnt j2/s

δ (t) 1

Examples
Let x [n] = 1 , X (z) = 2πψ (z)

XHa (z) =
1

2

{
(1 + j) 2πψ (z) + (1− j) 2πψ

(
z−1

)}
= 2πψ (z) = X (z) (18.120)

Let x [n] = an , X (z) = 2πψ
(
a−1z

)
,

XHa (z) =
1

2

{
(1 + j) 2πψ

(
a−1z

)
+ (1− j) 2πψ

(
a−1z−1

)}
(18.121)

i.e. XHa (z) = π
{
ψ
(
a−1z

)
+ ψ (az) + j

[
ψ
(
a−1z

)
− ψ (az)

]}
.

Table 18.9 lists extended discrete Hartley transforms in z-domain.

18.17 Generalization of the Mellin Transform

The Mellin transform of a causal function f (x) is written in the form

FM(s) =

ˆ ∞

0

f(x)xs−1dx. (18.122)

Let x = e−t, dx = −e−tdt, xs−1 = e−t(s−1) = e−tset

FM(s) = −
ˆ −∞

∞
f(e−t)e−stdt =

ˆ ∞

−∞
f(e−t)e−stdt = L[f(e−t)] (18.123)

As noted in Chapter 14 the Mellin transform of the function f (x) is the bilateral Laplace
transform of the function f (e−t). Since the bilateral Laplace transform of the most basic of
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TABLE 18.9 Generalized discrete Hartley transforms

x [n] XHa (z)

1 2πψ (z)

an π
{
ψ
(
a−1z

)
+ ψ (az) + j

[
ψ
(
a−1z

)
− ψ (az)

]}

cos bn π
{
ψ
(
e−jbz

)
+ ψ

(
ejbz

)}

sin bn π
{
ψ
(
e−jbz

)
− ψ

(
ejbz

)}

u [n]
2−

(
z + z−1

)
− j

(
z − z−1

)

4− 2 (z + z−1)
+ πψ (z)

anu [n]
2− a

(
z + z−1

)
− ja

(
z − z−1

)

2 (1− az) (1− az−1)
+ πψ

(
a−1z

)

functions do not exist a great barrier has hitherto blocked the way to evaluating the Mellin
transform of a large class of functions. Now, with the introduction of the generalized distri-
butions and generalized Dirac-delta impulse, bilateral Laplace transforms of most functions
can be readily obtained. The effect is opening the doors to the expansion of the domains of
existence of the Mellin transform.

Example

Given f(x) = xjβ we have

f(e−t) = e−jβt (18.124)

FM(s) = L[e−jβt] = 2πξ(s+ jβ) (18.125)

with f(x) = x−jβ

FM(s) = L[eiβt] = 2πξ(s− jβ) (18.126)

with f(x) = xjβ + x−jβ

FM(s) = 2π {ξ(s+ jβ) + ξ(s− jβ)} (18.127)

with f(x) = xjβ − x−jβ

FM(s) = 2π {ξ(s+ jβ)− ξ(s− jβ)} (18.128)

Table 18.10 lists new basic Mellin transforms obtained thanks to the expansion of the
domain of existence of bilateral Laplace transform.

From knowledge of Mellin transforms we can obtain additional new bilateral Laplace
transforms as can be seen in Table 18.11.
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TABLE 18.10 New Mellin transforms

f(x) FM(s)

xγ 2πξ (s+ γ)

xγ + xγ∗ 2π {ξ (s+ γ) + ξ (s+ γ∗)}

u (− lnx) 1/s+ πξ (s)

xαu (− lnx) 1/ (s+ α) + πξ (s+ α)

sgn (− lnx) 2/s

lnx 2πdξ(s)/ds

(lnx)
n

2πξ(n) (s)

(lnx)n u (− lnx)
(−1)

n
n!

sn+1
+ πξ(n) (s)

18.18 Multidimensional Signals and the Solution of Differential
Equations

The extended generalized transforms are applicable to the transformation of multidimen-
sional signals. As an example of such applications, Table 18.12 lists new extended two-
dimensional bilateral z-transforms of some basic sequences.

S (n,m) ≡ S(m)
n =

1

m!

m∑

k=0

(−1)
m−k

(
m
k

)
kn.

As an example of the application of extended transforms to partial differential equations
we consider the solution of the heat equation

∂u (x, t)

∂t
− ∂2u (x, t)

∂x2
= teαt (18.129)

with the boundary conditions u (0, t) = u (1, t) = 0 and the initial condition u (x, 0) = 0.
Laplace transforming both sides of the partial differential equation we have

d2U

dx2
(x, s) − sU(x, s) = −2πξ′(s− α) (18.130)

The particular solution has the form Up (x, s) = A0 which upon substitution in the equation
implies that −sA0 = −2πξ′ (s− α), i.e.

A0 = 2πξ′ (s− α) /s = (2π/α) ξ′ (s− α) +
(
2π/α2

)
ξ (s− α) (18.131)

and the general solution has the form

U(x, s) = k1 cosh
√
sx+ k2 sinh

√
sx+

2π

α
ξ′(s− α) +

2π

α2
ξ(s− α) (18.132)
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TABLE 18.11 Additional new bilateral Laplace
transforms

f(t) F (s)

e−a e−t

a−sΓ(s) , Re [a] > 0 , σ > 0

e−e−2t 1

2
Γ (s/2)

sin e−t Γ (s) sin (πs/2) , −1 < σ < 1

cos e−t Γ (s) sin (πs/2) , 0 < σ < 1

1

1 + e−t
π cosec πs

1

1− e−t
bπ cotπs

1

(1 + e−t)a
Γ(s)Γ(a− s)

Γ(a)
, Re [a] > 0

1

1 + e−2t
(π/2) cosec (πs/2)

(1− e−t)
a−1

u(t)
Γ(s)Γ(a)

Γ(s+ a)
, Re [a] > 0

(e−t − 1)
a
u(−t) Γ(a− s)Γ(1 − a)

Γ(1− s) , 0 < Re [a] < 1

ln (1 + e−t) (π/s) cosec πs, −1 < σ < 0

π/2− tan−1 e−t π

2s
sec (s/2)

Λ (e−t − 1)





2 (2s − 1)

s (s+ 1)
, s 6= 0, σ > −1

2 ln 2, s 6= 0, σ > −1

erfc e−t [Γ (s/2 + 1/2)] /
(
π2s
)
, σ > 0

Si e−t −{Γ(s) sin (πs/2)} /s , −1 < σ < 0
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TABLE 18.12 New two-dimensional bilateral z-transforms

x [n1, n2] X (z1, z2)

1 4π2ψ (z1)ψ (z2)

an1bn2 4π2ψ
(
a−1z1

)
ψ
(
b−1z2

)

u [n1, n2]
1(

1− z−1
1

) (
1− z−1

2

) +
πψ (z1)

1− z−1
2

+
πψ (z2)

1− z−1
1

+ π2ψ (z1)ψ (z2)

cosβ1n1 cosβ2n2 π2
{
ψ
(
e−jβ1z1

)
+ ψ

(
ejβ1z1

)} {
ψ
(
e−jβ2z2

)
+ ψ

(
ejβ2z2

)}

n1n2 4π2z1z2ψ
′ (z1)ψ′ (z2)

nr1
1 n

r2
2 4π2

{
r1+1∑

i=1

(−1)
i+1

S (r1 + 1, i)ψ(i−1) (z1)

}

×
{

r2+1∑

k=1

(−1)
k+1

S (r2 + 1, k)ψ(k−1) (z2)

}

Using the initial condition U(0, s) = U(1, s) = 0 and U(1, s) = 0 we have

k1 = −2π

α
ξ′(s− α)− 2π

α2
ξ(s− α) (18.133)

k1 cosh
√
s+ k2 sinh

√
s+

2π

α
ξ′(s− α) +

2π

α2
ξ(s− α) = 0 (18.134)

k2 =

[
−k1 cosh

√
s− 2π

α
ξ′(s− α)− 2π

α2
ξ(s− α)

]
/ sinh

√
s (18.135)

We obtain

U(x, s) = (2π/α)F (x, s)ξ′(s− α) +
(
2π/α2

)
F (x, α)ξ(s − α) (18.136)

where

F (x, s) = 1 + coth
√
s sinh

√
sx− sinh

√
sx/ sinh

√
s− cosh

√
sx (18.137)

Since in general
F (s)ξ′(s− α) = F (α)ξ′(s− α)− F ′(α)ξ(s − α) (18.138)

we may write

U(x, s) = (2π/α)F (x, α)ξ′(s− α) − (2π/α) {F ′(x, α) − F (x, α)/α} ξ(s− α) (18.139)

which can be written in the form

U(x, s) = (2π/α)F (x, α)ξ′(s− α)− (2π/α)G(x, α)ξ(s − α) (18.140)

with
G(x, α) = F ′(x, α) − F (x, α)/α (18.141)
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FIGURE 18.12 R-L circuit, Problem 3.7.

After some algebraic manipulation we obtain

G (x, α) = −1
4α {sech

2 (
√
α/2) [2 + 2 cosh

√
α− 2 cosh (

√
αx−√α)− 2 cosh

√
αx

+
√
αx sinh (

√
αx−√α)−√αsinh

√
αx+

√
αx sinh

√
αx]}

wherefrom the solution

u(x, t) =
−F (x, α)

α
teαt − 1

α
G (x, α) eαt.

18.19 Problems

Problem 18.1 For the circuit shown in Fig.18.12,
a) evaluate the transfer function H (s) between the input e (t) and output v (t)
b) evaluate the system impulse response.
c) evaluate the response of the circuit to the inputs

i) e1 (t) =
∞∑

n=−∞
δ (t− n)

ii) e2 (t) =
∞∑

n=0
δ (t− n)

Problem 18.2 Let x (t) = x1 (t)+x2 (t) , v (t) = v1 (t)+v2 (t) where x1 (t) = u (t) , x2 (t) =
u (−t)

v1 (t) = sinβt u (t) , v2 (t) = sinβt u (−t) .
Evaluate Laplace and Fourier transform of x (t) and v (t) if they exist, stating the regions
of convergence and the reason if non-existent.

Problem 18.3 For each of the following signals evaluate the Laplace transform, the poles
with the region of convergence, and state whether or not the Fourier transform exists.

a) v1(t) =

P∑

i=1

Aie
−ait cos(bit+ θi)u(t) +

P∑

i=1

Bie
cit cos(dit+ φi)u(−t)

where the ai, bi and ci are distinct and bi > 0, di > 0, ai > 0, ci > 0, ∀ i.
b) The same function v1(t) but with the conditions:

bi > 0, di > 0, ai > 0, ci < 0, ∀ i.
c) The same function v1(t) but with the conditions:

bi > 0, ai = 0, Bi = 0, ∀ i.
d) v2(t) = A cos(bt+ θ), −∞ < t <∞.
e) v3(t) = Ae−t, −∞ < t <∞.
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18.20 Answers to Selected Problems

Problem 18.1
a) H (s) = sL

R+sL = s
s+1 = 1− 1

s+1

b) h (t) = δ (t)− e−tu (t)
c)
i)

V1 (s) = E1 (s) H (s) = 2π
∞
Σ

n=−∞
ξ (s− jn2π)

s

s+ 1

= 2π
∞
Σ

n=−∞

j2nπ

j2nπ + 1
ξ (s− j2nπ)

ii)

E2(jω) = 0.5 +
∞
Σ

n=−∞

1

jω − jn2π
+ π

∞
Σ

n=−∞
δ(ω − n2π)

V2 (s) =
s

(1 − e−s)(s+ 1)
, σ > 0.

Problem 18.2

V1 (jω) = β/
(
β2 − ω2

)
+ [π/ (2j)] {δ (ω − β)− δ (ω + β)}

V2 (jω) = −β/
(
β2 − ω2

)
− [π/ (2j)] {δ (ω + β)− δ (ω − β)}

V (jω) = V1 (jω) + V2 (jω) = (π/j) {δ (ω − β)− δ (ω + β)} = F [sin βt] .

Problem 18.3
c)

V1(s) =

P∑

i=1

Ai cos θi[
s

s2 + b2i
+
π

2
{ξ(s− jbi) + ξ(s+ jbi)}]

−Ai sin θi[
bi

s2 + b2i
− jπ

2
{ξ(s− jbi)− ξ(s+ jbi)}]

V1(jω) =

P∑

i=1

Ai cos θi[
jω

b2i − ω2
+
π

2
{δ(ω − bi) + δ(ω + bi)}]

−Ai sin θi[
bi

b2i − ω2
− jπ

2
{δ(ω − bi)− δ(ω + bi)}].

d)

V2(s) = Aπ[cos θ{ξ(s− jb) + ξ(s+ jb)}+ j sin θ{ξ(s− jb)− ξ(s+ jb)}]
V2(jω) = Aπ[cos θ{δ(ω − b) + δ(ω + b)}+ j sin θ{δ(ω − b)− δ(ω + b)}]
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Appendix

A.1 Symbols

The following symbols are adopted:

x∗ : Conjugate of x; ∗ : Convolution ⋆ : Correlation.

ΠT (t) Centered rectangle of total width 2T; ΠT (t) = u (t+ T )− u (t− T ) .

ΛT (t) Centered triangle of height 1 and total width 2T.

RT (t) Rectangle of width T starting at t = 0,
RT (t) = u (t)− u (t− T ) .

These functions are represented graphically in Fig. 1.1 of Chapter 1. The figure also shows
the usual graphical representation of the Dirac-delta impulse δ(t), a representation of its
derivative δ

′
(t) and the impulse train ρT (t) of period T ,

ρT (t) =

∞∑

n=−∞
δ (t− nT )

=△ : Equals by definition; s −→ y : s replaced by y

ξ (s) Generalized delta impulse in s domain; ψ (z) Generalized delta impulse in z domain.

The function Sah(x) ≡ Sh(x) is the hyperbolic generalization of the usual (trigonometric)
sampling function Sa(x) [26] [18]. Sah(x) ≡ Sh(x) = sinh(x)/x. The function SdN (Ω)
is the discrete counterpart of the sampling function. It is related to the transform of a
rectangle and is given by [26]

SdN (Ω) = sin(NΩ)/sin(Ω). (A.1)

which is depicted together with its modulus in Fig. A.1. We can adopt other generalizations
of the sampling function Sa(x), namely, Ca(x) = cos(x)/x, Ta(x) = tan(x)/x, Sah(x) ≡
Sh(x) = sinh(x)/x, Cah(x) = cosh(x)/x, Tah(x) = tanh(x)/x, . . . [18] [26].

A.2 Frequently Needed Expansions

General property of differentiation of a product

(ab)
(n)

=

n∑

m=0

(
n
m

)
a(n−m)b(m) (A.2)

1257
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FIGURE A.1 The Sd function and its modulus.

Taylor’s Series

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)(x − a)2

2!
+ . . .+

f (n−1)(a)(x − a)n−1

(n− 1)!
+ . . . (A.3)

Binomial Expansion

(x+ y)n =
n∑

k=0

(
n
k

)
xn−kyk (A.4)

(1 + x)−1/2 = 1− 1

2
x+

1 · 3
2 · 4x

2 − 1 · 3 · 5
2 · 4 · 6x

3 + . . . , −1 < x ≤ 1. (A.5)

(x1 + x2 + . . .+ xp)
n

=
∑ n!

n1!n2! . . . np!
xn1

1 xn2
2 . . . xnp

p (A.6)

(
1

ω

)(n)

=
(−1)nn!

ωn+1
(A.7)

Stirling Number First Kind

s (n, m) ≡ sm
n =

n−m∑

k=0

(−1) k

(
n− 1 + k
n−m+ k

)(
2n−m
n−m− k

)
s (n−m+ k, k) (A.8)

Stirling Number Second Kind

S(m)
n ≡ S (n, m) =

1

m!

m∑

k=0

(−1)
m−k

(
m
k

)
kn (A.9)
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A.3 Important Trigonometric Relations

We have
1 + ejθ = ejθ/2(e−jθ/2 + ejθ/2) = 2ejθ/2 cos(θ/2) (A.10)
∣∣1 + ejθ

∣∣ = 2 |cos(θ/2)| = 2 cos(θ/2), 0 < θ < π (A.11)

cos θ =
1

2

∣∣1 + ej2θ
∣∣ , 0 < θ < π/2 (A.12)

Similarly
1− ejθ = ejθ/2(e−jθ/2 − ejθ/2) = −2jejθ/2 sin(θ/2) (A.13)
∣∣1− ejθ

∣∣ = 2 |sin(θ/2)| = 2 sin(θ/2), 0 < θ < 2π (A.14)

sin θ =
1

2

∣∣1− ej2θ
∣∣ , 0 < θ < π. (A.15)

A.4 Orthogonality Relations

The trigonometric and complex exponential functions satisfy the following important or-
thogonality relations.

With k, m and n integers we have
ˆ

2π

ejktejmtdt =

{
0, k 6= −m
2π, k = −m

ˆ

2π

cos kt sinmt dt = 0

ˆ

2π

cos kt cosmt dt =






0, k 6= m, k ≥ 0, m ≥ 0
π, k = m > 0
2π, k = m = 0

ˆ

2π

sin kt sinmt dt =






0, k 6= m, k ≥ 0, m ≥ 0
π, k = m > 0
0, k = m = 0.

From Equation (17.207) with k +m = n
ˆ

2π

cosnt dt+ j sinnt dt =

{
0, n 6= 0
2π, n = 0

wherefrom
ˆ

2π

cosnt dt =

{
0, n 6= 0
2π, n = 0

ˆ

2π

sinnt dt = 0.

Using the substitution τ =
2π

T0
t, i.e. dτ =

2π

T0
dt we obtain with ω0 =

2π

T0

ˆ

T0

ej(k+m) ω0tdt =
T0

2π

ˆ

2π

ej(k+m) τdτ =

{
0, k 6= −m
T0, k = −m
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Similarly we obtain
ˆ

T0

cos kω0t sinmω0t dt = 0

ˆ

T0

cos kω0t cosmω0t dt =





0, k 6= m, k ≥ 0, m ≥ 0
T0/2, k = m > 0
T0, k = m = 0

ˆ

T0

sink ω0t sinmω0t dt =






0, k 6= m, k ≥ 0, m ≥ 0
T0/2, k = m > 0
0, k = m = 0

ˆ

T0

cosnω0t dt =

{
0, n 6= 0
T0, n = 0

ˆ

T0

sinnω0t dt = 0

A.5 Frequently Encountered Functions

Error Function

erf(t) =
2√
π

ˆ t

0

e−u2

du. (A.16)

Complementary Error Function

erfc(t) = 1− erf(t) =
2√
π

ˆ ∞

t

e−u2

du. (A.17)

Exponential Integral

Ei(t) =

ˆ ∞

t

e−u

u
du. (A.18)

Sine Integral

Si(t) =

ˆ t

0

sinu

u
du. (A.19)

Cosine Integral

Ci(t) =

ˆ ∞

t

cosu

u
du. (A.20)

A.6 Mathematical Formulae

α
n−1∑

k=0

rk = α+ αr + αr2 + αr3 + . . .+ αrn−1 =
α (1− rn)

1− r =
α− rl
1− r (A.21)

where −1 < r < 1. If −1 < r < 1, then

α

∞∑

k=0

rk = α+ αr + αr2 + αr3 + . . . =
α

1− r (A.22)
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A.7 Frequently Encountered Series Sums

α+ (α+ d) r + (α+ 2d) r2

+ . . .+ (α+ (n− 1) d) rn−1 =
α (1− rn)

1− r +
rd
{
1− nrn−1 + (n− 1) rn

}

(1− r)2
(A.23)

where r 6= 1. If −1 < r < 1, then

α+ (α+ d) r + (α+ 2d) r2 + . . . =
α

1− r +
r d

(1− r)2
(A.24)

In evaluating z-transforms, convolutions and correlations the sum of a geometric series,
or variations thereof, are usually encountered. The following sums are worthwhile remem-
bering.

n2∑

n=n1

an = an1
1− an2−n1+1

1− a
∞∑

n=0

an =
1

1− a , |a| < 1.

(A.25)

Sums such as
∑

nan can be deduced through differentiation.

Differentiating both sides we have

∞∑

n=0

nan−1 =
1

(1− a)2
(A.26)

i.e. ∞∑

n=0

nan =
a

(1− a)2
. (A.27)

The Sum of the Weighted Geometric Series

n2∑

k=n1

kak is often encountered in evaluating

convolutions, correlations and z-transform. It is worthwhile obtaining a closed form that
may be subsequently used whenever the need arises. We shall use the notation

S(a, n1, n2)=△
n2∑

k=n1

kak (A.28)

To evaluate the sum we first recall the sum of the geometric series

n2∑

k=n1

ak = an1
1− an2−n1+1

1− a =
an1 − an2+1

1− a (A.29)

Differentiating both sides of this equation we have

n2∑

k=n1

kak−1 =
(1 − a)

{
n1a

n1−1 − (n2 + 1)an2
}

+ (an1 − an2+1)

(1− a)2 (A.30)

Hence

S(a, n1, n2)=△
n2∑

k=n1

kak =
(1− a)

{
n1a

n1 − (n2 + 1)an2+1
}

+ (an1+1 − an2+2)

(1− a)2 (A.31)
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This sum of a weighted geometric series can now be coded as a MATLABr function. The
following MATLAB function can subsequently be used to evaluate expressions containing
such a sum:

function [summ] = wtdsum(a,n1,n2)

sum=0;

for k=n1:n2

sum = sum + k. ∗ âk;

end

summ=sum;

A.8 Biographies of Pioneering Scientists

Due to space limitation the following is a snapshot of the lives of only a few of the scientists
who laid the foundations of the subjects studied in this book.

A.9 Plato (428 BC–347 BC)

FIGURE A.2 Plato, (Museus Capitolinos, Roma). Photograph courtesy of Corbis Corp.

Plato was born in Athens, Greece, around 428 BC. He is known as one of the earliest and
most famous philosophers. His original name was Aristocles, and nicknamed Plato meaning
broad-shouldered. He was the son of Ariston and Perictione. His father Ariston is believed
to be descendant of the king of Athens, Codrus, and the king of Messenia, Melanthus. His
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mother Perictione was related to the famous Athenian legislator and lyric poet Solon. She
was sister of Charmides, a close friend of Socrates (c. 469 BC–399 BC), and niece of Critias,
both leaders of the Thirty Tyrants, the brief oligarchic regime that rose upon the collapse
of Athens at the end of the Peloponnesian War.

This war was fought between Athens and Sparta between 431 BC and 404 BC. Plato was
enlisted in military service from 409 BC to 404 BC. At the end of the war he was urged to join
in the leadership of the Thirty Tyrants but was repulsed by their violent measures. Plato
and his two older brothers became students of Socrates. Socrates advocated questioning
irrational dogmas and skepticism in the face of unsubstantiated ideas based on sheer belief.
Such revolutionary messages did not endear him to authorities.

After the reign of the Thirty Tyrants which lasted only eight months there was a restora-
tion of democracy in Athens and Plato considered playing a role in its politics. However,
Socrates’ association with opponents of the democratic regime let an Athenian jury lay
charges of corrupting the youth and interfering with the religion of the state. Socrates was
convicted and sentenced to death in 399 B.C. Accepting this outcome with remarkable
grace, Socrates drank hemlock and died in the company of his friends and disciples. The
sentencing to death of Socrates had a profound effect on Plato, and he decided that he
would have nothing further to do with politics in Athens.

Plato traveled to Egypt, Sicily and Italy. In Egypt he learnt of a water clock, clepsydra,
in Greek, and had a role in its existence in Greece. While in Italy he studied the work of
Pythagoras (born between 580 and 572 BC, died between 500 and 490 BC) and became
enamored with mathematics. Plato acquired knowledge from the disciples of Pythagoras,
which helped him form his own idea “... that the reality which scientific thought is seeking
must be expressible in mathematical terms, mathematics being the most precise and definite
kind of thinking of which we are capable. The significance of this idea for the development
of science from the first beginnings to the present day has been immense.” [1].

Following another war, during which period he served again in the military, Plato began
writing his dialogues. He returned to Athens and founded his Academy, in about 387 BC.
It was built in a grove sacred to the demigod Academus; whence the name academy that
we use today. The Academy was, in effect, a university of higher learning, which included

FIGURE A.3 (a) Pythagoras (c.580–500 BC) www.en.wikipedia.org/wiki/Pythagoras
(b) Socrates (c. 469–399 BC). www.en.wikipedia.org/wiki/Image:Socrates Louvre.jpg
(c) Aristoteles (384–322 BC). www.en.wikipedia.org/wiki/Image:Aristoteles Louvre.jpg

www.en.wikipedia.org/wiki/Pythagoras
www.en.wikipedia.org/wiki/Image:Socrates_Louvre.jpg
www.en.wikipedia.org/wiki/Image:Aristoteles_Louvre.jpg
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physical science, astronomy, mathematics and philosophy. Aristoteles (384–322 BC) was a
student and then teacher at the Academy. He is referred to often as Aristotle. However the
true name in Greek is Aristoteles.

Plato’s main contributions are in philosophy, mathematics and science. He compared the
precise mathematical abstract concept with our attempts to reproduce it. A drawing will
never produce a true circle, an isosceles triangle, a right angle, or even a simple straight
line as we know them in the abstract.

“Platonic solids” are named after Plato. In his “Timaeus” there is a mathematical con-
struction of the elements that make up the elements of the universe, earth, fire, air, and
water, wherein the cube, tetrahedron, octahedron, and icosahedron are the shapes of the
atoms of earth, fire, air, and water. The fifth Platonic solid, the dodecahedron, is Plato’s
model for the whole universe.

Following the death of Dionysius I the ruler of Syracuse, Italy, his brother-in-law, Dion,
persuaded Plato to tutor Dionysius II, the new ruler. Plato went to Syracuse, Italy, in 367
BC. Dion and Archytas of Tarentum believed that if Dionysius II was trained in science and
philosophy he would become a ruler capable of protecting Sicily from invasion by Carthage.
However, Dionysius II expelled Dion out of Syracuse and the plan of educating Dionysius II
fell apart. Plato returned to Athens, but went back to Syracuse again in 361 BC, hoping to
reconcile Dionysius II and Dion. He did not succeed in his attempts and returned to Athens
in 360 BC. Dion attacked Syracuse in a coup in 357 BC. He gained control of the city; but
was murdered in 354 BC.

Plato believed that the stars, the planets, the Sun and Moon move round the Earth in
crystalline spheres. The sphere of the Moon was closest to Earth, followed by the sphere of
the Sun, then Mercury, Venus, Mars, Jupiter, Saturn and, farther away, was the sphere of
the stars. He believed that the Moon shines by reflected sunlight. Plato presided over the
Academy where he gave lectures, dedicating to it the rest of his life. The Academy lasted
until 529 AD when it was closed down by the Christian Emperor Justinian, accusing it of
being a pagan institution. Having lasted for close to a millennium, it is the longest surviving
university known.

Plato died in 347 BC, at about the age of eighty.

References:

[1] G. C. Field, The Philosophy of Plato, Oxford, 1956.

http://library.thinkquest.org/18775/plato/biop.htm

Article by: J. J. O’Connor and E. F. Robertson, http://www-groups.dcs.st-and.ac.uk/
history/Biographies/Plato.html

Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Plato

http://plato-dialogues.org/life.htm

A.10 Ptolemy (circa 90–168 AD)

Ptolemy was the most influential astronomer, geographer, and mathematician of ancient
times. He was a Greek who lived in Alexandria, in Roman Egypt which was a major center
of knowledge of the ancient Mediterranean. He promoted the (geocentric) idea that the
Earth was the center of the Universe and that all things revolved around it. This theory
prevailed for the next 1400 years. The writings of Ptolemy include names and outlines of
48 constellations that are still in use today. He was the author of several scientific treatises
including his treatise on astronomy known as the Almagest, The Mathematical Treatise or

http://library.thinkquest.org/18775/plato/biop.htm
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Plato.html
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Plato.html
http://en.wikipedia.org/wiki/Plato
http://plato-dialogues.org/life.htm
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FIGURE A.4 Ptolemy

The Great Treatise, his treatise Geography, which is a thorough overview of the geography of
the Greco-Roman world, and his astrological treatise known in Greek as the Apotelesmatika
or the Tetrabiblos (“Four books”), in which he proposed ways to reconcile astrology with
Aristotelian natural philosophy.

Reference:

http://en.wikipedia.org/wiki/Ptolemy

A.11 Euclid (circa 300 BC)

FIGURE A.5 Euclid.

Euclid was a Greek mathematician who lived and taught in Alexandria, Egypt, circa 300
BC. He is considered the most prominent mathematician of antiquity, best known for The

http://en.wikipedia.org/wiki/Ptolemy
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Elements, his treatise on mathematics.

Euclid’s Elements is a mathematical treatise on geometry consisting of thirteen books.
It comprises a collection of axioms, theorems and constructions, followed by mathematical
proofs of the theorems.

The thirteen books cover what came to be known as Euclidean geometry, and the ancient
Greek version of number theory. With the exception of Autolycus On the Moving Sphere,
Elements is one of the oldest extant Greek mathematical treatises and it is the oldest extant
axiomatic deductive treatment of mathematics. It laid the foundations of logic and modern
science.

Euclid’s Elements is considered the most successful and influential textbook ever written.
It is one of the very earliest mathematical works to be printed, being first set in type in
Venice in 1482, after the invention of the printing press. It is second only to the Bible in
the number of editions published, with the number surpassing 1,000. It has been used as
the basic text on geometry throughout the world for about 2,000 years. For centuries, when
the quadrivium was included in the curriculum of university students, knowledge of at least
part of Euclid’s Elements was an absolute requirement.

References:

Bulmer-Thomas, J. E. Murdoch, Biography in Dictionary of Scientific Biography (New

York 1970–1990).

T. L. Heath, A History of Greek Mathematics 1 (Oxford, 1931).

Also J. J. O’Connor and E F Robertson,

http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Euclid.html

http://en.wikipedia.org/wiki/Euclid

A.12 Abu Ja’far Muhammad ibn Musa Al-Khwarizmi
(780–850 AD)

FIGURE A.6 Abu Ja’far Muhammad ibn Musa Al-Khwarizmi.

Born: About 780 in Baghdad (now in Iraq); died: About 850

http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Euclid.html
http://en.wikipedia.org/wiki/Euclid
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Not much is known about Abu Ja’far Muhammad ibn Musa al-Khwarizmi’s life. Within
years of al-Khwarizmi’s birth, on September 14, 786, the famous conqueror Harun al-Rashid
(March 17, 763–March 24, 809 born in Rayy near Tehran, Iran) became the fifth Caliph of
the Abbasid dynasty. Harun ruled, from his court in the capital city of Baghdad, over the
Islam empire which stretched from the Mediterranean to India. He brought culture to his
court. His time was marked by scientific, cultural, and religious prosperity, and he tried to
establish intellectual disciplines which he felt were lagging behind in the Arabic world. Art,
literature, and music flourished significantly during his reign.

Harun al-Rashid had two sons, the elder al-Amin, the younger al-Mamun. Harun died in
809 and there followed an armed conflict between the two brothers. Al-Mamun prevailed
and al-Amin was killed in 813.

Al-Mamun became Caliph and ruled the empire from Baghdad. He continued the cultural
patronage started by his father and founded an academy called the House of Wisdom Bayt
al-Hikma where Greek philosophical and scientific works were translated.

He also constituted a library of manuscripts, the first major library set up since the famous
one in Alexandria, collecting important works from Byzantium. In addition, al-Mamun set
up observatories in which Muslim astronomers could build on the knowledge acquired by
earlier world astronomers.

Under the patronage of Al-Mamun, al-Khwarizmi and his colleagues the Banu Musa
brothers were scholars at the Bayt al-Hikma in Baghdad. They worked on translation of
Greek scientific manuscripts and studied, and wrote on, algebra, geometry and astronomy.

Al-Khwarizmi dedicated two of his texts to the Caliph. These were a treatise on algebra
and the other on astronomy. The algebra treatise Hisab al-jabr w’al-muqabala was to be
the most famous and important of all of al-Khwarizmi’s works. It is the word “al-jabr” in
the title that gave the Western world the word “algebra,” and in a sense it is the first book
to be written on algebra. Al-Khwarizmi wrote that the purpose of the book wass to teach
“what is easiest and most useful in arithmetic, such as men constantly require in cases
of inheritance, legacies, partition, lawsuits, and trade, and in all their dealings with one
another, or where the measuring of lands, the digging of canals, geometrical computations,
and other objects of various sorts and kinds are concerned.”

This may not resemble the algebra of today. However it should be noted that the book
was intended to be a practical guide and that algebra was introduced to solve problems of
everyday life in the Islamic empire at that time.

Early in the book al-Khwarizmi introduces natural numbers. He then introduces linear
and quadratic equations and their solutions.

Al-Khwarizmi employs only words instead of symbols to denote his variables, in contrast
to earlier treatises on mathematics. Equation simplification and thence solution is effected
using the two operations of al-jabr and al-muqabala. Here “al-jabr” may be interpreted as
restoration, wherein terms are moved from one side of the equation to the other to remove
negative terms. The term “al-muqabala” means encounter, wherein terms of equal powers
of the unknown variable are joined together.

Al-Khwarizmi then shows how to solve six standard types of equations. He uses both al-
gebraic and geometric methods of solution. According to historians the geometrical proofs
point to unfamiliarity with Euclid’s Elements. Yet, while al-Khwarizmi was a young man, al-
Hajjaj had translated Euclid’s Elements into Arabic, and al-Hajjaj was one of al-Khwarizmi’s
colleagues in the Bayt al-Hikma House of Wisdom. According to Toomer [1] “... in his in-
troductory section al-Khwarizmi uses geometrical figures to explain equations, which surely
argues for a familiarity with Book II of Euclid’s Elements.”

Rashed [2] on the other hand writes that al-Khwarizmi’s “... treatment was very probably
inspired by recent knowledge of the Elements.” However, Gandz in [3] argues that “Euclid’s
Elements in structure and deductive reasoning are absent in the geometrical proofs.”
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The next part of al-Khwarizmi’s book deals with formulas on the area of geometric figures
such as the circle and the volume of solids such as the sphere, cone, and pyramid. This section
on mensuration has more in common with Hindu and Hebrew texts than it does with any
Greek work.

The final part of the book deals with the complicated Islamic rules for inheritance but
requires little from the earlier algebra beyond solving linear equations.

Al-Khwarizmi then wrote a treatise on Hindu-Arabic numerals. The Arabic text is lost
but a Latin translation, Algoritmi de numero Indorum, or Al-Khwarizmi on the Hindu
Art of Reckoning gave rise to the word “algorithm” derived from his name in the title.
Unfortunately the Latin translation is known to be much changed from al-Khwarizmi’s
original text (of which even the title is unknown). The work describes the Hindu positional
notation system of numerals based on the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. The first use
of zero as a place holder in positional base notation was probably due to al-Khwarizmi in
this work.

Methods for arithmetical calculation are given, and a method to find square roots is known
to have been in the Arabic original although it is missing from the Latin version. Toomer
writes [1] “... the decimal place-value system was a fairly recent arrival from India and ...
al-Khwarizmi’s work was the first to expound it systematically. Thus, although elementary,
it was of seminal importance.”

Far from elementary, the decimal positional notation replaced the Latin numerical system
and has to date become the universally adopted system of number representation.

Al-Khwarizmi also wrote a book titled Sindhind zij on astronomy. It was based on Indian
astronomical works [4] “... as opposed to most later Islamic astronomical handbooks, which
utilised the Greek planetary models laid out in Ptolemy’s Almagest...”

Al-Khwarizmi wrote, moreover, a major work on geography. It lists latitudes and lon-
gitudes for 2,402 localities on a world map. It was based on Ptolemy’s Geography. It lists
latitudes and longitudes of cities, seas, islands, geographical regions, mountains and rivers.
The manuscript contained maps which were on the whole more accurate than Ptolemy’s.
Wherever al-Khwarizmi could access more advanced information, such as the regions of Is-
lam, Africa and the Far East, his work is considerably more accurate than that of Ptolemy,
but for Europe al-Khwarizmi seems to have used Ptolemy’s data.

Al-Khwarizmi is a symbol, the tip of the iceberg, of the vast historic contributions of
the Arabs and more generally Islamic nations to the world. Here is one mathematician, as-
tronomer, who gave the world the name “Algebra” after the word “al-jabr” in his book title,
the word “algorithm,” derived from a Latin translation of his own name “Al-Khwarizmi”
and thanks to him the Hindu-Arabic system of decimal numbers and positional notation
became our basis of number representation and computation. A feast for one man.
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A.13 Nicolaus Copernicus (1473–1543)

FIGURE A.7 Nicolaus Copernicus. (Painting by Jan Matejko. Reproduced by permission
of the Museum in Frombork. http://www.frombork.art.pl/)

Born: February 19, 1473 in Torun, Poland; died: May 24, 1543 in Frauenburg
(now Frombork), Poland

The Polish astronomer Nicolaus Copernicus pioneered the heliocentric ordering of the plan-
ets. He was born on Feb. 19, 1473, in Torun about 100 miles south of Danzig. The name
Nicolaus Copernicus is the Latin version he chose in place of his original name Nikolaj
Kopernik or Nicolaus Koppernigk. His father, also Nikolaj Kopernik, was from Krakow and
moved to Torun where he had a copper trading business. The father was active politically;
a civic leader in Torun and a magistrate. In 1463 his father married Barbara Watzenrode,
and Nicolaus Copernicus was the youngest of their four children

Father Nikolaj died when young Nicolaus was 10 years old. His uncle Lucas Watzenrode,
a canon at Frauenburg Cathedral, became guardian to Nicolaus and his two sisters and
brother. Nicolaus and his brother Andreas continued their elementary education in Torun.
In 1488 his uncle Lucas sent Nicolaus to the cathedral school of Wloclawek where he studied
humanities. Three years later, Andreas and Nicolaus enrolled in the University of Krakow,
at a time when Krakow was in the capital of Poland. Originally founded as Akademia
Krakowska in 1364 by Casimir III the Great, it is one of the oldest universities in Europe.
(It was renamed as the Jagiellonian university in 1817 to commemorate the Jagiellonian
dynasty of Polish kings.)

Nicolaus’s uncle became Bishop of Ermland and he sought a church career for Nicolaus
and Andreas. Nicolaus studied Latin, mathematics, geography, astronomy, and philosophy.
The astronomy was based on Tractatus de Sphaera Mundi, or Treatise on the Sphere of the
Cosmos. Written by the English astronomer Johannes de Sacrobosco in 1230, it was based
heavily on Ptolemy’s Almagest, and drawing additional ideas from Islamic astronomy and
was one of the most influential works at the time.

http://www.frombork.art.pl/
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Nicolaus was taught Aristoteles’ and Ptolemy’s views of the universe as means of under-
standing the calendar, calculating the dates of holy days and navigating the seas. He studied
on his own the Latin translation of Euclid’s Elements published in Venice in 1482, the sec-
ond edition of the Alfonsine Tables, on planetary theory and eclipses, printed in Venice
in 1492; and Regiomontanus’s Tables of Directions, on spherical astronomy, published in
Augsburg in 1490. Remarkably Copernicus’ copies of these works, signed by him, are still
preserved.

The world of Latin he now lived through his readings made him choose to use henceforth
Copernicus as his name, instead of Kopernik or Koppernigk. He returned to Torun after
four years of study at the university of Krakow but, as was common at the time, did not
graduate with a degree.

With his uncle’s urging Copernicus decided to enroll at the university of Bologna to study
canon law. In the autumn of 1496 he traveled to Italy, entering the university of Bologna
to start three years of study. Meanwhile, his uncle put his name forward for the position
of canon at Frauenburg Cathedral. On October 20, 1497, while in Bologna, Copernicus
received official notification of his appointment as a canon.

At Bologna university Copernicus studied Greek, mathematics and astronomy, in addition
to his official course of canon law. He rented rooms at the house of the astronomy professor
Domenico Maria de Novara and began to contribute to his research by making observations.
On March 9, 1497 he observed the Moon eclipse the star Aldebaran.

In 1500 Copernicus visited Rome to celebrate the great jubilee. While in Rome he observed
an eclipse of the Moon which took place on November 6, 1500. He returned to Frauenburg,
also known as Frombork, in 1501 and became officially a canon of the Ermland Chapter on
July 27. He asked his uncle for permission to return to Italy both to take a law degree and to
study medicine. The Cathedral Chapter liked his proposal to study medicine and provided
the necessary funds. He went to Padua where he studied both medicine and astronomy.
Astronomy was essentially astrology and considered of value in medicine since physicians
made use of astrology.

Copernicus moved to Padua and from there he went to the university of Ferrara, where
he obtained the degree of doctor in canon law in 1503. He now could study medicine, which
he did in Padua until 1506.

Upon returning to Ermland, Copernicus lived in his uncle’s castle at Heilsberg and became
his personal physician and secretary. Copernicus’ love for the arts and humanities beside
mathematics and astronomy, led him to translate from Greek into Latin the 85 poems of
the Greek poet and Byzantine historian Theophylactus Simacotta, who was born in Egypt
in the seventh century. The work was printed in Krakow in 1509.

He now spent much time reflecting on the movements of heavenly bodies and in partic-
ular the heliocentric system. He put in writing his reflections in a short manuscript titled
Commentariolus, or small commentary, which he completed about 1512. He referred to it
as “Sketch of Hypotheses Made by Nicolaus Copernicus on the Heavenly Motions” and sent
copies of it to his friends. It proposed a list of seven axioms, each of which stated a feature
specific to the heliocentric system.

The third axiom in particular stated that “All the spheres revolve about the sun as their
midpoint, and therefore the sun is the center of the universe.” The rest of the manuscript
presented his proposition that in the new system only 34 circles were needed to explain
the motion of planets. The Commentariolus was communicated to others by his friends.
It produced no reaction whether in print or in letters, but astronomers became aware of
Copernicus as a new star on the horizon. Two years later he was invited to attend the
Fifth Lateran Council, one of whose aims was the reform of the calendar. He declined the
invitation to attend, writing that he felt that the motions of heavenly bodies was still not
understood with sufficient precision to allow reformation of the calendar. His reluctance to
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informally and freely divulge his ideas seemed to add to his enigma and reputation. In 1522
the secretary to the King of Poland asked Copernicus to comment on De Motu Octavae
Spherae, or On the Motion of the Eighth Sphere, just published by Johann Werner, a
mathematician of some renown. He answered in writing expressing a rejection of the value
of the work. He added that he intended to set forth elsewhere his own opinion about the
motion of the stars, citing his extensive studies of which parts were already in print at that
time.

Copernicus as a canon was occupied with administrative, financial, legal and medical
affairs. The Commentariolus received praise but also condemnation. Martin Luther (1483–
1546) denounced him as “the fool who will turn the whole science of astronomy upside
down.” In 1531 a satirical play heaping ridicule on his ideas was produced in Elbing, Prussia,
by a schoolmaster.

In Rome, however, there was no condemnation; at least so far. In 1533 John Widmanstad,
a papal secretary, lectured on Copernicus’ theory before Pope Clement VII and several
cardinals. Cardinal Schönberg wrote from Rome to Copernicus in 1536 urging him to publish
his theories on the universe.

Georg Joachim (Rheticus), a young scholar from Wittenberg, arrived in Frauenburg in the
spring of 1539. He was the catalyst that led eventually to the publishing of Copernicus’ long-
awaited masterpiece. When Rheticus returned to Wittenberg, he had printed an account,
known as the Narratio prima, of Copernicus’ almost-ready book. Rheticus initiated the
printing of Copernicus’ book in Nuremberg, which was deposited in the care of Andrew
Osiander, a Lutheran clergyman. He probably gave the work its title, De Revolutionibus
Orbium Coelestium, which is not in the manuscript.

The physics of Copernicus was still Aristotelian and added only 27 observations, a negligi-
ble amount, to the data he took over uncritically from Ptolemy and from already published
astronomical tables. The accuracy of predicting celestial phenomena on the basis of his sys-
tem did not exceed that achieved by Ptolemy. Nor did Copernicus give proof for the phases
of Mercury and Venus in support of his own theory.

The main thrust of Copernicus’ work was in its appeal to simplicity. The rotation of the
earth demystified the daily revolution of thousands of stars. The orbital motion of the earth
fitted perfectly, together with its period of 365 days, into the sequence set by the periods of
other planets. In the tenth chapter of the first book Copernicus stated unequivocally: “In
the center there is the sun. For who would place this lamp of a very beautiful temple in
another or better place than the center, wherefrom it can illuminate everything at the same
time.”

The book was reprinted only three times prior to the 20th century. No other “masterpiece”
of Western scientific or philosophical history was less sought than Copernicus’ Revolutions.
Yet, it is the book that has more recently been recognized as the cornerstone of modern
astronomy.

Copernicus received a copy of his published book, about 200 pages long, in Latin, hours
before he died on May 24, 1543, of a cerebral haemorrhage.

Reference:
Encyclopedia of World Biography on Nicolaus Copernicus,
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A.14 Galileo Galilei (1564–1642)

FIGURE A.8 Galileo Galilei.

Galileo Galilei was born February 15, 1564 in Pisa, Italy, into a family of Florentine
patricians. In 1581 he was enrolled to study medicine in the university of Pisa but would
soon study passionately mathematics and philosophy.

He left Pisa without graduating but would be appointed to the chair of mathematics
at the same university of Pisa in July 1589. In 1592 he occupied the prestigious chair of
mathematics at the university of Padua.

Galileo’s invention of the telescope in 1609 and 1610 put him at the forefront of world
scientists. He was appointed as chief mathematician and philosopher at the Florentine Court,
to the Grand Duke of Tuscany, Cosimo de Medici II.

Galileo’s astronomical discoveries were published in his 1610 book Sidereus Nuncius. They
questioned and revised age-old Ptolemaic/Aristotelian cosmology theories. His observations
of the Moon’s surface revealed valleys and mountains, contradicting the smooth spherical
surface postulated by Aristoteles. His observations of multitudes of faint stars supported
Copernicus’ claim that the universe was much larger than was believed at the time. His
discovery that there were four moons orbiting Jupiter, effectively refuted the Aristoteles’
claim that the Earth was the center of the universe, around which revolved all heavenly
bodies. Delving into such radical reflections, however, was viewed as blasphemy by the
church.

In the following two years Galileo made two more radical discoveries. These concerned
the phases of Venus and the the existence of sunspots. Galileo published his views on the
latter in three letters to Mark Wesler, as a follow up of three earlier letters to Wesler by
Christoph Scheiner.

Conflict over priority of discovery of sunspots erupted, making to the end bitter enemies
out of Scheiner and Galileo.

In 1616 a decree was issued, suspending as belief revisionism Copernicus’ De Revolution-
ibus. Galileo was served with an injunction by Cardinal Roberto Bellarmino not to hold, cite
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or defend the Copernican doctrine. Galileo, to avoid further wrath of the church, studied
oceanic tides and their relations to positions of the moon and the sun. Risking alienation
of the church, Galileo published in 1632 Dialogue concerning the two chief world systems
which effectively embraced the Copernican doctrine.

FIGURE A.9 (a) Christoph Scheiner (1573-1650); (b) Johannes Kepler (1571-1630). (Copy
of a lost portrait, painted in 1610, which had been conserved at the Benedictines of Krems).

The Roman ecclesiastic authorities found the book in violation of the 1616 decree. Galileo
was put on trial in Rome by the Inquisition. On June 22, 1633 Galileo was forced to kneel
in front of the Roman Inquisition and recant his beliefs in the Copernican doctrine and the
motion of the Earth. He was sentenced to life imprisonment, commuted to perpetual house
arrest without visitors. Galileo’s book Dialogue was put on the Index of Prohibited Books,
added to Copernicus’ De Revolutionibus and the book of Kepler (1571–1630) dealing with
planetary theory.

Outcries for Galileo’s release by many of the world’s top scientists and statesmen failed
to secure his freedom. Galileo lost his sight in 1637. Yet in 1638 he produced another
masterpiece, Discourses on Two New Sciences, which laid the foundations for the modern
mechanics. The manuscript had to be smuggled out of Italy and was published in Holland.

Galileo died on January 8, 1642. The Roman ecclesiastic authorities opposed a public
funeral and honor proposed by the Florentine state. His books, together with those of
Copernicus and Kepler, were deleted from the Index of Prohibited Books in 1835, and
only in 1992 did the Roman Catholic Church formally admit to its historic error in its
condemnation of Galileo.
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A.15 Sir Isaac Newton (1643–1727)

Born: January 4, 1643 in Woolsthorpe, Lincolnshire, England; died: March 31,
1727 in London, England

FIGURE A.10 Isaac Newton.

Isaac Newton was born in a family of farmers on Christmas Day 1642 (according to Ju-
lian Calendar, Old Style) which translates to the fourth of January, 1643 (New Style), a
fatherless child in Woolsthorpe, near Grantham in Lincolnshire, his father, also Isaac New-
ton, died two months before his birth. When he was barely three years old his mother
Hanna (Ayscough) married Barnabas Smith, a wealthy church minister from nearby North
Witham, and left Isaac in the care of her elderly parents. Newton had a sad life from the
outset and could not stand the sight of his stepfather. Following the death of Barnabas in
1653 his mother returned to Woolsthorpe. Two years later Isaac was placed in a boarding
school in Grantham, where he spent four years, returning to Woolsthorpe in 1659.

Newton was asked to manage his late father’s farm, but proved not to be well disposed
for the job. Thanks to the advice of the headmaster of Stokes grammar school at Grantham
as well as that of Hanna’s brother, who had graduated with an MA from Cambridge, he
was prepared for university education. In 1661 he left Woolsthorpe and enrolled in Trinity
College, Cambridge as an undergraduate.

Newton would spend many years at Trinity College in an intense pursuit of knowledge,
as a student, a Fellow, and a professor. Newton prepared for a degree in law. In 1664
Isaac Barrow, Lucasian Professor of Mathematics at Cambridge, found marked weakness in
Newton’s knowledge of Euclid. Newton in fact spent extensive time reading works by René
Descartes, Pierre Gassendi, Thomas Hobbes, and other contemporary figures.

He was fascinated by Copernican astronomy of Galileo, who had died less than a year
before his own birth. He also studied Kepler’s theories on optics. He recorded his thoughts in
a book dated 1664, to which he gave the title Quaestiones Quaedam Philosophicae (Certain
Philosophical Questions) adding at the outset in Latin the words: “Plato is my friend,
Aristoteles is my friend, but my best friend is truth.” He was 21.
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He read Barrow’s Euclid’s Elements, Oughtred’s Clavis Mathematica, Descartes’ La Géom-
étrie, Frans van Schooten’s edition of Viète’s collected works published in 1646 and the newly
published major work by van Schooten Geometria a Renato Des Cartes which appeared in
two volumes in 1659 and 1661. In 1665 Newton obtained his bachelor’s degree at Cambridge
with no mention of excellence or distinction.

Cambridge university had to close its doors in the summer of 1665 and Newton returned
home to Lincolnshire. Within two years Newton was projected to the stratosphere, among
the world’s top scientists. He was not yet 25 years old, yet he now introduced vast advances in
mathematics, physics, optics and astronomy. He constructed the fundamentals of differential
and integral calculus, years before its independent discovery by Leibniz, laid the foundations
of theories on light and color and established the basis of those on planetary motion. These
led in 1687 to his publication of his masterpiece volume Principia.

FIGURE A.11 (a) Gottfried Wilhelm Leibniz (1646–1716); (b) Robert Hooke (1635–1703).
This portrait is the only one believed to be authentic and was discovered recently.

He wrote De Methodis Serierum et Fluxionum in 1671 but could not have it accepted
for publication. It was not published in his lifetime. In fact it had to wait until 1736 to be
published, translated to English, by John Colson. He returned in 1667 to Cambridge with
the end of the plague. With reluctance Cambridge elected him minor fellow at Trinity. He
then acquired the MA degree and was elected senior fellow.

In 1669 Isaac Barrow resigned the Lucasian chair to devote himself to divinity and rec-
ommended Newton, who was only 27 years old, to replace him. Newton taught a course on
optics in January 1670. He made observations that while every scientist since Aristoteles
believed that white light was a basic single entity, the chromatic lines seen in a lens, point
to otherwise. He illustrated his point by directing a thin beam of sunlight at a glass prism
and showed the diffracted spectrum of colors that emerged. Soon he gave his first talk on
the nature of color. It was received with acclaim as well as skepticism.

In 1672 he was elected fellow of the Royal Society, having donated a reflecting telescope.
In the same year he published his first scientific paper. It was on light and color and was
published in the Philosophical Transactions of the Royal Society.

The paper was generally well received but the Royal Society’s celebrated scientist Robert
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FIGURE A.12 King James II by unknown artist; oil on canvas, circa 1690. National
Portrait Gallery, London.

Hooke (1635–1703) and Huygens objected to Newton’s attempt to prove, by experiment
alone, that light consists of the motion of small particles rather than waves. This was the
first among several confrontations with other scientists.

He clashed with Hooke regarding relations to Hooke’s own work. The controversy lasted
until 1678. In 1675 with his submission of another paper there were charges of plagiarism
from Hooke’s work. It was a totally unfounded accusation. Newton retreated and withdrew
from the Royal Society which he associated with Hooke as one of its leaders.

In 1678 Newton suffered an emotional breakdown. His mother died the following year and
he withdrew further into his own world, venturing into alchemical experimentation. Such
interest was scoffed at and embarrassed fellow scientists. Yet his intense efforts to measure
the unseen forces led him to investigate forces between matter as particles and to the role
that gravitational force plays.

A famous story has it that in 1666 Newton, sitting in his garden at Woolsthorpe under an
apple tree, was hit on his head by an apple that fell. Newton later recalled “In the same year
I began to think of gravity extending to the orb of the Moon.” Since Newton formulated his
laws of gravitational forces 20 years later, some have wondered if Newton’s memory failed
him. They questioned if Newton did extrapolate from the tree to the moon in 1666. They
felt rather that he came up with his breakthrough on the laws of gravitation only in 1686.

It is however quite conceivable that Newton knew what he was talking about. The force of
gravity woke up an inspiration in him when he was 23 years old in 1666. The idea fomented in
his head. Transforming an intuitive inspiration into a mathematical theory takes reflection,
investigation, analysis, verification and finally formulation. Newton may have desired to
look more into such a force that acted on the apple and whether a similar one acts on the
moon and the planets. But he had to find the time, the energy and the serenity to take his
idea seriously, to verify if it had not been already proposed to start transforming it from a
fleeting thought to a mathematical theory.

Newton published his De Motu Corporum in Gyrum (On the motion of bodies in an
orbit) in 1684. In the years 1679 to 1684 Newton had corresponded with Hooke and Halley
regarding planetary movements and the forces that govern them. Newton arrived at a proof
of Kepler’s Areal law based on his own laws of motion and his law of universal gravitation.

Halley urged Newton to publish a thorough treatment of his theories on the laws of physics
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and their applications to planetary movements. In 1687 Newton published the Philosophiae
Naturalis Principia Mathematica, usually referred to simply as Newton’s Principia. It is
considered one of the most important books published in the history of science. But if
the Principia was Newton’s brainchild, Hooke and Halley were the catalysts that made it
happen.

The publication of Principia led to more conflict with Hooke who claimed that his letters
of correspondence with Newton in the two years 1679 and 1680 were enough proof that
Newton was publishing ideas that were Hooke’s. Newton’s animosity toward Hooke had
no limit. He in fact withheld his publication of his Opticks until 1704, and stopped all
interaction with the Royal Society, returning to it only after Hooke’s death in 1703.

In 1669 James II converted to Catholicism. In 1685 he became king of Great Britain having
the support of Anglicans as well as Catholics. He began, however, to distrust Protestants
and appoint Roman Catholic officers of the state and the army, the judiciary and even the
universities such as Cambridge and Oxford. Newton, a zealous Protestant, opposed such an
intrusion in his university affairs.

William of Orange received the call from many leaders to bring his army to England and
depose the Catholic James. William landed in November 1688 and James, realizing that
Protestants abandoned his army, fled to France. Cambridge university, grateful for Newton’s
defense of academic freedom against James, elected him as one of their two members to the
Convention Parliament on January 15, 1689.

FIGURE A.13 William III of Orange (1650–1702).

The Parliament declared that James had abdicated and in February 1689 offered the
crown of England, Scotland and Ireland to William of Orange and Mary II. Newton was
seen as one of the world’s most reputable scientists. He started to see that there is life after
research and university and liked living in London. Yet, in 1693, he suffered a severe nervous
breakdown, similar to the one that afflicted him in the period 1677 to 1678. Shortly after
his recovery, in 1696, Newton was appointed Warden, then Master, of the Mint. He thus
left Cambridge for London without regret.

After Hooke’s death in 1703, Newton was elected president of the Royal Society and was
subsequently elected annually until his death. His tenure as president was seen as autocratic,
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if not tyrannical, and his control over the lives and careers of younger disciples was all but
absolute. In 1704 he published his second major work, the Opticks, based largely on work
completed decades earlier. He was knighted in 1705.

In the end, the transactions of the Royal Society were little more than extensions of
Newton’s will, and until his death he dominated the landscape of science without a rival.
He died in London on March 20, 1727 (March 31, New Style).
References:
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A.16 Guillaume-François-Antoine de L’Hôpital (1661–1704)

FIGURE A.14 Guillaume-François-Antoine de L’Hôpital.

Born: 1661 in Paris, France, died: February 2, 1704 in Paris, France
Marquis de Sainte-Mesme and Comte d’Entremont, Guillaume-François-Antoine de

L’Hôpital was the son of the lieutenant-general of the king’s armies. He was intended for
a military career but soon discovered a passion for mathematics. By the age of 15 he had
solved problems proposed by Pascal, and as an army officer, he studied mathematics in his
tent. He was forced to resign due to near-sightedness and thenceforth devoted his life to
mathematics.

In 1692 he became acquainted with Jean Bernoulli, one of few scientists who were familiar
with the new methods of differential calculus. He invited Bernoulli to his estate of Oucques
near Vendôme, studying for four months with him and learning from him this relatively
new branch of the science of numbers.

He was elected honorary member of the French Academy of Sciences of Paris in 1693 and
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soon was cited on a par with Newton, Huyghens, Leibniz, and the Bernoullis as the world-
wide top experts of calculus. His work on infinitesimal analysis for the study of curves was
published in 1696 and was received with acclaim by many who were in search of solutions
for advanced problems of calculus, finding in the book clear and precise statements of the
problems and proposed solutions.

L’Hôpital established his reputation by publishing his book Analyse des Infiniment Petits
pour l’Intelligence des Lignes Courbes in 1696. It was the first textbook to deal with dif-
ferential calculus. In the introduction L’Hôpital acknowledges his indebtedness to Leibniz,
Jacob Bernoulli and Johann Bernoulli.

He is famous for his rule on the evaluation of the limit of a rational function, of which the
numerator and denominator each have a limit of zero. His wife is said to have contributed
to his work. His published works are: Analyse des Infiniment Petits pour l’Intélligence des
Lignes Courbes (Paris, 1696; last ed. by Lefèvre, Paris, 1781); Traité Anlytique des Sections
Coniques (Paris, 1707; 2nd ed., 1720); several memoirs and notes inserted in the Recueil de
l’Académie des Sciences (Paris, 1699–1701), and in Acta Eruditorum (Leipzig, 1693–1699).

In the literature, including the French literature dating back to his time, his name is
written either L’Hôpital or L’Hospital.
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A.17 Pierre-Simon Laplace (1749–1827)

Born: March 23, 1749; died: March 5, 1827

FIGURE A.15 Pierre-Simon Laplace

Pierre-Simon Laplace was born in Normandie at Beaumont-en-Auge to a family with prop-
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erty in the cider trade. Between the ages of 7 and 16 he was being prepared for the priesthood
at a Benedictine priory school, where students were usually destined to a life in the Church
or the army. From the age of 16 to 18 Laplace attended Caen university. He studied theology,
but before long became progressively absorbed by a passion for mathematics.

At the age of 17 his mathematical talents were already noticed and he became math-
ematics teacher at the École Militaire of Beaumont-en-Auge. Having procured a letter of
introduction to Jean le Rond d’Alembert, who was already a renowned scientist for his
studies of astronomical physics and mathematics, Laplace left for Paris at the age of 19.
With the help of d’Alembert, Laplace is soon appointed professor of mathematics at École
Militaire of Paris.

In the years 1770 to 1773 Laplace presented papers to the Académie des Sciences in Paris
on areas ranging from improvements on Lagrange’s search for maxima/minima, the calcu-
lus of integrals, finite differences to differential and difference equations; pointing to their
importance in physics, mechanics and astronomy. He investigated the motions of planets of
the solar system, the inclinations of their orbits and the effect of gravitation forces of their
moons.

His first paper was in Latin on integral calculus, published at Leipzig in the Nova acta
eruditorum in 1771. That year, Laplace started one of several attempts to gain election
to the Académie des Science, but had to wait two years and present more than 10 papers
before being elected Adjoint of the Académie des Sciences.

During the 1780s Laplace’s research results established him as one of the most influential
scientists the world has seen.

It was not achieved, however, with good relationships with his colleagues. Although
d’Alembert had been proud to have considered Laplace as his protégé, he certainly began
to feel that Laplace was rapidly making much of his own life’s work obsolete and this did
nothing to improve the relation. It does appear that Laplace was not modest about his abil-
ities and achievements, and he probably failed to recognise the effect of his attitude on his
colleagues. Lexell visited the Académie des Sciences in Paris in 1780-81 and reported that
Laplace let it be known widely that he considered himself the best mathematician in France
[1].

About 1782 Laplace conducted research on specific heat and calorimeters with the known
chemist Antoine Lavoisier (1743-1794), enhancing his reputation among physicists and
chemists.

In 1784, Laplace was appointed by Louis XIV as Examiner of the Royal Artillery Corps,
and in this role in 1785, he examined and passed the 16-year-old Napoléon Bonaparte.
Through that position he became well known to the ministers of the government and others
in positions of power in France. Laplace was shrewd, however, able to navigate well in
politics; thus avoiding the guillotine during the French Revolution (1789–1799) and the
Reign of Terror (1793-1794). In contrast, Lavoisier who was born to a well-to-do bourgeois
family, occupied at the time a position as a tax collection government administrator, which
made him a target of hatred by the revolutionaries. After being barred from his laboratory,
Lavoisier fled his home but was arrested a few months later. When he protested that he was
a scientist, not a tax man, he was told: “The Republic has no need of scientists.” Lavoisier
was charged with ridiculous crimes. Testifying against him was an age-old enemy, Jean-
Paul Marat (1743–1793), whom Lavoisier had prevented, with good reason, from joining
the Academy of Sciences. Eager for revenge, Marat accused Lavoisier of diluting commercial
tobacco and cutting off Paris’s air supply by building a defensive wall around the city. On
May 8, 1794, Lavoisier was sentenced to death and guillotined.

Laplace’s research in the field of mathematical astronomy culminated in his masterpiece
on the dynamic stability of the solar system viewed as a collection of rigid bodies moving in
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FIGURE A.16 Antoine Laurent Lavoisier (1743-1794).

a vacuum. He independently formulated the nebular hypothesis and was among the pioneers
to postulate the existence of black holes and universal gravitational collapse.

Laplace became a founding member of the Société d’Arcueil about 1805, together with
the chemist Berthollet. Among the mathematicians who were members of this active group
of scientists were Biot and Poisson. This marks the height of Laplace’s influence, dominant
in the Institute and on the École Polytechnique of Paris and the courses followed by its
students.

Laplace was an opportunist. His political allegiance shifted easily as expediency required;
the successive revolutionary governments, the republic, the empire, and the Bourbon restora-
tion rewarded his servility with numerous honors. Napoléon made him a count (comte), and
Louis XVII made him a marquis.
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A.18 Gaspard Clair François Marie, Baron Riche de Prony
(1755–1839)

Born: July 22, 1755; died: July 29, 1839

Gaspard Clair François Marie Riche de Prony was born July 22, 1755 in Chamelet, Beau-
jolais, France, the son of Gaspard Marie Riche de Prony, a noble ex-magistrate, member
of parliament of Dombes and Claudine Jacquet. He was enrolled at the college of Les
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FIGURE A.17 Baron Riche de Prony.

Bénédictins de Thoissey, Ain, northeast of Lyon. In 1773, having terminated his schooling,
he lived in Lyon, where his father worked as a lawyer.

In 1776 he lived in Paris, and was admitted to engineering studies at the École des Ponts
et Chaussées (School of Bridges and Causeways). He graduated in 1779 at the top of his
class, highly praised for his dedication and brilliance by Perronet, referred to as “First
Engineer of the King and Director of École” (des Ponts et Chaussées) and known for his
construction of the bridge Pont de Neuilly.

From 1780 de Prony worked as an engineer at Bourges, Argenton, Dourdan and Livry.
However, in 1783 he received the call to return to Paris from Perronet, to assist de Chézy
in the direction of L’École des Ponts et Chaussées.

In 1785 de Prony was sent on a mission to England to perform accurate measurements
on the geographical-temporal relative positions of the Greenwich Observatory and the Paris
Observatory. He was promoted in 1787 to inspector at the École des Ponts et Chaussées.
Meanwhile he served under the supervision of Demoustier as one of the engineers responsible
for the construction of the Louis XVI bridge, until this day a marvel of Paris monuments,
known as the Pont de la Concorde. He was also associated later on with the construction of
the Sainte-Maxence Bridge. It was at that time that he published his first major work in the
Académie des Sciences on the forces on arches, motivated by observations of displacements
that accompanied the construction of the Pont de Neuilly. The paper confirmed to scientists
such as Monge that de Prony was a brilliant young scientist with a great potential.

**********************

The French Revolution
The French Revolution lasted from 1789 to 1799. It was a bloody period of political and
social turmoil, which sought to put an end to absolute monarchy, with its feudal privileges
for the aristocracy and the Catholic clergy. Proclaiming new noble causes of justice, liberty,
equality and fraternity it went on to implement them by violence, institutional terrorism,
mock trials and executions. It was the era of the Reign of Terror, repression and bloodshed,
triggering warfare with every other major European power. The Imperial and Prussian
armies threatened retaliation on France if it were to resist their advance or the reinstatement
of the monarchy. This cast suspicion on the king Louis XVI as one conspiring with the enemy.
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January 17, 1793 saw the king condemned to death for “conspiracy against the public liberty
and the general safety.” The January 21 execution led to more wars with other European
countries. Louis XVI’s Austrian-born queen, Marie Antoinette, would follow him to the
guillotine on October 16.

FIGURE A.18 (a) Louis XVI www.commons.wikimedia.org/wiki/Image:Louis16-1775.jpg
(b) Marie-Antoinette www.commons.wikimedia.org/wiki/Marie-Antoinette

Napoléon Bonaparte

Napoléon Bonaparte (August 15, 1769 – May, 5 1821) was a general who rose to promi-
nence during the French Revolution. He led successful campaigns against Coalitions arrayed
against France to stop it from achieving the stated objective of exporting its revolution to
its neighbors.

FIGURE A.19 Napoléon Bonaparte, painting by Jacques-Louis David (1748-1825).

In 1798, Bonaparte, now a popular general, proposed a military expedition to invade
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Egypt, then part of the Ottoman Empire, as a means of protecting French trade interests
and to block Britain’s passage to India. To distance him from the center of power the
government approved the mission, in spite of its shaky foundation, its risks and a cost
it could hardly afford. In May, Napoléon was elected a member of the French Academy
of Sciences. His Egyptian expedition included a group of 167 scientists: mathematicians,
naturalists, chemists and geodesic scientists among them. They included Fourier, Monge
and Malus. Their discoveries included the Rosetta Stone and their work was published in
the Description de l’Egypte in 1809.

The ships that had landed Bonaparte and his army sailed back to France, while a fleet of
ships remained to support the army along the coast. On August 1, 1798, the British fleet
under Horatio Nelson destroyed all but two French vessels in the Battle of the Nile. With
Bonaparte landbound, his goal of a strengthened French position in the Mediterranean Sea
came to an end, even if his army had temporarily succeeded in the consolidation of French
power in Egypt.

On August 24, 1799, informed of a departure of British ships from France’s ports, he
set sail for France, despite the fact he received no approval from Paris. Back in France,
he staged a coup d’état and installed himself as First Consul. Five years later he crowned
himself Emperor of France. He now attacked every major European power and dominated
continental Europe through a series of military victories. The French invasion of Russia
in 1812, however, marked a turning point in Napoléon’s fate. His army was decimated in
Russia’s vast lands and harsh winter conditions. In 1813 his army was defeated at Leipzig.
France was invaded and Napoléon exiled to the island of Elba. Less than a year later, he
returned but was defeated again at the Battle of Waterloo in June 1815. He spent the last
six years of his life a prisoner under British supervision on the island of Saint Helena where
he died in 1821.

**********************

In 1790 de Prony started work on a novel hydraulic architecture which he published as the
Hydraulic Architecture of Bélidor, in 1796. In 1791, de Prony was appointed Chief Engineer
Ingénieur en Chef des Pyrénées Orientales at Perpignan, but shortly after he moved to
Paris, and was named director of the Cadastres by Chaumont de la Millière, following its
creation by the national assembly. He was then assigned the responsibility of generating the
logarithmic and trigonometric tables for the Geodesic Service, assisted by Legendre, Carnot
and other mathematicians, as well as close to 100 assistants. The work was extensive and
lasted many years and finally accomplished in 1801. The tables were vast, spanning 17 folio
volumes. It would have taken many more years to compile were it not for the ingenuity of
de Prony in developing novel methods for simultaneous processing by the young assistants.
It has been told that many of these were wig-makers, who became unemployed due to the
suppression of powder and the simpler hairdos of the new republicans.

The École Centrale des Travaux Publiques was founded in 1794 by Carnot and Monge,
and de Prony became one of its first professors of Mathematical Sciences, where he stayed
as chair until 1815 when he became examiner at the school. The school was renamed École
Polytechnique in 1795. In 1796 de Prony was appointed Secretary of the Sciences section
of l’Institut Polytechnique. In 1798 de Prony declined Napoléon’s invitation to accompany
his expedition to Egypt, in contrast to Fourier, Monge and Malus who accepted the invi-
tation. Napoléon’s anger at the slight led to his depriving de Prony from the honors that
he deserved. His punishment might have gone farther had de Prony’s wife not been a close
friend of Joséphine.

In the same year he succeeded de Chezy as the Director of the École des Ponts et
Chaussées, a position he had longed for and which may have been the reason for his declin-
ing Napoléon’s invitation. In 1804, in spite of his refusal to join the Egyptian Expedition,
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de Prony received from Napoléon the “légion d’honneur” for the publication of part of his
results on trigonometric and logarithmic tables.

He published a number of important contributions on mathematical physics, among
which, in 1810 and 1811, the two major texts Leçons de Mécanique Analytique and Som-
maire des Leçons du Cours de Mécanique from his lectures at École Polytechnique. Becom-
ing a member of the Bureau de Longitude, de Prony remained the Chair of Analysis and
Mechanics at École Polytechnique until 1815 when he became an examiner.

In 1818 he was named Fellow of the Royal Society of London. Years later, to compensate
de Prony for the absence of well-deserved awards by Napoléon, successive governments
bestowed on him several honors; the title baron as well as Pair de France conferred to him
by King Louis-Philippe in 1835.

De Prony died on July 28, 1839, having spent 40 years as the Director of École des Ponts
et Chaussées, where he spent a good part of his life perfecting its teaching. The school has
a portrait and a bust of de Prony, as well as a library donated by de Prony’s niece, Mme
de Corancez.

De Prony was an affable character who had many friends. He was passionate about the
arts, and published in fact a treatise on musical intervals. One of de Prony’s well-known
contributions was a brake named after him, which he invented in 1821 to measure machine
performance. It was an improvement on an approach by Pierre Girard of two years earlier,
based on concepts of Hachette.
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A.19 Jean Baptiste Joseph Fourier (1768–1830)

Born: March 21, 1768 in Auxerre, Bourgogne, France; died: May 16, 1830 in
Paris, France

Jean Baptiste Joseph Fourier’s father was a tailor in Auxerre, France. Both parents died
when Joseph Fourier was 10 years of age, and he was placed in École Royale Militaire of
Auxerre. He studied with ease French and Latin but became progressively more inclined
toward mathematics. By the age of 14 he had completed a study of the six volumes of
Cours de Mathématiques of Bézout. A year later he received the first prize for his study of
Bossut’s Mécanique en Général. In 1787 he was admitted to the Benedictine abbey of Saint-
Benôıt-sur-Loire in preparation for the priesthood. Fourier submitted a paper on algebra
to Montucla in Paris and corresponded with Professor Bonard of Auxerre. He then left the
abbey and presented a paper in 1789 on the numerical solution of algebraic equations at
the Royal Academy of Sciences in Paris and became a teacher at his old school at Auxerre.
It was the beginning of the French Revolution (1789-1799).
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FIGURE A.20 Portrait de J.B.J. Fourier par Claude Gautherot. Droits réservés, musées
d’Auxerre(France).

For the following 75 years France would alternate between republic, empire and monarchy.
But after the French Revolution, the course of history of France, Europe and Western
civilization as a whole had drastically changed forever.

Fourier committed the grievous error of delving into politics and the affairs of a local
revolutionary committee at Auxerre. In an incident he defended a cause to the consternation
of a rival faction in Orléans in 1793. He was arrested in 1794, fearing he would lose his
head by the guillotine, but after Robespierre himself went to the guillotine, political winds
changed and he was freed.

In 1794 a central teachers’ college, École Normale Supérieure was established in Paris,
and Fourier became one of its first students where he was taught by Lagrange and Laplace,
among others. Before long, Fourier was promoted to its faculty as a lecturer.

Fourier then received an appointment to the newly founded École Polytechnique, where
he first served as chief lecturer on fortifications and later as professor of mathematical
analysis.

Later in 1794 Fourier was admitted to the École Normale in Paris which was founded
as a model for teacher-training schools. The school opened its doors in January 1795 and
Fourier was certainly one of its most brilliant students. He was taught by Lagrange, who
Fourier described as the first among European men of science, and also by Laplace, who
Fourier rated less highly, and by Monge who Fourier described as having a loud voice and
is active, ingenious and very learned.

Fourier began teaching at the Collège de France and, having excellent relations with
Lagrange, Laplace and Monge, began further mathematical research. He was appointed to
a position at the École Centrale des Travaux Publiques, which was soon to be renamed École
Polytechnique. However, repercussions of his earlier arrest remained and he was arrested
again and imprisoned. His release has been attributed to a variety of causes such as pleas
by his pupils, pleas by Lagrange, Laplace or Monge or a change in the political climate.

Napoléon Bonaparte requested that Fourier who was 30 years of age, participate in 1798
as scientific adviser on an expedition to Egypt.

Napoléon’s expedition was at first a great success. Malta was occupied on June 10, 1798,
Alexandria taken by storm on July 1, and the delta of the Nile quickly taken.
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However, on August 1, 1798, the British surprised 14 of the French ships moored in
Aboukir Bay, sinking or capturing them and setting a blaze that triggered a devastating
explosion of the flagship of the French fleet, the Orient. The conquest established Horatio
Nelson as one of Britain’s greatest heroes, and Napoléon was left stranded on the Egyptian
desert without naval support.

This was the Battle of the Nile. Napoléon had to remain confined to the land that he
was occupying. Fourier occupied a high post of Diplomat, General Secretary of l’Institut
d’Egypte, wrote the Introduction to the extensive volume published by this Institute, helped
establish educational facilities and administered archaeological explorations.

An incredible archeological discovery took place and its significance was deeply felt by
not only Napoléon and Fourier but the whole French intelligentsia in Egypt. This was the
Rosetta stone.

FIGURE A.21 The Rosetta stone.

The Rosetta stone may be regarded as the most important discovery the world has ever
seen. The famous stone, presently one of the most precious treasures of the British Museum,
contained same royal edicts of Ptolemy V in three languages.

The first script was Hieroglyphic, the script used for religious documents and other formal
edicts. The second was Demotic Egyptian, which was the common script of Egypt. The third
was Classical Greek, which was the language of the post-Alexander rulers of Egypt at that
time.

Captain Pierre-François Bouchard discovered the stone on July 15, 1799, near the Egyp-
tian port city of Rosetta (present-day Rashid). The stone was sent to the Institut de l’Égypte.
The French newspaper Courrier d’Egypte published by the Institute announced the find in
September 1799.

In March 1801 the British landed on Aboukir Bay. The French troops in Cairo capitulated
on June 22 and in Alexandria on August 30. After great resistance from the French the
Rosetta stone was taken to Britain wherein it remains to date in the British Museum.

Fourier’s papers, published in the Décade and the Courrier d’Égypte, treated subjects
ranging from the general solution of algebraic equations to irrigation projects.

Napoléon returned to Paris in 1799. He soon retained absolute power. Upon returning to
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France in 1801 Fourier was appointed by Napoléon prefect of Isère, a position he occupied
until 1814. It was during those years that he found time and motivation to advance his
mathematical research.

The result was his writing the mathematical theory of heat conduction, which he sub-
mitted to the academy in 1807. Its publication in 1808 had a marked impact, recognized
as a unique mathematical breakthrough. Napoléon was happy with his protégé’s brilliant
contribution and made him a baron.

A second, expanded version titled Théorie des mouvements de la chaleur dans les corps
solides, received the award of the French Academy in 1812.

In 1815 Napoléon escapes the Isle of Elba and returns with a great army to France. As
prefect of Isère through which Napoléan would make his return, Fourier receives orders
from the king and dictates that Napoléon’s return should be blocked. He succeeds however
to avoid the wrath of Napoléon who upon acceding to power appoints him prefect of the
Rhône. Political events intervene, however, and he is elected to the reformed Académie des
Sciences.

From 1815 Fourier served as director of the Bureau of Statistics in Paris. In the eyes of the
new, royalist regime, Fourier’s long service under Napoléon was offset by his opposition to
Napoléon upon the latter’s return from Elba. In 1817 he became a member of the Academy of
Sciences. In 1822 he became secretary of the mathematics section, helping young promising
mathematicians such as Dirichlet and Sturm.

The first part of his award-winning paper Théorie des mouvements de la chaleur dans
les corps solides was printed in book form in 1822 under the title Théorie Analytique de
la Chaleur. It was received as a masterpiece and remained thenceforth a historical break-
through, becoming the basis of today’s special branch of mathematics, namely, Fourier
analysis and Fourier integrals.

The overture of his 1822 masterpiece Théorie Analytique de la Chaleur Fourier cites a
dictum by Plato, which he translates into the Latin words

Et ignem regunt numeri

An English translation may read

Thus Fire by numbers ruled.

The corresponding cited Greek text is part of Plato’s Timaeus dialogue [1].

FIGURE A.22 Plato’s Timaeus text.

Near the end of his life he put a lot of effort adding precisions to his discoveries and in long
exchanges with his contemporaries, notably Biot and Poisson who were contesting priority
of his discoveries.

Fourier’s fortunes rose and fell with those of Napoléon, and after Napoléon’s defeat at
Waterloo, Fourier for a while fell out of favor. Late in life, Fourier was infirm due to compli-
cations from diseases he had contracted while in Egypt; possibly The Curse of the Pharaohs.
He died in May of 1830.
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A.20 Johann Carl Friedrich Gauss (1777–1855)

FIGURE A.23 Johann Carl Friedrich Gauss.

Born: April 30, 1777 in Brunswick, Duchy of Brunswick (now Germany);
died: February 23, 1855 in Göttingen, Hanover (now Germany)

Carl Friedrich Gauss was a child prodigy. He was the son of an artisan father, but felt
closer to his mother Dorothea Benz to whom he attributed his mental prowess. According
to a story he would tell years later, the instructor at school, to keep the children busy for
a while, asks them to calculate the sum of the hundred first integers, 1 to 100. Expecting
the pupils would be busy for some time he was surprised to hear within seconds Carl
Friedrich’s response. He said the sum is (1+100) + (2+99) +(3+98)+. . . till (50+51), that
is, 50 terms each equal to 101, hence 5050. He was 10 years old! Gauss enrolled in the
Gymnasium in Brunswick, where he excelled in ancient languages and mathematics. After
receiving a stipend from the Duke of Brunswick-Wolfenbüttel, Gauss entered Brunswick
Collegium Carolinum in 1792. At the academy, by the age of 17 he had already formulated
many fundamental mathematical theories covering the span of Bode’s law, the binomial
theorem, the arithmetic-geometric mean, the law of quadratic reciprocity and the prime
number theorem.

In 1795 Gauss left Brunswick to study at Göttingen university. Gauss left Göttingen in
1798 without a diploma, but by this time he had made one of his most important discov-
eries: the construction of a regular 17-gon (heptadecagon) by ruler and compasses. This is
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considered to be the greatest advance in this field since the time of Greek mathematics. It
was published as Section VII of Gauss’ famous work, Disquisitiones Arithmeticae.

Gauss received his doctorate in 1799 at the age of 22 from the university of Helmstedt.
In his thesis he developed the concept of complex numbers and proved the fundamental
theorem of algebra. Two years later, Gauss published his theory of numbers, considered one
of the most brilliant discoveries in the history of mathematics.

On the first of January 1801 Giuseppe Piazzi (1746–1826) discovered a small planet, to
be called Ceres, between the orbits of Mars and Jupiter. It soon disappeared from telescopes
and could not be found. Gauss then developed a least-squares approach to estimate the most
probable trajectory of the asteroid. At the end of 1801 Ceres is found at the exact location
predicted by Gauss. A new approach applying mathematics to astronomy is thus born.

Gauss married Johanna Ostoff on October 9, 1805. Despite having a happy personal life
for the first time, his benefactor, the Duke of Brunswick, was killed fighting for the Prussian
army.

In 1807 he was appointed professor of astronomy and director of the observatory at the
university of Göttingen, a position he occupied for the rest of his life.

In 1808 his father died, and a year later Gauss’ wife Johanna died after giving birth to
their second son, who was to die soon after her. Gauss was shattered and wrote to Olbers
asking him to give him a home for a few weeks.

Gauss was married for a second time the next year, to Minna, Johanna’s best friend, and
they had three children.

Gauss devised a new approach to evaluating the orbits of asteroids and the theory of
squares. He studied the size and form of the Earth and introduced what became known
as the Gaussian error curve. He was a pioneer in applying mathematics to electricity and
magnetism and developing the underlying potential theory as well as number theory and
solid geometry.
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A.21 Friedrich Wilhelm Bessel (1784–1846)

Born: July 22, 1784 in Minden, Westphalia (now Germany); died: March 17,
1846 in Königsberg, Prussia (now Kaliningrad, Russia)

Born in Westphalia, now part of Germany, Friedrich Wilhelm Bessel was the son of
a modest government employee. He attended school in Minden for four years but found
little motivation, leaving school in 1799 at the age of 14 to become an apprentice in the
import/export firm of Kulenkamp in Bremen. Longing to travel he developed a passion for
navigation and consequently astronomy and mathematics.

In 1804 he wrote a paper on Halley’s Comet evaluating its orbit from observations dat-
ing back to 1607. He sent his paper to the astronomer Wilhelm Olbers who was greatly
impressed, ensuring its publication in the same year in Monatliche Correspondenz. He rec-

http://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html
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ommended the appointment of Bessel at the Lilienthal observatory of the famed lunar
observer J. H. Schroeter.

FIGURE A.24 Friedrich Wilhelm Bessel.

After four years at that post Bessel was charged by the Prussian government with the
construction of the first big German observatory at Königsberg. Bessel received a doctorate
from the university of Göttingen on the recommendation of Gauss, who had met Bessel in
Bremen in 1807 and had high regard for his contributions.

In 1810 Bessel was appointed professor of astronomy at the university of Königsberg where
he taught and put much thought on formulating the science of astronomical observation.
He was director of the observatory from the date of its completion, and for the rest of his
life. Bessel’s reputation was established internationally and he was honored with the award
of the Lalande Prize of the Institut de France for his refraction tables based on Bradley’s
observations. He was elected in 1812 to the Berlin Academy.

Bessel’s contributions included the precise evaluation, hence the correction, of the length
of the seconds pendulum in 1826, attaining the desired period of the swing of exactly one
second.

He conducted geodetic measurements of the meridian arcs in East Prussia in 1831 and
1832. In 1841 he evaluated the degree of ellipticity, that is, the deviation from a perfect
sphere, of the Earth as 1/299. He was among the first to obtain highly accurate measure-
ments of the diameter of the Sun using a heliometer. Bessel also performed statistical anal-
ysis of errors of measuring instruments and formulated the statistical bias of measurements
characteristic of the observer.

Using his statistical bias corrections he presented his own astronomical measurements
which surpassed in accuracy those of his predecessors and his methods became the standard
in the field.

He was able to obtain highly accurate measurements of the positions and movements
of the stars by applying his techniques of correction of imperfections in telescopes and
atmospheric disturbances.

He compiled with corrections the observations of the English astronomer James Bradley
(1742–1762) accounting for instrumental errors in the mean positions of 3,222 stars, publish-
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ing the results in Fundamenta Astronomiae in 1818. He has thus laid down the foundations
of modern position astronomy. Although the Observatory at Königsberg was still under con-
struction, Bessel took up his new post on May 10, 1810. He continued to work on Bradley’s
observations while work continued on the observatory from 1810 to 1813.

Bessel undertook his monumental task in Königsberg of evaluating the positions and
movements of over 50,000 stars which led to his identification in 1838 of the parallax of 61
Cygni.

Bessel had two sons who died early and three daughters. His health was fragile and
deteriorated with time. In 1842 he visited England to participate in the Congress of the
British Association in Manchester. His encounters with important English scientists and
Herschel in particular motivated him to pursue further and publish his recent research, in
a series of papers written in spite of his ailing health condition. Two years later, on March
17, 1846 Bessel died of cancer in Königsberg.

Bessel was honored by the Royal Astronomical Society of London among many others.
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A.22 Augustin-Louis Cauchy (1789–1857)

FIGURE A.25 Augustin-Louis Cauchy.

Born: August 21, 1789 in Paris, France; died: May 23, 1857 in Sceaux (near
Paris), France.

Augustin-Louis Cauchy was born in the first days of the eruption of the French Rev-
olution (1789-1799). His father Louis François Cauchy, was a lawyer, a classics scholar,
royalist, and had a position in the Prefect of Paris Police. Fearing for his family’s life of
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the repercussions of the revolution he moved his family to Arcueil. He took personal charge
of his son’s education before returning to Paris. There, Laplace and Lagrange were among
his friends who noticed Augustin-Louis’ mathematical gifts. Lagrange’s advice was, how-
ever, to give attention to the study of languages before the pursuit of mathematics. Cauchy
was enrolled between 1802 and 1804 at the École Centrale du Panthéon where he studied
classical languages.

He then focused progressively on mathematics and in 1805 wrote the entrance examination
for the École Polytechnique, was examined by Biot, placed second and attended courses by
Lacroix, de Prony and Hachette, with Ampère as his analysis tutor.

Upon graduation from École Polytechnique in 1807 Cauchy was admitted to the highly
sought engineering school École des Ponts et Chaussées. He was appointed to the Ourcq
Canal project under the supervision of Pierre Girard.

In 1810, appointed junior engineer at Cherbourg, he contributed to Napoléon’s English
invasion fleet project by working on the construction of the port of Cherbourg. Meanwhile
he avidly studied mathematics, inspired by the work of Laplace and Lagrange. He explored
the properties of polygons and polyhedra and submitted papers in 1811 and 1812 on his
discoveries, with the support of Legendre and Malus.

In Cherbourg Cauchy worked hard on his mathematics research in addition to the long
hours spent on his engineering work. In 1812 he returned to Paris to live with his parents,
suffering from a severe state of depression.

In Paris he submitted a thesis on symmetric functions which was published in the Journal
of the École Polytechnique in 1815. His applications for an academic position were not
successful, however, and he had to settle for a return to his Ourcq Canal project.

Cauchy was a devout Catholic and his attitude to his religion alienated him from his
colleagues. His aim was for an academic career but he was often turned down. A position
he applied for at the Bureau des Longitudes went to Legendre. Another at the geometry
section went Poinsot. Another position went in 1814 to Ampère, and a mechanics vacancy
which followed Napoléon’s abdication in April, went to Molard. In this last election Cauchy
did not receive a single one of the 53 votes cast. In the same year, however, he published a
memoir on definite integrals that became the foundation of his theory of complex functions.

With the fall of Napoléon’s Empire in 1814 the royalist Cauchy finds valuable support
from protectors who acceded to power. Their influence helped his appointment to assistant
professor of analysis, responsible for the second year course, at École Polytechnique.

The following year life smiled on Cauchy at last. He received the Grand Prix of the French
Academy of Sciences for his research results on waves. His fame was definitely established,
however, when he submitted a paper to the Institute solving one of Fermat’s claims on
polygonal numbers. He was admitted in 1816 to the Academy of Sciences, when political
currents led to the dismissal of Carnot and Monge and Cauchy filled one of their positions.

Cauchy soon married Alöıse de Bure, of a family of reputable Parisian librarians, and
they had two daughters.

In 1817 Cauchy filled a position at the College de France left vacant by Biot’s expedition
to Scotland. He lectured on methods of integration where he presented with rigorous analysis
the conditions of convergence of infinite series and his definition of an integral. His cours
d’Analyse on the development of basic theorems of calculus as precisely as possible, was
designed for the students of École Polytechnique. In 1826 he presented Sur un nouveau
genre de calcul analogue au calcul infinitesimal on the foundations of his famous theorem
of residues, and in 1829 in Lecons sur le Calcul Différentiel he defined for the first time a
complex function of a complex variable.

The analysis course given by Cauchy is decried by his students as well as his colleagues. It
is this same course, however, which was published in 1821 and 1823, to become the reference
on analysis of the 19th century, replacing intuition by analytical rigor. Pioneering precise
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definitions are given to notions such as limits, continuity and series convergence. Some false
conclusions such as his proof that the limit of a series of continuous functions is continuous
attest to his pioneering effort in exploring an unknown new domain.

The French Revolution of 1830, also known as the July Revolution, saw the overthrow of
King Charles X, the French Bourbon monarch, and the ascension to the throne of his cousin
Louis Philippe, the Duc d’Orléans, who himself, after 18 precarious years on the throne,
would in turn be overthrown.

Such political turmoil in Paris and the years of strife and hard work made Cauchy, a
staunch loyalist to the House of Bourbon, decide to absent himself for a while from France.
He left Paris in September 1830 and spent a short time in Switzerland, leaving behind in
Paris his wife and two daughters. There he was an enthusiastic helper in setting up the
Académie Helvétique but the project collapsed due to political conflicts.

The July Revolution in France required that Cauchy swear an oath of allegiance to the
new regime and, when he failed to return to Paris to do so, he lost all his positions.

In Turin during 1831 he accepted an offer from the King of Piedmont for a chair of
theoretical physics. He taught in Turin and Menbrea who attended his courses, commented,
“very confused, skipping suddenly from one idea to another, from one formula to the next,
with no attempt to give a connection between them. His presentations were obscure clouds,
illuminated from time to time by flashes of pure genius ... of the 30 who enrolled with me,
I was the only one to see through it.”

In 1833 Cauchy moved from Turin to Prague in order to tutor the grandson of Charles
X. However, the prince showed very little interest in mathematics. Cauchy became annoyed
and screamed and yelled. The queen sometimes said to him, “too loud, not so loud.”

Cauchy moved back to Paris in 1838 and regained his position at the Academy. However,
he did not regain his teaching positions having refused to take the oath. Later in 1839 a
position at the Bureau Des Longitudes became vacant. Although Cauchy was elected, he
was not allowed to attend any meetings or receive a salary, again because of his refusal to
take the oath. The mathematics chair at Collège de France became vacant in 1843. Cauchy
should have easily won on account of his exceptional scientific profile, but apparently due
to his religious and political views he was not chosen. Henceforth, Cauchy’s mathematical
contributions declined.

Cauchy made landmark contributions to mathematical physics, mathematical astronomy,
and differential equations. His four volume text Exercises d’Analyse et de Physique Math-
emtique was published between 1840 and 1847. He stubbornly stuck to his religious and
political views to the dismay of colleagues.

Cauchy never took an administrative post and was disrespectful and condescending to-
ward some young scientists such as Abel and Galois, disregarding and even losing theses of
great scientific value. His colleagues begrudged him the political influence that led to his
admission to the Academy and resented his intransigence and religious bigotry.

He was disliked, regarded as arrogant, recognizing no one else’s contribution. Abel wrote
of him after his visit to the Institute in 1826, “Cauchy is mad and there is nothing that can
be done about him, although, right now, he is the only one who knows how mathematics
should be done.”

He was accused by his colleagues of liberally copying without citation the results of others.
They referred to Cauchy as cochon. In the last few years of his life he had a dispute with
Duhamel regarding a result on inelastic shocks. Cauchy claimed to be the first to give the
results in 1832, but Poncelet referred to his own work on the subject in 1826. Even though
Cauchy was proved wrong he would never admit it.

Cauchy died on May 27, 1857. His last words were “Men pass away, but their deeds
abide.” Many terms in mathematics bear his name, the Cauchy integral theorem, in the
theory of complex functions, the Cauchy–Kovalevskaya existence theorem for the solution
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of partial differential equations, the Cauchy–Riemann equations, and the Cauchy sequences.
A book of his collective works entitled Oeuvres completes d’Augustin Cauchy (1882-1870)
was published in 27 volumes.
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A.23 Niels Henrik Abel (1802–1829)

FIGURE A.26 Niels Henrik Abel (www.commons.wikimedia.org/wiki/Image:
Niels Henrik Abel.jpg).

Born: August, 1802 in Frindoe, Norway; died: April 6, 1829 in Froland, Norway.

Niels Henrik Abel was a Norwegian mathematician who in a short life span of 26 years
became a pioneer who advanced modern mathematics of his time by leaps and bounds. He
was born, one of seven children, in the small village of Frindoe, near Stavanger, Norway,
where his father was a poor Protestant minister in the diocese of Christiansand. Abel’s life
was spent in poverty. In 1815 he studied at the Cathedral School in Christiania. In 1817
the mathematics teacher Bernt Holmboe, newly arrived at the school, was impressed by the
young Abel’s mathematical talent. Soon, Abel began to study university level mathematics
texts and, within a year, Abel was reading the works of Euler, Newton, Lagrange, Laplace
and Gauss. In 1820 Abel’s father died, and he had to support his mother and family.

Thanks to Holmboe’s help Abel received a scholarship to remain at his school and was
able to enter the university of Christiania (Oslo) in 1821. Holmboe, moreover, collected
contributions from his colleagues enabling Abel to pursue his studies at the university. At
the university of Christiania, Christopher Hansteen, professor of astronomy, provided Abel
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with both financial and moral support.

Abel obtained a preliminary degree from the university in 1822 and continued his research
independently, with further subsidies obtained by Holmboe. While in his final year at school,
Abel had begun working on the solution of quintic equations (of the fifth order) by radicals.

He published papers in 1823 in the new periodical Magazin for Naturvidenskaberne, edited
by Hanseen, on functional equations and integrals.

In his paper, Solutions of some problems by means of definite integrals he gave the first
solution of an integral equation.

Abel was given a small grant allowing him to visit Degen and other mathematicians in
Copenhagen. There he met Christine Kemp who soon became his fiancée.

Upon his return to the university of Christiania, his friends urged the Norwegian govern-
ment to grant him a fellowship to study in Germany and France. While awaiting the royal
decree, in 1824, he published his proof as a pamphlet at his own expense that no algebraic
solution exists for the general quintic equation. He sent the pamphlet to Gauss, whom he
intended to visit in Göttingen while on his travels. Gauss disregarded it, failing to recognize
its true value.

In August 1825 Abel received the fellowship from the Norwegian government allowing him
to travel abroad and he set out with four friends, visiting first mathematicians in Norway
and Denmark. In Copenhagen he was given a letter of introduction to August Leopold
Crelle. He spent the winter of 1825 to 1826 with his Norwegian friends in Berlin, where
Crelle, a civil engineer and avid mathematician, became his close friend and mentor.

With Abel’s enthusiastic support, Crelle published the Journal fur die Reine und Ange-
wandte Mathematik (“Journal for pure and applied mathematics”). Its first volume ap-
peared in 1826 and contained an article elaborating on his results of the quintic equation
titled Recherches sur les fonctions elliptiques, together with six other papers by Abel on
equation theory, functional equations, integration in finite forms and theoretical mechanics.

Abel had planned to visit Gauss in Göttingen on the way to Paris. However, learning that
Gauss was displeased to receive his work on the the general quintic equation, he decided to
cancel his trip to Göttingen. He arrived in Paris in 1826 where he sought the most renowned
mathematicians and continued work on transcendental and elliptic functions. He developed
what was to be known as Abel’s theorem on the integrals of algebraic functions. This
theorem was the foundation of the later theory of Abelian integrals and Abelian functions.
His presentations did not evoke in Paris the enthusiasm he had hoped for, for he was a new
unknown entity on the scene.

He showed his treatise on a class of transcendental functions to Cauchy who brushed the
young man aside with disdain.

Abel submitted his memoir to the Academy of Sciences on the sum of integrals of a given
algebraic function, which is a generalization of Euler’s relation on elliptic integrals, hoping
to make known his recent discoveries. He waited in vain for a response. Meanwhile he was
diagnosed as having tuberculosis.

Heavily in debt, Abel returned to Norway. To subsist he tutored schoolchildren, received
a small grant from his university and obtained a substitute teaching position. In spite of
his illness and poverty he produced several papers on the theory of equations, later to be
referred to as the theory of Abelian equations with Abelian groups. In a short time he
developed the theory of elliptic functions independently of the work of Karl Gustav Jacobi.

Legendre saw the new ideas in the papers that Abel and Jacobi were writing and said
“Through these works you two will be placed in the class of the foremost analysts of our
times.”

By now his fame had spread over all mathematics centers. A group from the French
Academy submitted a request to grant him a suitable position to King Bernadotte of
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Norway-Sweden. Meanwhile Crelle worked on securing for him a position of professor in
Berlin.

In the fall of 1828 Abel’s health took a turn for the worst, and a trip on a sled to visit
his fiancée at Froland near Christmastime aggravated his condition. Crelle persisted more
intensely in his efforts to obtain an appointment for Abel in Berlin. He succeeded and wrote
to Abel on April 8, 1829 that his dream had come true. It was too late; Abel had died on
April 6, at the age of 26.

References:
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A.24 Johann Peter Gustav Lejeune Dirichlet (1805–1859)

FIGURE A.27 Johann Peter Gustav Lejeune Dirichlet.

Born: February 13, 1805 in Düren, French Empire (now Germany), died: May
5, 1859 in Göttingen, Hanover (now Germany)

Lejeune Dirichlet was born in Düren (now in Germany). His grandfather lived in the town
of Richelette in Belgium, whence the name “Lejeune Dirichlet” (“le jeune de Richelette”
(the young one from Richelette). His father was the postmaster of Düren, situated about
halfway between Aachen and Cologne. After two years at the Gymnasium he attended the
Jesuit College in Cologne and there he had the good fortune to be taught by Georg Ohm.

His first paper to the Paris Academy in July 1825 established instantly his reputation
since it tackled the famous Fermat’s last theorem. The theorem claimed that for n > 2
there are no nonzero integers x, y, z such that xn + yn = zn. The cases n = 3 and n = 4
had been proved by Euler and Fermat. Dirichlet’s paper presented a partial proof for the
case n = 5, which was completed by Legendre who was one of the referees. Dirichlet also
completed his own proof almost at the same time, presenting at a later date a full proof for

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Abel.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Abel.html
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the case n = 14.

Dirichlet studied mathematics at Göttingen university where he was a student of Karl
Gauss and Karl Jacobi. He also studied briefly in Paris where he benefited considerably from
his contacts with Fourier, Biot, Laplace, Lacroix, Legendre, and Poisson. Joseph Fourier
greatly motivated his interest in expansions using trigonometric series. In 1826 he returned
to Germany and taught at Breslau and later at the Military Academy in Berlin. He then
moved to the university of Berlin to stay for 27 years before returning to Göttingen university
to fill the chair left vacant by Gauss’ death.

Dirichlet’s work on number theory was an extension of Gauss’ developments, and Dirich-
let’s book, the Vorlesungen über Zahlentheorie (1863; Lectures on Number Theory), is
comparable in its depth and extent to Gauss’ Disquisitiones. Dirichlet made many signif-
icant discoveries in number theory and his solution of a problem related to primes was a
pioneering effort in applying analytical techniques to solve problems in number theory.

In 1829 Dirichlet was able to define the sufficient conditions for the existence of Fourier
series to converge. Fourier also initiated the interest of Dirichlet in mathematical physics,
motivating his interest in multiple integrals and the boundary-value problem, which came
to be known as the Dirichlet problem, concerning the formulation and solution of those
partial differential equations occurring in the study of heat flow and electrostatics. These
are of great importance in many other areas of physics. The growth of a more rigorous
understanding of analysis owes to Dirichlet what is essentially the modern definition of the
concept of a function.

In 1831, Dirichlet married Rebecca Henriette Mendelssohn Bartholdy, who came from a
distinguished family, being a granddaughter of the philosopher Moses Mendelssohn and a
sister of the composer Felix Mendelssohn.

Jacobi, who taught at Königsberg, was one of Dirichlet’s lifelong friends, and they had
great respect for each other’s contribution, in particular in number theory.

Ferdinand Eisenstein, Leopold Kronecker, and Rudolf Lipschitz were Dirichlet’s students.
After his death on May 5, 1859 in Göttingen, Dirichlet’s lectures and landmark results in
number theory were collected, edited and published by his friend and fellow mathematician
Richard Dedekind under the title Vorlesungen über Zahlentheorie (Lectures on Number The-
ory).
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A.25 Pafnuty Lvovich Chebyshev (1821–1894)

Born: May 16, 1821 in Okatovo, Russia; died: December 8, 1894 in St. Peters-
burg, Russia

Pafnuty Lvovich Chebyshev was born in Okatovo, a village west of Moscow. He was one
of nine children of Lev Pavlovich Chebyshev and Agrafena Ivanovna Chebysheva. His father
was a wealthy landowner who in his earlier military career had fought as an officer against
Napoléon’s invading armies. Pafnuty Lvovich had a physical handicap with one limb weaker
than the other, causing him to limp and he had to walk with a stick. He was thus unable

http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Dirichlet.html
http://www.bookrags.com/biography/johann-peter-gustav-lejeune-dirichlet-wom/
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FIGURE A.28 Pafnuty Lvovich Chebyshev.

to pursue an officer’s career and early on replaced child’s play and sports with a passion
for constructing mechanisms. He was tutored at home by his mother, his cousin Avdotia
Kvintillianovna Soukhareva and a music teacher whom he later acknowledged for teaching
him the importance of analysis, precision and harmony. From his mother he learned the
basic skills of reading and writing, while his cousin acting as a governess taught him French
and arithmetic. Later in life his fluency in French helped him in his publications and in his
visits to France. French at the time was a natural language for formulating mathematics
and communicating with European mathematicians.

In 1832, the family moved to Moscow mainly to attend to the education of their sons.
He was tutored at home; his mathematics and physics lessons were given by P. N. Pogorel-
ski, one of the most renowned teachers in Moscow. In 1837, Chebyshev began his studies
of mathematics at Moscow university. In courses on mechanics his professor was Nikolai
Dmetrievich Brashman, who taught a wide range of subjects covering applied mechanics,
mechanical engineering, hydraulics and probability theory. Later Chebyshev would cite the
great influence Brashman had on developing his areas of research.

In 1841 Chebyshev was awarded the silver medal for his work “Calculation of the roots of
equations.” In this contribution Chebyshev proposed an approximation for the solution of
algebraic equations of the nth degree based on Newton’s algorithm. Chebyshev proceeded
to a master’s degree program under Brashman’s supervision. In 1843 he published a paper
on multiple integrals in French in Liouville’s journal. In 1846 he received his master’s degree
upon defending his thesis “An Attempt to an Elementary Analysis of Probabilistic Theory.”
In 1847 Chebyshev became assistant professor of mathematics at St. Petersburg university.
In 1849 he defended his theory of congruences results in his doctorate dissertation and
became professor at St. Petersburg university in 1860. The Paris academy elected him
corresponding member in the same year, and full foreign member in 1874.

In 1872, after 25 years of teaching at St. Petersburg university, he became professor
emeritus. In 1882 he left the university to devote his life to research. In 1893, he was elected
honorable member of the St. Petersburg Mathematical Society. He died November 26, 1894,
in St Petersburg.
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http://www.britannica.com/eb/article-9022729/Pafnuty-Lvovich-Chebyshev

http://www.bibmath.net/bios/index.php3.

A.26 Paul A.M. Dirac

The Nobel Prize in Physics 1933

The following is a reproduction, with gratitude and acknowledgment for the permission
granted by the Nobel Foundation, of the Foundation’s official biography on the life of Paul
A.M. Dirac, as it appears on the site:

http://nobelprize.org/nobel prizes/physics/laureates/1933/dirac-bio.html

FIGURE A.29 Paul A.M. Dirac (www.commons.wikimedia.org/wiki/Paul A.M. Dirac)

Paul Adrien Maurice Dirac was born on 8th August, 1902, at Bristol, England, his father
being Swiss and his mother English. He was educated at the Merchant Venturer’s Secondary
School, Bristol, then went on to Bristol university. Here, he studied electrical engineering,
obtaining the B.Sc. (Engineering) degree in 1921. He then studied mathematics for two years
at Bristol university, later going on to St.John’s College, Cambridge, as a research student
in mathematics. He received his Ph.D. degree in 1926. The following year he became a
Fellow of St.John’s College and, in 1932, Lucasian Professor of Mathematics at Cambridge.

Dirac’s work has been concerned with the mathematical and theoretical aspects of quan-
tum mechanics. He began work on the new quantum mechanics as soon as it was introduced
by Heisenberg in 1928 — independently producing a mathematical equivalent which con-
sisted essentially of a noncommutative algebra for calculating atomic properties — and
wrote a series of papers on the subject, published mainly in the Proceedings of the Royal
Society, leading up to his relativistic theory of the electron (1928) and the theory of holes
(1930). This latter theory required the existence of a positive particle having the same mass
and charge as the known (negative) electron. This, the positron was discovered experimen-
tally at a later date (1932) by C. D. Anderson, while its existence was likewise proved by

http://www.britannica.com/eb/article-9022729/Pafnuty-Lvovich-Chebyshev
http://www.bibmath.net/bios/index.php3
www.commons.wikimedia.org/wiki/Paul_A.M._Dirac
http://nobelprize.org/nobelprizes/physics/laureates/1933/dirac-bio.html
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Blackett and Occhialini (1933) in the phenomena of “pair production” and “annihilation.”
The importance of Dirac’s work lies essentially in his famous wave equation, which in-

troduced special relativity into Schrödinger’s equation. Taking into account the fact that,
mathematically speaking, relativity theory and quantum theory are not only distinct from
each other, but also oppose each other, Dirac’s work could be considered a fruitful recon-
ciliation between the two theories.

Dirac’s publications include the books Quantum Theory of the Electron (1928) and The
Principles of Quantum Mechanics (1930; 3rd ed. 1947).

He was elected a Fellow of the Royal Society in 1930, being awarded the Society’s Royal
Medal and the Copley Medal. He was elected a member of the Pontifical Academy of Sciences
in 1961.

Dirac has travelled extensively and studied at various foreign universities, including
Copenhagen, Göttingen, Leyden, Wisconsin, Michigan, and Princeton (in 1934, as Visit-
ing Professor). In 1929, after having spent five months in America, he went round the
world, visiting Japan together with Heisenberg, and then returned across Siberia.

In 1937 he married Margit Wigner, of Budapest.
Paul A.M. Dirac died on October 20, 1984.

From Nobel Lectures, Physics 1922-1941, Elsevier Publishing Company, Amsterdam, 1965.
This biography was first published in the book series Les Prix Nobel. It was later edited
and republished in Nobel Lectures.
Copyright c©The Nobel Foundation 1933.
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L’Hôpital, 1278
Laplace, 1279
Lavoisier, 1281
Leibniz, 1275
Louis XVI and Marie-Antoinette, 1283
Newton, 1274
Plato, 1262
Prony, 1281
Ptolemy, 1264
Rosetta stone, 1287

Scheiner, 1273
Socrates, 1263
William III of Orange, 1277

Biquadratic transfer function realization, 723
Biquadratic transfer functions, 714
Block diagram reduction, 233
Bode plot of a composite system, 267

C/D and D/C conversion, 406
Carry Look Ahead CLA cells, 1011
Cauchy’s Residue Theorem, 125
Causal system response, 256
Circular Shift, 448
Comb filters, 351
Communication systems

amplitude modulation, 876
digital communication systems, 888
discrete signals, 887
Double Side-Band (DSB) modulation,

876
frequency division multiplexing, 893
PCM-TDM Systems, 893
pulse duration modulation, 890
pulse position modulation, 892

Composite sinusoid period, 86
Computer arithmetic

1’s and 2’s complement notation, 976
addition, 982
addition in 1’s complement notation,

984
addition in 2’s complement notation,

985
addition in sign and magnitude nota-

tion, 982
addition/subtraction implementation, 991
conversion from decimal to binary, 974
division, 1002
floating point addition/subtraction, 1029
floating point division, 1030
floating point multiplication, 1029
floating point number representation,

1027

1307



1308 Index

integer and fractional number represen-
tation, 978

integers, fractions and the binary point,
974

representation of negative numbers, 975
sign and magnitude notation, 975
signed numbers in 1’s and 2’s comple-

ment notation, 979
square root evaluation, 1030
subtraction, 986
subtraction in 1’s complement notation,

988
subtraction in 2’s complement notation,

989
subtraction in sign and magnitude no-

tation, 987
systems for representation of numbers,

973
Continuous-time filters

poles of H (s), 589
the case ε 6= 1, 552
the value ε as function of ripple, 564
Bessel delay plots of frequency normal-

ized form, 634
Bessel filter denormalization and devi-

ation from ideal response, 622
Bessel filter frequency normalized form,

633
Bessel filter nomograph, 639
Bessel filter poles and zeros, 634
Bessel filter’s Butterworth asymptotic

form, 626
Bessel magnitude and delay, 626
Bessel quality factor and natural fre-

quency, 618
Bessel’s constant delay filters, 611
Besselfilter delay and magnitude, 622
Butterworth approximation, 544
Butterworth asymptotic form Bessel de-

lay plots, 629
Butterworth filter gain, 547
Butterworth filter order formula, 553
Chebyshev approximation, 556
Chebyshev filter gain, 564
Chebyshev filter nomograph, 575
Chebyshev filter order, 567
Chebyshev’s Second form, 571
continued fraction expansion, 612
delay of Bessel–Butterworth asymptotic

form filter, 628
denormalization, 547, 568

Elliptic filter nomograph, 592
Elliptic filters, 576
filter delay evaluation, 617
frequency normalized form Bessel filter

transformation, 635
frequency transformations, 639
Hamming window, 664
Hanning window, 663
lowpass to bandpass transformation, 641
lowpass to bandstop transformation, 651
lowpass to highpass transformation, 653
maxima and minima of response, 563
maximal flatness of Bessel and Butter-

worth response, 619
nomographs, 554
pass-band ripple, 560
points of maxima/minima, 591
pole zero alignment of Elliptic filter,

584
properties of the sn function, 577
Rectangular window, 662
response rate of decay, 572
tables of Chebyshev filter, 565
tables of Elliptic filters, 599
Triangle (Bartlett) window, 663
Windows, 661
zeros and poles of G (ω), 591
zeros maxima/minima of spectrum, 591

Control counter
generator of prime numbers, 1054
micro-operations and states, 1055

Controlled add/subtract CAS cell, 992
Convergence division, 1016
Conversion

A/D D/A, 400
continuous to discrete, 400
digital to analog, 424

Convolution, 15
as multiplication, 360
circular, 443
circular using DFT, 445
in 2D, 366
of impulse and derivatives, 21
periodic, 441

Correlation, 15
as multiplication, 360
function, 22
images, 370
in 2D, 366
two-dimensional signals, 370



Index 1309

D-C Motor, 237
D/A conversion, 404
Decibels octaves decades, 260
Design of doubly terminated passive LC lad-

der networks, 695
dfilt, 1169
DFT vs DFS, 438
Difference equations, 324
Digital filters

all-pole filter, 769
allpass filter lattice filter, 781
backward-rectangular approximation, 747
Bilinear transform, 751
cascaded form, 738
comparison of windows, 805
conversion of continuous-time to digital

filter, 743
finite impulse response FIR filters, 740
FIR all-zero lattice structures, 760
first Canonical form, 734
first order all-zero lattice filter, 761
first order one-pole lattice filter, 770
forward rectangular, trapezoidal approx-

imations, 749
frequency transformations, 783
general order all-pole filter, 772
general order all-zero lattice filter, 764
Hamming window, 803
Hanning window, 802
IIR filter models, 374, 734
impulse invariance approach, 743
impulse response of ideal filters, 798
lattice filters, 760
linear phase FIR filters, 741
matrix representation, 739
parallel form, 739
pole-zero IIR lattice filter, 775
Rectangular window, 801
Schur-Cohn stability criterion, 782
second Canonical form, 736
second Canonical form transposition, 737
second order all-pole lattice filter, 771
second order all-zero lattice filter, 762
short-cut impulse invariance, 746
signal flow graphs, 733
spectral leakage, 800
structures based on poles and zeros, 738
transposition, 734
Triangular window, 804
Windows, 801

Digital signal processors

a simple C program, 1079
ADDA/SUBA instructions, 1077
Addressing Mode Register (AMR), 1075
addressing modes, 1076
C++ program on the DSP card, 1094
calling an assembly language function,

1083
central processing unit, 1069
circular addressing mode, 1078
computer arithmetic, 973
CPU data paths and control, 1071
Data Address paths, 1073
DSP programming in C++ and Simulink,

1094
Fibonacci in C calling assembly-language,

1087
Finite Impulse Response (FIR) filter,

1087
functional units, 1072
general-purpose register files, 1071
generated assembly code, 1080
IIR filter on the DSP, 1088
instruction syntax, 1074
linear addressing mode, 1077
Memory, Load, and Store paths, 1073
programming the T.I. DSP, 1078
real-time DSP using MATLAB–Simulink,

1092
register file cross paths, 1072
Simulink program on the DSP card, 1096
syntax for Load/Store address genera-

tion, 1076
Texas Instruments floating-point DSP,

1067
TMS320C6000 control register file, 1074

Dirac-delta impulse, 7
properties, 8, 1200

Discrete Fourier series, 433
duality, 440
linearity, 439
properties, 439
shift in frequency, 439
shift in time, 439
table of properties, 447

Discrete Fourier transform, 429
duality, 440
linearity, 439
properties, 439
shift in frequency, 439
shift in time, 439
table of properties, 447
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to z-Transform, 436
zero padding, 450

Discrete Fractional Fourier transform, 950
Discrete Hartley transform, 938
Discrete Hilbert transform, 935

generalization, 1247
Discrete impulse, 27
Discrete systems

correlation in 1D, 357
Discrete Walsh transform, 916

Dyadic or Paley order, 918
Natural (Hadamard) Order, 917
Sequency or Walsh order, 919

Discrete Wavelet transform, 1157
Discrete z-transform, 453
Discrete-time convolution, correlation, 355
Discrete-time Fourier transform

Fourier series duality, 426
Parseval’s theorem, 425
periodic sequence, 419
table of properties, 425
table of transforms, 420
vs Laplace, z-transform, 395

Discrete-Time system
inverse system, 378
minimum-phase, 378

Discrete-time system
allpass, 375
causality, stability, 30, 353
difference equations, 28
group delay, 354
periodicity, 27
stability, 425

Distributions, 1181
additional Fourier transforms, 1201
approximating sequences and functions

of the impulse, 1190
approximating the impulse, 1187
convolution, 1192
differentiation, 1187
Dirac-delta impulse as a limit of Gaus-

sian function, 1195
Fourier transform of higher impulse deriva-

tives, 1204
Fourier transform of unity, 1196
generalized limits, 1202
Gibbs Phenomenon, 1208
impulse as limit of a sequence, 1184
impulse of a function, 1196
initial derivatives of the transform, 1206
linearity, 1184

moving average, 1219
multiplication by t, 1199
multiplication by an impulse derivative,

1193
multiplication by ordinary function, 1187
Poisson’s Summation Formula, 1218
product with an ordinary function, 1186
properties of distributions, 1184
Reimann-Lebesgue Lemma, 1201
ripple elimination, 1212
scaling, 1199
sequence, 1187
sequence of distributions, 1187, 1216
symmetry, 1186
test functions, 1191
the distribution t−k, 1204
time scaling, 1185
time shift, 1185
transform of an impulse train, 1214
unit step function as a limit, 1207
what is a distribution?, 1182

Distributions-Generalization
convolution, 1227, 1228, 1237
convolution of Generalized impulses, 1240
convolution with an ordinary function,

1229, 1241
differentiation, 1227, 1228, 1236, 1237
discrete domain linearity linearity, 1236
discrete domain scaling, 1236
discrete-time domain, 1234
Extended Laplace and z-transforms, 1242
Extended Laplace transform of basic

functions, 1242
generalization of Distribution theory, 1225
generalization of Fourier, Laplace and

z-related transforms, 1242
Generalized distributions for continuous-

time functions, 1226
Generalized impulse as a limit of a 3D

sequence, 1232
Generalized impulse as limit of 3D se-

quence, 1238
Generalized impulse properties, 1230
linearity, 1226
multiplication by higher derivatives of

impulse, 1230
multiplication derivative and ordinary

function, 1228
multiplication of impulse times ordinary

function, 1230
properties, 1226, 1235
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properties Generalized Delta impulse in
z, 1237

properties of the Generalized Dirac-delta
impulse in the s domain, 1228

rewriting Laplace, z and related trans-
forms, 1225

scaling, 1227
shift in s, 1226
shifted Generalized impulse, 1228
three-dimensional discrete-time domain

test functions, 1235
Division

cellular nonrestoring array, 1009, 1014
in 1’s complement, 1004
in 2’s complement, 1005
in sign and magnitude notation, 1004
nonrestoring, 1006
of positive numbers, 1003

Double Side-Band Suppressed Carrier (DSB-
SC) Modulation, 877

Doubly terminated passive networks
input impedance evaluation, 695

DSP with Xilinx FPGAs, 1065

Eigenvalues, eigenvectors, 497
Element replacement for frequency transfor-

mation, 709
Elliptic filter approximation, 580
Elliptic filter as passive network, 706
Elliptic integral, 576
Elliptic LC ladder circuit elements, 707
Energy

energy sequences, 29
power sequences, 29

Energy and Power spectral density, 363
Energy/Power spectral densities

autocorrelation of an energy sequence,
860

autocorrelation of energy signals, 840
cross-correlation, 848
discrete-time signals, 839
energy and power signals, 25, 838
energy signal through linear system, 842
energy signals, 840
energy spectral density, 835
energy spectral density of a sequence,

860
impulsive and discrete-time energy sig-

nals, 843
impulsive and discrete-time power sig-

nals, 852

passage through a linear system, 861
periodic signals, 854
power density of a sequence, 860
power sequences, 859
power spectral density, 849
power spectral density of impulse train,

856
power spectrum conversion of a linear

system, 850
powers signals, 848
response to a sinusoidal input, 855

Error minimization in Prony’s method, 790
Even and odd parts of a function, 6
Even-odd decomposition, 28
Expansions, 1257

Fast Fourier transform, 455
feedback elimination, 470
higher radix, 466
Ordered-Input Ordered-Output, 465
wired-in processor, 462

Fast transform processors, 1059
FFT

Ordered-Input Ordered-Output general
radix, 469

Post-Permutation Algorithm, 464
Field Programmable Gate Array (FPGA),

1063
FIR filter design, 1170

even order, even symmetry, 815
even- and odd-symmetric, 808
impulse response evaluation, 814
linear phase, 810
sampling the unit circle, 810

FIR inverse filter design, 794
fir2, 1173
First order filter realization, 721
First order system, 264
Fourier series

analysis interval vs period, 55
analysis section, 48
by power series expansion, 90
coeffcients, 53
convolution in time, 75
differentiation property, 72
Dirichlet conditions, 53
discrete spectrum, 56
double symmetry, 67
exponential, 48
exponential coefficients, 85
impulse train, 77
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integration, 75
inverse, 91
multiplication in time, 74
odd function, 65
Parseval’s relations, 89
passage through system, 88
periodicity, 51
properties, 58
reflection property, 61
sine and cosine, 78
symmetry, 64
time scaling, 70
trigonometric, 47
truncated sinusoid, 83

Fourier transform
as function of f , 155
case of poles on imaginary axis, 175
causal real functions, 168
convolution in frequency, 178
convolution in time, 176
correlation function, 189
differentiation in frequency, 164
differentiation in time, 164
duality property, 160
energy spectral density, 179
even–odd decomposition, 167
frequency shift, 161
Gaussian function, 186
Gibbs Phenomenon, 1208
impulse train, 182
initial frequency value, 163
initial value, 163
integration in time, 164
inverse by series expansion, 187
of a train of rectangles, 184
of causal sinusoid, 172
of complex exponential and sinusoid,

169
of Dirac-delta impulse, 169
Parseval’s Theorem, 178
periodic functions, 181
powers of time, 182
properties in ω and f , 188
reflection, 161
Sign function, 171
symmetry, 166
table of properties, 158
table of transforms, 172
Table transforms in ω and f , 188
time and frequency sampling, 191
time scaling, 161

time shift, 161
truncated sinusoid, 185
unit step function, 172
versus Fourier series, 156
versus Laplace transform, 174
versus periodic function series, 184

Fourier/Laplace/z-related transforms
HI(jω) vs HR(jω) with no poles on

axis, 953
case of poles on the imaginary axis, 957
continuous-time Hilbert transform re-

lations, 953
Discrete Cosine transform DCT, 946
Discrete Fractional Fourier transform,

950
Discrete Hartley transform, 938
Discrete Hilbert transform, 935
Discrete Walsh transform, 917
Discrete-time domain Hilbert transform

relations, 961
Dyadic-ordered fast Walsh-Hadamard

transform, 920
Fourier Cosine transform, 945
Fractional Fourier transform, 948
generalized Walsh transform, 922
Hankel transform, 943
Hartley transform, 936
Hilbert transform, 931
Hilbert transform closed forms, 958
Mellin transform, 939
Mellin transform of ejx, 941
Natural order fast Walsh-Hadamard trans-

form, 919
Sequency-ordered fast Walsh-Hadamard

transform, 921
two-dimensional Fourier transform, 951
two-dimensional transforms, 950
Walsh-Hadamard transform, 917
Wiener-Lee transforms, 959

Fractional Fourier transform, 948
Frequency Modulation, 883
Frequency Multiplexing, 882
Frequency response, 349

geometric evaluation, 349
Frequency response plots, 260
Frequently encountered functions, 1260
Full Adder cell, 990
Function generation

alternative approach, 1026
by Chebyshev series, 1020
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Galvanometer, 234
Gamma function, 138
General Biquad realization, 716
General Jordan Canonical Form, 507
Generalized Discrete Hartley Transform, 1248
Generalized Hartley Transform, 1247
Generalized Walsh transform

factorizations for parallel processing, 924
Generalized Sequency order, 923
Generalized Walsh natural order GWN

matrix, 924
Generalized Walsh–Paley (p-adic) trans-

form, 923
Generalized Walsh–Paley GWP trans-

formation matrix, 925
GWK optimal factorization, 927
GWK transformation matrix, 926
GWN optimal factorization, 926
GWP optimal factorization, 927
High Speed optimal factorizations, 926
Natural order, 922
Walsh–Kaczmarz transform, 923

Geometric series
weighted, 1261

Gibbs Phenomenon, 1208
Graphical representation of a system func-

tion, 268

Hankel transform, 943
Hartley transform, 936
Hilbert transform, 931
Hilbert transform generalization, 1245
Hilbert transformer, 934
Homologies, 245

Ideal filter impulse response, 190
Ideal highpass filter, 191
IIR and FIR Digital Filters, 374
Important trigonometric relations, 1259
Input impedance single-resistance network,

683
Interlacing with zeros, 407

Karhunen Loève transform, 928

Ladder components evaluation, 684
Laplace transform

anticausal functions, 120
Bilateral, 105
causal periodic function, 123
convolution in frequency, 124

convolution in time, 117
differentiation in time, 116, 135
division by time, 137
final value theorem, 119
Heaviside Expansion theorem, 131
initial and final value, 137
initial value theorem, 119
integration in time, 117, 137
inverse, 128
multiplication by exponential, 118
multiplication by time powers, 116
reflection, 119
ROC, 112
shift in time, 121
table of anticausal functions, 121
table of properties, 115
table of transforms, 141
table of transforms of common func-

tions, 111
time scaling, 118
Unilateral, 134

Least squares digital filter design, 786
Linear differential equations with constant

coefficients, 285
Linear system

causality and stability, 12
Fourier series, 88
frequency response, 14, 166
input–output relation, 177
mechanical, 13
response to sinusoidal input, 183
response with initial conditions, 489
stability, 183
step response, 248
transfer function, 14, 233, 488
transient and steady-state response, 247

Linear-phase FIR filter design using win-
dows, 807

logspace, 1170
Lowpass to bandpass transformation, 710
Lowpass to bandstop transformation, 711
Lowpass to highpass transformation, 711
lpc, 1167
LTI system input/output correlation sequences,

362

Mathematical formulae, 1260
MATLAB

arcov, 1174
aryule, 1174
important functions, 1164
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parametric modeling functions, 1174
power spectrum estimation, 1174
prony, 1175

Matrix diagonalization, 498
Matrix evaluation of input impedance, 689
Mechanical system, 252
Mellin transform, 939

of ejx, 941
Memory elements, 1037

JK flip-Flop, 1040
Master-Slave flip-Flop, 1041
Set-Reset (SR) flip-Flop, 1038
Trigger or T flip-Flop, 1040

Minimum phase systems, 280
Modulation theorem, 162
Multiplication

direct approach in 2’s complement, 1000
implementation, 993
in 1’s complement notation, 997
in 2’s complement notation, 998
in Sign and Magnitude notation, 997
of unsigned numbers, 992

Orthogonality relations, 1259
Overshoot evaluation, 255

Padé approximation, 786
Partial differential equations, 291

transformation, 293
Passive double-resistance networks

table of component values, 701
Passive ladder lowpass filters, 677
Passive/Active filters

Bessel filter passive networks, 693
Biquadratic transfer functions, 714
Elliptic filter as passive network, 706
first order filter realization, 721
general Biquad realization, 716
general order active filter realization,

713
general order passive ladder network,

680
inverting integrator, 713
ladder network components, 684
matrix evaluation of input impedance,

689
passive filters, 677
passive ladder lowpass filters, 677
Sallen Key circuit, 725
table of elliptic filter components, 709
tables of passive ladder components, 694

Passive/Double-Resistance terminated net-
works

closed forms for circuit element compo-
nents, 703

perfect-shuffle-matrix, 462
Periodic convolution, 441
Periodic functions, 3

correlation, 25
Poles, zeros, 349
Programmable Logic Array (PLA), 1062
Properties of the impulse, 11
Pulse Code Modulation, 888
Pulse Modulation Systems, 887

Rademacher and Haar functions, 911
Random Signal

AR lattice, 1146
ARMA(p, q) Process, 1146
backward linear prediction, 1140
causal IIR Wiener filter, 1152
continuous-time causal Wiener filter, 1116
continuous-time correlation, 1109
continuous-time Wiener filtering, 1113
correlation covariance in z, 1120
discrete-time PSD estimation, 1124
forward linear prediction, 1138
lattice MA FIR filter, 1143
least-squares filtering, 1138
nonparametric power spectrum estima-

tion, 1108
Parametric PSD estimation, 1131
passage through an LTI system, 1110,

1121
Periodogram evaluation, 1128
power spectrum estimation, 1147
random sequences, 1118
statistical to time averages, 1119
system modeling and prediction, 1134
two-sided IIR Wiener filter, 1151
Wiener and Least-Squares models, 1134
Wiener filtering, 1135
Wiener filtering and prediction, 1148
Yule-Walker equations, 1132

Response of a discrete-time linear system to
a sinusoid, 361

Response to causal periodic input, 257
Response to causal sinusoidal input, 259
Root evaluation

nth root, 1018
binary, 1031

Rotational mechanical system, 253
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Sallen Key circuit, 725
Sampling

arbitrary signal, 201
bandpass signal, 200
Ideal, 191
Instantaneous, 197
Natural, 195
reconstruction from a sampled signal,

193
the Fourier transform, 203
the Spectrum, 446
time and frequency, 191

Sampling rate
alteration, 417
increase, 414
reduction, 410

Sampling rate conversion, 409
Second order system, 264
Second order system frequency response, 253
Second order system model, 249
Series sums, 1261
Settling time, 250
Signal generation, 283
Single Side-Band (SSB) Modulation, 879
Sinusoidal signal

DFT, 434
Solution of differential equations, 284
Square root evaluation

cellular nonrestoring array, 1033
comparison approach, 1031
nonrestoring approach, 1032
restoring approach, 1032
square root paper and pencil method,

1030
State space equations

solution, 501
State space model, 484

change of variables, 529
circuit analysis, 509
discrete state equations solution, 528
discrete-time systems, 522
Jordan form, 490
second canonical form, 531
second order system, 515
trajectories, 513
transfer function, 528
transformation to Jordan Form, 499

Stirling Number First Kind, 1258
Stirling Number Second Kind, 1258
Symbols, 1, 1257
Synchronous sequential circuits, 1042

counter using JK flip-flops, 1046
counter using T flip-flops, 1046
state minimization, 1048
using JK flip-flops, 1045
using SR flip-flops, 1044

Table
z-transform properties, 340
z-transforms, 340
additional Laplace transforms, 141
additional Laplace transforms contd, 142
Bessel delay normalized model denom-

inator coefficients, 617
Bessel filter coefficients and poles, 617
Bessel polynomials, 615
Bessel–Butterworth asymptotic form co-

efficients, 627
Bessel–Thomson passive ladder compo-

nents, 694
Butterworth filter coefficients, 545
Butterworth filter poles and residues,

546
Butterworth passive ladder components,

694
Chebyshev coefficients of trigonometric

functions, 1023
Chebyshev filter, 565
Chebyshev filter poles and residues, 566
Chebyshev filter polynomial coefficients,

565
Chebyshev passive ladder components,

694
continued fraction expansion, 688, 692
DFT properties, 449
Discrete Fourier series properties, 447
discrete-time Fourier transform proper-

ties, 425
Discrete-time Fourier transforms, 420
double-resistance ladder components, 701
Elliptic filter coefficients poles zeros, 599
Elliptic filter components, 709
Elliptic filters, 599
Fourier transform properties, 158
Fourier transform properties in ω and

f , 188
Fourier transforms, 172
Fourier transforms in ω and f , 189
Fractional Fourier transforms of some

common functions, 950
frequency normalized form Bessel filter

coefficients, 634
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frequency transformations of a lowpass
filter, 784

Hankel basic transforms, 945
Hartley transform of some basic func-

tions, 938
Laplace transform properties, 115
Laplace transforms of anticausal func-

tions, 121
Laplace transforms of common functions,

111
LC components of Butterworth, Cheby-

shev, and Bessel filter, 703
matrix of correlations, 796
properties of Fourier series, 58
properties of windows, 805
Shifted Chebyshev polynomials, 1021
single-resistance ladder components, 694

Taylor’s series, 1258
Transformation of trajectories between planes,

519
Two-Dimensional signals, 363

Uniform convergence, 47
Unit sample sequence, 27
Unit step function, 4
Unit step sequence, 26
Units and dimensions, 1

Vectorial evaluation of frequency response,
273

Vectorial evaluation of residues, 269
Vestigial Side-Band (VSB) Modulation, 882

Walsh (Sequency) Order, 913
Walsh functions, 912
Walsh transform, 911

Dyadic (Paley) Order, 914
Natural (Hadamard) Order, 914

Wavelet transform, 1154

Yulewalk, 1168

z-transform, 325
conjugate sequence, 340
convergence, 327
convolution in frequency, 344
convolution in time, 344
final value theorem, 347
frequency translation, 348
initial value, 341
inverse, 330
inverse by long division, 337

inverse by partial fraction expansion,
336

inverse by power series expansion, 338
multiplication by n, 349
multiplication by an exponential, 348
Parseval’s Relation, 347
properties, 340
reflection property, 349
time shift, 340
unilateral, 381
unilateral, time shift property, 383
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