

Compiled from many sources, including the web, books from other authors and articles produced by Colin Mitchell

CONTENTS			
AC Trigger	39	Microphone	83
Ammeter	83	Morse Code Generator	21
Amplifier	20, 21	MPF 102 FET	26
Arc Welder	78	Multivibrator	21
Audio Alarm	59	OA 91 diode	9
Audio Mixer	46	OP Amp	42
BC 547 NPN transistor	19	Peak Reading VU Meter	52
BC557 PNP transistor	19	Photo Diode	34
BD 139 BD140 transistor	21	Photo Electric Relay	30
Bipolar Transistors	15	Pinouts	74
CA 3130 OP-amp	52	Power Diode	8
Capacitor Data	71	Power Supply	22, 60
Car Voltage Converter	25	Relay Driver	20
Chip Pinouts	74	Resistors	68
Circuit Symbols	4	RF Monitor Meter	9
Common Base/Emitter/		RF Prescaler	28
Collector Circuits	15,16	SCR C122D	40
Counter	37	Silicon Controlled	
Crystal Set	9	Rectifier	44
Darlington Transistor	17	Simon	86
DC Millivoltmeter	47	Regulator 78xx 79xx	8, 10
Definitions	18	Signal Diode	51,53
Difference Amplifier	46	Semiconductor Devices	14
Diode	8	Solar Charger	56
Dual Power Supply	54	Square Wave Oscillator	77
Electronic Dice	36	Steam Simulator	50
FET	29	Surface Mount Resistors	75
FET Voltmeter	29	Time Delay	69
Field Strength Meter MklI	79	Timer	25
Flashing LED	33	Transistor Amplifier	28
FMTransmitter FM Bug	20,81	Transistor Pinouts	81
Germanium Diode	9	TRIAC SC151D	55
Hearing Aid	81	Touch Switch	38
Infinity Bug	80	Ultrasonic Transmitter	58
Infrared LED	34	Unijunction Transistor	57
Infrared Light Beam	38	UJ T	37
Kitt Scanner	60	UJ T Time Delay	37
Lamp Dimmer	39	Wein Bridge Oscillator	53
Lamp Flasher	59	Zener Diode	47
Light Beam Relay	28	1N4001 Power diode	8
Light Switch	30	1N4148 Signal diode	10
LEDs	31	27MHz Links	23
LED Chaser	33	2N2646 UJ T	76
LED Dice	61	2N 3055 transistor	22
LED Flasher	33	4017 Decade counter	64
LM 340	50	555 Light Switch	60
LM 386	67	555 Timer	29
Logic Gates	56	7-Segment Displays	48
Logic Probe	58,62	74c14 Hex Schmitt	35
Metal Detector	57,59	741 OP Amp	62
Metronome	25	7555 CMOS 555	44
Microcontrollers	85	$7805+5 \mathrm{v}$ Regulator 7905 -5v Regulator	$\begin{aligned} & 50 \\ & 60 \end{aligned}$

CIRCUTGSMBOLS by TALKING ELECTRONICs

AC current	ALTERNISTOR TRIAC A. TFIAC and $33-43 \mathrm{vD\mid AC}$	Ammeter (amp meter)	$-(\bar{A})$
AND Gate a \quad -	AND Gate \quad 包	Antenna balanced	7Γ
Antenna Loop, Shielded	Antenna Loop, Unstielded	Antenna unbalanced	
$\underset{\}}{\underset{\sim}{\text { Attenuator, fixed }}} \begin{aligned} & \text { (see Resistor) } \end{aligned}$		Battery	$\frac{+1}{T}$
Bilateral Switch (DIAC)	Bridge Rectifier (Diode Eridge)	BUFFER (Amplifier Gate)	

	$\underset{\text { Earth }}{\text { Grouncl }}$	Electroluminescence
	Electrolytic - Tanatalum positive end black band or chamer	
		Fuse $\square \rightarrow$ -

Galvanometer $-(\underline{G}-(\underline{1})$	Globe	$\underset{\text { Ground }}{\text { Chassis }} \quad \rightarrow \frac{1}{\equiv}$
$\substack{\text { Ground } \\ \text { Earth } \\ \text { Headphone }}$ $-\Omega-$		IC Integrated Circuit \square ground
Inductor -m Air Core	Inductor Iron Core $\overline{\text { लn }}$ ferrite core	$\underset{\substack{\text { Inductor } \\ \text { Tapped }}}{-m p}$
Inductor Variable $\rightarrow \vec{n} \rightarrow \vec{m}$	Integrated Circuit \square	
$\begin{aligned} & \begin{array}{l} \text { INVERTER } \\ \text { (NOT Gate) } \end{array} \\ & \hline- \end{aligned}$	$\begin{array}{ll} \hline \begin{array}{ll} \text { Jack } \\ \text { Co-axial } \end{array} & \Gamma^{6} \\ \hline \end{array}$	Jack Phone (Phone Jack)
Jack Phone (Switched) \qquad	Jack Phone (3 conductor)	Key Telegraph (Morse key)
Lamp Incandescent	Lamp-Neon +	LASCR (Light Activated Silicon Controlled Rectifier)
LASER diode laser photo diode	$\underset{\text { Dependent Resistor) }}{\operatorname{LDR}}(\underset{\xi}{*}(\underset{\xi}{s})$	Light Emitting Diode (LED)
$\underset{\substack{\text { (LED - flashing) } \\ \text { (Indicates chipi inside LED) }}}{\text { Light Emiting Diode }}$	Mercury Switch \square	$\underset{\substack{\text { (inicro-antreter) }}}{\operatorname{Mic}}$
$\underset{\text { (see Electret Mic) }}{\text { Microphone }}{ }^{\text {a }}$	Microphone (Crystal - piezoelectric)	$\underset{\substack{\text { (nill-anmeter) }}}{\text { Milliamp meter }} \quad-(\mathrm{mA})$
Motor -(mot)	NAND Gate $\quad \square-$	NAND Gate $\quad-$
Nitinol wire "Muscle wire"$\quad-\infty>$	Negative Voltage ——- Connection	NOR Gate $\quad \underset{\sim}{-}$
NOR Gate -	NOT Gate Inverter	NOT Gate Inverter
Ohm meter \quad (Operational Amplifier (Op Amp)	Optocoupler (Transistor output)
	Optocoupler (Darlington output)	
OR Gate $\quad 5$	OR Gate -	Oscilloscope see CRO (M)
$\underset{\text { (Power Outlet) }}{\text { Outlet }}$	Piezo Diaphragm	
Photo Darlington Transistor	Photo Diode -	Photo FET Drain (Field Effect Transistor)
Photo Transistor	$\underset{\text { (Solar Cell) }}{\text { Photovic Cell }}: \frac{L_{+}}{T} \lambda^{+} \frac{T}{T}$	$\underset{\text { Piezo Tweeter }}{\text { (Piezo Speaker) }}$

Positive Voltage — + Connection		Programmable gate Unijunction Transistor PUT		
$\underset{\text { Remiconductor }}{\text { Rectifier }} \rightarrow \boldsymbol{N}^{k}$	Rectifier Anodel Siliconcontrolled Gaten (GOR) Gathode	Reed Switch $[\sqrt{\text { H}}$		
Relay-spst ${ }^{3}$	Relay - spdt	Relay - dpst $\overline{\bar{\Gamma}}$		
Relay - dpdt	Resistor Fixed	Resistor Non Inductive		
	Resistor variable	$\begin{array}{ll} \text { Resonator } \\ 3 \text {-pin } & \square \end{array}$		
RFC Radio Frequency Choke		Saturable Reactor		
Schmitt Trigger (Inverter Gate) Shielding	Schotky Diode (also Shotthy) Low for ward voltage 0.3 v Fast switching also called Schotthy Earrier Diode	Shockley Diade 4-layer PNPN devioe Remains off until torward current reaches the forward break-over voltage.		
$\begin{array}{ll} \text { Signal Generator } \\ \text { Silicon Controlled } & \text { Anode } \\ \text { Rectifier (GcR) } & \begin{array}{c} \text { Gate } \\ \text { Cathode } \end{array} \end{array}$		Silicon Unilateral Switch (SUS)		
Solar Cell Spark Gap Speaker Switch - mercury tilt switch Switch - spst 5 Switch-spdt F_{i}		Switch - process activated normally open: normally closed: Flow Level Pressure Switch-apst		
Switch-dpdt $\quad F_{L} F_{L}$	Switch - push (Push Button)	Switch - pushoff (used in alarms etc) \qquad		
Switch - Rotay $\quad 10$	Test Foint \longrightarrow	Thermal Probe HTC: as temp rises, resistance decreases		
Thermocouple Tilt switch mercury		Touch Sensor $-\int-$ Transformer Air Core 3ξ		
$\underset{\substack{\text { Transformer } \\ \text { Iron Core }}}{\square} \quad \Omega \\| \xi$	$\begin{array}{ll}\begin{array}{ll}\text { Transformer } \\ \text { (Tapped Primary/Sec) }\end{array} & \overrightarrow{-3} \\| \xi\end{array}$			

	Transistor ni-channel Field Effect Gate \rightarrow Srain	Transistor p-channel Field Effect
Transistor Metal Oxide Single Gate	Transistor metal oxide Dual Gate	Transistor Photosensitive
	Transistor Emitter Base1 Unijunction - U.JT Unijunction Transistor (U.JT) N-type	Transistor Emitter Unijunction - UUT Unijunction Transistor (uIT) P-type
		Varactor varactor diode Voltmeter
	Watmeter $\quad(\underline{\mathrm{M}})-\widehat{\mathrm{P}}$	Wires
Wires Connected	Wires Not Connected	XOR Gate (exclusive OR)
XOR Gate (exclusive OR)		Learn BASIC ELECTRONICS Go to: www//talkingelectronics.com

Circuit Symbols

The list above covers almost every symbol you will find on an electronic circuit diagram. It allows you to identify a symbol and also draw circuits. It is a handy reference and has some symbols that have never had a symbol before, such as a Flashing LED and electroluminescence panel.
Once you have identified a symbol on a diagram you will need to refer to specification sheets to identify each lead on the actual component.
The symbol does not identify the actual pins on the device. It only shows the component in the circuit and how it is wired to the other components, such as input line, output, drive lines etc. You cannot relate the shape or size of the symbol with the component you have in your hand or on the circuit-board.
Sometimes a component is drawn with each pin in the same place as on the chip etc. But this is rarely the case.
Most often there is no relationship between the position of the lines on the circuit and the pins on the component.

That's what makes reading a circuit so complex.
This is very important to remember with transistors, voltage regulators, chips and so many other components as the position of the pins on the symbol are not in the same places as the pins on the component and sometimes the pins have different functions according to the manufacturer. Sometimes the pin numbering is different according to the component, such as positive and negative regulators.

You must to refer to the manufacturer's specification sheet to identify each pin, to be sure you have identified them correctly.

Colin Mitchell

1N4001 to 1N4007
 Silicon Power Rectifiers

The following are subminiature general purpose power rectifiers for low power applications

Electrical Characteristics Specifications

Instantaneous Voltage Drop
@ forward current = $1 \mathrm{~A} \quad 1.1 \mathrm{~V}$

Absolute Maximum Ratings	
Peak Repetitive Reverse Voltage	
1N4001	50 V
1N4002	100 V
1N4003	200 V
1N4004	400 V
1N4005	600 V
1N4006	800 V
1N4007	1000 V

Maximum Full-Cycle Average	
Voltage Drop	
@ Forward Current = 1 A	0.8 V
Maximum	
Reverse Current	0.03 mA
RMS Reverse Voltage	
1N4001	35 v
1N4002	70 v
1N4003	140 v
1N4004	280 v
1N4005	420 v
1N4006	560 v
1N4007	700 v

Their value will depend on the current and the degree of smoothing required. As a general guide, if the current being drawn from a supply is high, the size of the smoothing capacitor will need to be large (around 2500uF or larger) if the hum level is to be kept down to a respectable level.
It must also not be forgotten that all of these circuits are 'unregulated' i.e. as the load increases from zero to maximum the output voltage will drop due to the transformer voltage dropping under load and losses across the diodes - and the storage capacity of smoothing capacitors.

1) Full-Wave Bridge

DC Output Voltage
$=V_{A C} \times 1.41$ Peak

2) Half-Wave

DC Output Voltage
$=V_{A C} \times 1.41$ Peak

3) Full-Wave

DC Output Voltage
$=\frac{V_{A C}}{2} \times 1.41$ Peak

4) Voltage Doubler

DC Output Voltage
$=V_{A C} \times 2.82$ Peak

Example

Say for example we want a power supply to give 9 V at 1 A . We could use a M 2155 transformer which is rated at 1 A . If we use a bridge rectifier and the 9 V tapping the output voltage will be:-
$V_{D C}=1.41 \mathrm{XV}_{\mathrm{AC}}-1.41 \mathrm{X} 9 \mathrm{~V}=12.69 \mathrm{~V}$ Peak (9 V at 1 A load)

Loading and Nominal Voltage

One thing to be aware of with this type of power supply circuit is the voltages given by the formulas are nominal only. Because the actual output voltage of a transformer varies according to its load, the DC output of the power supply will also vary. As well as this, there is a voltage drop across the diodes which will vary according to load. If you need a very precise voltage, the best solution is to use one of the regulated power supply circuits shown in the zener Diode and Voltage Regulator sections of this ebook. You will see that most regulated circuits use one of the circuits above to produce unregulated DC , then regulate it to a consistent voltage that is independent of the load.

OA91 General purpose germanium signal diode

The OA91 is a small signal germanium point contact diode. It is suitable for a wide range of RF detector and small signal rectifying applications.

Specifications

IP Forward current	50 mA
$\mathrm{~V}_{\mathrm{R}}$ Reverse Voltage	90 V Vp,
Forward voltage drop	
@ $\mathbb{I P}=10 \mathrm{~mA}$	1.05 V
@ $l_{F}=0.1 \mathrm{~mA}$	0.1 V

Crystal Set

The crystal set consists of a tuned circuit which selects the wanted station or frequency, and a detector, which separates the information (music, speech etc.) from the radio transmission. The audio voltage produced is an exact replica of the sound from the radio station.
The detector diode rectifies the incoming signal, leaving a half wave radio signal which varies in amplitude with the audio signal. The fixed capacitor C_{2} shorts out or 'bypasses' the RF signal, leaving only the audio.

The circuit below is for a Crystal set using a readily available Ferrite rod and pre-wound aerial coil.

RF Monitor Meter

The circuit is an RF monitor meter suitable for measuring the strength of a signal from transmitters. You could use it to measure the effectiveness of different antennas for example. It works in much the same way as the crystal set, but without the tuned circuit. The meter M, will indicate the strength of the 'carrier'. Modulation of the carrier i.e. signal on the carrier, will cause the reading to vary. M, is not critical, and any meter of 1 mA or better sensitivity will be suitable.

1N4148 Silicon Signal Diode

The 1 N4148 is a general purpose signal diode suitable for a wide range of switching and low power rectifying purposes. It is equivalent to the 1N914.

Features

- Low Capacitance. 4pF at OV
- High breakdown voltage. 100V

Specifications

Capacitance $\mathrm{V}_{\mathrm{R}}=0$, $\mathrm{f}=1 \mathrm{MHz}$
Reverse Recovery Time 4pF 4nsec Rectification Efficiency 2.0V rms. $\mathrm{f}=100 \mathrm{MHz}$

Absolute Maximum Ratings
Breakdown Voltage Working Inverse Voltage DC Forward Current Maximum Total Dissipation at $25^{\circ} \mathrm{C}$ 100 V 75 V 300 mA

Zener Diodes
Zener diodes are used primarily as voltage references. They are devices which maintain an almost constant voltage across them despite various changes in circuit conditions.

Zener symbol

Unlike conventional diodes, zener diodes are deliberately intended to be used with the anode connected to a negative potential (or 0 v) and the cathode connected to the positive potential. When connected in this manner, zener diodes have a very high resistance below a certain critical voltage (called the zener voltage). If this voltage is exceeded, the resistance of the zener drops to a very low level.

When used in this region, essentially constant voltage will be maintained across the Zener, despite quite large changes in the applied currents. This is illustrated graphically in the figure below.
It can be seen that beyond the zener voltage, the reverse voltage remains practically constant despite changes in reverse current. Because of this, Zener diodes may be used to provide a constant voltage drop, or reference voltage.
The actual voltage available from a zener diode is temperature dependent.

The Basic Circuit

The Basic Voltage regulator circuit is shown below. It uses only one resistor and one zener diode. This is called a SHUNT REGULATOR. See SERIES REGULATOR below.

If the Zener diode is rated at 5.6 V and the applied voltage is 8.0 V , then with no load applied, the output voltage across R 1 will be 5.6 V and the remaining 2.4 V will be dropped across R_{s}, If the input voltage is changed to 9.0 V , then the voltage across the Zener will remain at 5.6 V . In practice, the voltage across the Zener will rise slightly due to the 'dynamic resistance' of the zener.
The resistor R1 represents an external load. When this load is connected, some of the current flowing through the zener will now pass through the load. The series resistor R_{s} is selected so that the minimum current passing through the zener is not less than that required for stable regulation. It is also necessary to ensure that the value of R_{s} is such that the current flow through the zener cannot exceed its specified power rating. This can be calculated by multiplying the zener voltage by the zener current. The design procedure is as follows:-

1) Specify the maximum and minimum load current, say 0 mA and 10 mA .
2) Specify the maximum and minimum supply voltages (say 12 v) but ensure that the minimum supply voltage is always at least 1.5 v higher than the zener voltage being used.
3) In the circuit shown the minimum zener current is $100 \mu \mathrm{~A}$. Thus the maximum zener current (which occurs when there is no load connected) is 10 ma plus $100 \mu \mathrm{~A}$ equals 10.1 mA .
4) The series resistor must conduct 10.1 mA at the lowest input supply voltage, so the minimum voltage drop across R_{s} will be 1.5 v . Thus the value of R_{s} will be:-
$1.5 \mathrm{v} / 10.1 \times 10^{-3}=148.5$ ohms
This could be changed to the nearest preferred value of 150 ohms.
5) At the maximum supply voltage (12v) the voltage across R_{s} is equal to the zener current times the series resistor.

This is the maximum (worst case) zener current. To work out the resulting power dissipation, we multiply this current by the zener voltage. In this example this works out at:-

Any zener over this in power rating would be suitable in this circuit.

Temperature Drift in Zeners

Typical zener diodes drift in their voltage at about $+0.1 \% /{ }^{\circ} \mathrm{C}$ at the higher voltages. At lower voltages this goes negative reaching $-0.04 \% /{ }^{\circ} \mathrm{C}$ at around 3.5 v .
This may be made use of in temperature sensing devices. The circuit below shows how a bridge consisting of two similar zener diodes and two resistors can indicate temperature differences when one zener is held at standard temperature and the other is subjected to the conditions to be monitored. If a 10 v zener is used, it will have a temperature coefficient of $+0.07 \% /{ }^{\circ} \mathrm{C}$ giving a change of 7 millivolts per degree C .

Non Standard Voltages

Non standard voltages can be obtained by connecting zener diodes in series. The diodes need not have the same voltages since this arrangement is self equalizing.

It may also be necessary at times to provide a regulated voltage lower than that normally available from a zener diode. These voltages may be obtained by using the difference between two pairs of zeners. This is shown in the circuit below. As a bonus, the temperature compensation of this circuit is excellent, since both zeners tend to drift in the same direction, maintaining the voltage difference.

Zener Noise

Zener diodes generate noise voltages. These may vary between $10 \mu \mathrm{~V}$ and 1 mV depending on zener voltage and rating. This noise is easily suppressed by placing a 0.01 to $0.1 \mu \mathrm{~F}$ capacitor across it. This reduces the noise voltage by a factor of at least 10.

Zener Diode as a Calibration Signal

When supplied with alternating current, the zener diode will limit both the negative and positive halves of the AC cycle. The waveform will be asymmetrical, since the zener will limit almost immediately in one direction, but will not limit until its zener voltage in the other direction.

Increased Power Handling

Although zeners can be paralleled for higher power operation, it is usually a better idea to use a series transistor with a zener reference. This configuration improves the power handling and also the regulation of the circuit by a factor equal to the current gain of the transistor.

The output voltage of this circuit will be equal to the zener voltage minus the baseemitter voltage of the transistor (approx. 0.7 V).

Output Voltage $=$ Zener Voltage -0.7 V .

Constant Current Regulation

This simple circuit maintains a constant current (within approx 10\%).

Over-voltage Protection

The circuit below uses the zener as a 'fuseblower'. The zener is selected so that under normal operation it is not conducting. If the circuit develops a fault and the power supply voltage rises above the zener voltage, the zener will come 'on' and draw a heavy current, blowing the fuse.

Improving temperature stability

If better temperature stability is required than can be obtained with a single zener, a good trick is to use an ordinary forward biased silicon diode. This makes use of the fact that the forward voltage temperature coefficient of a silicon diode is approximately $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The temperature coefficient of the silicon diode and the zener diode cancel out, giving an almost temperature independent voltage reference. The use of the forward biased diode also allows 'trimming' of zeners to voltages other than the preferred value available. A silicon diode when forward biased will have a voltage drop of 0.7 v . When put in series with a zener it will increase the reference by this much. Thus a 6.2 v zener plus a silicon diode will give a voltage of 6.9 v .

R

Dual Voltage Power Supply

The circuit below uses zener diodes to give a split or dual power supply which is ideal for running ICs such as op-amps. The power input only needs to be an unregulated single rail DC source. When selecting R_{s} it should be remembered that the zener is the sum of the voltage of the two zeners.

These two circuits show typical use of zeners in power supply circuits. The circuit below is designed to give increased current capacity. It will supply up to 1A with suitable heatsinking of the transistors.

These two circuits show typical use of zeners in power supply circuits. The circuit below is designed to give increased current capacity. It will supply up to 1 A with suitable heatsinking of the transistors.

Semiconductor Devices

The simplest type of semiconductor device is the diode. It has two electrodes, a cathode and an anode. Il is formed from a junction of P and N type silicon. As shown below, when the diode is forward biased, by applying a negative voltage to the cathode (the N type silicon) and a positive voltage to the anode (the P type silicon) the diode conducts and has a very low resistance. If the voltage connections are reversed, the diode is said to be reversed biased and has a very high resistance.

Electron current flow in biased p-n junctions.

(a) REVERSE BIAS

Voltage-current characteristic for a p-n junction.

If another layer is added to the semiconductor junction, the resulting device becomes a bipolar transistor. The three layers of the device are the emitter, the collector and the base. In normal operation, the emitter to base junction is forward biased and the collector to base junction in the reverse direction.
There are two types of transistor, NPN and PNP. The names relate to the 'sandwich' structure of the two types of transistor. They are shown below. For practical purposes, the important difference between the two types of transistor is that in NPN transistors the current flows from emitter to collector. In PNP transistors the electrons flow from collector to emitter.

Schematic symbol for a solid-state diode.

Simple diode rectifying circuit.

Bipolar Transistors

Bipolar Transistors are current amplifying devices. When a small signal current is applied at the input terminal (the base) of the bipolar transistor, an amplified reproduction of this signal appears at the output terminals (the collector).

(b) n-p-n TRANSISTOR

(c) p-n-p TRANSISTOR

Functional diagram and schematic
symbols for bipolar transistors.

There are 3 useful way of connecting the input signal for amplification.

Common Base Mode

In this mode, the signal is introduced into the emitter-base circuit (Thus the base element is common to both the input and output circuits. In this mode, the input impedance is low (i.e. it puts a heavy load on the signal source). The output impedance is fairly high. This type of circuit gives voltage gain and slightly less than unity current gain.

Commonly used as an impedance converter.

Common-base circuit configuration

Biasing network for common-base circuit

Common Emitter Mode

In this configuration, the signal is introduced into the base-emitter circuit. This arrangement has moderate input and output impedance. It gives both current and voltage gain. Current gain is measured by comparing the base current and the collector current and so is equivalent to H_{FE} A very small change in base current produces a relatively large change in collector current. Depending on the type of transistor this will vary from 5-600.

This is the most commonly used circuit, very often found in audio amplifiers. For an explanation of H_{FE} see definition below.

Common-emitter circuit configuration

Common Collector Mode

In this configuration, the signal is introduced into the base/collector circuit and is 'extracted' from the emitter/collector circuit. The input impedance of this arrangement is high and the output impedance is low. The voltage gain is less than unity while the current gain is high. This configuration is used as an impedance matching device. Commonly called an emitter follower, it is also often used as a current amplifier in power supplies.

Common Collector Mode

Darlington Pair

The Darlington Pair uses a pair of transistors coupled together as an emitter follower so that the emitter current of the first transistor flows through the base/emitter junction of the second transistor. The resulting current gain of the transistor pair is found by multiplying the current gain of the transistors together. The resulting current gain is very high and the input impedance of such a stage is very high.

Biasing Arrangements

For linear amplification as opposed to switching applications, the 'operating point' of the transistor must be set so as to minimize distortion. The simplest of biasing arrangement is shown below. The base resistor R_{B} is selected to provide the desired base current, which is $27 \mu \mathrm{~A}$ in the example shown. This base current turns the transistor 'on' and establishes the collector current. In the circuit below (a):

$$
R_{B}=V_{\text {supply }}-V_{B E} / I_{B}
$$

V_{BE}, the base emitter voltage is 0.6 V for silicon transistors and 0.2 V for germanium transistors. Thus:-

$$
R_{B}=\frac{6-0.6 \mathrm{~V}}{27 \times 10^{-6}}
$$

$$
=200 \mathrm{k} \text { ohms. }
$$

This arrangement is sensitive to temperature and varying gains of transistors. A better arrangement is shown above (b). This stabilizes the operating point of the transistor because an increase in collector current drops the collector voltage and thus decreases the base bias.

$$
\begin{aligned}
R_{B} & =\frac{V_{C E}-V_{B E}}{I_{B}} \\
& =\frac{3-0.6 \mathrm{~V}}{27 \times 10^{-6}}
\end{aligned}
$$

Bias network using voltage-divider
arrangement for increased stability

Definitions

Alpha (a) Gain

In the common base mode, the emitter is the input electrode and the collector is the output electrode. The alpha is the ratio of the collector current I_{c} to the emitter current I_{E}. It is always less than 1.

Beta current gain ($h_{\text {FE }}$)

In the common emitter mode, the base is the input terminal and the collector is the output terminal. The beta is the ratio of the collector current I_{c} to the base current I_{B}.

Gain Bandwidth Product ($\mathrm{f}_{\text {hee }}$)

This is the frequency at which the alpha or beta (according to the type of circuit) drops to 0.707 times its 1 kHz value.

Transition Frequency (f_{T})

The frequency at which the small-signal forward current transfer ratio (common-emitter) falls to unity.

Breakdown voltage

This defines the voltage between two electrodes at which the current rises rapidly. The breakdown voltage may be specified with the third electrode open, shorted or biased to another electrode.

Secondary Breakdown

High voltages and currents passing through a transistor cause current to be concentrated or focused on a very small area of the transistor chip causing localized overheating. This is important in power transistors which are often designed to minimize this effect.

Saturation Voltage (Vcesat)

For a given base current, the collector-emitter saturation voltage is the potential across this junction while the transistor is in conduction. A further increase in the bias does not increase the collector current. Saturation voltage is very important in switching and power transistors. It is usually in the order of 0.1 v to 1.0 v

Safe-operating-area

Power transistors are often required to work at high currents and high voltages simultaneously. This ability is shown in a safe operating area curve.

Ptot
The total package power dissipation
$\mathbf{V}_{\text {сво }}$
The dc voltage between the collector terminal and the base terminal when the emitter terminal is open-circuited.
$V_{\text {ceo }}$
The dc voltage between the collector terminal and the emitter terminal when the base terminal is open-circuited.

BC547-9 (BC107-9) NPN BC557-9 (BC557-9) PNP

Low frequency, general purpose small signal transistors widely used in audio, switching and television circuits. The BC547-9 series and BC557-9 series are functionally identical to the common BC107-9 series.
All have a maximum power dissipation of 500 mW . They have essentially similar specifications and can generally be substituted for one another (within the PNP and NPN groups of three each). All devices are housed in standard TO-92 plastic packages.

Specifications			
NPN	BC547	BC548	BC549
vсво	50 v	30 v	30 v
$\mathrm{V}_{\mathrm{ct}} \mathrm{O}$	45 v	30 v	30 v
$l_{\text {c }}$	100 mA	100 mA	100 mA
$\mathrm{P}_{\text {totl }}$	500 mW	500 mW	500 mW
$\mathrm{h}_{\text {FE }}$ min-max at $\mathrm{I}_{0} 2 \mathrm{~mA}$	110-800	110-800	200-800
f_{T} typical	300 MHz	300 MHz	300 MHz
$V_{\text {CEsat }}(\mathrm{max})$ at $\mathrm{l}_{\mathrm{c}} 100 \mathrm{~mA} / \mathrm{l}_{\mathrm{B}} 5 \mathrm{~mA}$	600 mV	600 mV	600 mV
PNP	BC557	BC558	BC559
vсво	50 v	30 v	30 v
vceo	45 v	30 v	30 v
$l_{\text {c }}$	100 mA	100 mA	100 mA
P, ot 500 mW		500 mW	500 mW
h_{FE} min-max at $\mathrm{l}_{\mathrm{c}} 2 \mathrm{~mA}$	75-475	75-475	125-475
f_{T} typical	150 MHz	150 MHz	150 MHz
$V_{\text {CEsat }}(\max)$ at $\mathrm{I}_{\mathrm{C}} 100 \mathrm{~mA} / \mathrm{l}_{\mathrm{B}} 5 \mathrm{~mA}$	600 mV	600mV	600 mV

A Simple Amplifier

This circuit will operate on any supply from 3 v to 15 v . Using a 9 v supply, the circuit gives a voltage gain of 46 dB (200 times), frequency response within 3 dB from 30 Hz to 100 kHz , input impedance of 1.5 k ohms and an output impedance of 5.6 k ohms. The base bias resistor R_{1} gives sufficient negative feedback to compensate for the large variation of $h_{\text {FE }}$ values in individual transistors and for variations in supply voltage.

Relay driver

This simple circuit increases the sensitivity of a relay so that it will trigger at 700 mV at 40 uA . Any relay with an operating current of less than 60 mA and operating voltage of less than 12 v is suitable. The circuit's supply rail should be at least 3 v higher than the operating voltage of the relay.

The circuit will work with any relay with a coil resistance higher than 180 ohms and a pull in voltage of less than 12 v .

FM transmitter

This circuit, is about as simple as a transmitter can get. The coil is etched onto the printed circuit board, but can be easily substituted by 6 turns on a 4 mm diameter former.

Multivibrator- Morse Code Generator

This circuit is an astable multivibrator or square-wave generator. The circuit is suitable as a morse code generator. The frequency of operation can be raised by making the value of the capacitors smaller. The speaker can be any general purpose 8 ohm type.

BD139/140 Driver Transistors

BD139/140 are complementary silicon driver transistors designed for audio and switching applications. They come in TO-126 plastic cases. The BD139 is an NPN device and the BD140 is PNP.

Features

- High gain ($\mathrm{h}_{\mathrm{FE}} 40-250$) - High $\mathrm{f}_{\mathrm{T}}(250 \mathrm{MHz}$ for BD139, 75 MHz for BD140)

DRIVER TRANSISTOR

Absolute Maximum Ratings

Collector-Emitter Voltage ($\mathrm{V}_{\text {cEo }}$)
BD139 80V
BD140 80V
Collector-Base Voltage ($\mathrm{V}_{\text {CBS }}$)
BD139 100V
BD140 100V
Collector Current Continuous (IC)
BD139/140 1A
Total Device Dissipation (Ptot)
BD139/140 8W

Specifications

DC Current gain (h_{FF})
@ $l_{c}=150 \mathrm{~mA} \quad 40-250 \quad$ (BD139/140)
$\mathrm{f}_{\mathrm{T}}(\mathrm{MHz})$
BD139 250MHz
BD140 75MHz
Collector-Emitter Saturation Voltage ($\mathrm{V}_{\text {CEsat }}$) @ $I_{c}=500 \mathrm{~mA} 0.5 \mathrm{~V}$
(BD139/140) $\quad I_{B}=50 \mathrm{~mA}$

Basic Amplifier

The circuit is for a low power amplifier using a BD139/140 pair in the output stage. The amplifier has a gain of 66 . It needs 100 mV input for full output, which is approximately 500 mW into 8 ohms.

2N3055 Power Transistor

The 2N3055 is a medium speed NPN Silicon Power Transistor designed for general purpose switching and amplifier applications.

Features

- DC current Gain $\left(\mathrm{h}_{\mathrm{FE}}\right)=20-70$ @ $\mathrm{l}_{\mathrm{c}}=4.0 \mathrm{~A}$
- Collector-Emitter Saturation Voltage $=1.0 \mathrm{~V} @ \mathrm{I}_{\mathrm{c}}=4.0 \mathrm{~A}$

base view

Low Ripple Regulated Power Supply

The excellent characteristics of the 2 N 3055 at high currents (high h_{FE} and low collector-emitter saturation voltage) makes it ideal as a series regulator transistor in regulated power supplies. The power supply circuit shown below can be used when high current with low ripple is required. Q , and Q_{2} form a high power Darlington. Z_{1} and R_{1} provide a reference voltage at the base of Q_{1} The voltage output will be:- $\quad V_{\text {out }}=$ Zener Voltage -1.2 v

Car Voltage Converter for radios and cassettes

This circuit is suitable for dropping a 12 v car battery to the correct voltage to run portable cassette players/radios etc. Using a 2 N 3055 might seem like a bit of an overkill but they are cheap. The output voltage will be 0.7 v lower than the zener voltage, due to the voltage drop across the base-emitter junction of the 2N3055. The 10 ohm series resistor stops excessive current being drawn in the case of a short. The diode (1N4001) protects the transistor in case of reverse voltage being applied.

The output will drive transistor radios, cassette players etc. If the current drain is over 500 mA , it is a good idea to put a heat sink on Q_{1}. Mounting the converter in a metal box with Q_{1} on the lid (but insulated from it with a mica washer) will act as a good heatsink.

2N2646 Unijunction transistor

The 2N2646 is intended for general and industrial triggering and oscillator circuits where circuit economy is of primary importance. It is a high speed switching device with a low saturation voltage.

Absolute maximum ratings
Power Dissipation
300mW
RMS Emitter Current 50 mA
Peak Emitter Current
(Capacitor discharge $<10 \mu \mathrm{~F}$) 2A
Emitter Reverse Voltage 30V
Interbase Voltage 35V

Specifications

Intrinsic Standoff Ratio ($\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}$)	ń	0.69
Interbase Resistance ($\left.\mathrm{V}_{\mathrm{BB}}=3 \mathrm{v}, \mathrm{I}_{\mathrm{e}}=0\right)$	$\mathrm{R}_{\text {BBo }}$	6.7
Emitter Saturation Voltage ($\mathrm{V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$)	$\mathrm{V}_{\mathrm{E} \text { (sat) }}$	2
Emitter Reverse Current ($\mathrm{V}_{\mathrm{B} 2 \mathrm{E}}=30 \mathrm{~V} \mathrm{I}_{\mathrm{B} 1}=0$)	$\mathrm{I}_{\text {E }}$. 001
Peak Point Emitter Current ($\mathrm{V}_{\mathrm{BB}}=25 \mathrm{v}$)	I_{p}	0.8
Valley Point Current ($\left.\mathrm{V}_{B B}=20 \mathrm{~V} \mathrm{R}_{\mathrm{B} 2}=100 \mathrm{R}\right)$	I_{V}	5
Base-One Peak Pulse Voltage	$\mathrm{V}_{0 B 1}$	8.5

Basic Theory

The unijunction transistor (UJT) has 3 terminals: Emitter (E). Base-one (B_{1} and Base-two $\left(\mathrm{B}_{2}\right)$. Between B , and B_{2} the UJT has a resistance of from 4.7 k to 9.1 k .

In operation the UJT emitter voltage V_{E} is lower than the emitter peak voltage $\mathrm{V}_{\text {I }}$. The emitter will be reverse biased and only a small leakage current will flow. When V_{E} equals V_{1} the emitter current will increase enormously. At the same time the emitter- B_{1} resistance will fail to a very low level.

Basic UJ T Pulse Trigger Circuit

This is a basic relaxation oscillator. C charges through R , until the emitter reaches V_{P} at which time the UJT turns on and discharges C_{1} via $R_{B 1}$. When the emitter has dropped to approximately $2 v$, the emitter stops conducting and the cycle starts again.

BASIC RELAXATION OSCILLATOR
The frequency of operation $(f)=\frac{1}{R C}$
for example:

$$
\begin{aligned}
& \mathrm{R}=10 \mathrm{k} \\
& \mathrm{C}=1 \mu \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
f & =\frac{1}{10^{4} \times 10^{-6}} \\
& =100 \mathrm{~Hz}
\end{aligned}
$$

The design of the UJT trigger is very broad.
RB_{1} is limited to values below 100 ohms for most applications. R_{1} should be a value between 3 k and 3 M . Supply voltage can be from 10 to 35 v . If the circuit is being used to trigger an SCR, RB_{1} must be low enough to prevent $D C$ voltage at the gate from exceeding the maximum voltage that will not trigger the SCR. In practice, keep R_{B}, below 50 ohms.
The 2 N 2646 is specifically designed for SCR trigger circuits. $\mathrm{R}_{B 2}$ is typically 100 ohms.

BASIC UNIJUNCTION TRANSISTOR RELAXATION OSCILLATOR-TRIGGER CIRCUIT WITH TYPICAL WAVEFORMS

UJ T/SCR Time Delay Relay

This circuit provides an efficient, high power and accurate time delay circuit. The SCR should be selected to suit the application. R_{5} and the zener diode maintain a stable supply for the UJT.

Initially the SCR is off. The timing sequence is started by shorting out C1. C1 then charges through R1 and R2 until the UJT triggers, developing a pulse across R4 which turns on the SCR. Holding current for the SCR is supplied by current through R5 and D2. When the SCR triggers, it pulls the voltage across the UJT to <2 volts. This discharges C 1 .
The load this circuit will drive depends on the SCR used. A suitable type would be a C106Y. This has a maximum current rating of 4A. This would be enough to drive a relay (even one with a low coil resistance), globes or an electric bell.

Metronome

This is the simplest metronome circuit. It produces a 'click' similar to that of the traditional mechanical device. The rate is variable from 40 to 220 beats per minute. R1 sets the high rate limit and R2 the low rate limit. Virtually any speaker is suitable. Supply voltage is from 12 to 18 v . While an 8 ohm speaker is suitable in this circuit, more volume and higher efficiency can be obtained with a high impedance speaker, such as a 40 ohm unit.

MPF102, 5, 6 Field Effect Transistors

The MPF102-6 series are N-channel Junction-type field effect transistors.
The FET is a three terminal semiconductor device. Input voltage is applied to a GATE terminal and controls the current flowing from SOURCE to DRAIN terminals.
An important feature of the FET is its very high input impedance. Since the FET makes use of a small input voltage to control a large output current, its gain is specified in terms of TRANSCONDUCTANCE. Transconductance (g_{fs}) is equal to the change in drain current $\left(\mathrm{dl}_{0}\right)$ divided by the change in gate voltage $\left(\mathrm{dV}_{\mathrm{G}}\right)$ and the formula is usually written as follows:-
$\mathrm{g}_{\mathrm{fs}}=100 \mathrm{Q}\left(\mathrm{dl}_{\mathrm{D}} / \mathrm{dV}_{\mathrm{G}}\right)$ where:
g_{fs} is the transconductance in micromhos
I_{D} is the drain current in DC mA
V_{G} is the gate/source voltage in DC volts.

Definitions of specifications

$V_{G S}$ (Gate/Source Voltage)
This is the maximum voltage which may appear between gate and source. $\mathrm{I}_{\mathrm{DSS}}$ (Drain current at zero gale voltage)
This is the current which will flow in the drain/source circuit when $V_{G S}=0$. It is given for specific drain/source voltages.
$\mathrm{BV}_{\text {GSS }}$ (Gate/Source breakdown voltage)
The voltage at which the gate junction of a JFET will enter avalanche. V_{p} (Gate/Source pinchoff voltage)
This is the gate-to-source voltage at which the field just closes the conduction channel. This is given for a specified value of $V_{D S}$. The value of the drain current is specified (usually $1 \mu \mathrm{~A}$).

FET Type	$\mathrm{BV}_{\text {GSS }}$	V_{P}	IDSs	$\mathrm{gfs}^{\text {s }}$	$P_{\text {tot }}(\mathrm{mW})$
MPF102	$25 v @ 1{ }_{\mathrm{G}} 1 \mu \mathrm{~A}$	0.5-8.0V @ V $\mathrm{DS}^{15 \mathrm{v}}$	2-20mA @ V ${ }_{\text {us }} 15 \mathrm{v}$	2,000-7,500	300 mW
MPF105	$25 v @ 1{ }_{\mathrm{G}} 1 \mu \mathrm{~A}$	0.5-8.0V @ V DS 15 v	4-16 mA @ $\mathrm{V}_{\text {us }} 15 \mathrm{v}$	2,000-6,000	310 mW
MPF106 All types a	$25 v @ l_{G} 1 \mu$ e mounted in	$0.5 \mathrm{~V}-4 \mathrm{~V} @ \mathrm{~V}_{\mathrm{DS}} 15 \mathrm{v}$ T092 plastic cases	4-10mA @ $V_{\text {us }} 15 \mathrm{v}$ with pin connection	$2,500-7,000$ as shown	310 mW ove.

Operation and Applications

The basic mode of operation of the FET amplifier is shown below. This is referred to as the common source amplifier. The gate to source circuit is the input and the drain to source circuit is the output.
When a moderate reverse or negative voltage is applied between gate and source, the gate junction becomes 'reverse biased' i.e. the voltage on the gate reduced the current flowing between the source and the drain. At a higher gate-source voltage, the drain-source current is cut to practically zero. This is referred to as the gate-source pinchoff voltage and is listed in the specifications as V_{P} at a drain-source current of either 1 or 10 uA . In practical circuits, the DC bias is developed across R_{2}, due to the current being through it. This then puts the source at a positive potential relative to ground. The gate is at ground potential and therefore is at a negative potential relative to the source, R, sets the input impedance of the circuit since the gate of the FET draws virtually no current at all and so is seen by the load as a very high impedance.

*NOTE
All the circuits and applications in these pages assumes the use of ' N -channel' Junction FETs, i.e. FETs in which the drainsource material is made of N -type silicon. However, these JFETs may be replaced in the circuits with P-channel JFETs if the polarity of the power supply is reversed.

P-CHANNEL

N-CHANNEL

Typical Design for a Common-Source Circuit

When used as an amplifier, the FET is biased to a certain part of its response curve for lowest distortion and maximum available voltage swing. Assume that the FET has the following operating parameters

- $\mathrm{V}_{\mathrm{Ds}}=8 \mathrm{~V}$ (where V_{Ds} is the voltage between drain and source)
- $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$ (where I_{D} is the drain current)
$\mathrm{V}_{G S}=-2 \mathrm{~V}$ (where $\mathrm{V}_{G S}$ is the gate-drain voltage or bias)
The power supply voltage is 22.5 v

FET Applications Source Follower Circuit:

The source follower circuit is suitable where a high input impedance and low output impedance is required, but no voltage gain is needed. The figure below shows a typical source follower stage. Input impedance is set by the gate resistor R_{G}. Output impedance is very low.

RF Preselector

The uses for the FET are not limited to audio applications. The circuit below is for an RF preselector (a tuned amplifier) for the broadcast bands. The FET is a very good device to use in this application, due to its low cross modulation characteristics. Most cheaper receivers use ordinary bipolar transistors to keep costs down. The FET RF amplifier can also take higher signal levels without distortion. The preselector has a Volume Control style gain control between the FET and the emitter follower output stage. This means that only the FET has to handle high signal levels.

The tuning capacitor does not have to be exactly the same value as shown in the circuit, any capacitor covering a similar range is suitable. The aerial coil is wound on a 200 mm length of ferrite rod. The main winding consists of 42 turns of 22B\&S enamelled wire. The second winding consists of a further 6 turns. The preselector gives a marked improvement on the reception of weak signals and aids in the attenuation of adjacent channel interference and noise.

LDR Applications Light Beam Relay

In this circuit the LDR is held at a low resistance by light from a small globe. The circuit is actuated when the beam is broken. The resistance of the LDR then goes high. The circuit is set up so that with the light shining on the LDR the input voltages at the two input terminals of the 741 op amp hold its output 'low'. When the LDR goes to high resistance the op amp's output goes 'high'. This turns the transistor 'on' and pulls in the relay.

Simple timer

The very high impedance of the FET makes it suitable for a wide variety of timer circuits. The circuit below gives one such example. With C_{1} given a value of $1 \mu \mathrm{~F}$, it will give timing periods of 40 sec , and with a value of $100 \mu \mathrm{~F}$ it gives a period of 35 minutes. The FET is wired as a source follower and has its gate taken to the junction of a time constant network $\mathrm{R}_{1}-\mathrm{C}_{1}$ When the supply is first connected, C_{1} is discharged, so Q_{1} gate is at ground potential, and the source is a volt or two higher. The base of Q_{1} is connected to the source of Q_{1} via R_{3}, so Q_{2} is turned on and $12 v$ is across R_{5}, When the supply is connected, C_{1} starts to charge via R_{1}, so the voltages on the gate of Q_{1} (and on the source) rise exponentially towards the 12 v supply. When the voltage reaches approximately 10.5 v the bias on Q_{1} falls to zero and Q_{2} switches off, the voltage across R_{5} falls to zero.

FET Voltmeter

The very high input impedance of the FET makes it the ideal basis of a voltmeter. The circuit below has a basic sensitivity of 22 M ohms per volt. Maximum full scale sensitivity is 0.5 V , and input sensitivity is a constant 11.1 M ohms on all ranges. $\mathrm{R}_{7}, \mathrm{R}_{8}$ R_{9} form a potential divider across the 12 v supply. R_{8} is adjusted for a zero meter deflection. Any potential across the gate circuit of Q1 causes the circuit to 'unbalance'. To avoid drift, the power supply should be stabilized if possible.

SIMPLE 3 RANGE VOLTMETER

555 Light Switch

The use of the 555 timer 1C with an LDR provides a high performance light switch.
An LDR is a Light Dependent Resistor and is a very low cost way of detecting light.
The 555 is used with its trigger and thresholds tied together to provide a Schmitt trigger with a very low input current but which can drive a relay taking up to 200 mA of current. The trigger is activated when the light level on the LDR falls below a predetermined level. The relay energizes when the voltage on pins 2 and 6 is greater than ${ }^{2} /{ }_{3} V_{c c}$. It de-energizes when the voltage falls below ${ }^{1} /{ }_{3} V_{C C}$. This gives a hysteresis of $1 /{ }_{3} V_{C C}$.

The 555 can supply current up to 200 mA , so the relay type is not critical. Any with a coil resistance from 100-280 ohms would be suitable.

Light Sensitive Switch

This circuit makes use of the wide change of resistance of the LDR. Between positive and negative supply there is a voltage divider. The bottom section is a variable resistor RV1. The top half is formed by the LDR and a 4.7K ohm resistor in series. In low light conditions when the resistance of the LDR is very high, the bias to the Darlington pair formed by TR_{1} and TR_{2} is very low, and they do not conduct. When the light level rises, the resistance of the LDR falls. This turns the transistors 'on' and pulls in the relay.

LIGHT SENSITIVE SWITCH
The LDR should be an ORP12 or similar. The relay should have a pull in voltage of 9 V or lower and a coil resistance of 280 ohms or higher.

Photo Electric Relay

This circuit is basically a bistable multivibrator. When the light level is low and the resistance of the ORP12 is high, transistor Q_{1} conducts and Q_{2} is off. As the level of illumination increases the resistance drops until Q_{1} cuts off and Q_{2} turns on, energizing the relay coil.

The relay should have a coil resistance of 180 ohms or higher and a pull in voltage of 9 V or lower

LEDs

Features

- Low power consumption
- IC compatible
- Long life

Absolute Maximum Ratings

	Red	Green	Yellow	Amber	Orange
Reverse Voltage	5 v	5 v	5 v	5 v	5 v
Av forward Current	20 mA	30 mA	30 mA	30 mA	30 mA
Peak Forward Current	200 mA				
Power Dissipation	100 mW				

Light Emitting Diode Data

Light Emitting Diodes, or LEDs as they are known are a special type of diode which emits light when correctly powered. Typical voltage and current for every LED in the Altronics range can be found in the components section.
The LED's legs are called anode and cathode. The anode is the leg that needs to be connected to the positive of the power source. Normally a LED has different lead lengths to identify which is the positive lead. However if the leads have been trimmed, the cathode is denoted by a flat face on round LEDs or the larger internal part of the LED.

Ohms Law dictates the following:
$\mathrm{R}=\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{LED}}\right)$
led
Where:
$V_{S}=$ Voltage source
$\mathrm{V}_{\text {LED }}=$ Volt drop of LED
LLED $=$ Current draw of LED

If ${ }^{\prime}$ LED $=20 \mathrm{~mA}$ @ 2.0 V
If $\mathrm{V}_{\mathrm{S}}=3$ Volts, $\mathrm{R}_{1}=50 \Omega$
If $\mathrm{V}_{\mathrm{S}}=6$ Volts, $\mathrm{R}_{1}=200 \Omega$
If $\mathrm{V}_{\mathrm{S}}=9$ Volts, $\mathrm{R}_{1}=350 \Omega$
If $\mathrm{V}_{\mathrm{S}}=12$ Volts, $\mathrm{R}_{1}=500 \Omega$

These values can be substituted for the closest 5% resistor values.
$R=560 \mathrm{hms}$
$R=2200 \mathrm{hms}$
$R=3900 \mathrm{hms}$
$R=5600 \mathrm{hms}$

LED Basics

Specifications

Forward Voltage ($I_{F}=20 \mathrm{~mA}$)

Red	1.7 v Typ.	$2.0 \mathrm{v} \operatorname{Max}$
Green	2.2 v Typ.	$2.8 \mathrm{v} \operatorname{Max}$
Yellow	2.1 v Typ.	$2.8 \mathrm{v} \operatorname{Max}$
Amber	2.1 v Typ.	$2.8 \mathrm{v} \operatorname{Max}$
Orange	2.0 v Typ.	$2.8 \mathrm{v} \operatorname{Max}$

Peak Emission Wavelength	
Red	697 nm
Green	565 nm
Yellow	585 nm
Amber	600 nm
Orange	635 nm

Note: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye response curve.

LEDs are used in the 'forward biased' mode. i.e. positive on the anode and negative on the cathode. This voltage drop is stated in the specifications (eg 1.7 V for a red LED), If the LED is used on a higher voltage than this, a current limiting resistor must be used.

The following formula can be used:-
$R=(E-1.7) \times 1000 / I$
R is the resistance in ohms. E is the DC supply voltage. I is the LED current in milliamps. A common LED current is 20 mA .
Some calculated values are:-
For 6 v use 220 ohm.
For 9 v use 390 ohm.
For $12 v$ use 560 ohm.
For 24 v use 1.2 k ohm.
If a LED is reverse biased, it will break down, in a similar way to a zener diode. This occurs at 3-5V. It usually damages the diode if a high current flows.

Operating LEDs from the mains

This circuit uses a capacitor as a voltage dropping element. A 1 N 4148 diode is placed across the LED for rectification. As the voltage across the LED is negligible compared with the supply, capacitor current is almost exactly equal to mains voltage divided by the capacitor reactance. At 50 Hz , a $0.47 \mu \mathrm{~F}$ will result in a LED current of about 16 mA . Resistor R_{s} limits current on transients. A value of 270 ohms is adequate.

The Flashing LED

The Flashing LED has a chip inside the device to produce the flash-rate. Simply connect the LED to a supply voltage (4 v to 10 v) and the LED will flash at a rate of approx 2 Hz . No external resistor is needed up to 10 v . For voltages higher than 10 v , the resistor should be 100 ohms for each volt above 10 v .
This is the only "LED" that does not need a resistor when connected to a supply as it has an internal resistor. All other LEDs MUST have a resistor in series to limit the current and prevent damage.

LED Flasher

This circuit for a LED flasher is very simple and cheap to make and will work on any voltage between $3 v$ and 12 v . As the voltage is raised the value of $R 1$ must be increased - The speed can be changed by altering the value of C_{1} and C_{2} and/or R_{2} or R_{3}. Raising the value of C_{1} and C_{2} slows the rate down. Raising the value of R_{2} and R_{3} also slows it down.

LED Chaser

This circuit acts as a LED chaser. The 4017 is driven by a 555 working as a free-running multivibrator. The speed can be changed by altering C_{1} or R_{1}.

CQY89 Light Emitting Diode - Infrared LED

The CQY89 is an infrared LED, similar in performance to conventional LEDs, but emitting light in the infrared region. This is visible to the human eye. Unlike conventional LEDs, infrared LEDs are usually pulsed rather than fed with continuous DC. They find wide use in alarms and in remote control equipment.

Specifications

Maximum Forward Current 130 mA
Maximum Reverse Voltage 5 V
Maximum Power Dissipation 215mW
Maximum Forward Current 130 mA
Beamwidth between half intensity directions $\left(I_{F}=100 \mathrm{~mA}\right] \quad 40^{\circ}$ typ.
Wavelength at peak emission $\left(\mathrm{l}_{\mathrm{r}}=100 \mathrm{~mA}\right)\left(\lambda_{\mathrm{pk}}\right)$ 930nm typ.

BPW34 photosensitive diode

This device is mainly used in combination with a light source for go/no go detection as in card readers and industrial safety devices.

Specifications

V_{R} Forward voltage	32 V
Total power dissipation	150 mW
Spectral sensitivity $\left(\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}\right)$	$70 \mathrm{nA} / \mathrm{lx}$
Dark Reverse Current $\left(\mathrm{V}_{\mathrm{R}}=10 ; \mathrm{E}_{\mathrm{e}}=0\right)$	2 nA
Light Reverse Current	
$\left(\mathrm{V}_{\mathrm{R}}=5 ; \mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2} ; \lambda=930 \mathrm{~nm}\right)$	$10 \mu \mathrm{~A}$

BPW34/CQY89 Infrared light-beam relay

Receiver

The light is picked up by the photodiode a BPW34. It is wired so that a current is generated that is proportional to the light falling on it. The FET acts as a source follower and impedance matches to the next stage. The amplifier after this acts as a bandpass filter. Its output is coupled to a CMOS Schmitt trigger, followed by a rectifying circuit and a pulse stretcher. This drives a transistor and a buzzer and LED.

Transmitter

A CMOS oscillator drives an output stage consisting of a BC547 transistor and two CQY89 infrared LEDs. Current drive is limited by the 680 ohm resistor. If greater range is required, this resistor may be reduced to a minimum of 150 ohms with a consequent increase in current consumption.

7 Segment LED Displays

The 7 segment display is found in many displays such as microwaves, lifts, ovens etc. It consists of 7 LEDs that have been combined into one case to make a convenient device for displaying numbers and some letters. There are basically two different size displays. 0.3 " and 0.5 ". The two sizes are shown below:

Displays come is a range of colours and brightness levels.
Most come in super-bright and these are preferred so the display can be seen during the day. They are not much more expensive but give a much better illumination.
All displays also come in COMMON CATHODE and COMMON ANODE.
The COMMON CATHODE display has all the cathodes of the LEDs tied together and connects to the pin that goes to the 0 v rail. This is the most common type of display.

The Common Cathode and Common Anode displays are wired as shown below:

The project above from JJM turns on each segment of the display to show how each letter and number is produced. The second photo is a white 7 -segment display.

Electronic Die

This circuit consists of three sections: an oscillator, a counter, and the display. The oscillator uses three sections of a 4069 hex inverter. The 4029 is a four bit counter with the capacity to count from zero to 15 . The 4511 driver/decoder takes binary output and decodes it to drive a seven segment display. The current to the 7 -segmenl display is limited by seven 560 ohm resistors. The display is a common cathode type, and any 7 -segment display can be used.

Counter

This circuit uses a 7 -segment display as the output of a basic counter circuit. The 7490 counts decimal pulses and converts them to a BCD code. Its output is fed to a 7475 latch. This stores the outputs from the decade counter. The four binary outputs are taken from the 7475 to a 7447 LCD to the 7 segment LED decoder, which drives the display.

THE UNIJUNCTION TRANSISTOR

The output of the oscillator is a sawtooth The higher the supply voltage, the lower the output frequency.

2N 2646

SC151D TRIAC

The SC151 D is a medium power plastic package TRIAC designed for economical mains power and lighting control. Unlike SCRs, the SCI 51 D is a bidirectional thyristor - when triggered, it conducts in both directions and can be triggered by a positive or negative gate signal. TRIAC (Triode AC Semiconductor). The diagram below shows the V/I characteristics of the Triac. A gate current of the specified level of either polarity will trigger the triac into conduction in either quadrant, provided the applied voltage is less than $\mathrm{V}_{\mathrm{B} 0}$. Triggering may be from DC, rectified AC or pulse sources such as unijunctions, neon lamps or breakdown devices such as the ST4.

Specifications

Voltage Rating
 400V
 Current Rating
 $\mathrm{I}_{\text {TSM }}$ Maximum peak one cycle non rep. surge current $I_{\text {DRM }}$ Blocking Current at $25^{\circ} \mathrm{C}$
 $\mathrm{dv} / \mathrm{dt}$ Off State, $\mathrm{T}_{\mathrm{c}}=100^{\circ} \mathrm{C}$, Rated $\mathrm{V}_{\mathrm{DRM}}$, gate O / C
 110A
 0.1 mA max
 250V/ $\mu \mathrm{S}$ (typ.)
 50 mA
 2.5V

Triac as a switch

This gives improved performance over a conventional switch, as there can be no arcing or contact bounce. This circuit shows a simple three position power control. In position one there is no gate connection, so power is off. In position two there is gate current during one half cycle only and load power is half wave. In position three the gate is triggered on both half cycles and the power is full on. For a simple on-off switch, just delete the diode.

Because the contacts only carry current for the few microseconds needed to trigger the triac, the actual switch can be almost any small device: reed relays, thermostats, pressure switches or program/timer switches.

BASIC STATIC SWITCH
3 POSITION STATIC SWITCH

Lamp dimmer/Heater controller

R1 and C1 are a phase shift network - they produce a variable delay in the waveform applied to the ST4 and hence the triac. When the voltage across C1 reaches the breakdown voltage for the ST4, C1 partially discharges into the triac gate through the ST4. This pulse triggers the triac into conduction for the remainder of the half cycle.

This easy-to-build controller is ideal for dimming lights, and controlling the output of electric heating type appliances. The light or heater element etc is placed where the 'LOAD' is marked on the circuit.

ST4 Asymmetrical AC Trigger Switch

The ST4 is an integrated triac trigger circuit that provides wide range hysteresis-free control of voltage. It behaves like a zener diode in series with a silicon bilateral switch (a symmetrical device).
The zener provides asymmetry since the switching voltage is increased in one direction by the zener breakdown voltage.
Switching voltage:

V_{51}	$14 \mathrm{v}-18 \mathrm{v}$
$\mathrm{V}_{\mathrm{s} 2}$	$7-9 \mathrm{v}$
Switching current	
$\mathrm{I}_{\mathrm{s} 1} \mathrm{I}_{\mathrm{s} 2}$	$80 \mu \mathrm{~A}$

On-state voltages
$\mathrm{V}_{\mathrm{F} 1} \quad(\mathrm{I}=100 \mathrm{~mA}) \quad 7-10 \mathrm{v}$
$V_{F 2} \quad(I=100 \mathrm{~mA}) \quad 1.6 \mathrm{~V}$ max
Peak pulse voltage
V_{0}
3.5 v min

C122D/C122E Silicon Control Rectifier

The C122Dand 122E are medium power plastic package SCRs designed chiefly for mains power and motor control. The SCR is a unidirectional device, (current flows through it in one direction, from anode to cathode).

The SCR is a three terminal semiconductor device. The three terminals are the anode (A), cathode (K). and the gate (G). With no voltage applied to the gate terminal, if a voltage is applied to the SCR anode and cathode terminals, (anode positive with respect to cathode) current flow is prohibited. If the supply is reversed the flow is likewise prohibited. Thus with no signal applied, the SCR appears as an open circuit as long as its diode junctions do not break down. The SCR is brought into conduction by applying a current into the gate terminal. This will cause it to conduct in the forward direction (i.e. with the anode positive and the cathode negative). The gate voltages required vary from approximately 1.5-6.0v. Once the SCR is turned on the gate no longer controls the circuit and the SCR only drops out of conduction when the anode-cathode voltage falls to near zero. At this instant, the current through the device falls to zero.

Specifications
 C122E

VDRM (Repetitive off state voltage. Max between anode and cathode) 500V
It (RMS Current through SCR)
8 Amps
I_{GT} (Peak Positive gate current) $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$
V_{GT} (Peak Positive gate voltage) $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$ 1.5 V

PG (AV) (Max Gate power)
I_{H} Holding Current (Current below which the SCR will drop out of conduction) ($\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$) $\mathrm{dv} / \mathrm{dt}$ Rate of change of on-state voltage (Max. rate of change of anode-cathode voltage which will not turn SCR on)

30 mA 50V/ $\mu \mathrm{sec}(\mathrm{typ}$. The C122D differs only in that its $\mathrm{V}_{\text {DRM }}$ is only 400 v as against 500 v for the C122E.

The SCRs listed above are medium power SCRs (Silicon Controlled Rectifiers) designed primarily for economical mains power and motor control. They are three terminal devices (see above). The electrodes are anode, cathode and control gate. They are unidirectional devices i.e when triggered 'on' they only conduct in one direction. The SCR is a 'regenerative' device. It is triggered 'on' by injecting a signal into the gate. As noted earlier, once the gate has triggered the SCR 'on' it no longer controls the gate. The only way to cause the SCR to stop conducting from cathode to anode is to drop the anode cathode voltage to a level where the current flowing from anode to cathode is below the 'holding level'. This is indicated in the figure above. In practice, this is not a problem, since SCRs are normally used to control fluctuating voltages such as the AC mains. The 'drop out' of the SCR occurs as the mains voltage goes through zero.

Applications

SCRs are current rather than voltage triggered devices. This means that they must be fed from a relatively low impedance source i.e. one in which the voltage won't drop down under load from the gate. In a way analogous to a relay or a solenoid, the SCR requires certain minimum anode current if it is to remain in the 'closed' or conducting state. If the anode current drops below the minimum level, the SCR reverts to the forward blocking or 'open' state. The following circuit shows a basic R-C-Diode trigger circuit giving full half wave control. On positive half cycles the capacitor C will charge to the trigger point, at a speed determined by the time constant of R and C. On the negative half cycle, the capacitor is reset by $C R_{2}$, resetting it for tire next charging cycle, Thus the triggering current is supplied by the line voltage.

C122D, C122E, C106D SCRs Phase Control Circuit

Improved phase control circuit

The following diagram shows a circuit using a neon lamp as a breakdown device. This gives smoother control and improved performance. The neon triggers when the voltage across the two 0.1μ capacitors reaches the breakdown voltage of the lamp (60-90V). Control extends from 95% to full off.

The neon lamp phase controlled circuit shown below combines the low cost of the simple RC circuit shown before but gives improved performance. The circuit below gives half wave control from 95% on to full off. Full power can be easily obtained by putting a switch across the SCR. The circuit uses a neon. This gives the following improvements:
A higher impedance circuit can be used for control.
As a result, the control element (which is a 100k pot in the circuit below) can be replaced by a high impedance device such as a thermistor or light dependent resistor, for heating or light control applications.

HALF WAVE/TWO TERMINAL

OP-AMP Basics

The op-amp is a very high gain DC amplifier. This is quoted in specifications as typically in the range of 20,000 to 100,000 times. The symbol for the op-amp is shown below. As can be seen, there are two inputs, the inverting and the non-inverting. If a signal is applied to the -input (inverting) with the + input (non-inverting) grounded, the polarity of the output signal will be opposite that of the input. If the signal is applied to the + input with the - input grounded, the polarity of the output signal will be the same as the input signal. For an AC signal, this means that when it is applied to the - input, the output signal will be 180° out of phase with the input. If the same signal is applied to both the + and - inputs, the two signals will cancel each other out. The op-amp responds to the difference between its two inputs - hence the name differential amplifier. The ability of an op-amp to cancel two equal signals at its pins is referred to as its common-mode rejection.

The most common op-amp circuit is shown below and uses two external components;

1) an input component, R_{1}
2) a feedback component, R_{F}.

When the feedback component is between the op-amp output and the negative input the op-amp is said to have negative feedback. When the feedback component is between the op-amp output and the positive input, the circuit is said to have positive feedback.
With no feedback applied, the gain is set by the op-amp itself and is very high (at very low frequencies). This is referred to as the open loop gain. When negative feedback is applied, the gain is specified by the feedback components, and is referred to as the 'closed loop gain'.
Gain $=R_{f} / R_{i}$
Thus to produce an amplifier with a gain of 100, we can use an input resistor of 1 k and a feedback resistor of 100 k . This is shown below with the op-amp connected as an inverting amplifier. To produce a non-inverting amplifier, the signal is applied to the non-inverting input and the feedback components are left on the non-inverting side. This is shown following.

Output Offset

The steady state output of an op-amp with negative feedback is zero when the input is zero. The actual DC output (in a real opamp) is usually not quite zero, and this small unwanted signal is usually referred to as the output offset voltage. Most op-amps have means of nulling this out. Fig A shows the most common method, where the op-amp has special nulling pins. If these are not available, the method in Fig B can be used.

Output offset null circuit for op amps with internal nulling provisions.

Output offset null control for op amps.

Fig B

Frequency Compensation

Circuits using op-amps must be designed so that the open loop gain of the op-amp itself is greater than the closed loop gain of the circuit for all frequencies of operation. The gain drops as the frequency increases. This is mainly due to the large amounts of internal 'compensation' used to make sure that they do not oscillate. Frequency compensation is the shaping of the frequency responses of the op-amp so that it does not oscillate due to internal phase shift. This phase shift acts as a time delay. When this delay is great enough so that the input signal is delayed 360° (a complete cycle), the amplifier will oscillate. This is because the 'negative feedback' signal, instead of being in opposition to the input signal will actually reinforce it. Thus the input signal keeps getting bigger and bigger - positive feedback occurs. To make sure this can't happen, the open loop gain of the amplifier is shaped either internally (eg. internal compensation in the $741 \mathrm{op}-\mathrm{amp}$) or externally so that at the frequency where the phase shift approaches 360°, the gain is less than unity.

In practice we need to be careful that we don't design a circuit which sets a closed loop gain higher than the op-amp can 'keep up with' at high frequencies. For example, the $741 \mathrm{op}-\mathrm{amp}$ has a unity gain bandwidth of 1 MHz (i.e. at 1 MHz its gain is x 1) and its gain rolls off from approximately DC at a rate of x 10 per decade. This means that at 100 Hz it will typically have a gain of 10,000 times, but at 1000 Hz this has dropped to 1000 times. By $10,000 \mathrm{~Hz}$ it has dropped to 100 times. By 100 kHz it has dropped to only 10 times.

Power Supply Rejection Ratio

This is the ratio of change in input voltage to the change in supply voltage. This is the ability of an op-amp to reject power-supply-induced noise, hum and drift. Voltage changes on the supply lines are coupled into the amplifier and appear as part of the input signal. Because of this, the power supply hum and noise at the output will be amplified by the gain of the opamp. Thus if the op-amp is being used as a unity gain inverter, the hum and noise at the output will be that at the input. If the gain is set high, then it will be amplified accordingly. The figures presented for power supply rejection in the data are for unity gain and will deteriorate in direct proportion to the gain of the op-amp. To give an example:-
If an op-amp has a power supply reaction of $80 \mathrm{~dB}(10,000)$ times, then a power supply hum level of 1 v will only produce a hum level of 0.1 mV at the output. However, if the op-amp is used at a gain of 1,000 times, this hum will be amplified 1,000 times as well, producing 0.1 v of hum in the output signal. Also, power supply rejection will usually deteriorate at high frequencies.

Latch-up

Latch-up is the 'sticking' or 'locking-up' of the output of an op-amp when the maximum differential input voltage is exceeded. In the latch-up condition, the output is stuck at either the positive or negative maximum output voltage, and the input is ineffective in affecting the output. Most of the modern op-amps such as the 741 have eliminated this problem.

CMOS Operational amplifiers

The CA3130 is a CMOS output operational amplifier, originally designed by RCA. It is a good choice when you want the full output voltage swing to go from rail to rail.
Like the conventional op-amp, the 3130 has an inverting and a non-inverting input. These go to a pair of p-channel MOSFETs set up as a differential amplifier.

Compensation is applied between pins 1 and 8 . Compared to the 741 , the 3130 has about the same open loop gain and input offset voltage.
The input impedance is about a million times higher (2×10^{12} ohms rather than 2×10^{6}) and the input bias and offset currents are proportionately lower. Slew rate is about 20 times better, at $10 \mathrm{~V} / \mu \mathrm{sec}$. The output of the 3130 is sensitive to capacitive loading. It works on voltages as low as 5 v but will only work up to 16 v total. Another similar device is the CA3140. It has a bipolar output stage and will work up to a full $\pm 15 \mathrm{~V}$. Frequency compensation is internally provided. The output easily drives capacitive loads. It has the same high slew rate and input impedance of the 3130

CA3140 High Impedance DC Voltmeter

This circuit makes use of the very high impedance of the CA3140 to produce a high performance DC voltmeter with an input impedance of 11 M ohms. The instrument uses a cheap 1 mA FSD movement and has a diode bridge to correct polarity. If reverse polarity is applied to the instrument, the op-amp biases the BC558 'on' and this turns a LED on.

741 Operational Amplifier

The 741 is a high performance operational amplifier with high open loop gain, internal compensation, high common mode range and exceptional temperature stability. It is short circuit proof and allows for nulling of offset voltage.

Features

- Internal frequency compensation
- Short circuit protection
- Offset voltage null capability
- Excellent temperature stability
- Hign input voltage range
- No latch up

Absolute Maximum Ratings
Supply Voltage
Internal Power Dissipation
Differential Input Voltage
Input Voltage (either input)
Output Short Circuit Duration
$\pm 18 \mathrm{v}$
500 mW
$\pm 30 \mathrm{v}$
$\pm 15 \mathrm{v}$
Indefinite

Specifications

Input Offset Voltage	$6 \mathrm{mV}(\mathrm{max})$
Input Resistance	2 M (typ)
Supply Current	1.7 mA (typ)
Large Signal Differential voltage gain	$200 \mathrm{v} / \mathrm{mV}$ (typ)
Common Mode Rejection	$90 \mathrm{~dB}(\mathrm{typ})$
Supply Voltage Rejection	$96 \mathrm{~dB}($ (typ)
Output Voltage Swing $\left(R_{\mathrm{L}} \geq 10 \mathrm{k}\right)$	$\pm 14 \mathrm{~V}$ (typ)

Applications

The 741 is an internally compensated op-amp for unconditional stability. Its gain falls off at 6dB per octave/ 20dB per decade above DC. i.e. as the frequency doubles, the open loop gain halves.
It has a unity gain bandwidth of 1 MHz i.e. at 1 MHz its gain has dropped to $x 1$.

Offset Adjustment

Audio Mixer

This circuit is for a unity gain inverting adder. The output voltage will be equal to the sum of the three input voltages. While the circuit is shown with only three inputs, more could be added if necessary. This circuit is called a virtual earth input mixer since pin 2 (the inverting input) is seen as 'earth' by the input signals. As a result the input impedance is set by the input resistors and there is very little interaction between inputs. It this is used as an audio mixer, it is a good idea to wire capacitors between the inputs and their signals and also on the output. 1uF tantalum would be a good value.

Difference Amplifier

The circuit below shows a typical application for a unity gain difference amplifier- a balanced input audio amplifier. The output is the difference between the two input signals. These circuits are often used in audio when long leads must be run say between a microphone and an audio mixer. Signals such as hum or buzz from lighting controllers (triac dimmers are renowned for their electrical 'noise' producing ability!) are picked up along the cable. The difference amplifier gets this signal equally on both inputs and cancels it out. The good 'wanted' signal will be seen as a difference at the input terminals and will be passed through.

Precision DC Millivoltmeter

The very high DC performance of the 741 and 301 make them ideal for DC measuring equipment. The circuit following is for a precision DC millivoltmeter. It will give full scale voltage readings from 1 mV to 100 mV in seven ranges.

Precision DC Millivoltmeter

CA 3130 OP-AMP
Wein-Bridge Oscillator

$150 \mathrm{~Hz}-1.5 \mathrm{~Hz}$ Wein-bridge oscillator

The circuit shows how the 741 or 301 can be connected as a variable frequency Wein-Bridge oscillator. As it stands, the circuit covers from 150 Hz to 1.5 kHz and uses only a cheap miniature globe for amplitude stabilization. Output is approximately 2.5V RMS and distortion less than 0.1 $\%$. The frequency is inversely proportional to the values of C , and C_{2} and can be varied to work up to about 25 kHz .

555 Timer

The 555 is a highly stable device designed for generating accurate time delays or oscillations. Additional terminals are provided ' for triggering or resetting. In the time delay mode (monostable mode) the time is set by one external resistor and one capacitor. In the astable (free running) mode the frequency and duty cycle are set by two external resistors and one capacitor. The circuit can be both triggered and reset on falling waveforms. The output circuit can source or sink up to 200mA. TTL circuitry can be driven directly from the output.
A dual version of this IC is available, the 556.

Features

- Timing from microseconds to hours
- Adjustable duty cycle
- Sink \& source 200 mA
- 4-15V operation
- Temperature stability $>0.005 \% \operatorname{per}^{\circ} \mathrm{C}$

Absolute maximum ratings
 Supply
 $+18 \mathrm{~V}$
 Power dissipation
 600 mW

Specifications

Timing Error, monostable Temperature drift Supply Drift
Timing Error, astable Temperature Drift Supply Drift
Trigger Voltage
$V_{c c} 15 \mathrm{~V}\left(I_{\text {trig }}=0.5 \mu \mathrm{~A}\right) \quad 5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{cc}} 5 \mathrm{~V}$
$1.67 v$
Control Voltage
Vcc 15 V
10 v
3.3 v
$\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$
cc 5 V
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
0.1 \%/V 150ppm $/{ }^{\circ} \mathrm{C}$ 0.30\%/V

555 Modes \& uses

Free-running: astable multivibrator

When powered from a 5 v supply the 555 is directly compatible with TTL. It can also run from $4-15 \mathrm{v}$ and can source and sink several hundred milliamps at its output.
One end of the timing capacitor is connected to ground, the other to the positive supply via resistor(s) allowing the use of electrolytics.
The high input impedance allows the use of large resistors and small capacitors. Up to 1000:1 frequency range can be obtained from a single capacitor by changing the resistance timing element.

Astable operation

1. Output (pin 3) is high
2. Charge on capacitor is low
3. Discharge transistor not conducting
4. Capacitor starts to charge
5. When voltage across the capacitor reaches two-thirds of the supply voltage the comparator triggers. Output goes low, capacitor is discharged via R_{2}. When the voltage on the capacitor drops to one third of the supply the comparator flips the circuit back. Then the whole sequence repeats for the next cycle.

If R_{2} is made large compared to R_{1}, output is low but symmetry of waveform is high.

Altering the Duty Cycle

The duty cycle is the 'on' time as a percentage of total cycle time. This is normally limited to 50%. By adding a diode, a duty cycle of less than 50% can be achieved.

Curing Latch-up problems

Latch-up when driving an inductive load can be avoided by adding two diodes as shown in the circuit below. This stops negative voltage from reaching pin three.

Fine Control of Timing/Frequency

Pin 5 , the control pin, is primarily used for filtering when the device is used in noisy electrical environments. However, by putting a voltage on this point, it is possible to vary the timing of the device independently of the 'RC' components. This control voltage may be varied from 45% to 90% of supply voltage in the monostable mode and from 1.7 V to $\mathrm{V}_{\text {cc }}$ (supply voltage) in the astable mode.

Monostable operation

1. Bringing trigger from +V to ground starts sequence.
2. Output goes positive.
3. Clamp is removed from timing capacitor which then charges to two thirds of supply voltage. The threshold comparator then flips the circuit over. Output goes to ground and the capacitor is rapidly discharged to ground.

Square Wave Oscillator

This simple circuit provides square waves at five switched frequencies from 1 Hz to 10 kHz . It uses the 555 in the astable mode.

Timer circuit

This circuit produces a warning tone after a preset period. The delay period is controlled by C_{1} / R_{1} and $R V_{1}$ and can be adjusted from a few milliseconds to approximately 500 seconds. The 555 is normally "switched off". C_{1} discharges via R_{1} and RV_{1}. When it has discharged, the 555 is turned 'on' via Q_{1} and oscillates, producing a warning tone.

Special Version of the 555

ICM7555

The ICM 7555 is a CMOS timer IC providing significantly improved performance over the standard 555 timer. At the same time it will act as a direct replacement for this device in most applications. Improved parameters include the low supply current, wide operating supply voltage range, low threshold, trigger and reset currents, no crowbarring of the supply current during any output transition, higher frequency performance and no requirement to decouple the control voltage for stable operation. A dual version of the 7555 is available, the 7556 , with two timers sharing only $\mathrm{V}+(\mathrm{V}$ cc $)$ and V -(GND). They are both capable of sourcing and sinking sufficient current to drive TTL loads and have small enough offset to drive CMOS loads.

Features

- Low supply current ($80 \mu \mathrm{~A}$ typ)
- Ultra low trigger threshold. (20pA typ)
- High speed operation (500 kHz guaranteed)
- Wide supply range $2 v$ to 18 v
- No crowbarring of supply during reset.
- Can be used with higher impedance timing elements than 555.
- Complete static protection.

Absolute Maximum Ratings
Supply Voltage $+18 \mathrm{v}$
Input Voltage
Trigger
Supply + 0.3V
Threshold
Reset control voltage
Output Current
100 mA
Power Dissipation 200mW

Specifications	
Supply Voltage	2 v to 18 v
Supply Current	60-120uA
Timing	
Initial Accuracy	2.0\%
Drift with temperature	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Drift with Supply Voltage	1\%/V
Trigger Current @ Supply Voltage 5V	10pA
Reset Current @ Supply Voltage 5V	20pA
Maximum Oscillator Frequency	500 kHz

Trigger and Threshold Voltages are as for the standard 555.

LM340 and 78XX series 3 terminal regulators_LM340T5, 12, 15 7805, 7812, 7815

The LM340 series of positive 3 terminal regulators offer similar performance to the 78XX series. They are complete voltage regulators with outstanding ripple rejection and superior line load regulation.
Current limiting is included to limit peak output current to a safe level. Safe area protection for the output transistor is provided. If internal power dissipation is too high, thermal shutdown occurs. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Features

- Maximum 1A output
- Output voltage tolerance $\pm 2 \%$
- Load regulation 0.3\%
- Thermal overload protection
- Short circuit current limit
- Output transistor safe area protected
- Continuous dissipation 15 W

Basic use as a fixed regulator

The $10 \mu \mathrm{~F}$ capacitor across the output is needed for stability and improves the transient response of the supply.

Specifications @ $25^{\circ} \mathrm{C}$

	$\mu \mathrm{A} 7805 / \mathrm{LM} 340 \mathrm{~T}-5$	$\mu \mathrm{~A} 7812 / \mathrm{LM} 340 \mathrm{~T}-12$	$\mu \mathrm{~A} 7815 / \mathrm{LM} 340 \mathrm{~T}-15$
Output voltage	$5 \mathrm{v} \pm .25$	$12 \mathrm{v} \pm .6$	$15 \mathrm{~V} \pm .6$
Ripple rejection	80 dB	72 dB	70 dB
Input voltage (minimum to maintain line regulation)	7.3 v	14.5 v	17.5 v
Dropout voltage	2.0	2.0	2.0
Peak output current	2.2 A	2.2 A	2.2 A
Short circuit current	2.1 A max	1.5 A max.	1.2 A max.
Load regulation (5mA to 1.5A)	12 mV typ.	12 mV typ.	12 mV typ.
Bias current	8 mA max	8 mA max	8 mA max
Absolute max input voltage	35 v	35 v	35 v

Applications

Apart from the normal use as a fixed voltage regulator, the LM340/78XX can be used in a variety of ways with the addition of external circuitry.

Adjustable output

This simple circuit gives the LM340T-5 variable output voltage according to the formula:
Vout $=5 v+\left(5 v / R 1+I_{Q}\right) R 2$

Boosting the current output of the LM340T/ 78XX series

This circuit supplies regulated outputs at up to 5A. At low currents Q1 is off. Only above 600 mA is it biased on.

Providing fixed higher voltages

The output voltage of the LM340T/78XX series can be increased over the standard voltage of the regulator by using a zener diode in the common to earth lead.
$\mathbf{V}_{\text {OUT }}=\mathbf{V}_{\text {ZENER }}+\mathbf{V}_{\text {REGULATOR }}$
$V_{\text {REGULATOR }}$

79XX three terminal negative voltage regulators

The 79XX series are three terminal negative regulators with fixed output voltages. The only external component necessary is a compensation capacitor on the output.
These are essentially similar to the 78 XX series positive regulators, with current limiting and thermal overload protection.

$G N D=C O M M O N$

Specifications @ $25^{\circ} \mathrm{C}$

LM7905	LM7912	LM7915
$-5 \mathrm{v} \pm .2$	$-12 \mathrm{v} \pm .5$	$-15 \mathrm{v} \pm .6$
5 mV typ	5 mV typ	5 mV typ
1 mA	1.5 mA typ	1.5 mA typ
1.5 W	1.5 W	1.5 W
-35 v	-35 v	-35 v
7 v	14.5 v	17.5 v

LM7912 LM7915
1.5 mA typ 1.5 mA typ
.5w
$14.5 v \quad 17.5 v$

Standard circuit

Dual Voltage Power Supply

Capacitors -- 35 V
Bridge Rectifier -- $100 \mathrm{~V}, 2 \mathrm{~A}$
C3,C4 -- Ceramic, 50V

Caution: Input/Ground are reversed between the 7812 and 7912.

Pos. Reg.

The use of a pair of the regulators (positive and negative) makes an ideal dual rail supply, for powering op-amps etc. A suitable circuit is shown below. This one uses 12 V regulators, but obviously the voltage can be varied by changing regulators.

This list is only some of the most common

 types:| Device | Voltage | Current | Pinout |
| :---: | :---: | :---: | :---: |
| 7805
 78L05
 7806
 7808
 7810
 78L12
 7812
 78S12CT
 7818
 7824
 7905
 79L05
 7906
 7908
 7912
 79L12
 7915
 7918
 7924
 LM317T
 LM337SP
 LM123k
 LM117K | $+5 v$ $+5 v$ $+6 v$ $+8 v$ $+10 v$ $+12 v$ $+12 v$ $+12 v$ $+18 v$ $+24 v$ $-5 v$ $-5 v$ $-6 v$ $-8 v$ $-12 v$ $-12 v$ $-15 v$ $-18 v$ $-24 v$ $+1.2 V$ to $+37 v$ $-1.2 V$ to $-37 V$ $+5 v$ $+1.2 V$ to $+37 V$ | 1A
 100 mA
 1A
 1A
 1A
 100 mA
 1A
 2A
 1A
 1A
 1A
 100 mA
 1A
 1A
 1A
 100 mA
 1A
 1A
 1A
 1.5A
 1.5A
 3A
 3A | TO-220 positive TO-92 positive TO-220 positive TO-220 positive TO-220 positive TO-92 positive TO-220 positive TO-3 positive TO-220 positive TO-220 positive TO-220 negative TO-92 negative TO-220 negative TO-220 negative TO-220 negative TO-92 negative TO-220 negative TO-220 negative TO-220 negative TO-220 adjustable TO-220 adjustable TO-3 positive TO-3 positive |

Leadless Surface-mount

Logic Gates

OR Gate: Output is a logic " 0 " only if both inputs are " 0 ". A logic "1" at either or both inputs produces a logic "1" output.

AND Gate: Output is a logic "1" only if both inputs are "1". A logic " 0 " at either or both inputs produces a logic " 0 " output.

NOR Gate: Output is a logic "1" only if both inputs are " 0 ". A logic " 1 " at either or both inputs produces a logic " 0 " output.

NAND Gate: Output is a logic " 0 " only if both inputs are " 1 ". A logic "0" at either or both inputs produces a logic "1" output.

Inverter or NOT gate: Output is a logic " 1 " when input is " 0 ". Output is a logic " 0 " when input is " 1 ". ie Inverts the input state.

D Flip-Flop: Transfers the input at D to the output at 0 (and it's inverse to Q-bar), on the rising edge of the clock signal at C . No change in any outputs on the falling edge of the clock pulse.

AND			OR			NAND		
A	B	Output	A	B	Output	A	B	Output
0	0	0	0	0	0	0	0	1
0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	1
1	1	1	1	1	1	1	1	0

NOR		
A	B	Output
0	0	1
0	1	0
1	0	0
1	1	0

BUFFER		NOT Inverter	
Input	Output	Input	Output
0	0	0	1
1	1	1	0

XOR		
A	B	Output
0	0	0
0	1	1
1	0	1
1	1	0
exclusive-OR		

The above tables are called TRUTH TABLES. They give all the possible outcomes for a particular gate. The inputs are labeled A and B as shown above and the output is the result of the inputs at HIGH or LOW level. A HIGH is " 1 " and a LOW is " 0. "

4001 Metal Detector

4001 is used in this circuit as two different types of oscillator. IC1a and IC1b with $\mathrm{R}_{1}, \mathrm{RV}_{1}$ and C_{2} form one oscillator. RV R_{1} varies its frequency slightly. $\mathrm{ICl}_{\mathrm{d}}, \mathrm{C}_{4}, \mathrm{C}_{5}$ and L_{1} (search coil) form the second oscillator. $\mathrm{IC} 1_{8}$ acts as a mixer, combining the two oscillators and producing an output which is the difference between the two. This is amplified by TR_{1} and fed to a magnetic earpiece.

L1. 18 METRES HOOK UP WIRE WOUND ON 140 mm DIA. FORMER

Ultrasonic Transmitter

The 4001 forms a complete 40 kHz oscillator and driver for an ultrasonic transmitter. The oscillator frequency can be adjusted by means of RV_{1}. Two gates act as square wave oscillators which then drive the other two gates in push-pull. These drive the transducer in push-pull to get the maximum.

CMOS Logic Probe

The logic probe is an essential instrument for testing digital circuitry. This one uses only one 4001 IC, 3 LEDs and a handful of passive components. Power is obtained from the circuit to be tested. The first gate acts as an inverter by strapping its two inputs together. It is biased for half supply by R_{1}. Under quiescent conditions neither LED1 or LED2 will light. If the input goes high, gate output goes low and LED1 comes on. If the input is taken low, the output of IC1 goes high and LED2 comes on, indicating a low signal. Short pulses are 'stretched' by IC gates 2 and 3, producing a flickering output at LED3.

Touch Switch

The near infinite input impedance of CMOS makes it ideal for use in touch and proximity circuits. Usually a touch sensitive circuit needs physical contact, while proximity circuit needs only the presence of an object such as the human body. Touch sensors rely on three features of the human body. Skin resistance is usually a few hundred thousand ohms, the body has a capacitance to earth of around 300 pF and the human body acts as an antenna, picking up 50 Hz power line fields. The figure below shows a proximity switch based on human coupling of the 50 Hz power line. A hand very near the plate will induce hum onto the plate and this will be passed to the circuit. The first gate is a 4001 with both inputs strapped together. The hum will be squared up and used to trip the retriggerable monostable as shown. A clean output results from the instant of first proximity until a few milliseconds after release. The sensitivity depends on the size of the plate.
The output of the 4013 can be connected to a relay via a transistor. It could then be used to turn on a light or other piece of electrical equipment. The 50 M resistor can be made by putting 5 M resistors in series.

CMOS Lamp Flasher

This circuit uses the four CMOS NAND gates of the 4011 as an oscillator and low power driver. The first two form a low frequency oscillator. All the gates are used with their inputs connected together. In this form they act as an inverter i.e. a HIGH produces a LOW out. The very high input impedance of the gates means that high impedance values can be used in the oscillator circuit. The power consumption is also very low and the circuit will function over the normal 3-15 volts range of CMOS.

Audio Alarm

The addition of a VFET driver transistor following a CMOS oscillator makes a very efficient and simple audio alarm. As well as this it will drive a low impedance speaker directly.

Metal Detector

This unit uses two pairs of 4011 NAND gates as two oscillators and two 4011 buffers. The search coil oscillator has its frequency influenced by the position and proximity of metal at the search head. The reference oscillator has its frequency adjusted by the slug tuning of its coil and fine tuning by adjusting the voltage on IC2c. The two signals are digitally mixed in one section of a dual D-type flip-flop.

4017 CMOS Decade Counter/ Divider with 10 Decoded Outputs (Johnston Counter)

The CD 4017 is called a COUNTER or DIVIDER or DECADE COUNTER. It is a very handy chip for producing "Running LED effects" etc.
It has 10 outputs. For normal operation, the clock enable and reset should be at ground.
Output " 0 " goes HIGH on the rise of the first clock cycle.
On the rise of the second clock cycle, output " 0 " goes LOW and output " 1 " goes HIGH. This process continues across the ten outputs and cycles to output " 0 " on the eleventh cycle.
The "Carry Out" pin goes LOW when output " 5 " goes HIGH and goes HIGH when output " 0 " goes HIGH.
In other words, "Carry Out" is HIGH for outputs $0,1,2,3$ and 4 . It is LOW when the following outputs are active: $5,6,7,8$ and 9.
When RESET (pin 15) is taken HIGH, the chip will make output " 0 " go HIGH and remain HIGH.
When "Clock Inhibit" (pin 13) is taken HIGH, the counter will FREEZE on the output that is currently HIGH.
The clock signal must have a rise time faster than $5 \mu \mathrm{secs}\left(\mathrm{V}_{\mathrm{DD}}=15 \mathrm{v}\right)$.

6 LEDs on the KITT SCANNER scan back and forth similar to the lights on the front of the KITT car in the movie.

The 10 LEDs on the SCANNER turn on one-at-a-time, from left to right
LED DICE

Logic Probe

The excellent input protection and wide supply voltage tolerance of the 4049 makes it ideal as the basis of a logic probe. The circuit below shows a logic probe for both CMOS and TTL circuits and will work over a $3-15 \mathrm{v}$ range and reliably up to 1.5 MHz . On a 'low' input, IC1 1_{e} will send IC1f low, lighting LED 1. On a high input IC1c will go 'low', lighting LED 2. IC1 ${ }_{\mathrm{a}}$ and IC1 1_{b} form a monostable circuit which 'stretches' short pulses to 15 msec , so they can be seen. Thus on even high frequency pulse trains, LED 3 will flash.

40106 OR 74C14 HEX Schmitt Trigger IC

This chip is known by a number of identities. 74C14. It is also marketed as 40106, 40014, and 74HC14. These are all CMOS chips and are characterised by low current consumption, high input impedance and a supply voltage from 5 v to 15 v . (Do not substitute 7414 or 74LS14. They are TTL chips and operate on 4.5 v to 5.5 v and have low impedance inputs.)

The 74C14 contains 6 Schmitt Trigger gates.
Minimum supply voltage 5 v
Maximum supply voltage 15 v
Max current per output 10 mA
Maximum speed of operation 4 MHz
Current consumption approx 1 uA with nothing connected to the inputs or outputs.

Fig: 8 The six Schmitt Trigger Gates for a $\mathbf{7 4 c 1 4}$ IC

Here are some of the things you can do with the gates in the 40106 Hex Schmitt Trigger chip:

INVERTING

If the output is required to be the opposite of the circuit above, an inverter is added:

If a diode is added across the input resistor, the capacitor " C " will be discharged when the input goes low, so the "Delay Time" will be instantly available when the input goes HIGH:

Schmitt Trigger Delay INVERTER

The following circuit produces a PULSE (a LOW pulse) when the input goes HIGH:

To invert the output, add an inverter:

To produce a pulse after a delay, the following circuit can be used:

The following circuit produces a tone during the HIGH period. When the output of the second inverter is HIGH, it places a high on the input of the third inverter, via the diode. This is called "jamming" the oscillator and prevents the oscillator from operating. When the second inverter goes LOW, the oscillator will operate.

The oscillator above can be set to produce a 100 Hz tone and this can activate a 2 kHz oscillator to produce a 2-tone output. A "jamming diode" is needed between the third and fourth gates to allow the highfrequency oscillator to operate when the output of the low-frequency oscillator is HIGH.

The output can be buffered with a transistor:

Extending the action of a push button

The action of a push button can be extended by adding the following circuit:

To produce a pulse of constant length, (no matter how long the button is pressed), the following circuit is needed:

GATING

Gating is the action of preventing or allowing a signal to pass though a circuit.
In the following circuit, buttons "A" and "B" are gated to allow the oscillator to produce an output.
The first two inverters form an "OR-gate." When the output of the gate is HIGH it allows the oscillator to operate.

The second diode is called the gating diode. When the output of the second inverter is LOW, the capacitor is prevented from charging as the diode will not allow it to charge higher than 0.7 v , and thus the oscillator does not operate.
When the output of the second inverter is HIGH, the capacitor is allowed to charge and discharge and thus oscillator will produce an output. If the push buttons can be placed together, the circuit can be simplified to:

PULSER

The 74 c 14 can be used to produce a 3 mS pulses every second. The circuit is adjustable to a wide range of requirements.

Produces (3 mS wide) pulses per sec

2 MINUTE TIMER

Some of the features we have discussed have been incorporated into the following circuit. The relay is energized for a short time, 2 minutes after the push-button is pressed. The push-button produces a brief LOW on pin 1, no matter how long it is pushed and this produces a pulse of constant length via the three components between pin 2 and 3.
This pulse is long enough to fully discharge the 100u timing electrolytic on pin 5.
The 100k and electrolytic between pins 6 and 9 are designed to produce a brief pulse to energize the relay.

Produces a short pulse after 2 minutes
OUTPUT
TRIGGER TIMER
The next design interfaces a "Normally Open" and "Normally Closed" switch to a delay circuit. The feedback diode from the output prevents the inputs re-triggering the timer (during the delay period) so that a device such as a motor, globe or voice chip can be activated for a set period of time.

ALARM

In the following circuit, the gates are used to detect the touch of a door knob and produce an output that goes HIGH for approx 1 minute.

The output of the above circuit can be taken to an alarm. Open the reed switch contacts and connect the reed switch to the output of the Door-knob alarm.

LM 386

The LM 386 is an 8-pin Audio Power Amplifier
Minimum supply voltage 5 v
Maximum supply voltage 15 v
3 variations:
LM386-N1 cheapest variety 300 mW
LM386-N3 500mW
LM386-N4 expensive variety 700 mW

300mW amplifier using LM 386

300mW amplifier using LM 386

Resistors

A resistor will limit the current flow through itself to a calculable value based upon its resistance and the applied voltage (see Ohms Law). This means a resistor can be used to run a low voltage device from a higher voltage power supply by limiting the required power to a predetermined level. Resistors are not polarity sensitive.

Tolerance The tolerance of a resistor refers to how close its actual resistance has to be to the value marked on it. Common tolerances are 5% and 1%.

Wattage Depending on the power requirements of a circuit, resistor wattage needs to be calculated to ensure that they don't over heat: The more common ratings available for resistors are $1 / 4$. Watt, $1 / 2$. Watt, 1 Watt \& 5 Watt. The wattage required for different circuits can be calculated by using the power formula described later.

Values Because it would be impractical to carry every possible value of resistor, they are available in pre-selected ranges. These ranges are known as preferred values. The E 12 series, which is the most common series, (12 Values per 100) is denoted as: $10 \Omega, 12 \Omega, 15 \Omega, 18 \Omega, 22 \Omega, 27 \Omega, 33 \Omega, 39 \Omega, 47 \Omega, 56 \Omega, 68 \Omega, 82 \Omega$.
This does not limit the range of resistors to a total of twelve values, but each resistor value must begin with a number from the series and be a multiple of $\times 0.1, \times 1, \times 10, \times 100, \times 1000, \times 10000$ etc. i.e. $1.5 \Omega, 15 \Omega, 150 \Omega, 1500 \Omega, 15,000 \Omega$.
The E 24 series has 24 values per 100 which includes the above sequence plus these extra values: $11 \Omega, 13 \Omega, 16 \Omega, 20 \Omega$, $24 \Omega, 30 \Omega, 36 \Omega, 43 \Omega, 51 \Omega, 62 \Omega, 75 \Omega, 91 \Omega$.

Formula Wheel

Using this formula wheel it is possible to calculate power, volts, amps or resistance for a given problem. ie. if you have two of the variables, for example power and volts, it is possible to find the amps in a circuit.
This wheel expresses volts as V , however, if you are studying old text books, you may see volts shown as E .

Resistors

Resistors in Series

When two or more resistors are placed in series, (in line with each other), the overall resistance of the resistor network will change. The new value can be calculated from:-

Resistors in Parallel

Calculating resistors in parallel is a little more complicated than resistors in series.

$$
\mathrm{R}_{\text {Total }}=\frac{1}{\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\text { etc } \ldots . .\right)}
$$

Power (Watts)

Power (Watts)	$=$	Current	\times	Voltage (Amps)
\mathbf{P}	$=$	\mathbf{I}	\mathbf{x}	\mathbf{V}

Where: $\mathrm{V}=$ Volts, $\mathrm{I}=$ Amps

$\mathbf{P}=$ Power

This formula is used in many situations, from calculating the wattage of a resistor, to working out if an appliance will overload a particular power source. A useful variation of this formula is :-

$$
P=I^{2} \times R
$$

Ohms Law

Ohms law is undoubtedly the most commonly used formula in electronics today. It defines the relationship between voltage, current and resistance. Its uses vary from calculating the value of a resistor to protect a LED (Light Emitting Diode) from destruction when run on a higher voltage supply than recommended, to calculating the current that a heater element will draw.

Voltage (Volts)	$=$	Current	\mathbf{x}	Resistance
\mathbf{V}	$=$	\mathbf{I}	\mathbf{x}	\mathbf{R}

Where: $\mathrm{V}=$ Volts, $\mathrm{I}=$ Amps, $\mathrm{R}=$ Resistance

Surface Mount Resistors

All SM resistors conform to a 3-digit or 4-digit code. But there are a number of codes, according to the tolerance of the resistor. It's getting very complicated.
Here is a basic 3-digit SM resistor:

The first two digits represent the two digits in the answer. The third digit represents the number of zero's you must place after the two digits. The answer will be OHMS. For example: 334 is written 330000.
This is written 330,000 ohms. The comma can be replaced by the letter " k ". The final answer is: 330 k .
$222=2200=2,200=2 k 2$
$473=47000=47,000=47 \mathrm{k}$
$105=1000000=1,000,000=1 \mathrm{M}=$ one million ohms
There is one trick you have to remember. Resistances less than 100 ohms are written: 100, 220, 470.
These are 10 and NO zero's = 10 ohms = 10R
or 22 and no zero's $=22 R$ or 47 and no zero's $=47 R$. Sometimes the resistor is marked: 10, 22 and 47 to prevent a mistake.
Remember:
$R=$ ohms $\quad k=$ kilo ohms $=1,000$ ohms $\quad M=M e g=1,000,000$ ohms
The 3 letters (R, k and M) are put in place of the decimal point. This way you cannot make a mistake when reading a value of resistance.

THE COMPLETE RANGE OF SM RESISTOR MARKINGS:

0R1 $=0.10 \mathrm{hm}$	$470=47 \mathrm{R}$	$332=3 \mathrm{k} 3$	224 = 220k
$\mathrm{R} 22=0.22 \mathrm{ohm}$	$560=56 \mathrm{R}$	$392=3 \mathrm{k} 9$	$274=270 k$
R33 $=0.33 \mathrm{ohm}$	$680=68 \mathrm{R}$	$472=4 \mathrm{k} 7$	$334=330 \mathrm{k}$
$\mathrm{R} 47=0.47 \mathrm{ohm}$	$820=82 R$	$562=5 \mathrm{k} 6$	$394=390 k$
$\mathrm{R} 68=0.68 \mathrm{ohm}$	101 = 100R	$682=6 \mathrm{k} 8$	$474=470 k$
$\mathrm{R} 82=0.82 \mathrm{ohm}$	121 = 120R	$822=8 \mathrm{k} 2$	$564=560 \mathrm{k}$
$1 \mathrm{RO}=1 \mathrm{R}$	151 = 150R	$103=10 k$	$684=680 \mathrm{k}$
$1 \mathrm{R} 2=1 \mathrm{R} 2$	181 = 180R	123 = 12k	$824=820 \mathrm{k}$
$2 \mathrm{R} 2=2 \mathrm{R} 2$	221 = 220R	153 = 15k	$105=1 \mathrm{MO}$
$3 \mathrm{R} 3=3 \mathrm{R} 3$	271 = 270R	$183=18 k$	$125=1 \mathrm{M} 2$
$4 \mathrm{R} 7=4 \mathrm{R} 7$	331 = 330R	223 = 22k	$155=1 \mathrm{M} 5$
$5 \mathrm{R} 6=5 \mathrm{R} 6$	391 = 390R	273 = 27k	$185=1 \mathrm{M} 8$
$6 \mathrm{R} 8=6 \mathrm{R} 8$	$471=470 \mathrm{R}$	$333=33 \mathrm{k}$	$225=2 \mathrm{M} 2$
$8 \mathrm{R} 2=8 \mathrm{R} 2$	561 = 560R	$393=39 k$	$275=2 M 7$
$100=10 \mathrm{R}$	$681=680 \mathrm{R}$	473 = 47k	$335=3 \mathrm{M} 3$
$120=12 R$	$821=820 \mathrm{R}$	$563=56 k$	$395=3 \mathrm{M} 9$
$150=15 R$	$102=1 \mathrm{kO}$	$683=68 k$	$475=4 M 7$
$180=18 \mathrm{R}$	$122=1 \mathrm{k} 2$	$823=82 k$	$565=5 M 6$
$220=22 R$	$152=1 \mathrm{k} 5$	$104=100 k$	$685=6 M 8$
$270=27 \mathrm{R}$	$182=1 \mathrm{k} 8$	$124=120 \mathrm{k}$	$825=8 \mathrm{M} 2$
$330=33 \mathrm{R}$	$222=2 \mathrm{k} 2$	$154=150 \mathrm{k}$	$106=10 \mathrm{MO}$
$390=39 R$	$272=2 \mathrm{k} 7$	$184=180 \mathrm{k}$	

The complete range of SM resistor markings for 4-digit code:

$0000=00 \mathrm{R}$	10R0 = 10R	1000 = 100R	1001 = 1k0	$1002=10 \mathrm{k}$	1003 = 100k	$1004=1 \mathrm{M}$
00R1 $=0.1 \mathrm{ohm}$	$11 \mathrm{RO}=11 \mathrm{R}$	$1100=110 \mathrm{R}$	1101 = 1k1	$1102=11 \mathrm{k}$	$1103=110 k$	$1104=1 \mathrm{M} 1$
OR22 $=0.22 \mathrm{ohm}$	$12 \mathrm{RO}=12 \mathrm{R}$	$1200=120 \mathrm{R}$	$1201=1 \mathrm{k} 2$	$1202=12 k$	1203 = 120k	$1204=1 M 2$
0R47 $=0.47 \mathrm{ohm}$	$13 \mathrm{RO}=13 \mathrm{R}$	$1300=130 \mathrm{R}$	$1301=1 \mathrm{k} 3$	$1302=13 k$	1303 = 130k	$1304=1 \mathrm{M} 3$
$0 \mathrm{R} 68=0.68 \mathrm{ohm}$	$15 R 0=15 R$	$1500=150 \mathrm{R}$	$1501=1 \mathrm{k} 5$	$1502=15 k$	1503 = 150k	$1504=1 \mathrm{M} 5$
OR82 $=0.68 \mathrm{ohm}$	$16 \mathrm{RO}=16 \mathrm{R}$	$1600=160 \mathrm{R}$	1601 = 1k6	$1602=16 k$	1603 = 160k	$1604=1 \mathrm{M} 6$
$1 \mathrm{ROO}=1 \mathrm{hmm}$	$18 \mathrm{RO}=18 \mathrm{R}$	$1800=180 \mathrm{R}$	1801 = 1k8	$1802=18 k$	1803 = 180k	$1804=1 \mathrm{M} 8$
$1 \mathrm{R} 20=1 \mathrm{R} 2$	$20 R 0=20 R$	$2000=200 \mathrm{R}$	2001 = 2k0	$2002=20 k$	2003 = 200k	$2004=2 \mathrm{MO}$
$2 \mathrm{R} 20=2 \mathrm{R} 2$	$22 \mathrm{RO}=22 \mathrm{R}$	$2200=220 \mathrm{R}$	2201 = 2k2	$2202=22 k$	2203 = 220k	$2204=2 M 2$
$3 \mathrm{R} 30=3 \mathrm{R} 3$	$24 \mathrm{RO}=24 \mathrm{R}$	$2400=240 \mathrm{R}$	2401 = 2k4	$2402=24 k$	2403 = 240k	$2404=2 M 4$
$6 \mathrm{R} 80=6 \mathrm{R} 8$	$27 \mathrm{RO}=27 \mathrm{R}$	$2700=270 \mathrm{R}$	2701 = 2k7	$2702=27 \mathrm{k}$	$2703=270 k$	$2704=2 M 7$
$8 \mathrm{R} 20=8 \mathrm{R} 2$	$30 \mathrm{RO}=30 \mathrm{R}$	$3000=300 \mathrm{R}$	3001 = 3k0	$3002=30 \mathrm{k}$	3003 = 300k	$3004=3 \mathrm{MO}$
	$33 \mathrm{RO}=33 \mathrm{R}$	$3300=330 \mathrm{R}$	3301 = 3k3	$3302=33 \mathrm{k}$	3303 = 330k	$3304=3 \mathrm{M} 3$
	$36 R 0=36 R$	$3600=360 \mathrm{R}$	$3601=3 \mathrm{k} 6$	$3602=36 k$	3603 = 360k	$3604=3 \mathrm{M} 6$
	$39 R 0=39 \mathrm{R}$	$3900=390 \mathrm{R}$	$3901=3 \mathrm{k} 9$	$3902=39 k$	3903 = 390k	$3904=3 \mathrm{M} 9$
	$43 \mathrm{RO}=43 \mathrm{R}$	$4300=430 \mathrm{R}$	$4301=4 \mathrm{k} 3$	$4302=43 k$	4303 = 430k	$4304=4 \mathrm{M} 3$
	$47 \mathrm{RO}=47 \mathrm{R}$	$4700=470 \mathrm{R}$	$4701=4 \mathrm{k} 7$	$4702=47 \mathrm{k}$	$4703=470 k$	$4704=4 M 7$
	$51 \mathrm{RO}=51 \mathrm{R}$	$5100=510 \mathrm{R}$	$5101=5 \mathrm{k} 1$	$5102=51 \mathrm{k}$	5103 = 510k	$5104=5 \mathrm{M} 1$
	$56 \mathrm{RO}=56 \mathrm{R}$	$5600=560 \mathrm{R}$	5601 = 5k6	$5602=56 k$	5603 = 560k	$5604=5 M 6$
	$62 \mathrm{RO}=62 \mathrm{R}$	$6200=620 \mathrm{R}$	$6201=6 \mathrm{k} 2$	$6202=62 k$	$6303=620 k$	$6204=6 \mathrm{M} 2$
	$68 \mathrm{RO}=68 \mathrm{R}$	$6800=680 \mathrm{R}$	$6801=6 \mathrm{k} 8$	$6802=68 k$	$6803=680 k$	$6804=6 \mathrm{M} 8$
	$75 \mathrm{RO}=75 \mathrm{R}$	$7500=750 \mathrm{R}$	7501 = 7k5	$7502=75 k$	7503 = 750k	$7504=7 \mathrm{M} 5$
	$82 \mathrm{RO}=82 \mathrm{R}$	$8200=820 \mathrm{R}$	$8201=8 \mathrm{k} 2$	$8202=82 k$	8203 = 820k	$8204=8 \mathrm{M} 2$
	$91 \mathrm{RO}=91 \mathrm{R}$	$9100=910 \mathrm{R}$	9101 = 9k1	$9102=91 \mathrm{k}$	9103 = 910k	$9104=9 \mathrm{M} 1$
						$1005=10 \mathrm{M}$

0000 is a value on a surface-mount resistor. It is a zero-ohm LINK!
Resistances less than 10 ohms have ' R ' to indicate the position of the decimal point. Here are some examples:

Three Digit Examples	Four Digit Examples
330 is 33 ohms - not 330 ohms	1000 is 100 ohms - not 1000 ohms
221 is 220 ohms	4992 is 49900 ohms, or 49k9
683 is 68000 ohms, or 68k	1623 is 162000 ohms, or 162k
105 is $\mathbf{1 0 0 0} 000$ ohms, or 1M	0R56 or R56 is 0.56 ohms
8 R 2 is 8.2 ohms	

A new coding system has appeared on 1\% types. This is known as the EIA-96 marking method. It consists of a three-character code. The first two digits signify the 3 significant digits of the resistor value, using the lookup table below. The third character - a letter - signifies the multiplier.

code	value										
01	100	17	147	33	215	49	316	65	464	81	681
02	102	18	150	34	221	50	324	66	475	82	698
03	105	19	154	35	226	51	332	67	487	83	715
04	107	20	158	36	232	52	340	68	499	84	732
05	110	21	162	37	237	53	348	69	511	85	750
06	113	22	165	38	243	54	357	70	523	86	768
07	115	23	169	39	249	55	365	71	536	87	787
08	118	24	174	40	255	56	374	72	549	88	806
09	121	25	178	41	261	57	383	73	562	89	825
10	124	26	182	42	237	58	392	74	576	90	845
11	127	27	187	43	274	59	402	75	590	91	866
12	130	28	191	44	280	60	412	76	604	92	887
13	133	29	196	45	287	61	422	77	619	93	909
14	137	30	200	46	294	62	432	78	634	94	931
15	140	31	205	47	301	63	442	79	649	95	953
16	143	32	210	48	309	64	453	80	665	96	976

The multiplier letters are as follows:

letter	mult	letter	mult
F	100000	B	10
E	10000	A	1
D	1000	X or S	0.1
C	100	Y or R	0.01

22A is a 165 ohm resistor, 68 C is a 49900 ohm (49k9) and 43E a 2740000 (2M74). This marking scheme applies to 1% resistors only.

A similar arrangement can be used for $\mathbf{2 \%}$ and 5\% tolerance types. The multiplier letters are identical to 1% ones, but occur before the number code and the following code is used:

2\%				5\%			
code	value	code	value	code	value	code	value
01	100	13	330	25	100	37	330
02	110	14	360	26	110	38	360
03	120	15	390	27	120	39	390
04	130	16	430	28	130	40	430
05	150	17	470	29	150	41	470
06	160	18	510	30	160	42	510
07	180	19	560	31	180	43	560
08	200	20	620	32	200	44	620
09	220	21	680	33	220	45	680
10	240	22	750	34	240	46	750
11	270	23	820	35	270	47	820
12	300	24	910	36	300	48	910

With this arrangement, C31 is $5 \%, 18000$ ohm (18k), and D18 is 510000 ohms (510 k) 2% tolerance.
Always check with an ohm-meter (a multimeter) to make sure.

Chip resistors come in the following styles and ratings:

Style: 0402, 0603, 0805, 1206, 1210, 2010, 2512, 3616, 4022
Power Rating: 0402(1/16W), 0603(1/10W), 0805(1/8W), 1206(1/4W), 1210(1/3W), 2010(3/4W), 2512(1W), 3616(2W), 4022(3W)
Tolerance: $0.1 \%, 0.5 \%, 1 \%, 5 \%$
Temperature Coefficient: 25ppm 50ppm 100ppm

CAPACITOR DATA

A capacitor works on the principle of having two conductive plates which are very close and are parallel to each other. When a charge is applied to one plate of the capacitor, the electrons will generate an approximately equal, but opposite charge on the other plate. Capacitors will pass AC current, but will block DC current. A capacitor can also he used to smooth voltage ripple, as in DC power supplies. Capacitance is measured in Farads (F).

Capacitor Parameters

Capacitors have five parameters:
Capacitance (Farads),
Tolerance (\%),
Maximum Working Voltage (Volts)
Surge Voltage (Volts) and leakage
Because a Farad is a very large unit, most capacitors are normally measured in the ranges of pico, nano and micro farads.

Working Voltage

This refers to the maximum voltage that should be placed across the capacitor under normal operating conditions.

Surge Voltage

The maximum instantaneous voltage a capacitor can withstand. If the surge voltage is exceeded over too long a period there is a very good chance that the capacitor will be destroyed by the voltage punching through the insulating material inside the casing of the capacitor. If a circuit has a surging characteristic, choose a capacitor with a high rated surge voltage.

Leakage

Refers to the amount of charge that is lost when the capacitor has a voltage across its terminals. If a capacitor has a low leakage it means very little power is lost. Generally leakage is very small and is not normally a consideration for general purpose circuits.

Tolerance

As with resistors, tolerance indicates how close the capacitor is to its noted value. These are normally written on the larger capacitors and encoded on the small ones.

Code	Tolerance	Code	Tolerance
\mathbf{C}	$\pm .25 \mathbf{p F}$	\mathbf{D}	$\pm \mathbf{0 . 5 p F}$
\mathbf{E}	$\pm \mathbf{p F}$	\mathbf{G}	$\pm \mathbf{2 \%}$
\mathbf{J}	$\pm 5 \%$	\mathbf{K}	$\pm \mathbf{~}$
\mathbf{L}	$\pm \mathbf{1 5 \%}$	\mathbf{M}	$\pm \mathbf{2 0 \%}$
\mathbf{N}	$\pm 30 \%$	\mathbf{Z}	$\mathbf{+ 8 0 - 2 0 \%}$

Capacitor Markings

There are two methods for marking capacitor values. One is to write the information numerically directly onto the capacitor itself. The second is to use the EIA coding system.

EIA Coding

The EIA code works on a very similar principle to the resistor colour code. The first two digits refer to the value with the third being the multiplier. The fourth character represents the tolerance.
When the EIA code is used, the value will always be in Pico-Farads (see Decimal Multipliers).

Example 103 K

This expands to:

$1=1$
$0=0$
$3=x 1,000$
$\mathrm{K}=10 \%$ (sec Capacitor Tolerance for listings)
Then we combine these numbers together:
$10 \times 1000=10000 \mathrm{pF}=0.01 \mu \mathrm{~F}$, = 10n $\pm 10 \%$ tolerance
Example 335 K
This expands to:
$3=3$
$3=3$
$E=x 100,000$
$K= \pm 10 \%$
Then we combine these numbers together
$33 \times 100,000=3,300,000 \mathrm{pF}=3,300 \mathrm{nF}=3.3 \mathrm{uF} \quad 10 \%$ tolerance .

Capacitors in Series

Capacitors in series can be calculated by:

C1 C2 C3

$$
\mathrm{C}_{\text {Total }}=\frac{1}{\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\text { etc } \ldots . .\right)}
$$

Note:- The new value will always be lower.

Capacitors in Parallel

When capacitors are placed in parallel they can be simply added together.

$\mathrm{C}_{\text {Total }}=\mathbf{C 1}+\mathbf{C} 2+\mathbf{C} 3$ + etc....

Note :- The new capacitance value will be higher.

Potentiometers

Potentiometers (usually called pots) are essentially a variable resistor. There are two common types of potentiometers. These are linear and logarithmic types. These relate to the change in resistance with respect to rotation of the potentiometer shaft. Logarithmic pots are commonly used in volume control applications.

Linear pots are commonly marked with a " B " prefix, and \log pots with an "A" prefix.

For example

$B 100 \mathrm{~K}=100 \mathrm{k}$ ohms - linear
A2OK $=20 \mathrm{k}$ ohms - logarithmic

STEAM SIMULATOR

A realistic steam sound can be generated with a 4-transistor directly-coupled amplifier connected to a small speaker. The "white noise" is generated by the breakdown across the junction of a transistor and it is activated by a switch made up of contacts touching the wheel of one of the carriages. As the train speeds up and slows down, the sound corresponds to the movement. See Talking Electronics website for the full project.

27MHz LINKS

Fig 1. The 27 MHz Transmitter

Fig 2. The 27MHz Receiver
Here is the circuit from a 27 MHz remote control car. It is a simple single-channel link that activates the car in the forward direction when no carrier is being received, and the motor reverses when a carrier is detected. See Talking Electronics website for more details - $\mathbf{2 7} \mathbf{M H z}$ Links.

This is a single channel receiver, similar to the circuit above.
It can be modified to turn on a "latch" a relay. This means the relay can be turned on remotely but it cannot be turned off. The second circuit shows the modification to turn the relay ON with a short tone and OFF with a long tone.

The relay can be turned on but not turned off

The relay can be turned on with a short tone and turned off with a long tone

SOLAR CHARGER

This solar charger can be used to charge a $12 v$ battery from any number of solar cells. The circuit automatically adjusts for any input voltage and any output voltage. See Talking Electronics website for the full project.

ARC WELDER

Field strength Meter MkII

A field strength meter is a very handy piece of test equipment to determine the output of a transmitter. Talking Electronics website describes a number of Test Equipment projects to help with developing your projects.

INFINITY BUG

THE SURFACE-MOUNT COMPONENTS OF THE INFINITY BUG
The Infinity Bug sits on a remote phone and when the handset is returned to the rest position, the caller whistles down the line and a very sensitive microphone connected to the infinity bug is activated and any audio within 5 metres is detected.

FM BUG

FM BUG CIRCUIT

FM TRANSMITTER - 88MHz - 108MHz

3-Transistor Amplifier

3 TRANSISTOR SPY AMPLIFIER

The surface-mount 3-Transistor amplifier

HEARING AID

THE AMMETER

(0-1uA uses a 1uA movement)

The ammeter is placed in SERIES with one lead of a circuit. It must be placed around the correct way so the needle moves up-scale.
An ammeter is really a microamp-meter (it's called a movement - generally a 0-30 micro-amp movement) with a SHUNT (a thick piece of wire) across the two terminals. To cover the range of current used in electronic circuits, there are basically 3 types of amp-meters (or 3 ranges):
0-1 amp (0-1A)
0-1milliamp (0-1mA)
0-1 microamp (0-1uA)
In each range you can get many different scales, such as:
$0-1 \mathrm{~A}, 0-10 \mathrm{~A}$, and higher
$0-10 \mathrm{~mA}, 0-100 \mathrm{~mA}, 0-250 \mathrm{~mA}, 0-500 \mathrm{~mA}$
$0-1 u A, 0-100 u A, 0-500 u A$

Connecting an AMMETER

An ammeter is never connected across a battery or the supply rails of a project as this will create a SHORT-CIRCUIT and a large current will flow to either burn-out the meter or bend the pointer.
However, you need to know which way to connect a meter so that it reads upscale.

This is how you do it:

Remember this simple fact: Current flows through the meter from the +ve lead to the -ve lead and this means the leads must be placed so that the positive lead sees the higher voltage.
Do not place an ammeter ACROSS a component. This will generally cause damage and in most cases it will not tell you anything.
You can check to see how much current is flowing through a circuit by flicking one lead of the ammeter onto the circuit and watching the needle. If it moves up-scale very quickly, you know excess current is flowing and a higher range should be chosen. If the needle moves fairly slowly up-scale, the chosen range may be correct.
Always start with a high range ($0-1 \mathrm{Amp}$ for example) and if the needle moves a very small amount up the scale, another range can be chosen.
DON'T FORGET: Placing an ammeter on a circuit is a very dangerous thing because it is similar to playing with a jumper lead and represents a lead with a very small resistance. It is very easy to slip off a component and create a short-circuit. You have to be very careful.
Ammeters have to be connected across a "gap" or "cut" in a circuit and the easiest way to get a gap is across the on/off switch.
The accompanying diagram shows how to connect an ammeter.

THE MICROPHONE

Basically there are two different types. One PRODUCES a voltage and the other REQUIRES a voltage for its operation. This means you need to supply energy to the second type and this is very important when you are designing a batteryoperated circuit and need to have a very low quiescent current.
Here is a list of different types of microphones and their advantages:

SUPPLY VOLTAGE REQUIRED:

Electret Microphone - sometimes called a condenser microphone. Requires about 2-3v @ about 1mA.
Extremely good reproduction and sensitivity - an ideal choice. Output - about 10 - 20mV
Carbon Microphone - also called a telephone insert or telephone microphone. Requires about 3v-6v. Produces about 1 v waveform. Not very good reproduction. Ok for voice.

NO SUPPLY VOLTAGE REQUIRED:

Crystal Microphone - also called a Piezo microphone.
Produces about $20-30 \mathrm{mV}$
Produces a very "tinny" sound - like talking into a tin.
Dynamic Microphone - also called a Moving-Coil, Moving-Iron, Magnetic Microphone or Ribbon Microphone. Very good reproduction. Produces about 1 mV .
A speaker can be used as a microphone - it is called a Dynamic Mic. or Magnetic mic. - output about 1 mV

If a microphone produces about 20 mV under normal conditions, you will need a single stage of amplification. If the microphone produces only 1 mV under normal conditions, you will need two stages of amplification.
The circuits below show the first stage of amplification and the way to connect the microphone to the amplifier.

Connecting an electret microphone.

The 100n capacitor separates the voltage needed by the microphone (about 1 v) from the 0.6 v base voltage. A good electret microphone can hear a pin drop at 2 metres. A poor quality electret mic produces crackles in the background like bacon and eggs frying.

The internal construction of an electret microphone

Air enters the electret mic via the top holes and moves the thin mylar sheet. This changes the distribution of the charges on the plastic and the changes is passes down the Gate lead to the FET. The FET amplifies the signal and the result is available on the Drain lead.

Connecting a Crystal microphone
The crystal microphone has an almost infinite impedance - that's why it can be connected directly to the base of the transistor.
The magnetic microphone has a very low internal resistance and needs a capacitor to separate it from the base of the amplifying stage. If it is connected directly, it will reduce the base voltage to below 0.7 v and the transistor will not operate.

PIEZO DIAPHRAGM

You can also use a piezo diaphragm as a microphone. It produces a very "tinny" sound but it is quite sensitive.
Some diaphragms are more sensitive than others, but the sound quality is always terrible.

MICROCONTROLLERS

Microcontrollers are the way of the future. Most of the basic theory you will learn for the individual components in this ebook will become very handy when you need to design a circuit.
As a circuit becomes more and more complex, you have a decision to make. Do you want to use lots of individual components or consider using a microcontroller?
Talking Electronics website has a number of projects using individual components and this is the only way the project can be designed. But when it comes to "timing" and requiring an output to produce a HIGH for a particular length of time after an action has taken place, the circuit may require lots of components.

This is where the brilliance of a microcontroller comes in.
It can be programmed to produce and output after a sequence of events and the circuit looks "magic." Just one component does all the work and a few other components interface the inputs and output to the chip.

The second special thing about micros is the program.
This has been produced by YOU and it can be protected from "prying eyes" by a feature known as "code protection." This gives you exclusive rights to reproduce the project and all your hard work can be rewarded by volume sales.

This is the future.
Talking Electronics website has a number of very simple projects using microcontrollers and these chips all belong to the PIC family of micros.

These chips are very easy to program as they only have 33-35 instructions and they can perform amazing things. See the Talking Electronics website for project using these micros.
The three micros covered on the website are: PIC12F629, PIC16F84 and PIC16F628. The MCV08A is a Chinese version of the PIC12F629 and has some extra features and some of the features in the PIC12F629 are not present. But the cost is considerably lower than the PIC12F629. The Chinese get special deals all the time.

MCV08A Pinout

PIC12F629 Pinout

PIC12c508A PIC12c509 Pinout

HERE IS A PROJECT

USING A MICROCONTROLLER:

SIMON

SIMON PROJECT USING PIC16F628
SIMON is the simple game where you repeat a sequence of flashing coloured lights. All the "workings" of the project are contained in the program (in the PIC16F628 microcontroller) and the program is provided on Talking Electronics website.
See Simon project for more details.

This completes Data Book 1. Look out for more e-books on Talking Electronics website:

http://www.talkingelectronics.com

